ERLANG

Secure Socket Layer

Copyright © 1999-2024 Ericsson AB. All Rights Reserved.
Secure Socket Layer 11.1.4.5
November 1, 2024



Copyright © 1999-2024 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

November 1, 2024



1.1 Introduction

1 SSL User's Guide

The SSL application implements Transport Layer Security (TLS), formerly known as the Secure Socket Layer (SSL),
that isit provides secure communication over sockets.

1.1 Introduction

1.1.1 Purpose

Transport Layer Security (TLS) and its predecessor, the Secure Sockets Layer (SSL), are cryptographic protocols
designed to provide communications security over a computer network. The protocols use X.509 certificates and
hence public key (asymmetric) cryptography to authenticate the counterpart with whom they communicate, and to
exchange a symmetric key for payload encryption. The protocol provides data/message confidentiality (encryption),
integrity (through message authentication code checks) and host verification (through certificate path validation).
DTLS (Datagram Transport Layer Security) that is based on TLS but datagram oriented instead of stream oriented.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, the concepts of OTP, and has a basic
understanding of TLS/DTLS.

1.2 TLS/DTLS and TLS Predecessor, SSL

The Erlang SSL application implements the TLS/DTLS protocol for the currently supported versions, see the ssl(3)
manual page.

By default TLS is run over the TCP/IP protocol even though you can plug in any other reliable transport protocol
with the same Application Programming Interface (API) asthegen_t cp modulein Kernel. DTLS is by default run
over UDP/IP, which means that application data has no delivery guarantees. Other transports, such as SCTP, may be
supported in future rel eases.

If aclient and a server wants to use an upgrade mechanism, such as defined by RFC 2817, to upgrade aregular TCP/
I P connection to a TLS connection, this is supported by the Erlang SSL application API. This can be useful for, for
example, supporting HTTP and HTTPS on the same port and implementing virtual hosting. Note thisisa TLS feature
only.

1.2.1 Security Overview

To achieve authentication and privacy, the client and server perform a TLS/DTLS handshake procedure before
transmitting or receiving any data. During the handshake, they agree on a protocol version and cryptographic
algorithms, generate shared secrets using public key cryptographies, and optionally authenticate each other with digital
certificates.

1.2.2 Data Privacy and Integrity

A symmetric key algorithm has one key only. The key is used for both encryption and decryption. These algorithms
are fast, compared to public key algorithms (using two keys, one public and one private) and are therefore typicaly
used for encrypting bulk data.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 1



1.2 TLS/DTLS and TLS Predecessor, SSL

Thekeysfor the symmetric encryption are generated uniquely for each connection and are based on a secret negotiated
inthe TLS/DTLS handshake.

The TLS/DTLS handshake protocol and data transfer is run on top of the TLS/DTLS Record Protocol, which uses a
keyed-hash M essage A uthenticity Code (MAC), or aHash-based MAC (HMAC), to protect the message dataintegrity.
From the TLS RFC: "A Message Authentication Code is a one-way hash computed from a message and some secret
data. It is difficult to forge without knowing the secret data. Its purpose isto detect if the message has been altered.”

1.2.3 Digital Certificates

A certificate is similar to a driver's license, or a passport. The holder of the certificate is called the subject. The
certificate is signed with the private key of the issuer of the certificate. A chain of trust is built by having the issuer
in itsturn being certified by another certificate, and so on, until you reach the so called root certificate, which is self-
signed, that is, issued by itself.

Certificatesareissued by Certification Authorities (CAs) only. A handful of top CAsintheworld issueroot certificates.
Y ou can examine severa of these certificates by clicking through the menus of your web browser.

1.2.4 Peer Authentication

Authentication of the peer is done by public key path validation as defined in RFC 3280. This means basically the
following:

» Each certificate in the certificate chain isissued by the previous one.
*  Thecertificates attributes are valid.
* Theroot certificate is atrusted certificate that is present in the trusted certificate database kept by the peer.

The server always sends a certificate chain as part of the TLS handshake, but the client only sends one if requested by
the server. If the client does not have an appropriate certificate, it can send an "empty" certificate to the server.

The client can choose to accept some path evaluation errors, for example, a web browser can ask the user whether
to accept an unknown CA root certificate. The server, if it requests a certificate, does however not accept any path
validation errors. It is configurable if the server isto accept or reject an "empty" certificate as response to a certificate
request.

1.2.5 TLS Sessions - PRE TLS-1.3

From the TLS RFC: "A TLS session is an association between a client and a server. Sessions are created by the
handshake protocol. Sessions define a set of cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection."

Session data is by default kept by the SSL application in a memory storage, hence session data is lost at application
restart or takeover. Users can define their own callback module to handle session data storage if persistent data storage
isrequired. Session datais also invalidated when session database exceedsits limit or 24 hours after being saved (RFC
max lifetime recommendation). The amount of time the session datais to be saved can be configured.

