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This document describes the BitScope Virtual Machine (BC 00 01 11). 

Overview

The programmed operation of BitScope typically involves three simple steps: 

1. Program registers with capture control information. 

2. Issue the data acquisition command (T, P etc). 

3. Retrieve the captured data when available (S). 

At step 2, BitScope immediately echos the command and commences acquistion, sampling
analogue and digital data to its capture buffers or measuring the period, frequency or POD data. It
continues to acquire data until a programmable time delay expires following trigger assertion at
which point it terminates the capture and sends the 16 bit address of the last recorded sample to
the host. After receiving the sample address, the host may issue the sample dump command S
(or M or A) to read the captured data. 

The type of data acquired and how BitScope acquires it depends on the programming of the data
capture registers and the trace mode selected prior to issuing the trace command. BitScope
supports simultaneous alt/chop dual channel analogue and 8 channel logic capture, period
measurement, and triggers with edge and level condition logic as well as programmable pre and
post trigger delays.

In the case where a trigger event never occurs, the host may terminate the trace by sending any
new command. In addition to this core data capture operation, the same instruction set may be
used to read and write EEPROM and program and retrieve data from any connected PODs. 

Virtual Machine

From the programmer's point of view, BitScope is a RISC style device programmed using a set of
instructions which operate on a set of registers. There are 24 byte wide registers and 39 single
byte instructions which allow the data capture hardware to be programmed and analogue and
digital data to be captured according to the built-in trace modes. 

A unique feature of BitScope is that instructions are executed "live" as they are received. BitScope
itself stores no programs and it maintains no program execution state between executed
instructions. 

Instead, BitScope can be viewed as an peripheral execution unit for programs that reside on the
host. In this way, data capture and analysis applications of any sophistication may be programmed
in the host without ever reaching any arbitrary limits of the built-in instruction set or program
memory in BitScope. 

Serial Link

A serial port is provided on BitScope to facilitate communication with any host capable of
supporting simple serial communications at 56K7 baud with 8 data bits and 1 stop bit, no parity,
and no serial data flow control. 

From a programming point of view, it is best to think of the serial interface as the BitScope
execution unit input port into which BitScope command bytes (instructions) are written and from
which status bytes and sometimes data are returned. Serial data flow control is implicit; for every
command byte sent, the host must wait for a reply before sending the next command. 

The BitScope virtual machine guarantees that a reply byte is returned for every command byte
sent. In fact, the reply byte is simply the command byte echoed back to the host, so it is trivial to
check that the data link to BitScope is active and available. Note that printable bytes sent to
BitScope that are not command bytes are still echoed, though unprintable characters are not. 
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Register Set

The set of 24 byte-wide registers below constitute the BitScope virtual machine register set. 

Machine Registers. 

R0 Data Register Assemble input data here. 

R1 Address Register Register address pointer. 

R2 Source Address Register Source register address pointer. 

  

Data Capture Registers. 

R3 Sample Pre-load (Low Byte) Spock Counter/RAM address (low byte). 

R4 Sample Pre-load (High Byte) Spock Counter/RAM address (high byte). 

R5 Trigger Logic Byte Logic values to match for trigger. 

R6 Trigger Mask Byte Don't care logic values for trigger. 

R7 Spock Option Byte Trigger and PG1 setup in Spock. 

R9 Counter Capture (Low Byte) Spock Counter/RAM address capture (low byte). 

R10 Counter Capture (High Byte) Spock Counter/RAM address capture (high byte). 

R14 Input/Attenuation Alt/Chop channel input/attenuation settings. 

R15 Dump Size Number of samples dumped per request. 

  

Trace Mode & Delay Registers. 

R8 Trace Register Trace mode selection. 

R11 Post Trigger Delay (Low Byte) Delay after trigger (low byte). 

R12 Post Trigger Delay (High Byte) Delay after trigger (high byte). 

R13 Time-base Expansion Time-base expansion factor. 

R20 Pre-Trigger Delay Programmed to pre-fill buffer before trigger match.

  

EEPROM & POD Registers. 

R16 EEPROM Data EEPROM Data Register. 

R17 EEPROM Address EEPROM Address Register. 

R18 POD Transmit Byte sent to POD. 

R19 POD Receive Byte received from POD. 

  

Frequency Measurement Registers. 

R21 Frequency Timer Pre-Load Number of signal cycles to count. 

R22 Frequency Pre-scale Input frequency pre-scale divider. 

R23 Period Pulse Count Used for period measurements. 
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Instruction Set

The 39 single-byte op-codes below constitute the BitScope instruction set. All instructions are
atomic (ie, have no operands) and their execution always produces an echo byte consisting of the
op-code itself (except the Reset 0x00 command which does not echo) 

Machine Control. 

 0x00 Reset the Virtual Machine. Print the Byte-Code number. 

