XFree86 Version Numbering Schemes
The XFree86 Project, Inc
23 February 2003

Abstract

The version numbering schemes used by XFree86 have changed from time to time.
The schemes used since version 3.3 are explained here.

1. Releases, Development Streams and Branches

As of the release of version 4.0.2 in December 2000, XFree86 has three release branches. First is
trunk of the CVS repository. This is the main development stream, where all new work and work
for future releases is done.

Second is the stable bugfix branch for the latest full release (4.4.0). It is created around the time of
the release. The branch for this one is called "xf-4_4-branch". Fixes for bugs found in the
release will be added to this branch (as well as the trunk), and updates to this release (if any) will
be cut from this branch. Similar stable branches are present for previous full releases.

Finally there is the 3.3.x legacy branch, which is called "xf-3_3-branch". While this branch is
not actively being maintained, it does include some important post-3.3.6 bug fixes and security
updates. Relevant security updates in particular are usually back-ported to this branch.

XFree86 is planning to make full releases from the main development stream at regular intervals
in the 6-12 month range. The feature freezes for these releases will usually be 2-3 months before
the release dates. This general plan is a goal, not a binding commitment. The actual release inter-
vals and dates will depend to a large degree on the resource available to XFree86. Full releases
consist of full source code tarballs, plus full binary distributions for a range of supported plat-
forms. Update/bugfix releases will be made on an as-required basis, depending also on the
availability of resources, and will generally be limited to serious bug and security fixes. New fea-
tures will not usually be added in update releases. Update/bugfix releases will not be full
releases, and will consist of source code patches, plus binary updates to be layered on top of the
previous full release.

The next full release will be version 4.5.0. There is no scheduled update release, but if one is
needed, the version will be 4.4.1.

Aside from actual releases, snapshots of the active release branches are tagged in the CVS reposi-
tory from time to time. Each such snapshot has an identifiable version number.

2. Current (new) Version Numbering Scheme

Starting with the main development branch after 4.0.2, the XFree86 versions are numbered
according to the scheme outlined here. Both the 4.0.2 stable branch and the 3.3.x legacy branch

XFree86 Version Numbering Schemes 1

XFree86 Version Numbering Schemes 2

continue to use the previous scheme, which is outlined in the sections below.

The version numbering format is M.m.P.s, where M is the major version number, m is the minor
version number, P is the patch level, and s is the snapshot number. Full releases have P set to
zero, and it is incremented for each subsequent bug fix release on the post-release stable branch.
The snapshot number s is present only for between-release snapshots of the development and
stable branches.

2.1 Development Branch

Immediately after forming a release stable branch, the patch level number for the main develop-
ment branch is bumped to 99, and the snapshot number is reset. The snapshot number is incre-
mented for each tagged development snapshot. The CVS tag for snapshots is "xf-M_m_P_s".
When the development branch enters feature freeze, the snapshot number may be bumped to
900, and a stable branch may be created for the next full release. The branch is called "xf-M_m—
branch". The snapshot number is incremented from there until the release is finalised. Each of
these snapshots is a "release candidate". When the release is finalised, the minor version is incre-
mented, the patch level is set to zero, and the snapshot number removed.

Here’s an example which shows the version number sequence for the development leading up to
version 4.1.0:

4.0.99.1
The first snapshot of the pre-4.1 development branch.

4.0.99.23
The twenty-third snapshot of the pre-4.1 development branch.

4.0.99.900
The start of the 4.1 feature freeze, which marks the creation of the
"xf-4_1-branch" branch. That branch is the "stable" branch for the 4.1.x releases.

4.0.99.903
The third 4.1.0 release candidate.

4.1.0
The 4.1.0 release.

4.1.99.1
The first pre-4.2 development snapshot, which is the first main branch snapshot
after creating the 4.1 stable branch.

2.2 Stable Branch

After a full release, the stable branch for the release will be maintained with bug fixes and impor-
tant updates until the next full release. All snapshots on this branch are considered "release can-
didates”, so the first is indicated by setting s to 901. The snapshot number is then incremented
for each subsequent release candidate until the update release if finalised. The patch level value
(P) is incremented for each update release.

