Synopsis:
i1 : R = QQ[a..f] o1 = R o1 : PolynomialRing
i2 : M = coker genericMatrix(R,a,2,3) o2 = cokernel | a c e | | b d f | 2 o2 : R-module, quotient of R
i3 : res M 2 3 1 o3 = R <-- R <-- R <-- 0 0 1 2 3 o3 : ChainComplex
i4 : dual oo 1 3 2 o4 = R <-- R <-- R -2 -1 0 o4 : ChainComplex
Code:
-- ../m2/chaincomplexes.m2:592 transpose ChainComplexMap := dual ChainComplexMap := ChainComplexMap => f -> Hom(f, (ring f)^1)