? 0x3F Print the 8 character string identifying the revision. 

  

Data Entry. 

[ 0x5B Clear R0. Usually commences byte entry. 

0..9 0x30..0x39 Increment R0 by the digit specified and nibble swap. 

a..f 0x61..0x66 Increment R0 by the hex digit specified and nibble swap. 

] 0x5D Swap nibbles in R0. Usually concludes byte entry. 

  

Register Operations. 

@ 0x40 Set Address Register R1. 

# 0x23 Set Source Address Register R2. 

s 0x73 Store byte R0 to register (R1). 

l 0x6C Load byte from register (R2) to R0. 

n 0x6E Increment Address Register R1. 

p 0x70 Print register (R1). 

+ 0x2B Increment register (R1). 

- 0x70 Decrement register (R1). 

  

BitScope Machine Operations. 

< 0x3C Capture Spock Counter to R9,R10. 

> 0x3E Program Spock Registers from R3...R7. 

T 0x54 Trace until trigger + delay, then print Spock Counter. 

S 0x53 Sample dump (CSV format, analogue & digital data). 

M 0x4D Mixed memory dump (Binary format, analogue & digital data). 

A 0x41 Analog memory dump (Binary format, analogue data). 

P 0x50 Measure time Period. 

u 0x75 Update RAM pointers R3,R4 to R9,R10. 

  

EEPROM & POD. 

| 0x7C Transmit byte in R18 to POD IO-0. 

R 0x52 Read EEPROM byte at address (R17) and print. 

W 0x57 Write byte R16 to EEPROM address (R17). 
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Basic Machine

The three registers R0, R1 and R2 are the core BitScope machine registers. They have special
meaning to the virtual machine and are used to facilitate data entry, register addressing and
programming, and related general purpose functions such as data display and address arithmetic.

Data Entry

The following data entry commands "assemble" data in R0, the Data Register: 

[ 0x5B Clear R0. 

0..9 0x30..0x39 Increment R0 by the digit specified and nibble swap. 

a..f 0x61..0x66 Increment R0 by the hex digit specified and nibble swap. 

] 0x5D Swap nibbles in R0. 

For example, the script to enter the hex value A6 to R0 is [a6]. 

Address Register Programming

The following register operation commands move data between R0 and registers pointed to by
the Address Registers R1 and R2. Two commands are available to initialize the Address
Registers: 

@ 0x40 Copy R0 to Address Register R1. 

# 0x23 Copy R0 to Source Address Register R2. 

For example, the script to write the hex value B2 to the R1 Address Register is [b2]@ and the
script to program the hex value 34 to the R2 Source Address Register is [34]#. 

General Register Programming

All other registers are programmed using the following two commands which move data between
R0 and any other register addressed by R1 or R2. 

s 0x73 Store. Copy R0 to register (R1). 

l 0x6C Load. Copy register (R2) to R0. 

For example, the script to program the hex value 0xA0 to the R4 register is [4]@[a0]s. To move
a value from register R3 to R9 it is[3]#[9]@ls. 

Printing Registers

The value in any register may be "printed" to the serial port to read its value: 

p 0x70 Print register (R1). 

For example, the script to print the value in R12 is [c]@p. The register's value is printed to the
serial port as four characters <CR><DIGIT><DIGIT><CR>. 

Increment and Decrement

Increment and decrement commands are available for the convenience of programming: 



n 0x6E Increment Address Register R1. 

+ 0x2B Increment register (R1). 

- 0x70 Decrement register (R1). 

The n command can be quite convenient to write a value to range of registers. For example, to
clear registers R3 and R4 use [3]@[sns 
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Data Capture Programming

Spock is the central logic chip of BitScope. It implements the high speed data capture engine that
acquires both analogue and digital data saving it to the two RAM data banks. It also implements
the trigger logic that determines when a trace should stop and completes data capture by freezing
the capture address counter. 

Spock's operation is defined by the contents of the Spock Registers R3..R7 and it's status after a
trace by the contents of the Spock Counter Registers R9..R10. Two command are provided move
data between these registers and Spock itself: 

> 0x3E Download Spock Registers R3...R7. 

< 0x3C Capture Spock Counter to R9..R10. 

Prior to issuing each trace command (T), the Spock Registers must be downloaded to Spock
using the > command. However, Spock Registers themselves need only be programmed once.
After a trace completes, the 16 bit Spock address counter is returned to the host automatically. It
may also be read from the Spock Counter registers after a issuing < command to read its value
from Spock. 

The following sections describe the programming of the Spock Registers R3..R7 the use of the
Spock Counter Registers R9..R10, the programming of the capture trigger logic and the selection
of signal inputs and attenuation ranges via register R14. 

Spock Option Byte (R7)

The mode of operation of the capture engine is defined by the Spock Option Byte R7 which
contains 6 control bits which must be programmed prior to data capture. These bits are
summarized here and described in more detail in subsequent sections: 

Bit 5 Level/Edge Trigger 0 Trigger operation is Level Sensitive. 