By default the TLS/DTL S clientstry to reuse an available session and by default the TLS/DTL S servers agree to reuse
sessions when clients ask for it. See also Session Reuse Pre TLS-1.3

1.2.6 TLS-1.3 session tickets

InTLS 1.3 the session reuseisreplaced by a new session tickets mechanism based on the pre shared key concept. This
mechanism also obsoletes the session tickets from RFC5077, not implemented by this application. See also Session
Tickets and Session Resumptionin TLS-1.3

2 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



1.3 Using SSL application API

1.3 Using SSL application API

To seerelevant version information for sd, call ssl : versi ons/ 0.

To see all supported cipher suites, call ssl : ci pher _suites(all, 'tlsvl.3") .Theavailablecipher suites
for a connection depend on the TLS version and pre TLS-1.3 aso on the certificate. To see the default cipher suite
list change al | to def aul t. Note that TLS 1.3 and previous versions do not have any cipher suites in common,
for listing cipher suitesfor aspecific versionusessl : ci pher _sui t es(excl usive, "tlsvl. 3") . Specific
cipher suites that you want your connection to use can aso be specified. Default is to use the strongest available.

The following sections shows small examples of how to set up client/server connections using the Erlang shell. The
returned value of thess| socket isabbreviatedwith|[ . . . ] asitcanbefairly large and is opague to the user except
for the purpose of pattern matching.

Note that client certificate verification is optional for the server and needs additional conguration on both sides to
work. The Certificate and keys, in the examples, are provided using the certs keys option introduced in OTP-25.

1.3.1 Basic Client

1 > ssl:start(), ssl:connect("google.cont, 443, [{verify, verify peer},
{cacerts, public_key:cacerts_get()}])
{ok, {ssl socket, [...]}}

1.3.2 Basic Connection
Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: with aternative certificates, in this example the EDDSA certificate will be preferred if TLS-1.3 is negotiated
and the RSA certificate will always be used for TLS-1.2 asit does not support the EDDSA agorithm:

2 server> {ok, ListenSocket} =
ssl:listen(9999, [{certs_keys, [#{certfile => "eddsacert. pent
keyfile => "eddsakey. pent'}
#{certfile => "rsacert. pent,
keyfile => "rsakey. pent
password => "foobar"}
1}, {reuseaddr, true}]).
{ok, {ssl socket, [...]}}

Step 3: Do atransport accept on the TLS listen socket:

3 server> {ok, TLSTransportSocket} = ssl:transport_accept(ListenSocket).
{ok, {ssl socket, [...]}}

ssl:transport_accept/1 and ssl:handshake/2 are separate functions so that the handshake part can be called in anew
erlang process dedicated to handling the connection

Step 4: Start theclient side;

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 3



1.3 Using SSL application API

1 client> ssl:start().
ok

Be sure to configure trusted certificates to use for server certificate verification.

2 client> {ok, Socket} = ssl:connect("local host", 9999
[{verify, verify_peer},
{cacertfile, "cacerts.pent'}, {active, once}], infinity).
{ok, {ssl socket, [...]}}

Step 5: Do the TLS handshake:

4 server> {ok, Socket} = ssl:handshake(TLSTransport Socket).
{ok, {ssl socket, [...]}}

A real server should use ssl:handshake/2 that has atimeout to avoid DoS attacks. | n the exampl e the timeout defaults
to infinty.

Step 6: Send amessage over TLS:

5 server> ssl:send(Socket, "foo0").
ok

Step 7: Flush the shell message queue to see that the message sent on the server side isrecived by the client side:

3 client> flush().
Shel |l got {ssl,{sslsocket,[...]},"foo"}
ok

1.3.3 Upgrade Example - TLS only

Upgrading a a TCP/IP connection to a TLS connections is mostly used when there is a desire have unencrypted
communication first and then later securethe communication channel by using TL S. Notethat the client and server need
to agree to do the upgrade in the protocol doing the communication. Thisis concept is often referenced as STARTLS
and used in many protocols such as SMIP, FTPS and HTTPS via a proxy.

| Maximum security recommendations are however moving away from such solutions. |

To upgrade to a TL S connection:
Step 1: Start the server side:

1 server> ssl:start()
ok

Step 2: Createanormal TCPlisten socket and ensureact i ve issettof al se and not set to any activemode otherwise
TL S handshake messages can be delivered to the wrong process.
2 server> {ok, ListenSocket} = gen_tcp:listen(9999, [{reuseaddr, true},
{active, false}]).
{ok, #Port<0.475>}

Step 3: Accept client connection:

4 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



1.3 Using SSL application API

3 server> {ok, Socket} = gen_tcp:accept(ListenSocket).
{ok, #Port<0.476>}

Step 4: Start theclient side:

1 client> ssl:start().
ok

2 client> {ok, Socket} = gen_tcp:connect("local host", 9999, [], infinity)
Step 5: Do the TLS handshake:

4 server> {ok, TLSSocket} = ssl:handshake(Socket, [{verify, verify peer},
{fail _if_no_peer_cert, true},
{cacertfile, "cacerts.peni}
{certs_keys, [#{certfile => "cert.penl, keyfile => "key.penm'}]}]).
{ok, {ssl socket,[...]}}

Step 6: Upgradeto aTL S connection. The client and server must agree upon the upgrade. The server must be prepared
to bea TLS server before the client can do a successful connect.

3 client>{ok, TLSSocket} = ssl:connect(Socket, [{verify, verify_ peer},
{cacertfile, "cacerts.peni}
{certs_keys, [#{certfile => "cert.pent, keyfile => "key.penmt'}]}], infinity)
{ok, {ssl socket,[...]}}

Step 7: Send amessage over TLS:

4 client> ssl:send(TLSSocket, "foo").
ok

Step 8: Setacti ve once onthe TLS socket:

5 server> ssl:setopts(TLSSocket, [{active, once}]).
ok

Step 9: Flush the shell message queue to see that the message sent on the client side is recived by the server side:

5 server> flush().
Shel |l got {ssl,{sslsocket,[...]},"foo"}
ok

1.3.4 Customizing cipher suites
Fetch default cipher suite list for aTLS/DTLS version. Change default to all to get al possible cipher suites.

1> Default = ssl:cipher_suites(default, 'tlsvl. 2").
[#{ci pher => aes_256_gcm key_exchange => ecdhe_ecdsa
mac => aead, prf => sha384}, ....]

In OTP 20 it is desirable to remove all cipher suites that uses rsa key exchange (removed from default in 21)

2> NoRSA =
ssl:filter_cipher_suites(Default,
[{key_exchange, fun(rsa) -> fal se
() ->true
end}]).
[...]

Pick just afew suites

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 5



1.3 Using SSL application API

3> Suites =
ssl:filter_cipher_suites(Default,
[{key_exchange, fun(ecdh_ecdsa) -> true
() -> false
end},
{ci pher, fun(aes_128_cbc) -> true
() ->false
end}]).
[#{ci pher => aes_128_cbc, key_exchange => ecdh_ecdsa
mac => sha256, prf => sha256},
#{ci pher => aes_128_cbc, key_exchange => ecdh_ecdsa, nac => sha
prf => default_prf}]

Make some particular suites the most preferred, or least preferred by changing prepend to append.

4>ssl| : prepend_ci pher _suites(Suites, Default).
[#{ci pher => aes_128_chc, key_exchange => ecdh_ecdsa
mac => sha256, prf => sha256},
#{ci pher => aes_128_chc, key_exchange => ecdh_ecdsa, mac => sha
prf => default_prf},
#{ci pher => aes_256_cbhc, key_exchange => ecdhe_ecdsa
mac => sha384, prf => sha384}, ...]

1.3.5 Customizing signature algorithms(TLS-1.2)/schemes(TLS-1.3)

Starting from TLS-1.2 signature algorithms (called signature schemesin TLS-1.3) is something that can be negotiated
and hence also configured. These algorithms/schemes will be used for digital signatures in protocol messages and in
certificates.

TLS-1.3 schemes have atom names whereas TLS-1.2 configuration is two element tuples composed by one hash
algorithm and one signature algorithm. When both versions are supported the configuration can be a mix of these
as both versions might be negotiated. All r sa_pss based schemes are back ported to TLS-1.2 and can be used
asoinaTLS 1.2 configuration. In TLS-1.2 the signature algorithms chosen by the server will aso be affected by
the chiper suite that is chosen, which is not the casein TLS-1.3.

Using the function ssl : si gnat ur e_al gs/ 2 will let you inspect diffrent aspects of possible configurations for
your system. For example if TLS-1.3 and TLS-1.2 is supported the default signature_algorithm list in OTP-26 and
cryptolib from OpenSSL 3.0.2 would look like:

1> ssl:signature_algs(default, 'tlsvl.3").
%% TLS-1. 3 schenes

[ eddsa_ed25519, eddsa_ed448, ecdsa_secp521r1_sha512
ecdsa_secp384r1_sha384, ecdsa_secp256r1_sha256
rsa_pss_pss_shab512, rsa_pss_pss_sha384, rsa_pss_pss_sha256
rsa_pss_rsae_sha512, rsa_pss_rsae_sha384, rsa_pss_rsae_sha256
%% Legacy schenes only valid for certificate signatures in TLS-1.3
%% (woul d have a tuple name in TLS-1.2 only configuration)
rsa_pkcsl_shab512,rsa_pkcsl_sha384,rsa_pkcsl _sha256

