YosysHQ Yosys
Version 0.55

YosysHQ GmbH

Jul 25, 2025

1 What is Yosys

1.1

1.2
1.3

2
2.1
2.2
2.3
3
3.1
3.2

What you can do with Yosys
Typical applications for Yosys

1.1.1
1.1.2

The Yosys family

Things you can’t do

The original thesis abstract

1.3.1
1.3.2

2.1.1
2.1.2
2.1.3

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7

2.3.1
2.3.2

3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9

3.2.1
3.2.2

Benefits of open source HDL synthesis
History of Yosys

Getting started with Yosys
Installation

Loading the design

Elaboration
Flattening
The coarse-grain representation

Hardware mapping

Final steps
Scripting in Yosys
Script parsing
The synthesis starter script

Using Yosys (advanced)
Synthesis in detail
Synth commands
Converting process blocks
FSM handling
Memory handling

Optimization passes
Technology mapping

The extract pass
The ABC toolbox
Mapping to cell libraries
More scripting
Loading a design
Selections L.

CAD suite(s)
Building from source
Source tree and build system
Synthesis starter
Demodesign.

CONTENTS

...................... 50

3.2.3 Imteractive design investigation L L L L 123

3.2.4 Symbolic model checking Lo 143

3.2.5 Dataflow tracking Lo 146

4 Yosys internals 149
4.1 Imternal flow 149
4.1. 1 Flow OVErvIeW o v vttt e e e e e e e e e e 149

4.1.2 Control and data flow L 150

4.1.3 The Verilog and AST frontends L 152

4.2 Internal formats L. 161
4.2.1 The RTL Intermediate Language (RTLIL), 162

4.3 Working with the Yosys codebase 168
4.3.1 Writing extensions Lo e 168

4.3.2 Compiling with Verific library 177

4.3.3 Writing a new backend using FunctionallR 0. 180

4.3.4 Contributing to Yosys o 193

4.3.5 Testing Yosys 193

4.4 Techmap by example L 194
4.4.1 Mapping OR3X1 o . e 194

4.4.2 Conditional techmap e 196

4.4.3 Scripting in map modules L. 197

4.4.4 Handling constant inputs L e 199

4.4.5 Handling shorted inputs L e 200

4.4.6 Notes on using techmap L L 202

4.5 Notes on Verilog support in Yosys oL L 202
4.5.1 Unsupported Verilog-2005 Features o 202

4.5.2 Verilog Attributes and non-standard features 202

4.5.3 Non-standard or SystemVerilog features for formal verification 206

4.5.4 Supported features from SystemVerilog oo 207

4.6 Hashing and associative data structuresin Yosyso oL 208
4.6.1 Container classes based on hashing 208

4.6.2 The hash function L e 208

4.6.3 Making a type hashable oo 209

4.6.4 Porting plugins from the legacy interface o oL 209

5 A primer on digital circuit synthesis 211
5.1 Levels of abstraction 211
5.1.1 System level oL 212

5.1.2 Highlevel e 212

5.1.3 Behavioural level L L e 212

5.1.4 Register-Transfer Level (RTL) o o o . 213

5.1.5 Logical gate level L 213

5.1.6 Physical gate level L 214

5.1.7 Switch level oL e 214

5.1.8 YOSYS. . o o i e e 214

5.2 Features of synthesizable Verilog 214
5.2.1 Structural Verilog oL 214

5.2.2 Expressions in Verilog L 215

5.2.3 Behavioural modelling L o 215

5.24 Functions and tasks oL L L 216

5.2.5 Conditionals, loops and generate-statements 216

5.2.6 Arrays and memories oL oL 216

5.3 Challenges in digital circuit synthesis L 217
5.3.1 Standards compliance Lo 217

9

5.3.2 Optimizations e e e e e 217

5.3.3 Technology mapping e 218
5.4 Script-based synthesis flows L L 218
5.5 Methods from compiler design Lo 219
5.5.1 Lexing and parsing L Lo e 219
5.5.2 Multi-pass compilation Lo 220
5.5.3 Static Single Assignment (SSA) form L Lo L 221
RTLIL text representation 223
6.1 Lexical elements L e e e e e e 223
6.1.1 Characters o e 223
6.1.2 Identifiers L 223
6.1.3 Values e 223
6.1.4 Strings e 224
6.1.5 Comments e e e e e e e 224
6.2 File o e e e e e 224
6.2.1 Autoindex statements L 224
6.2.2 Modules e 225
6.2.3 Attribute statements L L e 225
6.2.4 Signal specifications Lo e 225
6.2.5 Connections i e e e e e e e e 225
6.2.6 Wires 225
6.2.7 Memories 226
6.2.8 Cells o e e e e e 226
6.2.9 Processes i e e e e e e e e e 226
6.2.10 Switches e e e e e e e 226
6.2.11 SYNCS . . o v vt e e e e e e e e 227
Auxiliary libraries 229
7.1 Biglnt . . L o e e e 229
7.2 dlfen-wind2 oL L e 229
7.3 ezSAT . . . e 229
TA St o e e e e e e 229
7.5 Jsonll . oL e e e e e 229
7.6 MiIniSAT e e e e e 230
7.7 SHAL . . o e e e e e 230
7.8 SubCircuit e 230
Auxiliary programs 231
8.1 yosys-config L e e e 231
8.2 yosysfilterlib L. 232
8.3 yosys-abe e e e e e 232
8.4 yosys-SmMEDINC e e e e e e e e e e 232
8.5 YOSYS-WItNESSo e e e e e e e e e e e e 236
Internal cell library 237
9.1 Word-level cells e e e e e e 237
9.1.1 Unary operators. o v v i i e e e e e e e e e e e 237
9.1.2 Binary operatorso e 243
9.1.3 Multiplexers e 263
9.1.4 Registers o o L e e e e e e 267
9.1.5 Memories i e e e e e e e e e e e e e e 277
9.1.6 Finite state machines e 289
9.1.7 Coarse arithmetics e e e e e 291
9.1.8 Arbitrary logic functions oL L 299

10

9.1.9 Specify rules e 301

9.1.10 Formal verification cells 306

9.1.11 Debugging cells e 312

9.1.12 Wirecells o e 315
9.2 Gatelevel cells L L e 316

9.2.1 Combinatorial cells (simple) Lo 317

9.2.2 Combinatorial cells (combined) L 321

9.2.3 Flipflopcells e 327

9.24 Latchcells o e 381

9.2.5 Other gate-level cells L 393
9.3 Cell properties o e e e 394
Command line reference 395
10.1 Yosys environment variables oL L Lo 396
10.2 abc - use ABC for technology mapping L 397
10.3 abc9 - use ABC9 for technology mapping 400
10.4 abc9__exe - use ABC9Y for technology mapping L oL 404
10.5 abc9_ops - helper functions for ABC9 405
10.6 abc_new - (experimental) use ABC for SC technology mapping (new) 407
10.7 abstract - replace signals with abstract values during formal verification 408
10.8 add - add objects to the design e 409
10.9 aigmap - map logic to and-inverter-graph circuito oo oL 410
10.10 alumacc - extract ALU and MACC cells.o 0 oo 410
10.11 anlogic_ eqn - Anlogic: Calculate equations for luts 411
10.12 anlogic_ fixcarry - Anlogic: fix carry chain oL oL L 411
10.13 assertpmux - adds asserts for parallel muxes 411
10.14 async2sync - convert async FF inputs to sync circuits o oL 411
10.15 attrmap - renaming attributes oL Lo 412
10.16 attrmvcep - move or copy attributes from wires to driving cells oL 412
10.17 autoname - automatically assign names to objects oL 413
10.18 blackbox - convert modules into blackbox modules o000 413
10.19 bmuxmap - transform $bmux cells to trees of $mux cells 413
10.20 booth - map $mul cells to Booth multipliers 413
10.21 box_derive - derive box modules 414
10.22 bufnorm - (experimental) convert design into buffered-normalized form 414
10.23 bugpoint - minimize testcases Lo 416
10.24 bwmuxmap - replace $bwmux cells with equivalent logic 417
10.25 cd - a shortcut for ‘select -module <name>" 0L oL 0oL 417
10.26 cellmatch - match cells to their targets in cell library 0. 418
10.27 check - check for obvious problems in the design 418
10.28 chformal - change formal constraints of the design 419
10.29 chparam - re-evaluate modules with new parameters 420
10.30 chtype - change type of cells in the design L ... 420
10.31 clean - remove unused cells and wires L. 420
10.32 clean_ zerowidth - clean zero-width connections from the design 421
10.33 clk2fflogic - convert clocked FFs to generic $ffcells 421
10.34 clkbufmap - insert clock buffers on clock networks o000 421
10.35 clockgate - extract clock gating out of flipflops L. 422
10.36 connect - create or remove connections Lo L L0 L oo e n e 423
10.37 connect_ rpc - connect to RPC frontend 423
10.38 connwrappers - match width of input-output port pairs 424
10.39 constmap - technology mapping of coarse constant value 425
10.40 coolrunner2_ fixup - insert necessary buffer cells for CoolRunner-II architecture 425
10.41 coolrunner2_ sop - break $sop cells into ANDTERM/ORTERM cells 425

10.42 copy - copy modules in the design L L 425

10.43 cover - print code coverage COUNtETS v v v v v v v b e e e e e e e e e 426
10.44 cutpoint - adds formal cut points to the design oL 426
10.45 debug - run command with debug log messages enabled 427
10.46 delete - delete objects in the design L Lo o 427
10.47 deminout - demote inout ports to input or output Lo 427
10.48 demuxmap - transform $demux cells to $eq + $mux cells 428
10.49 design - save, restore and reset current design Lo oL 428
10.50 dffinit - set INIT param on FF cells 429
10.51 dfflegalize - convert FFs to types supported by the target 430
10.52 dfflibmap - technology mapping of flip-flops L oL oL 431
10.53 dffunmap - unmap clock enable and synchronous reset from FFs 432
10.54 dft_ tag - create tagging logic for data flow tracking 432
10.55 dump - print parts of the design in RTLIL format 432
10.56 echo - turning echoing back of commands onandoff 433
10.57 edgetypes - list all types of edges in selection L oL 433
10.58 efinix_ fixcarry - Efinix: fix carry chain 433
10.59 equiv_add - add a Sequiv cell 433
10.60 equiv__induct - proving $equiv cells using temporal induction 434
10.61 equiv__make - prepare a circuit for equivalence checking 434
10.62 equiv__mark - mark equivalence checking regions Lo oL 435
10.63 equiv_ miter - extract miter from equiv circuit oL Lo 435
10.64 equiv__opt - prove equivalence for optimized circuit L. 435
10.65 equiv__purge - purge equivalence checking module 437
10.66 equiv__remove - remove Sequiv cells 437
10.67 equiv_simple - try proving simple $equiv instances 437
10.68 equiv__status - print status of equivalent checking module 438
10.69 equiv__struct - structural equivalence checking o o oL 438
10.70 eval - evaluate the circuit given an input Lo 438
10.71 example_dt - drivertools example 439
10.72 exec - execute commands in the operating system shell00 0L 439
10.73 expose - convert internal signals to module ports Lo 440
10.74 extract - find subcircuits and replace them with cells 440
10.75 extract_counter - Extract GreenPak4 counter cells. 442
10.76 extract_fa - find and extract full/half adders L. 442
10.77 extract_reduce - converts gate chains into $reduce_*cells 443
10.78 extractinv - extract explicit inverter cells for invertible cell pins 443
10.79 flatten - flatten design L 444
10.80 flowmap - pack LUTs with FlowMap 444
10.81 fmcombine - combine two instances of a cell intooneo 445
10.82 fminit - set init values/sequences for formal Lo Lo L L. 446
10.83 formalff - prepare FFs for formal oL oo 446
10.84 freduce - perform functional reduction L L 448
10.85 fsm - extract and optimize finite state machines, 448
10.86 fsm_ detect - finding FSMs in design 449
10.87 fsm__expand - expand FSM cells by merging logic into it 449
10.88 fsm_ export - exporting FSMs to KISS2 files L. 450
10.89 fsm_ extract - extracting FSMs in design Lo Lo 450
10.90 fsm__ info - print information on finite state machines 450
10.91 fsm_ map - mapping FSMs to basic logic 451
10.92 fsm_ opt - optimize finite state machines 0oL 451
10.93 fsm_ recode - recoding finite state machines oL oL oo 451
10.94 fst2tb - generate testbench out of fst file. L Lo oL 452
10.95 future - resolve future sampled value functions L oL oL 452

