Audacious
$Id:Doxyfile42802007-03-2104:39:00Znenolod$
|
00001 /* 00002 * MD5 implementation, modified for Audacious from 00003 * Colin Plumb's implementation by Matti 'ccr' Hämäläinen. 00004 * 00005 * This code implements the MD5 message-digest algorithm. 00006 * The algorithm is due to Ron Rivest. This code was 00007 * written by Colin Plumb in 1993, no copyright is claimed. 00008 * This code is in the public domain; do with it what you wish. 00009 */ 00010 #include "md5.h" 00011 #include <string.h> 00012 00013 00014 #if G_BYTE_ORDER == G_LITTLE_ENDIAN 00015 # define aud_md5_bytereverse(buf, len) do { } while (0) 00016 #else 00017 # if G_BYTE_ORDER == G_BIG_ENDIAN 00018 static void aud_md5_bytereverse(guint8 *buf, guint l) 00019 { 00020 guint32 t; 00021 do { 00022 t = (guint32) ((guint) buf[3] << 8 | buf[2]) << 16 | ((guint) buf[1] << 8 | buf[0]); 00023 *(guint32 *) buf = t; 00024 buf += sizeof(guint32); 00025 } while (--l); 00026 } 00027 # else 00028 # error Unsupported endianess, not G_LITTLE_ENDIAN or G_BIG_ENDIAN! 00029 # endif 00030 #endif 00031 00032 00039 void aud_md5_init(aud_md5state_t *ctx) 00040 { 00041 ctx->buf[0] = 0x67452301; 00042 ctx->buf[1] = 0xefcdab89; 00043 ctx->buf[2] = 0x98badcfe; 00044 ctx->buf[3] = 0x10325476; 00045 00046 ctx->bits[0] = 0; 00047 ctx->bits[1] = 0; 00048 } 00049 00050 00051 /* The core of the MD5 algorithm, this alters an existing MD5 hash to 00052 * reflect the addition of 16 longwords of new data. aud_md5_update blocks 00053 * the data and converts bytes into longwords for this routine. 00054 */ 00055 #define F1(x, y, z) (z ^ (x & (y ^ z))) 00056 #define F2(x, y, z) F1(z, x, y) 00057 #define F3(x, y, z) (x ^ y ^ z) 00058 #define F4(x, y, z) (y ^ (x | ~z)) 00059 #define MD5STEP(f, w, x, y, z, data, s) \ 00060 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) 00061 00062 static void aud_md5_transform(guint32 buf[4], guint32 const in[16]) 00063 { 00064 register guint32 a, b, c, d; 00065 00066 a = buf[0]; 00067 b = buf[1]; 00068 c = buf[2]; 00069 d = buf[3]; 00070 00071 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); 00072 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); 00073 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); 00074 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); 00075 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); 00076 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); 00077 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); 00078 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); 00079 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); 00080 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); 00081 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); 00082 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); 00083 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); 00084 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); 00085 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); 00086 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); 00087 00088 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); 00089 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); 00090 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); 00091 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); 00092 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); 00093 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); 00094 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); 00095 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); 00096 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); 00097 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); 00098 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); 00099 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); 00100 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); 00101 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); 00102 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); 00103 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); 00104 00105 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); 00106 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); 00107 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); 00108 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); 00109 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); 00110 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); 00111 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); 00112 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); 00113 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); 00114 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); 00115 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); 00116 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); 00117 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); 00118 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); 00119 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); 00120 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); 00121 00122 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); 00123 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); 00124 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); 00125 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); 00126 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); 00127 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); 00128 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); 00129 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); 00130 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); 00131 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); 00132 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); 00133 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); 00134 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); 00135 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); 00136 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); 00137 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); 00138 00139 buf[0] += a; 00140 buf[1] += b; 00141 buf[2] += c; 00142 buf[3] += d; 00143 } 00144 00145 00154 void aud_md5_append(aud_md5state_t *ctx, const guint8 *buf, guint len) 00155 { 00156 guint32 t; 00157 00158 /* Update bitcount */ 00159 t = ctx->bits[0]; 00160 if ((ctx->bits[0] = t + ((guint32) len << 3)) < t) 00161 ctx->bits[1]++; /* Carry from low to high */ 00162 ctx->bits[1] += len >> 29; 00163 00164 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ 00165 00166 /* Handle any leading odd-sized chunks */ 00167 if (t) { 00168 guint8 *p = (guint8 *) ctx->in + t; 00169 00170 t = 64 - t; 00171 if (len < t) { 00172 memcpy(p, buf, len); 00173 return; 00174 } 00175 memcpy(p, buf, t); 00176 aud_md5_bytereverse(ctx->in, 16); 00177 aud_md5_transform(ctx->buf, (guint32 *) ctx->in); 00178 buf += t; 00179 len -= t; 00180 } 00181 00182 /* Process data in 64-byte chunks */ 00183 while (len >= 64) { 00184 memcpy(ctx->in, buf, 64); 00185 aud_md5_bytereverse(ctx->in, 16); 00186 aud_md5_transform(ctx->buf, (guint32 *) ctx->in); 00187 buf += 64; 00188 len -= 64; 00189 } 00190 00191 /* Handle any remaining bytes of data. */ 00192 memcpy(ctx->in, buf, len); 00193 } 00194 00201 void aud_md5_finish(aud_md5state_t *ctx, aud_md5hash_t digest) 00202 { 00203 guint count; 00204 guint8 *p; 00205 00206 /* Compute number of bytes mod 64 */ 00207 count = (ctx->bits[0] >> 3) & 0x3F; 00208 00209 /* Set the first char of padding to 0x80. This is safe since there is 00210 always at least one byte free */ 00211 p = ctx->in + count; 00212 *p++ = 0x80; 00213 00214 /* Bytes of padding needed to make 64 bytes */ 00215 count = 64 - 1 - count; 00216 00217 /* Pad out to 56 mod 64 */ 00218 if (count < 8) { 00219 /* Two lots of padding: Pad the first block to 64 bytes */ 00220 memset(p, 0, count); 00221 aud_md5_bytereverse(ctx->in, 16); 00222 aud_md5_transform(ctx->buf, (guint32 *) ctx->in); 00223 00224 /* Now fill the next block with 56 bytes */ 00225 memset(ctx->in, 0, 56); 00226 } else { 00227 /* Pad block to 56 bytes */ 00228 memset(p, 0, count - 8); 00229 } 00230 aud_md5_bytereverse(ctx->in, 14); 00231 00232 /* Append length in bits and transform */ 00233 ((guint32 *) ctx->in)[14] = ctx->bits[0]; 00234 ((guint32 *) ctx->in)[15] = ctx->bits[1]; 00235 00236 aud_md5_transform(ctx->buf, (guint32 *) ctx->in); 00237 aud_md5_bytereverse((guint8 *) ctx->buf, 4); 00238 memcpy(digest, ctx->buf, 16); 00239 memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */ 00240 }