Here’s an example which shows the version number sequence for the 4.1.x stable branch.

4.0.99.900
The start of the 4.1 feature freeze, which marks the creation of the
"xf-4_1-branch" branch. That branch is the "stable" branch for the 4.1.x releases.

4.0.99.903
The third 4.1.0 release candidate.

4.1.0
The 4.1.0 release.

XFree86 Version Numbering Schemes 3

4.1.0.901
The first pre 4.1.1 snapshot.

4.1.0.903
The third pre 4.1.1 snapshot, also known as the third 4.1.1 release candidate.

4.1.1
The 4.1.1 release.

4.1.1.901
The first pre 4.1.2 snapshot.

4.1.2
The 4.1.2 release.

3. Version Numbering Scheme for XFree86 4.0.x.

The version numbering format for XFree86 4.0.x releases is M.m. nx, where M is the major version
number (4), m is the minor version number (0), n is the sub-minor version number, and x is a let-
ter. Full release versions up to and including 4.0.2 were 4.0, 4.0.1, and 4.0.2. Between-release
snapshots are indicated by including x, a lower case letter. For example, the first post-4.0.1 snap-
shot was 4.0.1a. Release candidates have been indicated by setting x to a one or two letter combi-
nation with the first letter being "Z". For example, 4.0.1Z was the first 4.0.2 release candidate.

The next 4.0.x release will be an update release, not a full release. These update releases will be
indicated by incrementing the sub-minor version number. So, the first post-4.0.2 update release
will be 4.0.3. Between-release snapshots will continue to be indicated with a lower case letter, so
the first pre-4.0.3 snapshot will be 4.0.2a.

The following example illustrates the release sequence from 4.0 through to the post-4.0.2 update
releases.

4.0
The 4.0 release.

4.0a
The first post-4.0 development snapshot.

4.0f
The sixth post-4.0 development snapshot.

4.02
The 4.0.1 release candidate.

4.0.1
The 4.0.1 release.

4.0.1a
The first post-4.0.1 development snapshot.

4.0.1f
The sixth post-4.0.1 development snapshot.

4.02
The first 4.0.2 release candidate.

4.0Zb
The third 4.0.2 release candidate.

4.0.2
The 4.0.2 release.

XFree86 Version Numbering Schemes 4

4.0.2a
The first pre-4.0.3 snapshot/release candidate.

4.0.2c
The third pre-4.0.3 snapshot/release candidate.

4.0.3
The 4.0.3 update release.

4.0.3a
The first pre-4.0.4 snapshot/release candidate.

4.0.4
The 4.0.4 update release.

4. Pre-4.0 Development Versions

This section is included mostly for historical reasons.

The development leading up to 4.0 started from version 3.2A, but much of it happened on a sepa-
rate development branch. The "new design" work on that development branch was first folded
into the main development branch at version 3.9N. Up until the XFree86 CVS was made publicly
available, all versions containing one or more letters were internal development snapshots. The
internal development snapshots continued through the following sequence: 3.9N, 3.9Na, ...,
39Nz, 3.9P, 3.9P%a, ..., 3.9Py, 3.9.15, 3.9.15a, ..., 3.9.16, 3.9.16a, ..., 3.9.17,3.9.17a, ..,, 3.9.18,3.9.18a, ...,
4.0. The 3.9.15, 3.9.16, etc versions were public pre-4.0 beta releases.

5. Version Numbering Scheme for XFree86 3.3.x.

The version numbering format for XFree86 3.3.x releases is M.m. nx, where M is the major version
number (3), m is the minor version number (3), n is the sub-minor version number, and x is a let-
ter. Between-release snapshots are indicated by including x, a lower case letter. An exception to
this scheme was the 3.3.3.1 release, which was an update to the 3.3.3 release.

3.3
The 3.3 release.

3.3a
The first post-3.3 development snapshot.

3.3.1
The 3.3.1 release.

3.3.1a
The first post-3.3.1 development snapshot.