10.96 gatemate_foldinv - fold inverters into Gatemate LUT trees 452

10.97 glift - create GLIFT models and optimization problems 453
10.98 greenpak4 dffinv - merge greenpak4 inverters and DFF /latches 454
10.99 help - display help messages Lo 454
10.10(hierarchy - check, expand and clean up design hierarchy 455
10.101hilomap - technology mapping of constant hi- and/or lo-drivers 456
10.10%history - show last interactive commands L oL 457
10.103ce40_ braminit - iCE40: perform SB. RAM40 4K initialization from file 457
10.104ice40_ dsp - iCE40: map multipliers L Lo 457
10.105ce40_opt - iCE40: perform simple optimizations. L. 458
10.106Gced40__wrapcarry - iCE40: wrap carries oo e 458
10.107nsbuf - insert buffer cells for connected wireso Lo oL 458
10.108nternal _stats - print internal statistics L. 459
10.1090padmap - technology mapping of i/o pads (or buffers) 459
10.11Qny - write design and metadatao Lo 460
10.111%json - write design in JSON format Lo 460
10.11%eep__hierarchy - selectively add the keep_ hierarchy attribute 461
10.113attice_gsr - Lattice: handle GSR 461
10.114ibcache - control caching of technology library data parsed from liberty files 461
10.113icense - print license terms L L Lo e e e 462
10.11Mog - print text and log files L Lo 462
10.1170gger - set logger properties L Lo e 463
10.118s - list modules or objects in modules L L L 464
10.119tp - print longest topological path 464
10.120ut2mux - convert $lut to $§ MUX L 464
10.12Imaccmap - mapping macc cells oL Lo 465
10.122memory - translate memories to basic cells oo 465
10.123memory__bmux2rom - convert muxes to ROMs 465
10.124memory__bram - map memories to block ramso 465
10.125memory_ collect - creating multi-port memory cells 467
10.12Gmemory_ dff - merge input/output DFFs into memory read ports 468
10.12%memory_ libmap - map memories tocells Lo oL 468
10.128nemory__map - translate multiport memories to basiccells L. 469
10.129memory_ memx - emulate vlog sim behavior for mem ports 0oL L. 469
10.130memory_narrow - split up wide memory ports 469
10.13Imemory_ nordff - extract read port FFs from memories 470
10.132nemory_ share - consolidate memory ports L Lo 470
10.133memory__unpack - unpack multi-port memory cells oL 470
10.134microchip_ dffopt - MICROCHIP: optimize FF control signal usage 470
10.135microchip_dsp - MICROCHIP: pack resources into DSPs 471
10.136Gmiter - automatically create a miter circuit L L oo 471
10.137mutate - generate or apply design mutations Lo 472
10.138nuxcover - cover trees of MUX cells with wider MUXes 474
10.139muxpack - $mux/$pmux cascades to $pmux oL Lo 474
10.140nlutmap - map to LUTs of different sizes, 474
10.14Inx_ carry - NanoXplore: create carry cells. o L. 475
10.142nehot - optimize $eq cells for onehot signals 475
10.1430pt - perform simple optimizationso 475
10.144opt_ clean - remove unused cells and wires L L Lo 476
10.14%pt_ demorgan - Optimize reductions with DeMorgan equivalents 476
10.146opt_ dff - perform DFF optimizations 477
10.147pt__expr - perform const folding and simple expression rewriting 477
10.14&pt_ ffinv - push inverters through FFs o o o 478
10.14%pt_lut - optimize LUT cells o . oL oo o 478

Vi

10.150pt__lut__ins - discard unused LUT inputs o o o i 478

10.151opt_ mem - optimize memories Lo Lo e e e e e e 479
10.152pt_mem__feedback - convert memory read-to-write port feedback paths to write enables . . 479
10.1530pt_ mem_ priority - remove priority relations between write ports that can never collide . . 479
10.1540pt_ mem_ widen - optimize memories where all ports are wide 479
10.155%0pt__merge - consolidate identical cells oo 480
10.1560pt_ muxtree - eliminate dead trees in multiplexer trees 480
10.15%pt_ reduce - simplify large MUXes and AND/OR gates 480
10.158pt_ share - merge mutually exclusive cells of the same type that share an input signal . . . 481
10.15%paramap - renaming cell parameters o Lo 481
10.16(0peepopt - collection of peephole optimizers L L 0L 481
10.161plugin - load and list loaded plugins L L 482
10.162pmux2shiftx - transform $pmux cells to $shiftx cells 482
10.163pmuxtree - transform $pmux cells to trees of Smux cells 483
10.164portarcs - derive port arcs for propagation delay L Lo 483
10.165portlist - list (top-level) ports« o o L 484
10.166prep - generic synthesis script oL L Lo 484
10.16%printattrs - print attributes of selected objects 485
10.168roc - translate processes to netlists L e 485
10.16%roc_ arst - detect asynchronous resets oo 486
10.170proc_ clean - remove empty parts of processes oL L oo 487
10.171proc_ dff - extract flip-flops from processes L oL Lo 487
10.172proc_ dlatch - extract latches from processes L. 487
10.173proc__init - convert initial block to init attributes 487
10.174proc_ memwr - extract memory writes from processes 487
10.175proc_ mux - convert decision trees to multiplexers Lo Lo 488
10.176proc_ prune - remove redundant assignments oL oL Lo 488
10.17%roc_rmdead - eliminate dead trees in decision trees 488
10.178roc_rom - convert switches to ROMs 488
10.17%bfsat - solve a 2QBF-SAT problem in the circuit 488
10.180ql__bram_ merge - Infers QuickLogic k6n10f BRAM pairs that can operate independently . . 490
10.181ql__bram_ types - Change TDP36K type to subtypes 490
10.18Y1_dsp_io_regs - change types of QL_DSP2 depending on configuration 490
10.183%l_dsp_macc - infer QuickLogic multiplier-accumulator DSP cells 491
10.184ql__dsp__simd - merge QuickLogic K6N10f DSP pairs to operate in SIMD mode 491
10.185ql_ioff - Infer I/O FFs for qlf k6nl0f architecture 491
10.186Gread - load HDL designs 0o 00 e e e e e 491
10.187%ead_aiger - read AIGER file e 492
10.18%ecad_ blif - read BLIF file o o o o e e 493
10.18%ead_json - read JSON file 493
10.19(read_ liberty - read cells from liberty file oo L. 493
10.19Iread_ rtlil - read modules from RTLIL file 494
10.192read_ verilog - read modules from Verilog file L oL 0oL 494
10.193read_ verilog_file list - parse a Verilog file list 498
10.194read xaiger2 - (experimental) read XAIGER file 498
10.19%recover__names - Execute a lossy mapping command and recover original netnames 498
10.196Grename - rename object in the design oL o Lo Lo 499
10.19%mports - remove module ports with no connections Lo 500
10.19&at - solve a SAT problem in the circuit o L 500
10.19%catter - add additional intermediate netso L Lo Lo 503
10.200cc - detect strongly connected components (logic loops) L. 504
10.201scratchpad - get/set values in the scratchpad o L 504
10.20Xcript - execute commands from file or wire oL oo o oo 505
10.20%elect - modify and view the list of selected objects. oL 506

vii

10.204ketattr - set/unset attributes on objects L. L Lo Lo 510

10.20%etenv - set an environment variable L L Lo oL 510
10.20Getparam - set/unset parameters on objects Lo 511
10.20%etundef - replace undef values with defined constants 511
10.20&hare - perform sat-based resource sharing L. oL 0oL 512
10.20%hell - enter interactive command modeo L Lo 512
10.21(show - generate schematics using graphviz oo oo 513
10.21shregmap - map shift registers L o 515
10.21%im - simulate the circuit oL 516
10.213%implemap - mapping simple coarse-grain cells L Lo oL 518
10.214plice - create explicit splicing cells. L Lo 519
10.21%plitcells - split up multi-bit cells o 519
10.216splitnets - split up multi-bit nets 520
10.21%ta - perform static timing analysis oL oL Lo 520
10.21&tat - print some statistics L Lo Lo 520
10.21%ubmod - moving part of a module to a new submodule00 521
10.22(kupercover - add hi/lo cover cells for each wire bit L oL 522
10.221synth - generic synthesis scripto 522
10.22%ynth__achronix - synthesis for Achronix Speedster22i FPGAs. 524
10.22%ynth_anlogic - synthesis for Anlogic FPGAs 525
10.224ynth__coolrunner2 - synthesis for Xilinx Coolrunner-IT CPLDs 527
10.22%ynth__easic - synthesis for eASIC platform L oo 529
10.226Gsynth__ecpb - synthesis for ECP5 FPGAs 530
10.22%ynth_ efinix - synthesis for Efinix FPGAs o o o 534
10.22&ynth__fabulous - FABulous synthesis script L oL L 535
10.22%ynth_ gatemate - synthesis for Cologne Chip GateMate FPGAs 539
10.23ynth__gowin - synthesis for Gowin FPGAs oo oL 542
10.231synth_ greenpak4 - synthesis for GreenPAK4 FPGAs 544
10.23%ynth_iced0 - synthesis for iCE40 FPGAs 546
10.23%ynth__intel - synthesis for Intel (Altera) FPGAs. 549
10.23%ynth_intel alm - synthesis for ALM-based Intel (Altera) FPGAs.. 552
10.23%ynth_ lattice - synthesis for Lattice FPGAs oo 554
10.236Gsynth__microchip - synthesis for Microchip FPGAs 558
10.23%ynth_nanoxplore - synthesis for NanoXplore FPGAs 561
10.238ynth_nexus - synthesis for Lattice Nexus FPGAs, 564
10.23%ynth__quicklogic - Synthesis for QuickLogic FPGAs 567
10.24synth_ sf2 - synthesis for SmartFusion2 and IGLOO2 FPGAs 570
10.241synth_ xilinx - synthesis for Xilinxk FPGAs oo 572
10.24%ynthprop - synthesize SVA properties o L L 576
10.243%cl - execute a TCL script file. o 576
10.244echmap - generic technology mapper L LYy
10.24%ee - redirect command output to file oL oo 580
10.246test__abcloop - automatically test handling of loops in abc command 580
10.24'%est__autotb - generate simple test benches Lo o Lo 581
10.24&est__cell - automatically test the implementation of a cell type 581
10.24%est__generic - test the generic compute graph o oo oL 583
10.250est__pmgen - test pass for pmgen Lo L oL 583
10.251test__select - call internal selection methods on design for testing purposes 583
10.252%imeest - estimate timing oL L e 584
10.25%order - print cells in topological order Lo L o 584
10.254trace - redirect command output to fileo oL 585
10.25%ribuf - infer tri-state buffers L Lo Lo 585
10.256uniquify - create unique copies of modules Lo oo 585

10.25verific - load Verilog and VHDL designs using Verific 586

viii

10.258verilog_defaults - set default options for read_verilog 588

10.25%erilog_ defines - define and undefine verilog defines00 588
10.260viz - visualize data flow graph oL oo 589
10.26wbflip - flip the whitebox attribute oo 590
10.262wrapcell - wrap individual cells into new modules oL 0oL 590
10.263wreduce - reduce the word size of operations if possible 0oL 591
10.264write__aiger - write design to AIGER file L o 591
10.265write_aiger2 - (experimental) write design to AIGER file 592
10.266Gwrite_ blif - write design to BLIF file o o oo 593
10.26%write btor - write design to BTOR file oo 594
10.268write_ cxxrtl - convert design to C++ RTL simulation 594
10.269write__edif - write design to EDIF netlist file L 0oL 599
10.270write_file - write a text toa file L. 600
10.271write_ firrtl - write design toa FIRRTL file 600
10.272write_functional cxx - convert design to C++ using the functional backend 601
10.273write_functional rosette - Generate Rosette compatible Racket from Functional IR 601
10.274write functional smt2 - Generate SMT-LIB from Functional IR 601
10.275write_intersynth - write design to InterSynth netlist file 601
10.276write_jny - generate design metadata Lo 602
10.27%write_json - write design to a JSON file Lo o oo 602
10.278write_ rtlil - write design to RTLIL file o 607
10.279%rite_simplec - convert design to simple C code L oL 607
10.280write__smt2 - write design to SMT-LIBv2 file oL 608
10.281write_smv - write design to SMV file 611
10.282write_spice - write design to SPICE netlist file 0oL 611
10.283write_table - write design as connectivity table Lo 612
10.284write_ verilog - write design to Verilog file Lo oo 612
10.285write_ xaiger - write design to XAIGER file 614
10.286write_ xaiger2 - (experimental) write module to XAIGER file 614
10.28%ilinx__dffopt - Xilinx: optimize FF control signal usage 615
10.28&ilinx_ dsp - Xilinx: pack resources into DSPs L oo 615
10.28%ilinx_ srl - Xilinx shift register extraction L oL oL oL 616
10.29(kprop - formal x propagationo o 616
10.291zinit - add inverters so all FF are zero-initialized oL 617
Bibliography 619
Internal cell reference 621
Property Index 625
Command Reference 627
Tag Index 631

YosysHQ Yosys, Version 0.55

Yosys is an open source framework for RTL synthesis. To learn more about Yosys, see What is Yosys. For
a quick guide on how to get started using Yosys, check out Getting started with Yosys. For the complete list
of commands available, go to commandindex.

Todo

look into command ref improvements
o Search bar with live drop down suggestions for matching on title / autocompleting commands
e Scroll the left sidebar to the current location on page load

e Also the formatting in pdf uses link formatting instead of code formatting

Todo

how does a filterlib rules-file work?

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs /source/appendix/auxprogs.rst, line 22.)

Todo

see if we can get the two hanging appnotes as lit references

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs/source/bib.rst, line 10.)

Todo

flip-flops with async load, $_ALDFFE?_[NP]{2,3}_

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs/source/cell/gate_reg ff.rst, line 226.)

Todo

Add information about $alu, $fa, $macc_v2, and $lcu cells.

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs/source/cell/word__arith.rst, line 4.)

Todo

Describe formal cells

$check, $assert, $assume, $live, $fair, $cover, $equiv, $initstate, $anyconst, $anyseq,
$anyinit, $allconst, and $allseq.

Also $ff and $_FF_ cells.

CONTENTS 1

YosysHQ Yosys, Version 0.55

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs/source/cell/word formal.rst, line 13.)

Todo

Describe $fsm cell

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9fTabebe7c05/docs/source/cell/word_fsm.rst, line 4.)

Todo

$specify2, $specify3, and $specrule cells.

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126¢d00c94892782470192d6c9f7abebe7c05/docs/source/cell /word__spec.rst, line 4.)

Todo

Add information about $slice and $concat cells.

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs /source/cell/word _wire.rst, line 4.)

Todo

reconsider including the whole (~77 line) design like this

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6¢9fTabebe7c05/docs/source/getting_ started /example_synth.rst, line 23.)

Todo

fifo.v description

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6¢9fTabebe7c05/docs/source/getting_ started /example_synth.rst, line 31.)

Todo

consider a brief glossary for terms like adff

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6¢9fTabebe7c05/docs/source/getting_started /example_synth.rst, line 199.)

Todo

2 CONTENTS

YosysHQ Yosys, Version 0.55

hierarchy failure modes

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9fTabebe7c05/docs/source/getting started/example_synth.rst, line 237.)

Todo

pending bugfix in wreduce and/or opt_clean

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9fTabebe7c05/docs/source/getting started/example synth.rst, line 427.)

Todo

ice40_dsp is pmgen

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6¢9fTabebe7c05/docs/source/getting_started /example_synth.rst, line 501.)