%% TLS 1.2 al gorithns

{shab512, ecdsa},

{sha384, ecdsa},

{sha256, ecdsa}]

If you want to add support for non default supported algorithms you should append them to the default list as the
configuration isin prefered order, something like this:

6 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



1.3 Using SSL application API

MySi gnat ureAl gs = ssl:signature_al gs(default, 'tlsvl.3") ++ [{sha, rsa}, {sha, dsa}],
ssl : connect (Host, Port, [{signature_al gs, M/SignatureAlgs,...]}),

Seealsossl : signature_al gs/ 2 andsign algo()

1.3.6 Using an Engine Stored Key
Erlang ssl application is able to use private keys provided by OpenSSL engines using the following mechanism:

1> ssl:start().
ok

Load a crypto engine, should be done once per engine used. For example dynamically load the engine called
MyEngi ne:

2> {ok, EngineRef} =

crypt o: engi ne_| oad( <<"dynamni c" >>,

[ {<<"SO _PATH'>>, "/tnp/user/engines/ MyEngi ne"}, <<"LOAD'>>],
(1.

{ ok, #Ref <0. 2399045421. 3028942852. 173962>}

Create amap with the engine information and the algorithm used by the engine:

3> PrivKey =
#{al gorithm => rsa,
engi ne => Engi neRef,
key_id => "id of the private key in Engine"}.

Use the map in the ssl key option:

4> {ok, SSLSocket} =
ssl: connect ("l ocal host", 9999,
[{cacertfile, "cacerts.peni},
{certs_keys, [#{certfile => "cert.penl', key => PrivKey}]}
], infinity).

See also crypto documentation

1.3.7 NSS keylog

TheNSSkeylog debug feature can be used by authorized usersto for instance enable wireshark to decrypt TL S packets.
Server (with NSS key logging)

server() ->
application:|oad(ssl),
{ok, _} = application:ensure_all_started(ssl),
Port = 11029,
LOpts = [{certs_keys, [#{certfile => "cert.penl, keyfile => "key.pen'}]},
{reuseaddr, true},
{versions, ['tlsvl. 2", "tlsvl.3"]},
{keep_secrets, true} %% Enabl e NSS key | og (debug option)

1.

{ok, LSock} = ssl:listen(Port, LOpts),
{ok, ASock} = ssl:transport_accept(LSock),
{ok, CSock} = ssl:handshake(ASock) .

Exporting the secrets

{ok, [{keylog, Keylogltens}]} = ssl:connection_infornmati on(CSock, [keylog]).
fileewite_file("key.log", [[Keylogltem$\n] || Keylogltem<- Keylogltens]).

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 7



1.3 Using SSL application API

1.3.8 Session Reuse pre TLS 1.3

Clients can request to reuse a session established by apreviousfull handshake between that client and server by sending
theid of the session in theinitial handshake message. The server may or may not agreeto reuseit. If agreed the server
will send back theid and if not it will send anew id. The ssl application has several options for handling session reuse.

On the client side the s3l application will save session data to try to automate session reuse on behalf of the client
processes on the Erlang node. Note that only verified sessions will be saved for security reasons, that is session
resumption relies on the certificate validation to have been run in the original handshake. To minimize memory
consumption only unique sessions will be saved unless the special save value is specified for the following option
{reuse_sessions, bool ean() | save} inwhichcaseafull handshake will be performed and that specific
session will have been saved before the handshake returns. The session id and even an opaque binary containing the
session data can be retrieved using ssl : connecti on_i nf or mati on/ 1 function. A saved session (guaranteed
by the save option) can be explicitly reused using {r euse_sessi on, Sessi onl d}. Also it is possible for
the client to reuse a session that is not saved by the ssl application using { r euse_sessi on, {Sessionld,
Sessi onDat a}}.

When using explicit session reuse, it is up to the client to make sure that the session being reused is for the correct
server and has been verified.

Here follows a client side example, divide into several steps for readability.
Step 1 - Automated Session Reuse

1> ssl:start().

ok

2> {ok, Cl} = ssl:connect("local host", 9999, [{verify, verify_peer},
{versions, ['tlsvl.2']},
{cacertfile, "cacerts.pen'}]).

{ok, {ssl socket, {gen_tcp, #Port <0. 7>,t1 s_connecti on, undefined}, ...}}

3> ssl:connection_informati on(Cl, [session_id]).