3.3.2
The 3.3.2 release.

3.3.2a
The first post-3.3.2 development snapshot.

3.3.3
The 3.3.3 release.

3.3.3a
The first post-3.3.3 development snapshot.

3.3.3.1
The 3.3.3.1 release.

XFree86 Version Numbering Schemes 5

3.3.3.1a
The first post-3.3.3.1 development snapshot.

3.3.4
The 3.3.4 release.

3.3.4a
The first post-3.3.4 snapshot.

3.3.5
The 3.3.5 release.

3.3.5a
The first post-3.3.5 snapshot.

3.3.6
The 3.3.6 release.

3.3.6a
The first post-3.3.6 snapshot.

6. Finding the XFree86 X Server Version From a Client

The XFree86 X servers report a VendorRelease value that matches the XFree86 version number.
There have been some cases of releases where this value wasn’t set correctly. The rules for inter-
preting this value as well as the known exceptions are outlined here.

For 3.3.x versions, the VendorRelease value is Mmnp. That is, version M.m.n.p has Vendor-
Release set to M * 1000 + m * 100 + n * 10 + p. Exceptions to this are: The value
wasn’t incremented for the 3.3.3.1 release, and for the 3.3.4 and 3.3.5 releases the value was incor-
rectly settoMmn (M * 100 + m * 10 + n). This was corrected for the 3.3.6 release.

For versions 3.9.15 to 4.0.x, the VendorRelease value is Mmnn. That is, version M.m.n has Ven—
dorReleasesettoM * 1000 + m * 100 + n. There have been no exceptions to this rule.

For post-4.0.2 development and release versions using the new numbering scheme, the Vendor-
Release value is MMmmPPsss. That is, version M.m.P.s has VendorRelease set to
M * 10000000 + m * 100000 + P * 1000 + s. Note: 4.0.3 and any other 4.0.x releases
will continue with the Mmnn scheme.

The following is a code fragment taken from xdpyinfo.c that shows how the VendorRelease
information can be interpreted.

XFree86 Version Numbering Schemes

if (strstr(ServerVendor (dpy), "XFree86")) {
int vendrel = VendorRelease (dpy);

printf ("XFree86 version: ");
if (vendrel < 336) {
/*

* vendrel was set incorrectly for 3.3.4 and 3.3.5, so handle
* those cases here.
*/
printf ("%d.%d.%d", vendrel / 100,
(vendrel / 10) % 10,
vendrel $ 10);
} else if (vendrel < 3900) {
/* 3.3.x versions, other than the exceptions handled above */
printf ("%d.%d", vendrel / 1000,
(vendrel / 100) % 10);
if (((vendrel / 10) % 10) || (vendrel % 10)) {
printf (".%d", (vendrel / 10) % 10);
if (vendrel % 10) {
printf(".%d", vendrel % 10);

}
} else if (vendrel < 40000000) {
/* 4.0.x versions */
printf ("%d.%d", vendrel / 1000,
(vendrel / 10) % 10);
if (vendrel % 10) {
printf(".%d", vendrel % 10);
}
} else {
/* post-4.0.x */
printf ("%$d.%d.%d", vendrel / 10000000,
(vendrel / 100000) % 100,
(vendrel / 1000) % 10
if (vendrel % 1000) {
printf (".%d", vendrel % 1000);

XFree86 Version Numbering Schemes

SRR S

CONTENTS

Releases, Development Streams and Branches ... 1
Current (new) Version Numbering Scheme ..o 1
2.1 Development Branch ..o 2
2.2 Stable Branch ... 2
Version Numbering Scheme for XFree86 4.0.X. ccccoeiiiiiriiiiiieece e 3
Pre-4.0 Development VEISIONS ...ttt 4
Version Numbering Scheme for XFree86 3.3.X. ccccoruiiiiiriiiiiiiciecec e 4
Finding the XFree86 X Server Version From a Client ... 5

$XFree86: xc/programs/Xserver/hw/xfree86/doc/sgml/Versions.sgml,v 1.4 2003/02/24 03:41:23 dawes Exp $