Todo

look into command ref improvements
o Search bar with live drop down suggestions for matching on title / autocompleting commands
e Scroll the left sidebar to the current location on page load

e Also the formatting in pdf uses link formatting instead of code formatting

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6c9fTabebe7c05/docs/source/index.rst, line 10.)

Todo

nextpnr for FPGAs, consider mentioning openlane, vpr, coriolis

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6¢9fTabebe7c05/docs/source/introduction.rst, line 76.)

Todo

Consider a less academic version of the History of Yosys

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6¢9fTabebe7c05/docs/source/introduction.rst, line 206.)

Todo

CONTENTS 3

YosysHQ Yosys, Version 0.55

brief overview for the more scripting index

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9fTabebeTc05/docs/source/using_ yosys/more_ scripting/index.rst, line
4.)

Todo

troubleshooting document(?)

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6¢9fTabebe7c05/docs/source/using__yosys/more_ scripting/index.rst, line
6.)

Todo

interactive design opening text

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126c¢d00c94892782470192d6c9f7abebe7c05/docs/source/using yosys/more_scripting/interactive investigation.rst,
line 4.)

Todo

merge into Scripting in Yosys show section

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs/source/using_yosys/more_scripting/interactive_investigation.rst,
line 14.)

Todo

replace inline code

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6c9f7abebe7c05/docs/source/using_yosys/more_scripting/interactive__investigation.rst,
line 363.)

Todo

replace inline code

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6¢9fTabebe7c05/docs/source/using__yosys/more_scripting/interactive_investigation.rst,
line 395.)

4 CONTENTS

YosysHQ Yosys, Version 0.55

Todo
replace inline code
(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-

60£126c¢d00c94892782470192d6c9f7abebe7c05/docs/source/using_yosys/more_scripting/interactive_investigation.rst,
line 483.)

Todo
replace inline code
(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-

60f126cd00c94892782470192d6c9f7abebe7c05/docs/source/using__yosys/more_scripting/interactive_investigation.rst,
line 553.)

Todo
replace inline code
(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-

60f126cd00c94892782470192d6¢9fTabebe7c05/docs/source/using__yosys/more_scripting/interactive_investigation.rst,
line 597.)

Todo
replace inline code
(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-

60£126cd00c94892782470192d6¢9fTabebe7c05/docs/source/using__yosys/more_scripting/interactive_investigation.rst,
line 643.)

Todo
replace inline code?
(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-

60£126¢d00c94892782470192d6c9f7abebe7c05/docs/source/using yosys/more_scripting/interactive investigation.rst,
line 696.)

Todo
replace inline code
(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-

60£126c¢d00c94892782470192d6c9f7abebe7c05/docs/source/using_yosys/more_scripting/interactive_investigation.rst,
line 721.)

CONTENTS

YosysHQ Yosys, Version 0.55

Todo

include read_verilog <<EQF, also other methods of loading designs

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126¢d00c94892782470192d6c9f7abebe7c05/docs/source/using_yosys/more_scripting/load_design.rst,
line 8.)

Todo

more info on other read_* commands, also is this the first time we mention verific?

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126c¢d00c94892782470192d6c9f7abebe7c05/docs/source/using_ yosys/more_scripting/load_design.rst,
line 27.)

Todo

check text context

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6¢9fTabebe7c05/docs /source/using__yosys/more_scripting/model__checking.rst,
line 4.)

Todo
add/expand supporting text
(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-

60£126cd00c94892782470192d6¢9f7Tabebe7c05/docs/source/using__yosys/more_scripting/model__checking.rst,
line 25.)

Todo
replace inline code
(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-

60£126cd00c94892782470192d6c9f7Tabebe7c05/docs/source/using__yosys/more_scripting/model__checking.rst,
line 47.)

Todo
add/expand supporting text
(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-

60f126cd00c94892782470192d6c9f7abebe7c05/docs/source/using__yosys/more_ scripting/model checking.rst,
line 91.)

CONTENTS

YosysHQ Yosys, Version 0.55

Todo

replace inline code

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126c¢d00c94892782470192d6c9f7abebe7c05/docs/source/using_ yosys/more_scripting/model checking.rst,
line 107.)

Todo

reduce overlap with Scripting in Yosys select section

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6c9f7abebe7c05/docs/source/using_yosys/more_scripting/selections.rst,
line 10.)

Todo

pending discussion on whether rule ordering is a bug or a feature

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6¢9f7abebe7c05/docs/source/using__yosys/more_scripting/selections.rst,
line 340.)

Todo

reflow for not presentation

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6¢9fTabebe7c05/docs/source/using__yosys/more_scripting/selections.rst,
line 385.)

Todo

more about logic minimization & register balancing et al with ABC

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126¢d00c94892782470192d6c9f7Tabebe7c05/docs/source/using yosys/synthesis/abc.rst, line 102.)

Todo

find a Liberty pygments style?

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126¢d00c94892782470192d6c9f7abebe7c05/docs/source/using_yosys/synthesis/cell_libs.rst, line 93.)

CONTENTS 7

YosysHQ Yosys, Version 0.55

Todo

add/expand supporting text, also mention custom pattern matching and pmgen

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs /source/using_yosys/synthesis/extract.rst, line 12.)

Todo

add/expand supporting text

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6c9fTabebe7c05/docs/source/using yosys/synthesis/extract.rst, line 103.)

Todo

Make memory_x* notes less quick

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs/source/using yosys/synthesis/memory.rst, line 18.)

Todo

describe memory images

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs/source/using yosys/synthesis/memory.rst, line 34.)

Todo

assorted enables, e.g. cen, wen+ren

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs/source/using yosys/synthesis/memory.rst, line 233.)

Todo

“outlines these optimizations” or “outlines some..”?

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs/source/using_yosys/synthesis/opt.rst, line 7.)

Todo

unsure if this is too much detail and should be in Yosys internals

8 CONTENTS

YosysHQ Yosys, Version 0.55

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6¢9fTabebe7c05/docs /source/using__yosys/synthesis/opt.rst, line 27.)

Todo

$_DFF_ isn’t a valid cell

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6¢9fTabebe7c05/docs /source/using__yosys/synthesis/opt.rst, line 185.)

Todo

more on the other optimizations

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6c9fTabebe7c05/docs/source/using__yosys/synthesis/opt.rst, line 227.)

Todo

describe proc images

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6¢9fTabebe7c05/docs/source/using__yosys/synthesis/proc.rst, line 29.)

Todo

comment on common synth_x options, like ~run

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs/source/using_yosys/synthesis/synth.rst, line 4.)

Todo

less academic, check text is coherent
(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6c9f7abebe7c05/docs/source/using_yosys/synthesis/techmap_ synth.rst,
line 4.)

Todo

newer techmap libraries appear to be largely .v instead of .1lib
(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-

60f126cd00c94892782470192d6c9fTabebe7c05/docs/source/using__yosys/synthesis/techmap_ synth.rst,
line 76.)

CONTENTS 9

YosysHQ Yosys, Version 0.55

Todo

check text is coherent

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7Tabebe7c05/docs/source/yosys_internals/extending yosys/extensions.rst,
line 7.)

Todo

update to use /code_examples/extensions/test*.log
(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9fTabebe7c05/docs/source/yosys__internals/extending_yosys/extensions.rst,
line 9.)

Todo

mention coding guide
(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7Tabebe7c05/docs/source/yosys_internals/extending yosys/extensions.rst,
line 14.)

Todo

consider replacing inline code
(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6c9fTabebe7c05/docs/source/yosys_ internals/extending yosys/extensions.rst,
line 44.)

Todo

add/expand supporting text
(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6¢9fTabebe7c05/docs/source/yosys__internals/extending_ yosys/extensions.rst,
line 62.)

Todo

replace inline code
(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-

60£126cd00c94892782470192d6c9fTabebe7c05/docs/source/yosys__internals/extending_yosys/extensions.rst,
line 84.)

10 CONTENTS

YosysHQ Yosys, Version 0.55

Todo

use my__cmd.cc literalincludes

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126c¢d00c94892782470192d6c9f7abebe7c05/docs/source/yosys_ internals/extending yosys/extensions.rst,
line 171.)

Todo

replace inline code

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs/source/yosys_internals/extending yosys/extensions.rst,
line 213.)

Todo

replace inline code

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6¢9fTabebe7c05/docs/source/yosys__internals/extending_ yosys/extensions.rst,
line 228.)

Todo

more about the included test suite and how to add tests

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6¢9fTabebe7c05/docs/source/yosys__internals/extending_ yosys/test_ suites.rst,
line 4.)

Todo

are unit tests currently working

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9fTabebe7c05/docs/source/yosys__internals/extending_yosys/test__suites.rst,
line 17.)

Todo

less academic

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7Tabebe7c05/docs/source/yosys_internals/flow/control and_ data.rst,
line 4.)

CONTENTS 11

YosysHQ Yosys, Version 0.55

Todo

less academic
(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs/source/yosys_internals/flow/overview.rst, line 4.)

Todo

Synthesizing Verilog arrays

Add some information on the generation of $memrd and $memuwr cells and how they are processed in the
memory pass.

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6¢9fTabebe7c05/docs/source/yosys__internals/flow /verilog_ frontend.rst,
line 647.)

Todo

Synthesizing parametric designs

Add some information on the RTLIL: :Module: :derive () method and how it is used to synthesize para-
metric modules via the hierarchy pass.

(The original entry is located in /builddir/build /BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9fTabebe7c05/docs/source/yosys_ internals/flow/verilog_ frontend.rst,
line 653.)

Todo

less academic

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60f126cd00c94892782470192d6¢9fTabebe7c05/docs/source/yosys__internals/index.rst, line 6.)

Todo

add RISC-V core example

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6¢9fTabebe7c05/docs/source/yosys__internals/index.rst, line 18.)

Todo

add/expand supporting text

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6¢9f7Tabebe7c05/docs/source/yosys__internals/techmap.rst, line 25.)

12 CONTENTS

YosysHQ Yosys, Version 0.55

Todo

how much of this is specific to the read_verilog and should be in The Verilog and AST frontends?

(The original entry is located in /builddir/build/BUILD /yosys-0.55-build /yosys-
60£126cd00c94892782470192d6c9f7abebe7c05/docs /source/yosys_internals/verilog.rst, line 4.)

CONTENTS 13

YosysHQ Yosys, Version 0.55

14 CONTENTS

CHAPTER
ONE

WHAT IS YOSYS

Yosys began as a BSc thesis project by Claire Wolf intended to support synthesis for a CGRA (coarse-grained
reconfigurable architecture). It then expanded into more general infrastructure for research on synthesis.

Modern Yosys has full support for the synthesizable subset of Verilog-2005 and has been described as “the
GCC of hardware synthesis.” Freely available and open source, Yosys finds use across hobbyist and commercial
applications as well as academic.

Note

Yosys is released under the ISC License:

A permissive license lets people do anything with your code with proper attribution and without warranty.
The ISC license is functionally equivalent to the BSD 2-Clause and MIT licenses, removing some language
that is no longer necessary.

Together with the place and route tool nextpnr, Yosys can be used to program some FPGAs with a fully
end-to-end open source flow (Lattice iCE40 and ECP5). Tt also does the synthesis portion for the OpenLane
flow, targeting the SkyWater 130nm open source PDK for fully open source ASIC design. Yosys can also do
formal verification with backends for solver formats like SMT2.

Yosys, and the accompanying Open Source EDA ecosystem, is currently maintained by Yosys Headquarters,
with many of the core developers employed by YosysHQ GmbH. A commercial extension, Tabby CAD Suite,
includes the Verific frontend for industry-grade SystemVerilog and VHDL support, formal verification with
SVA, and formal apps.

'} YosysHO

1.1 What you can do with Yosys

o Read and process (most of) modern Verilog-2005 code
o Perform all kinds of operations on netlist (RTL, Logic, Gate)

o Perform logic optimizations and gate mapping with ABC

15

https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/nextpnr
https://github.com/The-OpenROAD-Project/OpenLane
https://github.com/The-OpenROAD-Project/OpenLane
https://smtlib.cs.uiowa.edu/
https://github.com/YosysHQ
https://www.yosyshq.com/about
https://www.yosyshq.com/tabby-cad-datasheet

YosysHQ Yosys, Version 0.55

1.1.1 Typical applications for Yosys
o Synthesis of final production designs
o Pre-production synthesis (trial runs before investing in other tools)
e Conversion of full-featured Verilog to simple Verilog
o Conversion of Verilog to other formats (BLIF, BTOR, etc)
o Demonstrating synthesis algorithms (e.g. for educational purposes)
o Framework for experimenting with new algorithms

o Framework for building custom flows (Not limited to synthesis but also formal verification, reverse
engineering, .. .)

1.1.2 Things you can’t do
e Process high-level languages such as C/C++/SystemC
o Create physical layouts (place&route)
— Check out nextpnr for that
e Rely on built-in syntax checking

— Use an external tool like verilator instead

Todo

nextpnr for FPGAs, consider mentioning openlane, vpr, coriolis

1.2 The Yosys family

As mentioned above, YosysH(Q) maintains not just Yosys but an entire family of tools built around it. In no
particular order:

SBY for formal verification
Yosys provides input parsing and conversion to the formats used by the solver engines. Yosys also
provides a unified witness framework for providing cover traces and counter examples for engines
which don’t natively support this. SBY source | SBY docs

EQY for equivalence checking
In addition to input parsing and preparation, Yosys provides the plugin support enabling EQY to
operate on designs directly. EQY source | EQY docs

MCY for mutation coverage
Yosys is used to read the source design, generate a list of possible mutations to maximise design
coverage, and then perform selected mutations. MCY source | MCY docs

SCY for deep formal traces
Since SCY generates and runs SBY, Yosys provides the same utility for SCY as it does for SBY. Yosys
additionally provides the trace concatenation needed for outputting the deep traces. SCY source

16 Chapter 1. What is Yosys

https://github.com/YosysHQ/nextpnr
https://www.veripool.org/verilator/
https://github.com/YosysHQ
https://github.com/YosysHQ/sby
https://yosyshq.readthedocs.io/projects/sby
https://github.com/YosysHQ/eqy
https://yosyshq.readthedocs.io/projects/eqy
https://github.com/YosysHQ/mcy
https://yosyshq.readthedocs.io/projects/mcy
https://github.com/YosysHQ/scy

YosysHQ Yosys, Version 0.55

1.3 The original thesis abstract

The first version of the Yosys documentation was published as a bachelor thesis at the Vienna University of
Technology [Wol13].