1 Trigger operation is Edge Transition Sensitive. 

Bit 4 Edge Direction 0 Trigger asserted on FALSE -> TRUE 

1 Trigger asserted on TRUE -> FALSE 

Bit 3 Page Selection 0 Lower 16K RAM Page and Analogue BNC Input. 

1 Upper 16K RAM Page and Analogue POD Input. 

Bits 2,1 Trig Bit 7 MUX 0 DD7 : Digital Data Bus Bit 7. 

1 Comparator : trigger match comparator signal. 

2 Event 1 : (Pre-scaler output frequency halved). 

3 Event 2 : (ADC input frequency halved). 

Bit 0 Trigger Source 0 Digital trigger source. 

1 Analogue trigger source. 

Bits 6 and 7 are reserved and should be programmed with zero for compatibility with future
firmware revisions. 

Page/POD Selection

Analogue and digital data is captured to two separate 32K RAM buffers. Each is divided into two
16K pages. The Spock Option Byte bit R7 Bit 3 selects which of these two pages in each buffer
are to be used for the next data capture: 



R7, Bit 3 Page Selection 0 Lower 16K RAM Page. 

1 Upper 16K RAM Page. 

The same bit also selects which of the two sets of inputs are applied to the ADC: 

R7, Bit 3 POD Selection 0 Input from BNC connectors. 

1 Input from POD analogue inputs. 

In the case of analogue data, signals available at the BNC inputs may be captured to the lower
bank and signals available at the POD inputs may be captured to the upper bank. 

Input/Attenuation Selection (R14)

The Input/Attenuation Register R14 provides for input selection and attenuation control for both
primary and secondary channels. The primary channel is programmed to the low nibble (bits
3..0) and the secondary to the high (bits 7..4). The format of both nibbles is the same and is
encoded as: 

Bit 1,0 Attenuation Range 0 Range Selection 1 

1 Range Selection 2 

2 Range Selection 3 

3 Range Selection 4 

Bit 2 Channel Select 0 Input from Channel B. 

1 Input from Channel A. 

Bit 3 zz-clk level 1 Always set to one. 

The full-scale input voltage for each attenuation range depends on whether the BNC or POD
inputs are selected and if BNC, whether a x10 probe is used: 

Attenuation Range BNC x1 BNC x10 POD 

1 ±130mV ±1.30V ±632mV 

2 ±600mV ±6.00V ±2.90V 

3 ±1.20V ±12.0V ±5.80V 

4 ±3.16V ±31.60V ±15.80V 

The selected trace mode determines whether just the primary or both channels are used during a
trace. 

Trigger Programming

BitScope captures both analogue and digital data using a single trigger to "mark" the captured
data. The trigger must be programmed prior to capture which requires programming bit values in
the Spock Option Byte R7 and programming the trigger logic registers R5 and R6. 

Prior to programming the trigger logic, the Trigger Source and Trigger Bit 7 must be programmed:

R7, Bit 0 Trigger Source 0 Digital trigger source. 

1 Analogue trigger source. 

R7, Bits 2,1 Trigger Bit 7 0 DD7 : Digital Data Bus Bit 7. 

1 Comparator : trigger match comparator signal. 

2 Event 1 : (Pre-scaler output halved). 

3 Event 2 : (ADC input halved). 

When the Digital Trigger is selected, the trigger is derived from the 8 logic analyzer channels



directly. When Analogue Trigger is selected, the trigger is derived from the 8 bit digitized analogue
signal. 

Usually the Trigger Bit 7 selection will be programmed to Comparator. The other modes are for
specialized period measurement and related capture modes which are discussed in their own
sections. 

Trigger Logic (R5 and R6)

The trigger is expressed as an 8 bit ternary number which is compared with the 8 logic analyzer
channels or the 8 bit digitized analogue signal. These bits express whether the trigger is to occur
on a HIGH (1), LOW (0) or DON'T CARE (X) condition for each bit. For example, a trigger on bits
0, 3, and 5 HIGH and bits 2 and 4 LOW with DON'T CARE for the rest is expressed as: 

Trigger Condition   XX1010X1

The two trigger logic registers programmed together define this trigger condition: 

R5 Trigger Logic Byte Logic values to match for trigger. 

R6 Trigger Mask Byte Don't care logic values for trigger. 

The example trigger condition above could be programmed as: 

R5 <- 00101001 

R6 <- 11000010 

where a HIGH (1) values in the Trigger Mask register R6 mean DON'T CARE regardless of the
values in the corresponding bits in the Trigger Logic register R5. 

Analogue Trigger

When triggering on analogue signals in any trace mode other than zero, the trigger registers are
augmented with bits 4 and 5 of the Spock Option Register R7: 

R7, Bit 5 Level/Edge Selection 0 Trigger operation is Level Sensitive. 

