Returns the highest power of x in ratnumer(expr)
(%i1) load("ratpow")$
(%i2) ratp_hipow( x^(5/2) + x^2 , x); (%o2) 2
(%i3) ratp_hipow( x^(5/2) + x^2 , sqrt(x)); (%o3) 5
Returns the lowest power of x in ratnumer(expr)
(%i1) load("ratpow")$
(%i2) ratp_lopow( x^5 + x^2 , x); (%o2) 2
The following example returns 0 since 1 equals x^0:
(%i1) load("ratpow")$
(%i2) ratp_lopow( x^5 + x^2 + 1, x); (%o2) 0
The CRE form of the following equation contains sqrt(x) and
x. Since they are interpreted as independent variables,
ratp_lopow returns 0:
(%i1) load("ratpow")$
(%i2) g:sqrt(x)^5 + sqrt(x)^2;
5/2
(%o2) x + x
(%i3) showratvars(g);
1/2
(%o3) [x , x]
(%i4) ratp_lopow( g, x); (%o4) 0
(%i5) ratp_lopow( g, sqrt(x)); (%o5) 0
Returns the powers and coefficients of x in ratnumer(expr) as a list of length-2 lists;
returned coefficients are in CRE form except for numbers.
ratnumer(expr).
(%i1) load("ratpow")$
(%i2) ratp_coeffs( 4*x^3 + x + sqrt(x), x); (%o2)/R/ [[3, 4], [1, 1], [0, sqrt(x)]]
Returns the coefficients of powers of x in ratnumer(expr) from highest to lowest;
returned coefficients are in CRE form except for numbers.
(%i1) load("ratpow")$
(%i2) ratp_dense_coeffs( 4*x^3 + x + sqrt(x), x); (%o2)/R/ [4, 0, 1, sqrt(x)]