Abstract
Most of today’s digital design is done in HDL code (mostly Verilog or VHDL) and with the
help of HDL synthesis tools.

In special cases such as synthesis for coarse-grain cell libraries or when testing new synthesis
algorithms it might be necessary to write a custom HDL synthesis tool or add new features to
an existing one. In these cases the availability of a Free and Open Source (FOSS) synthesis
tool that can be used as basis for custom tools would be helpful.

In the absence of such a tool, the Yosys Open SYnthesis Suite (Yosys) was developed. This
document covers the design and implementation of this tool. At the moment the main
focus of Yosys lies on the high-level aspects of digital synthesis. The pre-existing FOSS
logic-synthesis tool ABC is used by Yosys to perform advanced gate-level optimizations.

An evaluation of Yosys based on real-world designs is included. It is shown that Yosys can
be used as-is to synthesize such designs. The results produced by Yosys in this tests where
successfully verified using formal verification and are comparable in quality to the results
produced by a commercial synthesis tool.

Yosys is a Verilog HDL synthesis tool. This means that it takes a behavioural design description as input
and generates an RTL, logical gate or physical gate level description of the design as output. Yosys’ main
strengths are behavioural and RTL synthesis. A wide range of commands (synthesis passes) exist within
Yosys that can be used to perform a wide range of synthesis tasks within the domain of behavioural, rtl and
logic synthesis. Yosys is designed to be extensible and therefore is a good basis for implementing custom
synthesis tools for specialised tasks.

System Design

High Level Synthesis (HLS)

Behavioral Synthesis

RTL Synthesis Yosys

Logic Synthesis

Cell Library

Fig. 1.1: Where Yosys exists in the layers of abstraction

1.3. The original thesis abstract 17

YosysHQ Yosys, Version 0.55

1.3.1 Benefits of open source HDL synthesis
o Cost (also applies to free as in free beer solutions):

Today the cost for a mask set in 180nm technology is far less than the cost for the design tools needed
to design the mask layouts. Open Source ASIC flows are an important enabler for ASIC-level Open
Source Hardware.

e Availability and Reproducibility:

If you are a researcher who is publishing, you want to use tools that everyone else can also use. Even
if most universities have access to all major commercial tools, you usually do not have easy access to
the version that was used in a research project a couple of years ago. With Open Source tools you can
even release the source code of the tool you have used alongside your data.

¢ Framework:

Yosys is not only a tool. It is a framework that can be used as basis for other developments, so
researchers and hackers alike do not need to re-invent the basic functionality. Extensibility was one of
Yosys’ design goals.

o All-in-one:

Because of the framework characteristics of Yosys, an increasing number of features become available
in one tool. Yosys not only can be used for circuit synthesis but also for formal equivalence checking,
SAT solving, and for circuit analysis, to name just a few other application domains. With proprietary
software one needs to learn a new tool for each of these applications.

o Educational Tool:

Proprietary synthesis tools are at times very secretive about their inner workings. They often are
black boxes. Yosys is very open about its internals and it is easy to observe the different steps of
synthesis.

1.3.2 History of Yosys

Todo

Consider a less academic version of the History of Yosys

A Hardware Description Language (HDL) is a computer language used to describe circuits. A HDL synthesis
tool is a computer program that takes a formal description of a circuit written in an HDL as input and
generates a netlist that implements the given circuit as output.

Currently the most widely used and supported HDLs for digital circuits are Verilog [A+02, A+06] and VHDL
(VHSIC HDL, where VHSIC is an acronym for Very-High-Speed Integrated Circuits) [A+04, A+09]. Both
HDLs are used for test and verification purposes as well as logic synthesis, resulting in a set of synthesizable
and a set of non-synthesizable language features. In this document we only look at the synthesizable subset
of the language features.

In recent work on heterogeneous coarse-grain reconfigurable logic [WGS+12] the need for a custom
application-specific HDL synthesis tool emerged. It was soon realised that a synthesis tool that under-
stood Verilog or VHDL would be preferred over a synthesis tool for a custom HDL. Given an existing Verilog
or VHDL front end, the work for writing the necessary additional features and integrating them in an existing
tool can be estimated to be about the same as writing a new tool with support for a minimalistic custom
HDL.

The proposed custom HDL synthesis tool should be licensed under a Free and Open Source Software (FOSS)
licence. So an existing FOSS Verilog or VHDL synthesis tool would have been needed as basis to build upon.

18 Chapter 1. What is Yosys

YosysHQ Yosys, Version 0.55

The main advantages of choosing Verilog or VHDL is the ability to synthesize existing HDL code and to
mitigate the requirement for circuit-designers to learn a new language. In order to take full advantage of any
existing FOSS Verilog or VHDL tool, such a tool would have to provide a feature-complete implementation
of the synthesizable HDL subset.

Basic RTL synthesis is a well understood field [HS96]. Lexing, parsing and processing of computer languages
[ASUS86] is a thoroughly researched field. All the information required to write such tools has been openly
available for a long time, and it is therefore likely that a FOSS HDL synthesis tool with a feature-complete
Verilog or VHDL front end must exist which can be used as a basis for a custom RTL synthesis tool.

Due to the author’s preference for Verilog over VHDL it was decided early on to go for Verilog instead
of VHDL'. So the existing FOSS Verilog synthesis tools were evaluated. The results of this evaluation are
utterly devastating. Therefore a completely new Verilog synthesis tool was implemented and is recommended
as basis for custom synthesis tools. This is the tool that is discussed in this document.

L A quick investigation into FOSS VHDL tools yielded similar grim results for FOSS VHDL synthesis tools.

1.3. The original thesis abstract 19

YosysHQ Yosys, Version 0.55

20 Chapter 1. What is Yosys

CHAPTER
TWO

GETTING STARTED WITH YOSYS

This section covers how to get started with Yosys, from installation to a guided walkthrough of synthesizing
a design for hardware, and finishing with an introduction to writing re-usable Yosys scripts.

2.1 Installation

This document will guide you through the process of installing Yosys.

2.1.1 CAD suite(s)

Yosys is part of the Tabby CAD Suite and the OSS CAD Suite! The easiest way to use yosys is to install
the binary software suite, which contains all required dependencies and related tools.

o Contact YosysHQ for a Tabby CAD Suite Evaluation License and download link

e OR go to https://github.com/YosysHQ/oss-cad-suite-build /releases to download the free OSS CAD
Suite

o Follow the Install Instructions on GitHub

Make sure to get a Tabby CAD Suite Evaluation License if you need features such as industry-grade Sys-
temVerilog and VHDL parsers!

For more information about the difference between Tabby CAD Suite and the OSS CAD Suite, please visit
https://www.yosyshq.com/tabby-cad-datasheet

Many Linux distributions also provide Yosys binaries, some more up to date than others. Check with your
package manager!

Targeted architectures
The OSS CAD Suite releases nightly builds for the following architectures:
e linux-x64 - Most personal Linux based computers
¢ darwin-x64 - macOS 12 or later with Intel CPU
o darwin-armé64 - macOS 12 or later with M1/M2 CPU
o windows-x64 - Targeted for Windows 10 and 11
e linux-arm64 - Devices such as Raspberry Pi with 64bit OS

For more information about the targeted architectures, and the current build status, check the OSS CAD
Suite git repository.

21

https://www.yosyshq.com/tabby-cad-datasheet
https://github.com/YosysHQ/oss-cad-suite-build
https://www.yosyshq.com/contact
https://www.yosyshq.com/tabby-cad-datasheet
https://github.com/YosysHQ/oss-cad-suite-build/releases
https://github.com/YosysHQ/oss-cad-suite-build#installation
https://www.yosyshq.com/tabby-cad-datasheet
https://github.com/YosysHQ/oss-cad-suite-build
https://github.com/YosysHQ/oss-cad-suite-build/releases/latest
https://github.com/YosysHQ/oss-cad-suite-build
https://github.com/YosysHQ/oss-cad-suite-build

YosysHQ Yosys, Version 0.55

2.1.2 Building from source

The Yosys source files can be obtained from the YosysHQ /Yosys git repository. ABC and some of the other
libraries used are included as git submodules. To clone these submodules at the same time, use e.g.:

git clone --recurse-submodules https://github.com/YosysHQ/yosys.git # ..or..
git clone https://github.com/YosysHQ/yosys.git

cd yosys

git submodule update --init --recursive

Note

As of Yosys v0.47, releases include a yosys. tar.gz file which includes all source code and all sub-modules
in a single archive. This can be used as an alternative which does not rely on git.

Supported platforms
The following platforms are supported and regularly tested:
e Linux
e macOS
Other platforms which may work, but instructions may not be up to date and are not regularly tested:
e FreeBSD
« WSL
o Windows with (e.g.) Cygwin

Build prerequisites

A C++ compiler with C++17 support is required as well as some standard tools such as GNU Flex, GNU
Bison, Make and Python. Some additional tools: readline, libffi, Tcl and zlib; are optional but enabled by
default (see ENABLE_* settings in Makefile). Graphviz and Xdot are used by the show command to display
schematics.

Installing all prerequisites for Ubuntu 20.04:

sudo apt-get install gperf build-essential bison flex \
libreadline-dev gawk tcl-dev libffi-dev git graphviz \
xdot pkg-config python3 libboost-system-dev \
libboost-python-dev libboost-filesystem-dev zliblg-dev

Installing all prerequisites for macOS 13 (with Homebrew):

brew tap Homebrew/bundle && brew bundle

or MacPorts:

sudo port install bison flex readline gawk libffi graphviz \
pkgconfig python311l boost zlib tcl

On FreeBSD use the following command to install all prerequisites:

pkg install bison flex readline gawk libffi graphviz \
pkgconf python311l tcl-wrapper boost-libs

22 Chapter 2. Getting started with Yosys

https://github.com/yosyshq/yosys/
https://github.com/berkeley-abc/abc

YosysHQ Yosys, Version 0.55

Note

On FreeBSD system use gmake instead of make. To run tests use: MAKE=gmake CXX=cxx CC=cc gmake
test

For Cygwin use the following command to install all prerequisites, or select these additional packages:

setup-x86_64.exe -q —-packages=bison,flex,gcc-core,gcc-g++,git,libffi-devel,libreadline-
—devel ,make,pkg-config,python3,tcl-devel,boost-build,zlib-devel

Warning

As of this writing, Cygwin only supports up to Python 3.9.16 while the minimum required version of
Python is 3.11. This means that Cygwin is not compatible with many of the Python-based frontends.
While this does not currently prevent Yosys itself from working, no guarantees are made for contin-
ued support. It is instead recommended to use Windows Subsystem for Linux (WSL) and follow the
instructions for Ubuntu.

Build configuration

The Yosys build is based solely on Makefiles, and uses a number of variables which influence the build
process. The recommended method for configuring builds is with a Makefile.conf file in the root yosys
directory. The following commands will clean the directory and provide an initial configuration file:

make config-clang # ..or..
make config-gcc

Check the root Makefile to see what other configuration targets are available. Other variables can then be
added to the Makefile.conf as needed, for example:

echo "ENABLE_ZLIB := 0" >> Makefile.conf

Using one of these targets will set the CONFIG variable to something other than none, and will override the
environment variable for CXX. To use a different compiler than the default when building, use:

make CXX=$CXX # ..or..
make CXX="g++-11"

Note

Setting the compiler in this way will prevent some other options such as ENABLE_CCACHE from working
as expected.

If you have clang, and (a compatible version of) 1d.11d available in PATH, it’s recommended to speed up
incremental builds with 1ld by enabling LTO with ENABLE_LT0=1. On macOS, LTO requires using clang
from homebrew rather than clang from xcode. For example:

make ENABLE_LT0=1 CXX=$(brew --prefix)/opt/llvm/bin/clang++

By default, building (and installing) yosys will build (and install) ABC, using yosys-abc as the executable
name. To use an existing ABC executable instead, set the ABCEXTERNAL make variable to point to the desired
executable.

2.1. Installation 23

https://github.com/berkeley-abc/abc

YosysHQ Yosys, Version 0.55

Running the build system

From the root yosys directory, call the following commands:

make
sudo make install

To use a separate (out-of-tree) build directory, provide a path to the Makefile.

mkdir build; cd build
make -f ../Makefile

Out-of-tree builds require a clean source tree.

See also

Refer to Testing Yosys for details on testing Yosys once compiled.

2.1.3 Source tree and build system
The Yosys source tree is organized into the following top-level directories:

backends/
This directory contains a subdirectory for each of the backend modules.

docs/
Contains the source for this documentation, including images and sample code.

examples/
Contains example code for using Yosys with some other tools including a demo of the Yosys Python
api, and synthesizing for various toolchains such as Intel and Anlogic.

frontends/
This directory contains a subdirectory for each of the frontend modules.

kernel/
This directory contains all the core functionality of Yosys. This includes the functions and definitions
for working with the RTLIL data structures (rtlil.h/cc), the main() function (driver.cc), the
internal framework for generating log messages (log.h/cc), the internal framework for registering and
calling passes (register.h/cc), some core commands that are not really passes (select.cc, show.cc,
..) and a couple of other small utility libraries.

libs/
Libraries packaged with Yosys builds are contained in this folder. See Auxiliary libraries.

misc/
Other miscellany which doesn’t fit anywhere else.

passes/
This directory contains a subdirectory for each pass or group of passes. For example as of this writ-
ing the directory passes/hierarchy/ contains the code for three passes: hierarchy, submod, and
uniquify.

techlibs/
This directory contains simulation models and standard implementations for the cells from the internal
cell library.

tests/
This directory contains the suite of unit tests and regression tests used by Yosys. See Testing Yosys.