1 Trigger operation is Edge Transition Sensitive. 

  

R7, Bit 4 Edge Sense 0 Trigger asserted on FALSE -> TRUE 

1 Trigger asserted on TRUE -> FALSE 

To implement triggering on an analogue signal zero crossing the trigger logic registers should be
programmed as: 

R5 <- 00000000 

R6 <- 01111111 

and R7 Bit 5 asserted for edge trigger operation. The value programmed to R7 Bit 4 then
determines whether the trigger occurs as the signal moves from negative to positive or vice versa.
By programming different values for R5 and R6 analogue signal levels other than zero may be
programmed. It is even possible to program multiple signal level bands for the analogue trigger
using DON'T CARE logic. Note that in trace mode 0, edge trigger logic does not apply regardless
of the values of these control bit. 

Sample Address Counter

Spock maintains a 16 bit sample address counter to increment the RAM address as analogue
and/or digital is captured during a trace. The Sample Pre-load registers are used to program the
sample address from which Spock should start counting when a trace is enabled. Usually these
will be programmed to be zero but can be any 16 bit value: 



R3 Sample Pre-load (Low Byte) Spock Counter/RAM address (low byte). 

R4 Sample Pre-load (High Byte) Spock Counter/RAM address (high byte). 

Note the address range of the RAM page to which data may be captured is 14 bits. That is, the 16
bit counter cycles through a page 4 times before it wraps. This may seem redundant, but is in fact
useful when the counter is used for frequency or period measurement purposes. 

The Sample Capture registers contain the Spock sample address after a trace has completed
following the assertion of the trigger and the execution of the Capture Spock Counter command <:

R9 Counter Capture (Low Byte) Spock Counter/RAM address capture (low byte). 

R10 Counter Capture (High Byte) Spock Counter/RAM address capture (high byte). 

It will usually be most convenient to use the value of the Sample Address Counter returned
automatically upon completion of Trace command instead of updating and reading the R9, R10
registers. The counter value is returned as a string of 6 characters: 

<CR> <H3> <H2> <H1> <H0> <CR> 

where <H?> are the 4 hex digits of the 16 bit counter value. 
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Trace Mode Programming

After the data capture engine has been programmed the trace mode must be programmed to
complete the definition of how BitScope should acquire data upon execution of the trace T
command. There are five registers concerned with the trace mode: 

R8 Trace Register Trace mode selection. 

R11 Post Trigger Delay (Low Byte) Delay after trigger (low byte). 

R12 Post Trigger Delay (High Byte) Delay after trigger (high byte). 

R13 Time-base Expansion Time-base expansion factor. 

R20 Pre-Trigger Delay Programmed to pre-fill buffer before trigger match. 

Trace Modes (R8)

The most important trace mode programming register is the Trace Register R8. The low 4 bits of
this register are programmed to with a Trace ID to select one of the 6 available trace modes: 

ID Mode Channels Trigger 

0 Simple Trace Mode Single Channel Level Trigger. 

1 Simple Trace Mode Channel Chop Enhanced Trigger. 

2 Time-base Expansion Single Channel Enhanced Trigger. 

3 Time-base Expansion Channel Chop Enhanced Trigger. 

4 Slow Clock Mode Channel Chop Enhanced Trigger. 

8 Frequency Measurement N/A N/A 

The values programmed to the other trace mode registers depend on this selected trace mode.
The upper 4 bits of the Trace Register R8 are reserved and should be programmed as zero. 

Most of the differences between the various trace modes apply to analogue data capture. Digital
data is always captured simultaneously and is unaffected by the selected trace mode with the
exception of modes that affect the sample clock (see time-base expansion and slow clock mode). 

Trace States

In overview, all trace modes operate in much the same way stepping through three data capture
states following execution of the trace T command: 

State 1  Pre Trigger Delay  The period of time during which BitScope captures data
without enabling the trigger. The duration of this state depends
on the value in the Pre-Trigger Delay R20 and is used to
ensure that BitScope captures a minimum amount of data
before a trigger event. 

State 2  Trigger Enabled  After expiry of the Pre Trigger Delay, BitScope continues to
capture data, but now the trigger is enabled. It stays in this
state until a trigger condition is seen. 

State 3  Post Trigger Delay  Upon the assertion of the trigger condition, BitScope enters the
Post Trigger Delay state where is continues to capture data for
an additional period of time. The duration of this state depends
on the value in the Post Trigger Delay R11, R12 and is used to
ensure that BitScope captures a minimum of amount of data
after a trigger event. 

Not all trace modes support all trace states. 



Time-base Expansion (R13)

The Time-base Expansion Register R13 is used together with the Post Trigger Delay registers
R11 and R12 to evaluated the duration of trace state 3 (post trigger delay). See the description of
each trace mode for details of how the delay is evaluated in each case. 