{ok, [{session_id, <<95, 32, 43, 22, 35, 63, 249, 22, 26, 36, 106,
152, 49, 52, 124, 56, 130, 192, 137, 161,
146, 145, 164, 232, ... >>}]}

%% Reuse session if possible, note that if C2 is really fast the session
%6 data m ght not be available for reuse.
4> {ok, C2} = ssl:connect("local host", 9999, [{verify, verify_peer},
{versions, ['tlsvl.2']},
{cacertfile, "cacerts.pemn'},
{reuse_sessions, true}]).
{ ok, {ssl socket, {gen_tcp, #Port <0. 8>,t| s_connecti on, undefined}, ...]1}}

%% C2 got same session ID as client one, session was automatically reused.
5> ssl:connection_informati on(C2, [session_id]).
{ok, [{session_id, <<95, 32, 43, 22, 35, 63, 249, 22, 26, 36, 106,

152, 49, 52, 124, 56, 130, 192, 137, 161,

146, 145, 164, 232, ...>>}]}

Step 2- Using save Option

8 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



1.3 Using SSL application API

%% W want save this particular session for

%Whbreuse although it has the sanme basis as Cl

6> {ok, C3} = ssl:connect("local host", 9999, [{verify, verify_peer},
{versions, ['tlsvl.2']},
{cacertfile, "cacerts.peni'},
{reuse_sessions, save}]).

{ ok, {ssl socket, {gen_tcp, #Port <0. 9>, t| s_connecti on, undefined}, ...]}}

%6 A full handshake is performed and we get a new session |ID
7> {ok, [{session_id, ID}]} = ssl:connection_information(C3, [session_id]).
{ok, [{session_id, <<91, 84, 27, 151, 183, 39, 84, 90, 143, 141,

121, 190, 66, 192, 10, 1, 27, 192, 33, 95, 78,

8, 34,180,...>>}]}

%% Use automatic session reuse
8> {ok, C4} = ssl:connect("local host", 9999, [{verify, verify_peer},
{versions, ['tlsvl.2']},
{cacertfile, "cacerts.peni'},
{reuse_sessions, true}]).
{ ok, {ssl socket, {gen_tcp, #Port <0. 10>, t| s_connecti on,
undefined}, ...1}}

%% The "saved" one happened to be selected, but this is not a guarantee
9> ssl:connection_information(C4, [session_id]).
{ok, [{session_id, <<91, 84, 27, 151, 183, 39, 84, 90, 143, 141,

121, 190, 66, 192, 10, 1, 27, 192, 33, 95, 78,

8, 34,180,...>>}]}

%% Make sure to reuse the "saved" session
10> {ok, C5} = ssl:connect("local host", 9999, [{verify, verify_peer},
{versions, ['tlsvl.2']},
{cacertfile, "cacerts.peni'},
{reuse_session, ID}]).
{ ok, {ssl socket, {gen_tcp, #Port <0. 11>, t| s_connecti on,
undefined}, ...1}}

11> ssl:connection_information(C5, [session_id]).

{ok, [{session_id, <<91, 84, 27, 151, 183, 39, 84, 90, 143, 141,
121, 190, 66, 192, 10, 1, 27, 192, 33, 95, 78,
8,34,180,...>>}]}

Step 3 - Explicit Session Reuse

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 9



1.3 Using SSL application API

%6 Performa full handshake and the session will not be saved for reuse
12> {ok, C9} =
ssl: connect ("l ocal host", 9999, [{verify, verify_peer},

{versions, ['tlsvl.2']},

{cacertfile, "cacerts.peni'},
{reuse_sessions, false},
{server_nane_i ndi cation, disable}]).
{ ok, {ssl socket, {gen_tcp, #Port <0. 14>, t| s_connection, ...}}

%% Fetch session ID and data for C9 connection
12> {ok, [{session_id, IDl}, {session_data, SessData}]} =
ssl:connection_information(C9, [session_id, session_data]).
{ok, [{session_id, <<9, 233, 4,54,170, 88, 170, 180, 17, 96, 202,
85, 85, 99, 119, 47, 9, 68, 195, 50, 120, 52,
130, 239, ... >>},
{sessi on_dat a, <<131, 104, 13, 100, 0, 7, 115, 101, 115, 115, 105,
111, 110, 109, 0, 0, 0, 32, 9, 233, 4, 54, 170, . .. >>}] }

%6 Explicitly reuse the session from C9
13> {ok, Cl10} = ssl:connect("local host", 9999, [{verify, verify_peer},
{versions, ['tlsvl.2']},
{cacertfile, "cacerts.peni'},
{reuse_session, {IDl, SessData}}]).
{ ok, {ssl socket, {gen_tcp, #Port <0. 15>, t| s_connecti on,
undefined}, ...}}

14> ssl : connection_i nfornmation(Cl0, [session_id]).