24 Chapter 2. Getting started with Yosys

YosysHQ Yosys, Version 0.55

The top-level Makefile includes frontends/*/Makefile.inc, passes/*/Makefile.inc and backends/*/
Makefile.inc. So when extending Yosys it is enough to create a new directory in frontends/, passes/ or
backends/ with your sources and a Makefile.inc. The Yosys kernel automatically detects all commands
linked with Yosys. So it is not needed to add additional commands to a central list of commands.

Good starting points for reading example source code to learn how to write passes are passes/opt/opt_dff.
cc and passes/opt/opt_merge.cc.

Users of the Qt Creator IDE can generate a QT Creator project file using make qtcreator. Users of the
Eclipse IDE can use the “Makefile Project with Existing Code” project type in the Eclipse “New Project”
dialog (only available after the CDT plugin has been installed) to create an Eclipse project in order to
programming extensions to Yosys or just browse the Yosys code base.

2.2 Synthesis starter

This page will be a guided walkthrough of the prepackaged iCE40 FPGA synthesis script - synth_ice40.
We will take a simple design through each step, looking at the commands being called and what they do
to the design. While synth_ice40 is specific to the iCE40 platform, most of the operations we will be
discussing are common across the majority of FPGA synthesis scripts. Thus, this document will provide a
good foundational understanding of how synthesis in Yosys is performed, regardless of the actual architecture
being used.

See also

Advanced usage docs for Synth commands

2.2.1 Demo design
First, let’s quickly look at the design we’ll be synthesizing:

Todo

reconsider including the whole (~77 line) design like this

Listing 2.1: fifo.v

// address generator/counter
module addr_gen
#(parameter MAX_DATA=256,
localparam AWIDTH = $clog2(MAX_DATA)
) (input en, clk, rst,
output reg [AWIDTH-1:0] addr
)5

initial addr = 0;

// async reset
// increment address when enabled
always @(posedge clk or posedge rst)
if (rst)
addr <= 0;
else if (en) begin

(continues on next page)

2.2. Synthesis starter 25

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

60

61

62

63

64

65

66

67

YosysHQ Yosys, Version 0.55

if ({'0, addr} == MAX_DATA-1)
addr <= 0;
else
addr <= addr + 1;
end
endmodule //addr_gen

// Define our top level fifo entity
module fifo
#(parameter MAX_DATA=256,
localparam AWIDTH = $clog2(MAX_DATA)
) (input wen, ren, clk, rst,
input [7:0] wdata,
output reg [7:0] rdata,
output reg [AWIDTH:0] count

(continued from previous page)

);
// fifo storage
// sync read before write
wire [AWIDTH-1:0] waddr, raddr;
reg [7:0] data [MAX_DATA-1:0];
always Q(posedge clk) begin
if (wen)
data[waddr] <= wdata;
rdata <= datalraddr];
end // storage
// addr_gen for both write and read addresses
addr_gen #(.MAX_DATA(MAX_DATA))
fifo_writer (
.en (wen),
.clk (clk),
.rst (rst),
.addr (waddr)
);
addr_gen #(.MAX_DATA(MAX_DATA))
fifo_reader (
.en (ren),
.clk (clk),
.rst (rst),
.addr (raddr)
);
// status signals
initial count = 0;
always Q@(posedge clk or posedge rst) begin
if (rst)
count <= 0;
else if (wen && !ren)
count <= count + 1;
else if (ren && !wen)
(continues on next page)
26 Chapter 2. Getting started with Yosys

68

69

70

71

YosysHQ Yosys, Version 0.55

(continued from previous page)

count <= count - 1;
end

endmodule

Todo

fifo.v description

While the open source read_verilog frontend generally does a pretty good job at processing valid Verilog
input, it does not provide very good error handling or reporting. Using an external tool such as verilator
before running Yosys is highly recommended. We can quickly check the Verilog syntax of our design by
calling verilator --lint-only fifo.v.

2.2.2 Loading the design

Let’s load the design into Yosys. From the command line, we can call yosys fifo.v. This will open an
interactive Yosys shell session and immediately parse the code from fifo.v and convert it into an Abstract
Syntax Tree (AST). If you are interested in how this happens, there is more information in the document,
The Verilog and AST frontends. For now, suffice it to say that we do this to simplify further processing of
the design. You should see something like the following;:

$ yosys fifo.v
-- Parsing “fifo.v' using frontend ° -vlog2k' --

1. Executing Verilog-2005 frontend: fifo.v

Parsing Verilog input from “fifo.v' to AST representation.
Storing AST representation for module ~$abstract\addr_gen'.
Storing AST representation for module ~$abstract\fifo'.
Successfully finished Verilog frontend.

See also

Advanced usage docs for Loading a design

2.2.3 Elaboration

Now that we are in the interactive shell, we can call Yosys commands directly. Our overall goal is to call
synth_iced40 -top fifo, but for now we can run each of the commands individually for a better sense of
how each part contributes to the flow. We will also start with just a single module; addr_gen.

At the bottom of the help output for synth_ice40 is the complete list of commands called by this script.
Let’s start with the section labeled begin:

Listing 2.2: begin section

read_verilog -D ICE40_HX -1lib -specify +/ice40/cells_sim.v
hierarchy -check -top <top>
proc

2.2. Synthesis starter 27

https://www.veripool.org/verilator/

YosysHQ Yosys, Version 0.55

read_verilog -D ICE40_HX -1lib -specify +/iced40/cells_sim.v loads the iCE40 cell models which al-
lows us to include platform specific IP blocks in our design. PLLs are a common example of this, where
we might need to reference SB_PLL40_CORE directly rather than being able to rely on mapping passes later.
Since our simple design doesn’t use any of these IP blocks, we can skip this command for now. Because these
cell models will also be needed once we start mapping to hardware we will still need to load them later.

Note

+/ is a dynamic reference to the Yosys share directory. By default, this is /usr/local/share/yosys. If
using a locally built version of Yosys from the source directory, this will be the share folder in the same
directory.

The addr_gen module

Since we’re just getting started, let’s instead begin with hierarchy -top addr_gen. This command declares
that the top level module is addr_gen, and everything else can be discarded.

Listing 2.3: addr_gen module source

module addr_gen
#(parameter MAX_DATA=256,
localparam AWIDTH = $clog2(MAX_DATA)
) (input en, clk, rst,
output reg [AWIDTH-1:0] addr
)5

initial addr = O;

// async reset
// increment address when enabled
always @(posedge clk or posedge rst)
if (rst)
addr <= 0;
else if (en) begin
if ({'0, addr} == MAX_DATA-1)
addr <= 0;
else
addr <= addr + 1;
end
endmodule //addr_gen

Note

hierarchy should always be the first command after the design has been read. By specifying the top
module, hierarchy will also set the (x top *) attribute on it. This is used by other commands that
need to know which module is the top.

Listing 2.4: hierarchy -top addr_gen output

yosys> hierarchy -top addr_gen

2. Executing HIERARCHY pass (managing design hierarchy) .

(continues on next page)

28 Chapter 2. Getting started with Yosys

YosysHQ Yosys, Version 0.55

(continued from previous page)

3. Executing AST frontend in derive mode using pre-parsed AST for module ~\addr_gen'.

Generating RTLIL representation for module ~\addr_gen'.

3.1. Analyzing design hierarchy..
Top module: \addr_gen

3.2. Analyzing design hierarchy..

Top module: \addr_gen

Removing unused module ~$abstract\fifo'.
Removing unused module ~$abstract\addr_gen'.
Removed 2 unused modules.

Our addr_gen circuit now looks like this:

$2
$eq

PROC $1
fifo.v:12.2-20.6

PROC $4
fifo.v:0.0-0.0

Tal o)
—p-| 3 | $add

Fig. 2.1: addr_gen module after hierarchy

Simple operations like addr + 1 and addr == MAX_DATA-1 can be extracted from our always @ block in
addr_gen module source. This gives us the highlighted $add and $eg cells we see. But control logic (like
the if .. else) and memory elements (like the addr <= 0) are not so straightforward. These get put into
“processes”, shown in the schematic as PROC. Note how the second line refers to the line numbers of the
start /end of the corresponding always @ block. In the case of an initial block, we instead see the PROC
referring to line 0.

To handle these, let us now introduce the next command: proc - translate processes to netlists. proc is a
macro command like synth_ice40. Rather than modifying the design directly, it instead calls a series of

2.2. Synthesis starter 29

YosysHQ Yosys, Version 0.55

other commands. In the case of proc, these sub-commands work to convert the behavioral logic of processes
into multiplexers and registers. Let’s see what happens when we run it. For now, we will call proc -noopt
to prevent some automatic optimizations which would normally happen.

- SN addi{70]

(j $10
ARST
$12
/l Sadff
°_\ D
A A /
800000000 S6 |y gl o] 98 >

$mux | ¥ smux | ¥ $0\addr{7:0]

$ch @;"/h/*

e}

2]
w

Fig. 2.2: addr_gen module after proc -noopt

There are now a few new cells from our always @, which have been highlighted. The if statements are now
modeled with $muz cells, while the register uses an $adff cell. If we look at the terminal output we can
also see all of the different proc_* commands being called. We will look at each of these in more detail in
Converting process blocks.

Notice how in the top left of addr gen module after proc -noopt we have a floating wire, generated from the
initial assignment of 0 to the addr wire. However, this initial assignment is not synthesizable, so this will
need to be cleaned up before we can generate the physical hardware. We can do this now by calling clean.
We're also going to call opt_ezpr now, which would normally be called at the end of proc. We can call
both commands at the same time by separating them with a colon and space: opt_expr; clean.

AN

/\L

ARST

$12

CLK | gadtt | Q
addr D
AL s |y (7070 Jomy
B | % 56 58

$mux $mux

m|w|>
<
m|w|>

Fig. 2.3: addr_gen module after opt_expr; clean

You may also notice that the highlighted $eq cell input of 255 has changed to 8'11111111. Constant values
are presented in the format <bit_width>'<bits>, with 32-bit values instead using the decimal number.
This indicates that the constant input has been reduced from 32-bit wide to 8-bit wide. This is a side-effect
of running opt_ezpr, which performs constant folding and simple expression rewriting. For more on why
this happens, refer to Optimization passes and the section on opt expr.

30 Chapter 2. Getting started with Yosys

YosysHQ Yosys, Version 0.55

Note

clean - remove unused cells and wires can also be called with two semicolons after any command, for
example we could have called opt_expr; ; instead of opt_expr; clean. You may notice some scripts will
end each line with ;;. It is beneficial to run clean before inspecting intermediate products to remove
disconnected parts of the circuit which have been left over, and in some cases can reduce the processing
required in subsequent commands.

Todo

consider a brief glossary for terms like adff

See also
Advanced usage docs for
o Converting process blocks

o Optimization passes

The full example

Let’s now go back and check on our full design by using hierarchy -check -top fifo. By passing the
-check option there we are also telling the hierarchy command that if the design includes any non-blackbox
modules without an implementation it should return an error.

Note that if we tried to run this command now then we would get an error. This is because we already
removed all of the modules other than addr_gen. We could restart our shell session, but instead let’s use
two new commands:

o design - save, restore and reset current design, and
e read_verilog - read modules from Verilog file.

Listing 2.5: reloading fifo.v and running hierarchy -check
-top fifo

yosys> design -reset

yosys> read_verilog fifo.v

11. Executing Verilog-2005 frontend: fifo.v

Parsing Verilog input from “fifo.v' to AST representation.
Generating RTLIL representation for module ~\addr_gen'.
Generating RTLIL representation for module ~“\fifo'.
Successfully finished Verilog frontend.

yosys> hierarchy -check -top fifo

12. Executing HIERARCHY pass (managing design hierarchy) .

12.1. Analyzing design hierarchy..

(continues on next page)

2.2. Synthesis starter 31

YosysHQ Yosys, Version 0.55

(continued from previous page)

Top module: \fifo
Used module: \addr_gen
Parameter \MAX_DATA = 256

12.2. Executing AST frontend in derive mode using pre-parsed AST for module ~\addr_gen'.
Parameter \MAX_DATA = 256

Generating RTLIL representation for module ~$paramod\addr_gen\MAX DATA=s32

— '00000000000000000000000100000000" .

Parameter \MAX_DATA = 256

Found cached RTLIL representation for module ~$paramod\addr_gen\MAX_DATA=s32

— '00000000000000000000000100000000" .

12.3. Analyzing design hierarchy..
Top module: \fifo
Used module: $paramod\addr_gen\MAX_DATA=s32'00000000000000000000000100000000

12.4. Analyzing design hierarchy..

Top module: \fifo

Used module: $paramod\addr_gen\MAX_DATA=s32'00000000000000000000000100000000
Removing unused module ~\addr_gen'.

Removed 1 unused modules.

Notice how this time we didn’t see any of those $abstract modules? That’s because when we ran yosys
fifo.v, the first command Yosys called was read_verilog -defer fifo.v. The -defer option there
tells read_verilog only read the abstract syntax tree and defer actual compilation to a later hierarchy
command. This is useful in cases where the default parameters of modules yield invalid code which is not
synthesizable. This is why Yosys defers compilation automatically and is one of the reasons why hierarchy
should always be the first command after loading the design. If we know that our design won’t run into this
issue, we can skip the -defer.

Todo

hierarchy failure modes

Note

The number before a command’s output increments with each command run. Don’t worry if your numbers
don’t match ours! The output you are seeing comes from the same script that was used to generate the
images in this document, included in the source as fifo.ys. There are extra commands being run which
you don’t see, but feel free to try them yourself, or play around with different commands. You can always
start over with a clean slate by calling exit or hitting ctrl+d (i.e. EOF) and re-launching the Yosys
interactive terminal. ctrl+c (i.e. SIGINT) will also end the terminal session but will return an error
code rather than exiting gracefully.

We can also run proc now to finish off the full begin section. Because the design schematic is quite large,
we will be showing just the data path for the rdata output. If you would like to see the entire design for
yourself, you can do so with show - generate schematics using graphviz. Note that the show command only
works with a single module, so you may need to call it with show fifo. Displaying schematics section in
Scripting in Yosys has more on how to use show.