However, this register has second purpose in trace modes 2, 3 and 4. 

BitScope normally acquires data at a fixed and very high sample rate of 25 MS/S (or 50 MS/S if
the clock doubler circuit is installed). Trace modes 2 and 3 support time-base expansion and
trace mode 4 slow clock mode which allows the effective sample rate to be reduced for those
applications that may demand a lower sample rate to allow the capture of lower bandwidth data
over a longer period of time. 

These trace modes make use of the Time-base Expansion Register to slow data capture by
inserting a repeating pause state during data acquisition in which no data is captured. Note this is
different from slow clock mode which actually slows the sample clock. 

Data captured with time-base expansion consists of a series of small sample data sets sampled at
BitScope's nominal rate, the average of which may be considered as single sample at the
expanded (ie, slower) rate. The advantage of time-base expansion over slow clock mode is that
each sample set also allows high frequency statistics (such as short term jitter or high frequency
noise) to be determined simultaneously with information about the low bandwidth signal being
analyzed. 

Channel Chop

In trace modes 0 and 2 BitScope acquires data from one of the analogue inputs only. The
selected analogue input is referred to as the primary trace channel. In software on the host it is a
simple matter to acquire from one input during a trace and in a subsequent trace from second
input to acquire two (or more) channels of analogue data. By repeating the process it is possible to
implement alternating data acquisition as an ordinary dual trace oscilloscope would do.

However, trace modes 1, 3 and 4 support a channel chop mode of operation. In this case primary
and secondary trace channels are swapped repeatedly during the trace so that the acquired data
will contain a series of alternating sample sets from the primary and secondary channels. It is of
course possible to program both the primary and seR14) in which case channel chop reverts to
form of single channel mode. 

Slow Clock Mode

Trace mode 4 implements slow clock mode which if BitScope has a variable speed ADC installed
such as the Motorola MC10319 allows the sample clock to be driven under software control down
to very low sample rates. The lowest sample rate supported in this mode is 3 kHz which allows the
continuous capture of up to 5 seconds of data. 

Sample Skew

BitScope is a mixed mode device which captures both digital and analogue data. When analyzing
mixed mode captured data it is important to take account of the analogue sample skew (ie, time
delay) associated with the ADC to ensure alignment with the digital data. 

The sample delays associated with the digital inputs and various ADCs that can be used with
BitScope are: 

Digital/Logic Inputs 0.5 sample clocks 

Motorola MC10319 ADC 1.5 sample clock 

Exar 8786 ADC 4.5 sample clocks 

Analog Devices AD9057 4.0 sample clocks 

Note also in all trace modes that chop or modulate the clock the first 4 captured samples must be
discarded as unreliable and the skew delays accounted. 
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Trace Mode Descriptions

All trace modes capture data from the digital inputs. Variations described in the following sections
for each trace mode apply to the analogue data. The exceptions to this rule are variations that
affect the sample clock which is used for both analogue and digital data sampling. Various delays
calculated in the following sections are expressed in units of PIC Instruction Cycles PIC which are
400 nS duration (ie 4 PIC Clocks). 

Trace Mode 0 - Simple Trace

This is the most basic trace mode and supports data capture from the primary channel only.
Upon execution of the trace T command, trace state 2 (Trigger Enabled) is immediately entered
and data capture commences without any Pre Trigger Delay (R20 is not used and can be any
value). The analogue trigger implements level sensitivity only and any values programmed to R7
Bits 4 & 5 for an edge trigger are ignored. 

The post trigger delay state is entered after a valid trigger condition is seen. The duration of this
delay (T[PTD]) is calculated based upon the Time-base Expansion R13 and and Post Trigger
Delay R11 and R12 registers according to the formula: 

T[PTD] = 7 + ((PTD + 1) * (5 + 3 * (TB+1))) + 2 * (PTD[hi] +
1) + U 

where: 

T[PTD] post trigger delay (in PIC). 

PTD 16 bit post trigger delay value (R11, R12 -> 0 to 65536). 

PTD[hi] 8 bit high byte of post trigger delay (R11 -> 0 to 255). 

TB 8 bit time-base expansion (R13 -> 1 to 256, 0 read as 256). 

U trigger uncertainty = ± 3 PIC 

The minimum post trigger delay is therefore 8 uS ± 1.2 uS and the maximum 20.342582 S ± 1.2
uS. 

Trace Mode 1 - Dual Channel Chopped Continuous Capture Enhanced Trigger

This trace mode supports single or dual channel continuous analogue data capture and optional
enhanced edge trigger logic. During trace state 3 (ie, after the trigger), this mode implements
Channel Chop between the primary and secondary channels. If both channels are programmed
with the same input and attenuation, data capture is effectively single channel. If each trace
channel is programmed with a different input (and possibly attenuation), data capture is effectively
dual channel. 