{ok, [{session_id, <<9, 233, 4,54,170, 88, 170, 180, 17, 96, 202,
85, 85, 99, 119, 47, 9, 68, 195, 50, 120, 52,
130, 239, ...>>}]}

Step 4 - Not Possible to Reuse Explicit Session by ID Only

%o Try to reuse the session fromC9 using only the id
15> {ok, E} = ssl:connect("local host", 9999, [{verify, verify_peer},
{versions, ['tlsvl.2']},
{cacertfile, "cacerts.pemn'},
{reuse_session, 1D1}]).
{ ok, {ssl socket, {gen_tcp, #Port <0. 18>, t| s_connecti on,
undefined}, ...}}

WoThis will fail (as it is not saved for reuse)
%Woand a full handshake will be performed, we get a new id.
16> ssl:connection_informati on(E, [session_id]).
{ok, [{session_id, <<87, 46, 43, 126, 175, 68, 160, 153, 37, 29,
196, 240, 65, 160, 254, 88, 65, 224, 18, 63,
18,17, 174,39, ...>>}]}

On the server side thethe { r euse_sessi ons, bool ean()} option determinesif the server will save session
data and allow session reuse or not. This can be further customized by the option { r euse_sessi on, fun()}
that may introduce alocal policy for session reuse.

1.3.9 Session Tickets and Session Resumption in TLS 1.3

TLS 1.3introduces a new secure way of resuming sessions by using session tickets. A session ticket is an opagque data
structure that is sent inthe pre_shared key extension of a ClientHello, when aclient attempts to resume a session with
keying material from a previous successful handshake.

Session tickets can be stateful or stateless. A stateful session ticket isadatabase reference (session ticket store) and used
with stateful servers, while astatel essticket isaself-encrypted and self-authenticated data structure with cryptographic
keying material and state data, enabling session resumption with statel ess servers.

10 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



1.3 Using SSL application API

The choice between stateful or statel ess depends on the server requirements as the session tickets are opaque for the
clients. Generaly, stateful tickets are smaller and the server can guarantee that tickets are only used once. Stateless
tickets contain additional data, require less storage on the server side, but they offer different guarantees against anti-

replay. See also Anti-Replay Protectionin TLS 1.3

Session tickets are sent by servers on newly established TL S connections. The number of tickets sent and their lifetime
are configurable by application variables. See also SSL's configuration.

Session tickets are protected by application traffic keys, and in statel esstickets, the opague data structure itself is self-

encrypted.

An example with automatic and manual session resumption:

{ok, _}
LOpts =
keyfile =>

= application:ensure_all _started(ssl).
[{certs_keys, [#{certfile => "cert. pent,
"key.pem'}]},

{versions, ['tlsvl. 2", "tlsvl.3']},
{session_tickets, stateless}].
{ok, LSock} = ssl:listen(8001, LOpts).

{ok, ASock}

ssl :transport_accept (LSock) .

Step 2 (client): Start the client and connect to server:

{ok, _}

COpt s [{cacertfile, "cert.peni'},

application:ensure_all_started(ssl).

{versions, ['tlsvl.2', 'tlsvl.3"]},

{log_l evel, debug},
{session_tickets, auto}].

ssl: connect ("l ocal host", 8001, COpts).

Step 3 (server): Start the TLS handshake:

{ok, CSocket} = ssl:handshake(ASock)

A connection is established using a full handshake. Below is a summary of the exchanged messages.

>>> TLS 1.3 Handshake, CientHello ...
<<< TLS 1.3 Handshake, ServerHello ...
<<< Handshake, EncryptedExtensions ...

<<< Handshake, Certificate ...

<<< Handshake, CertificateVerify ...
<<< Handshake, Finished ...

>>> Handshake, Finished ...

<<< Post - Handshake, NewSessi onTi cket ...

At thispoint the client has stored the received session tickets and ready to use them when establishing new connections

to the same server.

Step 4 (server): Accept a new connection on the server:

{ok, ASock2} = ssl:transport_accept (LSock).

Step 5 (client): Make a new connection:

ssl: connect ("l ocal host", 8001, COpts).

Step 6 (server): Start the handshake:

{ok, CSock2} =ssl:handshake(ASock2).

The second connection is a session resumption using keying material from the previous handshake:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 11



1.3 Using SSL application API

>>> TLS 1.3 Handshake, CientHello ...
<<< TLS 1.3 Handshake, ServerHello ...
<<< Handshake, EncryptedExtensions ...
<<< Handshake, Finished ...

>>> Handshake, Finished ...

<<< Post - Handshake, NewSessi onTi cket ...

Manual handling of session tickets is also supported. In manual mode, it is the responsibility of the client to handle
received session tickets.