The highlighted fifo_reader block contains an instance of the addr gen module after proc -noopt that we

32 Chapter 2. Getting started with Yosys

YosysHQ Yosys, Version 0.55

clk

B 0
N fifo_reader "\ﬂl} Sdff
[$paramod\ addr_gen\ MAX_DATA=532'00000000000000000000000100000000 addr ADDR “

$25

st

CLK DATA

/ EN
o

$memrd

A

Fig. 2.4: rdata output after proc

looked at earlier. Notice how the type is shown as $paramod\\addr_gen\\MAX_DATA=s32'.... This is a
“parametric module”: an instance of the addr_gen module with the MAX_DATA parameter set to the given
value.

The other highlighted block is a $memrd cell. At this stage of synthesis we don’t yet know what type of
memory is going to be implemented, but we do know that rdata <= datal[raddr]; could be implemented
as a read from memory. Note that the $memrd cell here is asynchronous, with both the clock and enable
signal undefined; shown with the 1'x inputs.

See also

Advanced usage docs for Converting process blocks

2.2.4 Flattening

At this stage of a synthesis flow there are a few other commands we could run. In synth_ice40 we get
these:

Listing 2.6: flatten section

flatten
tribuf -logic
deminout

First off is flatten. Flattening the design like this can allow for optimizations between modules which
would otherwise be missed. Let’s run flatten;; on our design.

Listing 2.7: output of flatten;;

yosys> flatten

15. Executing FLATTEN pass (flatten design).

Deleting now unused module $paramod\addr_gen\MAX_DATA=s32
— '00000000000000000000000100000000 .

<suppressed ~2 debug messages>

yosys> clean
Removed 3 unused cells and 28 unused wires.

The pieces have moved around a bit, but we can see addr gen module after proc -noopt from earlier has
replaced the fifo_reader block in rdata output after proc. We can also see that the addr output has been
renamed to fifo_reader.addr and merged with the raddr wire feeding into the $memrd cell. This wire

2.2. Synthesis starter 33

YosysHQ Yosys, Version 0.55

$66

CLK

Sadff Q fifo_reader.addr \
D AL 836 |y L —(7:0-70 \

B | $add
S 7
, 800000000 D= B | B3 |y
clk [A]$35 v —{ $mux
Co—o

$55
$mux

m‘:u“)»

>

@

ADDR CLK | $60 Q
CIK | 5% | DATA = D | Sdff

$memrd

®/ EN

Fig. 2.5: rdata output after flatten;;

merging happened during the call to clean which we can see in the output of flatten;;.

Note

flatten and clean would normally be combined into a single yosys> flatten;; output, but they
appear separately here as a side effect of using echo for generating the terminal style output.

Depending on the target architecture, this stage of synthesis might also see commands such as tribuf with
the -logic option and deminout. These remove tristate and inout constructs respectively, replacing them
with logic suitable for mapping to an FPGA. Since we do not have any such constructs in our example
running these commands does not change our design.

2.2.5 The coarse-grain representation

At this stage, the design is in coarse-grain representation. It still looks recognizable, and cells are word-
level operators with parametrizable width. This is the stage of synthesis where we do things like const
propagation, expression rewriting, and trimming unused parts of wires.

This is also where we convert our FSMs and hard blocks like DSPs or memories. Such elements have to be
inferred from patterns in the design and there are special passes for each. Detection of these patterns can
also be affected by optimizations and other transformations done previously.

Note

While the iCE40 flow had a flatten section and put proc in the begin section, some synthesis scripts will
instead include these in this section.

Part 1

In the iCE40 flow, we start with the following commands:

34 Chapter 2. Getting started with Yosys

YosysHQ Yosys, Version 0.55

Listing 2.8: coarse section (part 1)

opt_expr

opt_clean

check

opt —-nodffe -nosdff
fsm

opt

We've already come across opt_ezpr, and opt_clean is the same as clean but with more verbose output.
The check pass identifies a few obvious problems which will cause errors later. Calling it here lets us fail
faster rather than wasting time on something we know is impossible.

Next up is opt -nodffe -nosdff performing a set of simple optimizations on the design. This command
also ensures that only a specific subset of FF types are included, in preparation for the next command: fsm
- extract and optimize finite state machines. Both opt and fsm are macro commands which are explored in
more detail in Optimization passes and FSM handling respectively.

Up until now, the data path for rdata has remained the same since rdata output after flatten;;. However
the next call to opt does cause a change. Specifically, the call to opt_dff without the -nodffe -nosdff
options is able to fold one of the $muz cells into the $adff to form an $adffe cell; highlighted below:

Listing 2.9: output of opt_dff

yosys> opt_dff

17. Executing OPT_DFF pass (perform DFF optimizations).

Adding EN signal on $procdff$59 ($adff) from module fifo (D = $0\count[8:0], Q = \count).
Adding EN signal on $flatten\fifo_writer.$procdff$66 ($adff) from module fifo (D =
—$flatten\fifo_writer.$procmux$53_Y, Q = \fifo_writer.addr).

Adding EN signal on $flatten\fifo_reader.$procdff$66 ($adff) from module fifo (D
—$flatten\fifo_reader.$procmux$53_Y, Q = \fifo_reader.addr).

| A] $36
H 1 sudd YNO\

o
ARST —
Bl 93 |y
CLK | g¢74 — — $mux
o e | Q fifo_reader.addr 8'00000000 S
D | $adffe
ren EN [A]$35]
811111111 B | $eq

clk

ol
ADDR Ve b | saf | ©
®\> CK | | pata

$memrd
—

Fig. 2.6: rdata output after opt_dff

2.2. Synthesis starter 35

YosysHQ Yosys, Version 0.55

See also

Advanced usage docs for
e FSM handling

o Optimization passes

Part 2

The next group of commands performs a series of optimizations:

Listing 2.10: coarse section (part 2)

wreduce

peepopt

opt_clean

share

techmap -map +/cmp2lut.v -D LUT_WIDTH=4
opt_expr

opt_clean

memory_dff [-no-rw-check]

First up is wreduce - reduce the word size of operations if possible. If we run this we get the following:

Listing 2.11: output of wreduce

yosys> wreduce

19. Executing WREDUCE pass (reducing word size of cells).

Removed top 31 bits (of 32) from port B of cell fifo.addfifo.v:66$29 ($add).

Removed top 23 bits (of 32) from port Y of cell fifo.addfifo.v:66$29 ($add).

Removed top 31 bits (of 32) from port B of cell fifo.subfifo.v:68%$32 ($sub).

Removed top 23 bits (of 32) from port Y of cell fifo.subfifo.v:68%$32 ($sub).

Removed top 1 bits (of 2) from port B of cell fifo.$auto$opt_dff.cc:195:make_patterns_
—logic$72 ($ne).

Removed cell fifo.$flatten\fifo_writer.$procmux$s55 ($mux) .

Removed top 31 bits (of 32) from port B of cell fifo.$flatten\fifo_writer.$add$fifo.v:19
~$36 ($add) .

Removed top 24 bits (of 32) from port Y of cell fifo.$flatten\fifo_writer.$add$fifo.v:19
—$36 ($add) .

Removed cell fifo.$flatten\fifo_reader.$procmux$s55 ($mux) .

Removed top 31 bits (of 32) from port B of cell fifo.$flatten\fifo_reader.$add$fifo.v:19
~$36 ($add) .

Removed top 24 bits (of 32) from port Y of cell fifo.$flatten\fifo_reader.$add$fifo.v:19
~$36 ($add) .

Removed top 23 bits (of 32) from wire fifo.addfifo.v:66$29_Y.

Removed top 24 bits (of 32) from wire fifo.$flatten\fifo_reader.$add$fifo.v:19$36_Y.
Removed top 24 bits (of 32) from wire fifo.$flatten\fifo_writer.$add$fifo.v:19$36_Y.

yosys> show -notitle -format dot -prefix rdata_wreduce o:rdata Jcix*
20. Generating Graphviz representation of design.

Writing dot description to “rdata_wreduce.dot'.

(continues on next page)

36 Chapter 2. Getting started with Yosys

YosysHQ Yosys, Version 0.55

(continued from previous page)

Dumping selected parts of module fifo to page 1.
yosys> opt_clean

21. Executing OPT_CLEAN pass (remove unused cells and wires).
Finding unused cells or wires in module \fifo..

Removed O unused cells and 5 unused wires.

<suppressed ~1 debug messages>

yosys> memory_dff
22. Executing MEMORY_DFF pass (merging $dff cells to $memrd).

Checking read port “\data'[0] in module ~\fifo': merging output FF to cell.
Write port O: non-transparent.

Looking at the data path for rdata, the most relevant of these width reductions are the ones affecting fifo.
$flatten\fifo_reader.$add$fifo.v. That is the $add cell incrementing the fifo reader address. We can
look at the schematic and see the output of that cell has now changed.

Todo

pending bugfix in wreduce and/or opt_clean

LA 836 |y
@ B | $add ° | 7:0- 70— 7:0 - 7:0 \

[: —> S <
ARST o
B $53 v
o s ‘ — $mux
D S$adffe Q fifo_reader.addr :
ren EN o ;

clk

CLK | $60
@ ADDR / b | sa [Q ’
S

CLK $25 DATA

$memrd
O—

Fig. 2.7: rdata output after wreduce

The next two (new) commands are peepopt - collection of peephole optimizers and share - perform sat-based
resource sharing. Neither of these affect our design, and they’re explored in more detail in Optimization
passes, so let’s skip over them. techmap -map +/cmp2lut.v -D LUT_WIDTH=4 optimizes certain comparison
operators by converting them to LUTs instead. The usage of techmap is explored more in Technology
mapping.

Our next command to run is memory_dff - merge input/output DFFs into memory read ports.

2.2. Synthesis starter 37

YosysHQ Yosys, Version 0.55

Listing 2.12: output of memory_dff

yosys> memory_dff

22. Executing MEMORY_DFF pass (merging $dff cells to $memrd) .
Checking read port ~\data'[0] in module ~\fifo': merging output FF to cell.
Write port O: non-transparent.

®\. H 6 v e
ARST fifo_reader.addr B | Sadd > 7:0-7:0 7:0 - 7:0
CLK | $74

D Sadffe
ren |A]s35 |y 800000000
B | $eq \/

ARST
- $25
CLK $memrd_v2 DATA

DO— ke

$53
$mux

<

m[bﬂ[>

Fig. 2.8: rdata output after memory_dff

As the title suggests, memory_dff has merged the output $dff into the $memrd cell and converted it to a
$memrd_v2 (highlighted). This has also connected the CLK port to the clk input as it is now a synchronous
memory read with appropriate enable (EN=1'1) and reset (ARST=1'0 and SRST=1'0) inputs.

See also

Advanced usage docs for
o Optimization passes
e Technology mapping
e Memory handling

Part 3

The third part of the synth_ice40 flow is a series of commands for mapping to DSPs. By default, the
iCE40 flow will not map to the hardware DSP blocks and will only be performed if called with the -dsp
flag: synth_ice40 -dsp. While our example has nothing that could be mapped to DSPs we can still take
a quick look at the commands here and describe what they do.

Listing 2.13: coarse section (part 3)

wreduce t:$mul
techmap -map +/mul2dsp.v -map +/ice40/dsp_map.v -D DSP_A_MAXWIDTH=16 -D DSP_B_
—MAXWIDTH=16 -D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2 -D DSP_Y_MINWIDTH=11 -D DSP_NAME=$_

(continues on next page)

38 Chapter 2. Getting started with Yosys

YosysHQ Yosys, Version 0.55

(continued from previous page)

—_MUL16X16 (if -dsp)

select a:mul2dsp (if -dsp)
setattr -unset mul2dsp (if -dsp)
opt_expr -fine (if -dsp)
wreduce (if -dsp)
select -clear (if -dsp)
ice40_dsp (if -dsp)

chtype -set $mul t:$__soft_mul (if -dsp)

wreduce t:$mul performs width reduction again, this time targetting only cells of type $mul. techmap -map
+/mul2dsp.v -map +/ice40/dsp_map.v ... -D DSP_NAME=$__MUL16X16 uses techmap to map $mul cells
to $__MUL16X16 which are, in turn, mapped to the iCE40 SB_MAC16. Any multipliers which aren’t compatible
with conversion to $__MUL16X16 are relabelled to $__soft_mul before chtype changes them back to $mul.

During the mul2dsp conversion, some of the intermediate signals are marked with the attribute mul2dsp.
By calling select a:mul2dsp we restrict the following commands to only operate on the cells and wires
used for these signals. setattr removes the now unnecessary mul2dsp attribute. opt_exzpr we’ve already
come across for const folding and simple expression rewriting, the -fine option just enables more fine-grain
optimizations. Then we perform width reduction a final time and clear the selection.

Todo

ice40_dsp is pmgen
Finally we have <ce{0_dsp: similar to the memory_dff command we saw in the previous section, this
merges any surrounding registers into the SB_MAC16 cell. This includes not just the input/output registers,

but also pipeline registers and even a post-adder where applicable: turning a multiply + add into a single
multiply-accumulate.