The Pre Trigger Delay (trace state 1) is implemented in this mode. During this state and state 2
only the primary channel is captured and channel chop is disabled. This ensures the trigger logic
works correctly and is not mis-triggered by discontinuities that would otherwise exist in the channel
chopped data. The pre trigger delay is computed as: 

T[PRE] = 10 + PRETD * (7 + 3 * (TB+1)) 

where: 

T[PRE] pre trigger delay (in PIC cycles). 

PRETD 8 pre trigger delay value (R20 -> 0 to 255). 

TB 8 bit time-base expansion (R13 -> 1 to 256, 0 read as 256). 



The minimum pre trigger delay is 1.2 uS and the maximum 79.3572 mS. 

Channel chop operation cycles between the primary and secondary channels every 10 PIC
cycles, spending 5 cycles capturing data on each channel. The standard 10 MHz PIC results in a
250 kHz chop rate which with a 25 MHz ADC installed results in 100 samples captured per chop
cycle. 

The analogue trigger configuration is enhanced and supports an optional edge trigger. There is a
latency of 5 to 9 PIC cycles from the trigger to the first chop to the secondary channel. 

The post trigger delay is calculated as: 

T[PTD] = 10 + 5 * N[swap] + U 

N[swap] = (PTD + 1) * (TB + 2) + PTD[hi] + 1 

where: 

T[PTD] post trigger delay (in PIC cycles). 

PTD 16 bit post trigger delay value (R11, R12 -> 0 to 65536). 

PTD[hi] 8 bit high byte of post trigger delay (R11 -> 0 to 255). 

TB 8 bit time-base expansion (R13 -> 1 to 256, 0 read as 256). 

U trigger uncertainty = ± 2 PIC cycles 

The minimum pre trigger delay is 12 uS ± 0.8 uS and the maximum 33.817092 S ± 0.8 uS and the
sample clock is stopped 3 PIC cycles after the last channel chop. 

Trace Mode 2 - Single Channel Expanded Time-Base Enhanced Trigger

This trace mode is similar to trace mode 0: it captures data from the primary channel only. The
difference is that the capture sample period is expanded. This time-base expansion operates by
enabling data capture for one PIC cycle every P PIC cycles where P is the expanded time-base
sample period computed from the Time-base Expansion Register R13 according to: 

P = 14 + 3 * (TB + 1) 

where: 

P expanded time-base period (in PIC cycles). 

TB 8 bit time-base expansion (R13 -> 1 to 256, 0 read as 256). 

The minimum time-base expansion period is 8.0 uS and the maximum 314 uS. This provides
expanded time-base sample rates ranging from 3.184 kHz to 125 kHz. At all expanded time-base
rates, 10 samples are acquired in a single burst at 25 MHz at each expanded period. 

The pre trigger delay is calculated as:

T[PRE] = P * PRETD 

where: 

T[PRE] pre trigger delay (in PIC cycles). 

PRETD 8 pre trigger delay value (R20 -> 0 to 255). 

P expanded time-base period (in PIC cycles). 

The post trigger delay is calculated as: 

T[PTD] = P * N + U 

N = PTD + PTD[hi] + 2 



where: 

T[PTD] post trigger delay (in PIC cycles). 

N number of expanded capture periods. 

P expanded time-base period (in PIC cycles). 

PTD 16 bit post trigger delay value (R11, R12 -> 0 to 65536). 

PTD[hi] 8 bit high byte of post trigger delay (R11 -> 0 to 255). 

U trigger uncertainty = ± 2 PIC cycles 

This trace mode supports the use of the analogue edge trigger logic. 

Trace Mode 3 - Dual Channel Expanded Time-Base Enhanced Trigger

This is the the second time-base expansion mode (viz trace mode 2) and it supports dual channel
operation trace mode (viz 1). In this case data capture is enabled for 2 PIC cycles every P PIC
cycles where P is computed from the Time-base Expansion Register R13 according to: 

P = 19 + 3 * (TB + 1) 

where: 

P expanded time-base period (in PIC cycles). 

TB 8 bit time-base expansion (R13 -> 1 to 256, 0 read as 256). 

The minimum time-base expansion period is 10.0 uS and the maximum 316 uS. This provides
expanded time-base sample rates ranging from 3.165 kHz to 100 kHz. At all expanded time-base
rates, 20 samples are acquired in a single burst at 25 MHz at each expanded time-base cycle. 

The pre trigger delay and post trigger delay are calculated the same way as trace mode 2 except
the expanded time-base period P above is used. 

Trace Mode 4 - Dual Channel Slow Clock Time-Base Enhanced Trigger

This trace mode is similar to trace mode 3 above except the sample clock is slowed down instead
of expanded. The slowed sample period, pre and post trigger calculations are all the same.
However unlike trace mode 3, for each slowed sample period only one sample is acquired instead
of a burst of 20. This mode is only available if BitScope has a variable clock rate ADC installed
(such as the Motorola MC10319). 
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Retrieving Data

Captured data may be retrieved with one of three dump commands: 

S 0x53 Sample dump (CSV format, analogue & digital data). 