Step 7 (server): Accept a new connection on the server:
{ok, ASock3} = ssl:transport_accept (LSock).
Step 8 (client): Make a new connection to server:

{ok, _} = application:ensure_all_started(ssl).

COpts2 = [{cacertfile, "cacerts.peni'},
{versions, ['tlsvl. 2", "tlsvl.3"]},
{log_l evel, debug},
{session_tickets, manual }].

ssl: connect ("l ocal host", 8001, COpts).

Step 9 (server): Start the handshake:
{ok, CSock3} = ssl:handshake(ASock3).
After the handshake is performed, the user process receivess messages with the tickets sent by the server.
Step 10 (client): Receive a new session ticket:
Ticket = receive {ssl, session_ticket, {_, TicketData}} -> TicketData end.
Step 11 (server): Accept anew connection on the server:
{ok, ASock4} = ssl:transport_accept (LSock).
Step 12 (client): Initiate a new connection to the server with the session ticket received in Step 10:

{ok, _} = application:ensure_all_started(ssl).

COpts2 = [{cacertfile, "cert.pen'},
{versions, ['tlsvl. 2", "tlsvl.3']},
{l og_l evel, debug},
{session_tickets, manual},
{use_ticket, [Ticket]}].

ssl: connect ("l ocal host", 8001, COpts).

Step 13 (server): Start the handshake:

{ok, CSock4} = ssl:handshake( ASock4).

1.3.10 Early Data in TLS-1.3

TLS 1.3 alows clients to send data on the first flight if the endpoints have a shared crypographic secret (pre-shared
key). This means that clients can send early data if they have a valid session ticket received in a previous successful
handshake. For more information about session resumption see Session Tickets and Session Resumptionin TLS 1.3.

The security properties of Early Data are weaker than other kinds of TLS data. This datais not forward secret, and it
isvulnerable to replay attacks. For available mitigation strategies see Anti-Replay Protection in TLS 1.3.

In normal operation, clients will not know which, if any, of the available mitigation strategies servers actually
implement, and hence must only send early datawhich they deem safe to be replayed. For example, idempotent HTTP

12 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



1.3 Using SSL application API

operations, such asHEAD and GET, can usually be regarded as safe but even they can be exploited by alarge number
of replays causing resource limit exhaustion and other similar problems.

An example of sending early data with automatic and manual session ticket handling:
Server

early_data_server() ->
application:|oad(ssl),
{ok, _} = application:ensure_all_started(ssl),
Port = 11029,
LOpts = [{certs_keys, [#{certfile => "cert.penl, keyfile => "key.pen'}]},
{reuseaddr, true},
{versions, ['tlsvl. 2", "tlsvl.3"]},
{session_tickets, stateless},
{early_data, enabled},
I,
{ok, LSock} = ssl:listen(Port, LOpts),
%% Accept first connection
{ok, ASock0} = ssl:transport_accept (LSock),
{ok, CSock0} = ssl:handshake( ASockO),
%% Accept second connection
{ok, ASockl} = ssl:transport_accept (LSock),
{ok, CSockl} = ssl:handshake(ASockl),
Sock.

Client (automatic ticket handling):

early data_auto() ->
%% Fi rst handshake 1-RTT - get session tickets
application:|oad(ssl),
{ok, _} = application:ensure_all_started(ssl),
Port = 11029,
Data = <<"HEAD / HTTP/1.1\r\nHost: \r\nConnection: close\r\n">>,
COptsO = [{cacertfile, "cacerts.peni'},
{versions, ['tlsvl.2', '"tlsvl.3"]},
{session_tickets, auto}],
{ok, Sock0} = ssl:connect("local host", Port, COptsO),

%o Wait for session tickets
tinmer:sleep(500),
%% Cl ose socket if server cannot handle nultiple
%% connections e.g. openssl s_server
ssl : cl ose( SockO0),

%% Second handshake 0- RTT
COptsl = [{cacertfile, "cacerts.peni},
{versions, ['tlsvl.2', '"tlsvl.3"]},
{session_tickets, auto},
{early_data, Data}],
{ok, Sock} = ssl:connect("local host", Port, COptsl),
Sock.

Client (manual ticket handling):

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 13



1.3 Using SSL application API

early_data_manual () ->
%% First handshake 1-RTT - get session tickets
application:|oad(ssl),
{ok, _} = application:ensure_all_started(ssl),

Port = 11029,
Data = <<"HEAD / HTTP/1.1\r\nHost: \r\nConnection: close\r\n">>
COptsO = [{cacertfile, "cacerts.penl'},
{versions, ['tlsvl.2', '"tlsvl.3]},
{session_tickets, manual}],
{ok, SockO} = ssl:connect("local host", Port, COptsO),
%o Wait for session tickets
Ti cket =
receive
{ssl, session_ticket, TicketO} ->
Ti cket O
end,

%% Cl ose socket if server cannot handle nmultiple connections
% e.g. openssl s_server
ssl : cl ose( SockO0),

%% Second handshake 0-RTT
COptsl = [{cacertfile, "cacerts.penl'},
{versions, ['tlsvl.2', '"tlsvl.3"]},

{session_tickets, manual},
{use_ticket, [Ticket]},
{early_data, Data}],

{ok, Sock} = ssl:connect("local host", Port, COptsl),

Sock.