See also

Advanced usage docs for Technology mapping

Part 4
That brings us to the fourth and final part for the iCE40 synthesis flow:

Listing 2.14: coarse section (part 4)

alumacc

opt

memory -nomap [-no-rw-check]
opt_clean

Where before each type of arithmetic operation had its own cell, e.g. $add, we now want to extract these
into $alu and $macc_wv2 cells which can help identify opportunities for reusing logic. We do this by running
alumacc, which we can see produce the following changes in our example design:

2.2. Synthesis starter 39

YosysHQ Yosys, Version 0.55

Listing 2.15: output of alumacc

yosys> alumacc

24. Executing ALUMACC pass (create $alu and $macc cells).
Extracting $alu and $macc cells in module fifo:
creating $macc model for addfifo.v:66$29 ($add).
creating $macc model for $flatten\fifo_reader.$add$fifo.v:19$36 ($add).
creating $macc model for $flatten\fifo_writer.$add$fifo.v:19$36 ($add).
creating $macc model for subfifo.v:68$32 ($sub).
creating $alu model for $macc subfifo.v:68$32.
creating $alu model for $macc $flatten\fifo_writer.$add$fifo.v:19$36.
creating $alu model for $macc $flatten\fifo_reader.$add$fifo.v:19$36.
creating $alu model for $macc addfifo.v:66$29.
creating $alu cell for addfifo.v:66$29: $auto$alumacc.cc:495:replace_alu$87
creating $alu cell for $flatten\fifo_reader.$add$fifo.v:19$36: $auto$alumacc.
—cc:495:replace_alu$90
creating $alu cell for $flatten\fifo_writer.$add$fifo.v:19$36: $auto$alumacc.
—cc:495:replace_alu$93
creating $alu cell for subfifo.v:68$32: $auto$alumacc.cc:495:replace_alu$96
created 4 $alu and O $macc cells.

—\ n o /
B |«
§9() X
BI | $alu T~

CI Y
O 7:0-7:0 7:0-7:0 \

o

o

®\> ARST

CLK | $74 Q
clk D S$adffe

fifo_reader.addr

$53

EN $mux

[ATss],
B Seq \/
\ ADDR

ARST

$25
CLK $memrd_v2 DATA

EN

D
®/

Fig. 2.9: rdata output after alumacc

Once these cells have been inserted, the call to opt can combine cells which are now identical but may have
been missed due to e.g. the difference between $add and $sub.

The other new command in this part is memory - translate memories to basic cells. memory is another
macro command which we examine in more detail in Memory handling. For this document, let us focus
just on the step most relevant to our example: memory_collect. Up until this point, our memory reads
and our memory writes have been totally disjoint cells; operating on the same memory only in the abstract.
memory_collect combines all of the reads and writes for a memory block into a single cell.

Looking at the schematic after running memory_collect we see that our $memrd_v2 cell has been replaced

40 Chapter 2. Getting started with Yosys

YosysHQ Yosys, Version 0.55

CLK

$74
S$adffe

clk

$90
S$alu

$35
$eq

RD_ADDR

RD_ARST

@\ RD_CLK

RD_EN

@;» RD_SRST m.ltl-:‘:i\z RD_DATA
WR_ADDR

_/ WR_CLK

WR_DATA

WR_EN

Fig. 2.10: rdata output after memory_collect

2.2. Synthesis starter

41

YosysHQ Yosys, Version 0.55

with a $mem_v2 cell named data, the same name that we used in fifo.v. Where before we had a single set of
signals for address and enable, we now have one set for reading (RD_*) and one for writing (WR_*), as well
as both WR_DATA input and RD_DATA output.

See also
Advanced usage docs for

e Optimization passes

e Memory handling

Final note

Having now reached the end of the the coarse-grain representation, we could also have gotten here by running
synth_ice40 -top fifo -run :map_ram after loading the design. The -run <from_label>:<to_label>
option with an empty <from_label> starts from the begin section, while the <to_label> runs up to but
including the map__ram section.

2.2.6 Hardware mapping

The remaining sections each map a different type of hardware and are much more architecture dependent
than the previous sections. As such we will only be looking at each section very briefly.

If you skipped calling read_verilog -D ICE40_HX -1lib -specify +/ice40/cells_sim.v earlier, do it
now.

Memory blocks

Mapping to hard memory blocks uses a combination of memory_libmap and techmap.

Listing 2.16: map_ram section

memory_libmap -1lib +/ice40/brams.txt -1ib +/iced4O/spram.txt [-no-auto-huge] [-no-auto-
—block] (-no-auto-huge unless -spram, -no-auto-block if -nobram)

techmap -map +/ice40/brams_map.v -map +/ice40/spram_map.v

ice40_braminit

The map__ram section converts the generic $mem_v2 into the iCE40 SB_RAM40_4K (highlighted). We can also
see the memory address has been remapped, and the data bits have been reordered (or swizzled). There is
also now a $muz cell controlling the value of rdata. In fifo.v we wrote our memory as read-before-write,
however the SB_RAM40_4K has undefined behaviour when reading from and writing to the same address in
the same cycle. As a result, extra logic is added so that the generated circuit matches the behaviour of the
verilog. Synchronous SDP with undefined collision behavior describes how we could change our verilog to
match our hardware instead.

If we run memory_libmap under the debug command we can see candidates which were identified for
mapping, along with the costs of each and what logic requires emulation.

yosys> debug memory_libmap -1ib +/ice40O/brams.txt -1lib +/ice40/spram.txt -no-auto-huge
4. Executing MEMORY_LIBMAP pass (mapping memories to cells).
Memory fifo.data mapping candidates (post-geometry):
- logic fallback
- cost: 2048.000000
- $__ICE40_RAMAK_:

(continues on next page)

42 Chapter 2. Getting started with Yosys

YosysHQ Yosys, Version 0.55

Stechmap521'\ data.0.0. MASK

0> 109
0:0-8:8
0->77
7:1-6:0

@ RCLKE
\ ta.0. I
WADDR | SB_RAM40_4K | RPATA

Stechmap321°\ data.0.0. WADDR WCLK

o [=]>

$481
o

YYVYVYVYVYVY

|
00)

st ARST
CLK | sa2
D | Sadffe

=T

Fig. 2.11: rdata output after map ram section

(continued from previous page)
- option HAS_BE 0O
- emulation score: 7
- replicates (for ports): 1
- replicates (for data): 1
- mux score: O
- demux score: 0O
cost: 78.000000
abits 11 dbits 2 4 8 16
- chosen base width 8
swizzle 0 1 234567
- emulate read-first behavior
- write port 0O: port group W
- widths 2 4 8
- read port O: port group R
- widths 2 4 8 16
- emulate transparency with write port O
- $__ICE40_RAM4K_:
- option HAS_BE 1
- emulation score: 7
- replicates (for ports): 1
- replicates (for data): 1
- mux score: O
- demux score: O
- cost: 78.000000
- abits 11 dbits 2 4 8 16
- byte width 1
- chosen base width 8
- swizzle 01 23 4567
- emulate read-first behavior

(continues on next page)

2.2. Synthesis starter 43

YosysHQ Yosys, Version 0.55

(continued from previous page)
- write port O: port group W
- widths 16
- read port 0: port group R
- widths 2 4 8 16
- emulate transparency with write port O
Memory fifo.data mapping candidates (after post-geometry prune):
- logic fallback
- cost: 2048.000000
- $__ICE40_RAM4K_:
- option HAS_BE 0O
- emulation score: 7
- replicates (for ports): 1
- replicates (for data): 1
- mux score: O
- demux score: 0O
- cost: 78.000000
- abits 11 dbits 2 4 8 16
- chosen base width 8
- swizzle 0 1 2 34567
- emulate read-first behavior
- write port 0O: port group W
- widths 2 4 8
- read port O: port group R
- widths 2 4 8 16
- emulate transparency with write port O
mapping memory fifo.data via $__ICE40_RAM4K_

The $__ICE40_RAM4K_ cell is defined in the file techlibs/ice40/brams.txt, with the mapping to
SB_RAM40_4K done by techmap using techlibs/ice40/brams_map.v. Any leftover memory cells are then
converted into flip flops (the logic fallback) with memory_map.

Listing 2.17: map_ffram section

opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine

Note

The visual clutter on the RDATA output port (highlighted) is an unfortunate side effect of opt_clean on
the swizzled data bits. In connecting the $muz input port directly to RDATA to reduce the number of
wires, the $techmap579\data.0.0.RDATA wire becomes more visually complex.

See also

Advanced usage docs for

e Technology mapping

e Memory handling

44 Chapter 2. Getting started with Yosys

https://github.com/YosysHQ/yosys/tree/main/techlibs/ice40/brams.txt
https://github.com/YosysHQ/yosys/tree/main/techlibs/ice40/brams_map.v

YosysHQ Yosys, Version 0.55

®\’L o G
B | 5448
— | ——
G miiE
®

~
®—> ARST 1 421
CLK 1B smux | ¥
B | $eq
I\ G
16'x
0->10:9
0:0 - 8:8
0->77
7:1 - 6:0
clk 15:15 - 15:15 }——

.@ \ K 101055
\ X > 15115 RCLKE 9:9-9:9
77- 1414 R Q@00 | oy 838
\ e WADDR | SB_RAM40_4K

X->99 WE !
T~ 1:1- 88 /’ 2
X->177 I
T 66-66 0o Y
X>55 N
‘@N 22-4:4 \

X >33 \

4> 1422

X-> 1l

B

0> 109

0->77

Fig. 2.12: rdata output after map ffram section

2.2. Synthesis starter 45

YosysHQ Yosys, Version 0.55

Arithmetic

Uses techmap to map basic arithmetic logic to hardware. This sees somewhat of an explosion in cells as
multi-bit $muz and $adffe are replaced with single-bit $ MUX_ and $ DFFE_PPOP_ cells, while the $alu is

replaced with primitive $ OR_ and $ NOT_ gates and a $lut cell.

Listing 2.18: map_gates section

ice40_wrapcarry

techmap -map +/techmap.v -map +/ice40/arith_map.v

opt —fast
abc -dff -D 1
ice40_opt

(only if -retime)

1
e

<]

(1o

|

¥

i

Fig. 2.13: rdata output after map gates section

46

Chapter 2. Getting started with Yosys

YosysHQ Yosys, Version 0.55

See also

Advanced usage docs for Technology mapping

Flip-flops

Convert FFs to the types supported in hardware with dfflegalize, and then use techmap to map them.
In our example, this converts the $_DFFE_PPOP_ cells to SB_DFFER.

We also run simplemap here to convert any remaining cells which could not be mapped to hardware into
gate-level primitives. This includes optimizing $ MUX_ cells where one of the inputs is a constant 1'0,
replacing it instead with an $_AND_ cell.

Listing 2.19: map_ffs section

dfflegalize -cell $_DFF_?7_ O -cell $_DFFE_?P_ 0 -cell $_DFF_7P?7_ O -cell $_DFFE_7P?P_ 0 -
—cell $ SDFF_7P?_ 0 -cell $_SDFFCE_7P?P_ 0O -cell $ DLATCH_?_ x -mince -1

techmap -map +/ice40/ff_map.v

opt_expr -mux_undef

simplemap

ice40_opt -full

See also

Advanced usage docs for Technology mapping

LUTs

abc and techmap are used to map LUTs; converting primitive cell types to use $lut and SB_CARRY cells.
Note that the iCE40 flow uses abc9 rather than abc. For more on what these do, and what the difference
between these two commands are, refer to The ABC toolbozx.

Listing 2.20: map_luts section

abc (only if -abc2)

ice40_opt (only if -abc2)

techmap -map +/ice40/latches_map.v

simplemap (if -noabc or -flowmap)
techmap -map +/gate2lut.v -D LUT_WIDTH=4 (only if -noabc)
flowmap -maxlut 4 (only if -flowmap)

read_verilog -D ICE40_HX -icells -1lib -specify +/ice40/abc9_model.v
abc9 -W 250

ice40_wrapcarry -unwrap

techmap -map +/ice40/ff_map.v

clean

opt_lut -tech ice40

Finally we use techmap to map the generic $lut cells to iCE40 SB_LUT4 cells.

Listing 2.21: map_cells section

techmap -map +/ice40/cells_map.v (skip if -vpr)
clean

2.2. Synthesis starter 47

YosysHQ Yosys, Version 0.55

BICIBIEI0IBIEIC

EEEERHEERG

SSsv, —

~60 007/ TR €n

6606666 ot

Chapter 2. Getting started with Yosys

Fig. 2.14: rdata output after map [fs section

48

YosysHQ Yosys, Version 0.55

~— 11

Fig. 2.15: rdata output after map luts section

%

Fig. 2.16: rdata output after map_ cells section

2.2. Synthesis starter 49

YosysHQ Yosys, Version 0.55

See also

Advanced usage docs for
e Technology mapping
e The ABC toolbox

Other cells
The following commands may also be used for mapping other cells:

hilomap
Some architectures require special driver cells for driving a constant hi or lo value. This command
replaces simple constants with instances of such driver cells.

iopadmap
Top-level input/outputs must usually be implemented using special 1/O-pad cells. This command
inserts such cells to the design.

These commands tend to either be in the map_ cells section or after the check section depending on the flow.

2.2.7 Final steps
The next section of the iCE40 synth flow performs some sanity checking and final tidy up:

Listing 2.22: check section

autoname

hierarchy -check
stat

check -noinit
blackbox =A:whitebox

The new commands here are:
e autoname - automatically assign names to objects,
e stat - print some statistics, and
e blackbox - convert modules into blackbox modules.

The output from stat is useful for checking resource utilization; providing a list of cells used in the design
and the number of each, as well as the number of other resources used such as wires and processes. For this
design, the final call to stat should look something like the following:

yosys> stat -top fifo

17. Printing statistics.

=== fifo ===
Number of wires: 96
Number of wire bits: 264
Number of public wires: 96
Number of public wire bits: 264
Number of ports: 7
Number of port bits: 29

(continues on next page)

50 Chapter 2. Getting started with Yosys

YosysHQ Yosys, Version 0.55

(continued from previous page)

Number of memories: 0
Number of memory bits: 0
Number of processes: 0
Number of cells: 140
$scopeinfo 2
SB_CARRY 26
SB_DFF 26
SB_DFFER 25
SB_LUT4 60
SB_RAM40_4K 1

Note that the —top fifo here is optional. stat will automatically use the module with the top attribute
set, which fifo was when we called hierarchy. If no module is marked top, then stats will be shown for
each module selected.

The stat output is also useful as a kind of sanity-check: Since we have already run proc, we wouldn’t
expect there to be any processes. We also expect data to use hard memory; if instead of an SB_RAM40_4K
saw a high number of flip-flops being used we might suspect something was wrong.