M 0x4D Mixed memory dump (Binary format, analogue & digital data). 

A 0x41 Analog memory dump (Binary format, analogue data). 

Each time one of these commands is issued, a set of samples is dumped to the serial port. The
size of each dump is determined by the values programmed to the Dump Size register R15 and
ranges from 1 to 256 samples (the value 0 implies 256). The number chosen should not be larger
than the number of samples the host can reasonably accept in one hit at 57K6 baud. 

The format of the dumped data depends on the dump command used: 

S => <CR>DDAA,DDAA,DDAA,DDAA ... DDAA<CR>

DD is an 8 bit digital/logic sample, and
AA is an 8 bit analogue sample. 
Both are ASCII encoded as a pair of hex characters. 
  

M => dadadadadada ... da

d is an 8 bit digital/logic sample, and
a is an 8 bit analogue sample. 
Both are binary encoded as a single byte each. 
  

A => aaaaaaaaaaa ... a

a is an 8 bit analogue sample binary encoded. 

The dump starts from the address currently in the Spock Sample Address Counter. If suitable pre
and post trigger delays are programmed, the analogue and digital capture RAM pages will be
completely filled. By reading from the Sample Address Counter value at which capture stopped,
the first samples in the circular capture pages will be returned on the first dump. Each subsequent
dump will return the next Dump Size of samples. 

It is of course possible to program the Sample Address Counter to any value using the prior to
reading samples from the capture RAM pages as described earlier. 
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Frequency Measurement - Trace Mode 8

This special trace mode does not acquire data but instead may be used to measure input
frequencies up to 100 MHz (1 GHz with the prescaler) with a best case unwrapped precision of ±
0.03 % 

Frequency measurement works by enabling the data capture engine for a pre-programmed
number of signal cycles. At the end of this measurement period, the capture engine is frozen.
Instead of retrieving captured data from the sample RAM, the Spock sample address counter
itself is used to determine the duration of the measurement interval and therefore the frequency of
the input signal. 

There are five registers used to program trace mode 8: 

R3 Sample Pre-load (Low Byte) Spock Counter/RAM address (low byte). 

R4 Sample Pre-load (High Byte) Spock Counter/RAM address (high byte). 

R14 Input/Attenuation Alt/Chop channel input/attenuation settings. 

R21 Timer Pre-Load Number of signal cycles to count. 

R22 Frequency Pre-scale Input frequency pre-scale divider. 

and two optionally used to read the measurement duration (see Sample Address Counter): 

R9 Counter Capture (Low Byte) Spock Counter/RAM address capture (low byte). 

R10 Counter Capture (High Byte) Spock Counter/RAM address capture (high byte). 

As with all other trace modes, the counter value is turned automatically on completion of the trace
command so R9 and R10 may not need to be used. 

Selecting an Input

The frequency to measured may be observed from four possible inputs: 

1. ADC input. 

2. Logic data signal bit 7. 

3. 1 GHz Pre-scaler input. 

4. Any trigger event or signal on any logic input. 

Spock option register R7 bits 1 and 2 are programmed to select the input: 

   bits 2,1 Trig Bit 7 MUX 0 Logic Data Bit 7 

1 Trigger Comparator. 

2 Pre-scaler input. 

3 ADC input. 

If the ADC input is selected, R14 must be programmed to select the appropriate input and level
attenuation for the primary channel. The secondary channel is not used. 

Frequency and Pre-scale Registers

The Timer Pre-Load register R21 specifies the minimum number of signal cycles to count and
ranges from 1 to 256 (0). The Frequency Pre-scale register R22 multiplies the cycle count
according to: 



R22 Pre-scale factor 

0 2^0 (1) 

1 2^1 (2) 

:   : 

8 2^8 (256) 

The number of cycles CC over which to measure the frequency is programmed as: 

CC = 2 * R21 * 2^R22 * GPS 

where the factor of 2 accounts for the fact that Spock divides all frequencies it sees by 2 before
passing them on to the PIC, regardless of the input selected. GPS is 1 for all inputs except the 1
GHz Prescaler in which case it is 64. 

Frequency Calculation

Prior to issuing the trace command T, the Spock Sample Address Registers R3 and R4 should be
programmed (usually with zero) and Spock initialized with the > command. When the trace is
initiated, it starts counting input cycles immediately. The trigger logic is not used. When the
programmed cycle count is reached, the trace stops and the frozen value of the 16 bit Sample
Address Register returned. 

The input signal frequency F may then be calculated as: 

F = FS * CC / (SP + 2) 

where: 

FS ADC sample clock rate (25 or 50 MHz). 