1.3.11 Anti-Replay Protection in TLS 1.3

The TLS 1.3 protocol does not provide inherent protection for replay of O-RTT data but describes mechanisms
that SHOULD be implemented by compliant server implementations. The implementation of TLS 1.3 in the SSL
application employs al standard methods to prevent potential threats.

Single-usetickets

This mechanism is available with stateful session tickets. Session tickets can only be used once, subsequent use of
the sameticket resultsin afull handshake. Stateful servers enforce this rule by maintaining a database of outstanding
valid tickets.

Client Hello Recording

This mechanism is available with stateless session tickets. The server records a unique value derived from
the ClientHello (PSK binder) in a given time window. The ticket's age is verified by using both the
"obsfuscated_ticket_age" and an additional timestamp encrypted in the ticket data. As the used datastore allows false
positives, apparent replays will be answered by doing afull 1-RTT handshake.

Freshness Checks

Thismechanismisavailablewith the statel ess session tickets. Astheticket data has an embedded timestamp, the server
can determine if a ClientHello was sent reasonably recently and accept the O-RTT handshake, otherwise if falls back
toafull 1-RTT handshake. This mechanism istightly coupled with the previous one, it prevents storing an unlimited
number of ClientHellos.

The current implementation uses a pair of Bloom filters to implement the last two mechanisms. Bloom filters are fast,
memory-efficient, probabilistic data structures that can tell if an element may be in a set or if it is definitely not in
the set.

14 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



1.4 Using TLS for Erlang Distribution

If the option anti_replay isdefined in the server, apair of Bloom filters (current and old) are used to record incoming
ClientHello messages (it is the unique binder value that is actually stored). The current Bloom filter is used for
W ndowSi ze secondsto store new elements. At the end of thetime window the Bloom filtersarerotated (the current
Bloom filter becomes the old and an empty Bloom filter is set as current.

The Anti-Replay protection feature in stateless servers executes in the following steps when a new ClientHello is
received:
* Reported ticket age (obfuscated ticket age) shall be less than ticket lifetime.

« Actual ticket age shall belessthan theticket lifetime (statel ess session tickets contain the servers timestamp when
the ticket was issued).

e ClientHello created with the ticket shall be sent relatively recently (freshness checks).

» If al above checks passed both current and old Bloom filters are checked to detect if binder was already seen.
Being a probabilistic data structure, false positives can occur and they trigger a full handshake.

e |If the binder is not seen, the binder is validated. If the binder is valid, the server proceeds with the O-RTT
handshake.

1.3.12 Using DTLS

Using DTL S has basically the same APl as TLS. Y ou need to add the option { protocol, dtls} to the connect and listen
functions. For example

client> {ok, Socket} = ssl:connect("local host", 9999, [{protocol, dtls},
{verify, verify_peer},{cacertfile, "cacerts.pent'}], infinity).
{ok, {ssl socket, [...]}}

1.4 Using TLS for Erlang Distribution

This section describes how the Erlang distribution can use TLS to get extra verification and security.

The Erlang distribution can in theory use almost any connection-based protocol as bearer. However, a module
that implements the protocol-specific parts of the connection setup is needed. The default distribution module is
i net _tcp_dist inthe Kernel application. When starting an Erlang node distributed, net _ker nel uses this
module to set up listen ports and connections.

Inthe SSL application, an extradistribution module, i net _t | s_di st, canbeused asan aternative. All distribution
connectionswill use TLS and all participating Erlang nodes in adistributed system must use this distribution module.

The security level depends on the parameters provided to the TLS connection setup. Erlang node cookies are however
always used, as they can be used to differentiate between two different Erlang networks.

To set up Erlang distribution over TLS:

*  Step 1: Build boot scripts including the SSL application.

e Step 2: Specify the distribution module for net _ker nel .
e Step 3: Specify the security options and other SSL options.
e Step 4: Set up the environment to always use TLS.

The following sections describe these steps.

1.4.1 Building Boot Scripts Including the SSL Application

Boot scriptsare built using the sy st ool s utility in the SASL application. For moreinformation onsyst ool s, see
the SASL documentation. Thisis only an example of what can be done.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 15



1.4 Using TLS for Erlang Distribution

The simplest boot script possible includes only the Kernel and STDLIB applications. S