CC Pre-programmed frequency measurement cycle count. 

SP Measurement period (ie, sample address count). 

In BitScope systems with a 25 MHz ADC clock, the maximum cycle count allows frequencies of up
to 50 MHz to be measured. If the clock doubler is installed the maximum measurable frequency is
100 MHz. 

Measurement Precision

The measurement period is subject to a ± 2 PIC cycle uncertainty. To minimize the effect of this
error, it is desirable to program CC to the largest possible value for a given frequency to minimizing
the size of this error relative to the total measurement period. 

For a given input frequency, programming the Timer Pre-load and Frequency Pre-scale registers
to ensure the measurement period has a value of greater than 20,000 will keep the measurement
error bound below 0.1 %. 

Maximizing Precision - unwrapping the period

The maximum unwrapped measurement period (MSP) is: 

MSP = 2^16 / FS 

which for a 25 MHz ADC clock is about 2.6 ms. Given the ± 2 PIC cycle measurement error this
allows measurement precision of ± 0.03 %. 

It is possible to extend precision even further. 

By first making a measurement over a short cycle count to obtain the "ball park" frequency without
exceeding the unwrapped measurement period, subsequent measurements may be made over



longer cycle counts which result in the 16 bit sample address counter wrapping. 

However, since the earlier measurements gave a rough estimate of the frequency under test, it is
a simple matter to add back the appropriate number of MSP to unwrap the period measurement to
determine its true value. 

An alternative procedure would be to take the average of many lower precision measurements. In
either case, the limiting factor in such measurements then becomes the accuracy of the ADC
sample clock itself... 

Clock Accuracy and Precision

The ADC sample clock is the time-base against which all frequency measurements are made and
its accuracy is the absolute limiting factor. The crystal used in BitScope has an accuracy of about
50 ppm. However, its precision at a operating temperature is much better; about 10 ppm. 

If a standard frequency reference to this accuracy is available, it is possible to calibrate BitScope
by using trace mode 8 in reverse to measure BitScope's crystal frequency to the accuracy of the
reference using the period unwrapping described above. 

Once determined, the precise crystal frequency may be programmed to the BitScope eeprom for
subsequent use by the host software when evaluating the frequency from the measured period. 
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Elapsed Period Measurement

The Period P command is useful for capturing elapsed time between events and can measure
periods ranging from 10 us to more than 53 years ! It may be used to measure one-off events or
periodic signal frequencies that are too low to be captured using trace mode 8 frequency
measurement. 

The events delimiting the period to be measured may be selected from the same sources as trace
mode 8 as well as the trigger comparator (source 1). The selection is programmed via bit 1 and 2
of the Spock option register R7 and the Input/Attenuation Selection Register R14 in the same way
as for trace mode 8.

Period capture is implemented by incrementing 48 bit counter during a programmed number of
positive edge transition of the signal under test where this number is between 1 and 256 as
programmed to the Period Pule Count register R23. The total time period elapsed during all signal
pre-programmed signal edges is returned on completion as: 

PERIOD = (PC * 15) + 9 + U 

where: 

PERIOD Total elapsed period (in PIC cycles). 

PC 48 bit Period Counter returned on completion of the P command. 

U Measurement uncertainty (± 10 PIC cycles). 

The format of the returned period count is: 

PC => <CR>HHHHHHHHHHHH<CR>

where H is one 12 ASCII encoded hex digits

By programming the trigger comparator as the input, the precise period between one or more
analogue signal or logic events may be measured. Similarly, frequencies ranging from 100 kHz
down to fractions of a Hz may be measured to an accuracy of ± 4 uS. 
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Using EEPROM

BitScope makes the EEPROM in the PIC available for any use you choose. We recommend it be
used to store information about the BitScope itself. This includes: 

1. Type of ADC installed. 

2. Nominal ADC clock rate (doubled or not). 

3. Nominal PIC clock rate. 

4. Precise (ie, calibrated) ADC clock rate. 

Reading and writing data from/to EEPROM is as simple as programming the EEPROM address
and reading/writing the byte: 

R16 EEPROM Data EEPROM Data Register. 

R17 EEPROM Address EEPROM Address Register. 

  

R 0x52 Read EEPROM byte at address (R17) and print. 

W 0x57 Write byte R16 to EEPROM address (R17). 

Programming the POD

Programming specific PODs is beyond the scope of the manual. However, the basic means of
communicating with any POD is simple and involves programming the POD Transmit Register
R18 with a value to write and issuing the POD Transmit Command | to write it to the pod.
Simultaneously, any return value from the POD may be read from the POD Receive Register
R19. 

The PODs themselves implement their own version of the BitScope virtual machine and writing
and reading to the POD is treated the same way as writing at reading to BitScope itself. Indeed,
BitScopes may be cascade connected in this way if desired. 