If we instead called stat immediately after read_verilog fifo.v we would see something very different:

yosys> stat

2. Printing statistics.

== udilp ==

Number of wires: 28
Number of wire bits: 219
Number of public wires: 9
Number of public wire bits: 45
Number of ports: 7
Number of port bits: 29
Number of memories: 1
Number of memory bits: 2048
Number of processes: 3
Number of cells: 9

$add 1

$logic_and 2

$logic_not 2

$memrd 1

$sub 1

addr_gen 2

=== addr_gen ===

Number of wires: 8
Number of wire bits: 60
Number of public wires: 4
Number of public wire bits: 11
Number of ports: 4
Number of port bits: 11
Number of memories: 0

(continues on next page)

2.2. Synthesis starter 51

YosysHQ Yosys, Version 0.55

(continued from previous page)
Number of memory bits:
Number of processes:
Number of cells:
$add
$eq

= = NN O

Notice how fifo and addr_gen are listed separately, and the statistics for fifo show 2 addr_gen modules.
Because this is before the memory has been mapped, we also see that there is 1 memory with 2048 memory
bits; matching our 8-bit wide data memory with 256 values (8 x 256 = 2048).

Synthesis output

The iCE40 synthesis flow has the following output modes available:
e write_blif - write design to BLIF file,
o write__edif - write design to EDIF netlist file, and
e write_json - write design to a JSON file.

As an example, if we called synth_ice40 -top fifo -json fifo.json, our synthesized fifo design will
be output as fifo.json. We can then read the design back into Yosys with read_json, but make sure you
use design -reset or open a new interactive terminal first. The JSON output we get can also be loaded
into nextpnr to do place and route; but that is beyond the scope of this documentation.

See also

synth__ice40 - synthesis for iCE40 FPGAs

2.3 Scripting in Yosys

On the previous page we went through a synthesis script, running each command in the interactive Yosys
shell. On this page, we will be introducing the script file format and how you can make your own synthesis
scripts.

Yosys script files typically use the .ys extension and contain a set of commands for Yosys to run sequentially.
These commands are the same ones we were using on the previous page like read_verilog and hierarchy.

2.3.1 Script parsing

As with the interactive shell, each command consists of the command name, and an optional whitespace
separated list of arguments. Commands are terminated with the newline character, and anything after a
hash sign # is a comment (i.e. it is ignored).

It is also possible to terminate commands with a semicolon ;. This is particularly useful in conjunction
with the -p <command> command line option, where <command> can be a string with multiple commands
separated by semicolon. In-line comments can also be made with the colon :, where the end of the comment
is a semicolon ; or a new line.

52 Chapter 2. Getting started with Yosys

https://github.com/YosysHQ/nextpnr

20

21

22

23

24

26

27

28

29

30

32

YosysHQ Yosys, Version 0.55

Listing 2.23: Using the -p option

$ yosys -p "read_verilog fifo.v; :this is a comment; prep"

Warning

The space after the semicolon is required for correct parsing. log a;log b; for example will display
a;log b instead of a and b as might be expected.

Another special character that can be used in Yosys scripts is the bang !. Anything after the bang will be
executed as a shell command. This can only be terminated with a new line. Any semicolons, hashes, or other
special characters will be passed to the shell. If an error code is returned from the shell it will be raised by
Yosys. ezec provides a much more flexible way of executing commands, allowing the output to be logged
and more control over when to generate errors.

2.3.2 The synthesis starter script

All of the images and console output used in Synthesis starter were generated by Yosys, using Yosys script
files found in docs/source/code_examples/fifo. If you haven’t already, let’s take a look at some of those
script files now.

Listing 2.24: A section of fifo.ys, generating the images used for
The addr__gen module

echo on

hierarchy -top addr_gen

select -module addr_gen

select -list

select t:*

select -list

select —-set new_cells Y%

select -clear

show -format dot -prefix addr_gen_show addr_gen

show -format dot -prefix new_cells_show -notitle @new_cells
show -color maroon3 @new_cells -color cornflowerblue p:* -notitle -format dot -prefix,
—addr_gen_hier

#
proc -noopt

select -set new_cells t:$mux t:*dff

show -color maroon3 @new_cells -notitle -format dot -prefix addr_gen_proc

#
opt_expr; clean

select -set new_cells t:$eq

show -color cornflowerblue @new_cells -notitle -format dot -prefix addr_gen_clean

#

The first command there, echo on, uses echo to enable command echoes on. This is how we generated the
code listing for hierarchy -top addr _gen output. Turning command echoes on prints the yosys> hierarchy
-top addr_gen line, making the output look the same as if it were an interactive terminal. hierarchy -top

2.3. Scripting in Yosys 53

YosysHQ Yosys, Version 0.55

addr_gen is of course the command we were demonstrating, including the output text and an image of the
design schematic after running it.

We briefly touched on select when it came up in synth_ice/0, but let’s look at it more now.

Selections intro

The select command is used to modify and view the list of selected objects:

yosys> select -module addr_gen

yosys [addr_gen]> select -list
addr_gen
addr_gen/addfifo.v:19$3
addr_gen/eqfifo.v:16%$2
addr_gen/$1\addr [7:0]
addr_gen/addfifo.v:19$3_Y
addr_gen/eqfifo.v:16$2_Y
addr_gen/$0\addr [7:0]
addr_gen/addr

addr_gen/rst

addr_gen/clk

addr_gen/en
addr_gen/$proc$fifo.v:0$4
addr_gen/$proc$fifo.v:12$1

yosys [addr_gen]> select t:*
yosys [addr_gen]*> select -list
addr_gen/addfifo.v:19$3
addr_gen/eqfifo.v:16%$2

yosys [addr_gen]*> select -set new_cells %

yosys [addr_gen]*> select -clear

When we call select -module addr_gen we are changing the currently active selection from the whole
design, to just the addr_gen module. Notice how this changes the yosys at the start of each command
to yosys [addr_gen]? This indicates that any commands we run at this point will only operate on the
addr_gen module. When we then call select -list we get a list of all objects in the addr_gen module,
including the module itself, as well as all of the wires, inputs, outputs, processes, and cells.

Next we perform another selection, select t:*. The t: part signifies we are matching on the cell type,
and the * means to match anything. For this (very simple) selection, we are trying to find all of the cells,
regardless of their type. The active selection is now shown as [addr_gen] *, indicating some sub-selection of
the addr_gen module. This gives us the $add and $eq cells, which we want to highlight for the addr_gen
module after hierarchy image.

We can assign a name to a selection with select -set. In our case we are using the name new_cells,
and telling it to use the current selection, indicated by the % symbol. We can then use this named selection
by referring to it as @new_cells, which we will see later. Then we clear the selection so that the following
commands can operate on the full design. While we split that out for this document, we could have done the
same thing in a single line by calling select -set new_cells addr_gen/t:*. If we know we only have the
one module in our design, we can even skip the addr_gen/ part. Looking further down the fifo.ys code we can
see this with select -set new_cells t:$mux t:*dff. We can also see in that command that selections
don’t have to be limited to a single statement.

54 Chapter 2. Getting started with Yosys

YosysHQ Yosys, Version 0.55

Many commands also support an optional [selection] argument which can be used to override the currently
selected objects. We could, for example, call clean addr_gen to have clean operate on just the addr_gen
module.

Detailed documentation of the select framework can be found under Selections or in the command reference
at select - modify and view the list of selected objects.

Displaying schematics

While the select command is very useful, sometimes nothing beats being able to see a design for yourself.
This is where show comes in. Note that this document is just an introduction to the show command, only
covering the basics. For more information, including a guide on what the different symbols represent, see A
look at the show command and the Interactive design investigation page.

PROC $1
fifo.v:12.2-20.6

PROC $4
fifo.v:0.0-0.0

Ta[G
@—> B | $add

addr_gen

Fig. 2.17: Calling show addr_gen after hierarchy

Note

The show command requires a working installation of GraphViz and xdot for displaying the actual circuit
diagrams.

This is the first show command we called in fifo.ys, as we saw above. If we look at the log output for this
image we see the following:

2.3. Scripting in Yosys 55

http://www.graphviz.org/
https://github.com/jrfonseca/xdot.py

YosysHQ Yosys, Version 0.55

yosys> show —-format dot -prefix addr_gen_show addr_gen

4. Generating Graphviz representation of design.
Writing dot description to “addr_gen_show.dot'.
Dumping module addr_gen to page 1.

Calling show with -format dot tells it we want to output a .dot file rather than opening it for display. The
-prefix addr_gen_show option indicates we want the file to be called addr_gen_show. *. Remember, we
do this in fifo.ys because we need to store the image for displaying in the documentation you're reading.
But if you just want to display the images locally you can skip these two options. The -format option
internally calls the dot command line program from GraphViz to convert to formats other than .dot. Check
GraphViz output docs for more on available formats.

Note

If you are using a POSIX based version of Yosys (such as for Mac or Linux), xdot will be opened in the
background and Yosys can continue to be used. If it it still open, future calls to show will use the same
xdot instance.

The addr_gen at the end tells it we only want the addr_gen module, just like when we called select
-module addr_gen in Selections intro. That last parameter doesn’t have to be a module name, it can be
any valid selection string. Remember when we assigned a name to a selection and called it new_cells? We
saw in the select -list output that it contained two cells, an $add and an $eq. We can call show on that
selection just as easily:

B | $add

Fig. 2.18: Calling show -notitle Onew_cells

We could have gotten the same output with show -notitle t:$add t:$eq if we didn’t have the named
selection. By adding the -notitle flag there we can also get rid of the addr_gen title that would have been
automatically added. The last two images were both added for this introduction. The next image is the first

56 Chapter 2. Getting started with Yosys

https://graphviz.org/docs/outputs/

YosysHQ Yosys, Version 0.55

one we saw in Synthesis starter: showing the full addr_gen module while also highlighting @new_cells and
the two PROC blocks. To achieve this highlight, we make use of the —~color option:

PROC $1
\ fifo.v:12.2 20.6 |

PROC $4)
fifo.v:0.0-0.0)

ol e
—p-| 3 | $add

Fig. 2.19: Calling show -color maroon3 @new_cells -color cornflowerblue p:* -notitle

As described in the the help output for show (or by clicking on the show link), colors are specified as
-color <color> <object>. Color names for the <color> portion can be found on the GraphViz color docs.
Unlike the final show parameter which can have be any selection string, the <object> part must be a single
selection expression or named selection. That means while we can use @new_cells, we couldn’t use t:$eq
t:$add. In general, if a command lists [selection] as its final parameter it can be any selection string.
Any selections that are not the final parameter, such as those used in options, must be a single expression
instead.

For all of the options available to show, check the command reference at show - generate schematics using
graphuviz.

See also

A look at the show command on the Interactive design investigation page.

2.3. Scripting in Yosys 57

https://graphviz.org/doc/info/colors

YosysHQ Yosys, Version 0.55

58 Chapter 2. Getting started with Yosys

CHAPTER

THREE

USING YOSYS (ADVANCED)

While much of Yosys is focused around synthesis, there are also a number of other useful things that can
be accomplished with Yosys scripts or in an interactive shell. As such this section is broken into two parts:
Synthesis in detail expands on the Synthesis starter and goes into further detail on the major commands
used in synthesis; More scripting covers the ways Yosys can interact with designs for a deeper investigation.

3.1 Synthesis in detail

Synthesis can generally be broken down into coarse-grain synthesis, and fine-grain synthesis. We saw this in
Synthesis starter where a design was loaded and elaborated and then went through a series of coarse-grain
optimizations before being mapped to hard blocks and fine-grain cells. Most commands in Yosys will target
either coarse-grain representation or fine-grain representation, with only a select few compatible with both
states.

Commands such as proc, fsm, and memory rely on the additional information in the coarse-grain repre-
sentation, along with a number of optimizations such as wreduce, share, and alumacc. opt provides
optimizations which are useful in both states, while techmap is used to convert coarse-grain cells to the
corresponding fine-grain representation.

Single-bit cells (logic gates, FFs) as well as LUTs, half-adders, and full-adders make up the bulk of the
fine-grain representation and are necessary for commands such as abc/abc9, simplemap, dfflegalize,
and memory_map .

3.1.1 Synth commands

Todo

comment on common synth_x* options, like -run

Packaged synth_* commands

The following is a list of all synth commands included in Yosys for different platforms. Each command runs
a script of sub commands specific to the platform being targeted. Note that not all of these scripts are
actively maintained and may not be up-to-date.

e synth__achronix - synthesis for Achroniz Speedster22i FPGAs.
e synth__anlogic - synthesis for Anlogic FPGAs

e synth__coolrunner? - synthesis for Xilinz Coolrunner-II CPLDs
o synth__easic - synthesis for eASIC platform

e synth__ecps - synthesis for ECP5 FPGAs

59

YosysHQ Yosys, Version 0.55

synth__efiniz - synthesis for Efinix FPGAs

synth__fabulous - FABulous synthesis script

synth__gatemate - synthesis for Cologne Chip GateMate FPGAs
synth__gowin - synthesis for Gowin FPGAs

synth__greenpaks - synthesis for GreenPAK/ FPGAs

synth__ice40 - synthesis for iCE40 FPGAs

synth__intel - synthesis for Intel (Altera) FPGAs. (MAX10, Cyclone IV)

synth__intel _alm - synthesis for ALM-based Intel (Altera) FPGAs. (Cyclone V, Arria V, Cyclone 10
GX)

synth__lattice - synthesis for Lattice FPGAs

synth__nexus - synthesis for Lattice Nexus FPGAs
synth__quicklogic - Synthesis for QuickLogic FPGAs
synth__sf2 - synthesis for SmartFusion2 and IGLOO2 FPGAs
synth__xilinx - synthesis for Xilinz FPGAs

General synthesis

In addition to the above hardware-specific synth commands, there is also prep - generic synthesis script.
This command is limited to coarse-grain synthesis, without getting into any architecture-specific mappings
or optimizations. Among other things, this is useful for design verification.

The following commands are executed by the prep command:

begin:

hierarchy -check [-top <top> | -auto-top]

coarse:

proc [-ifx]

flatten (if -flatten)
future

opt_expr -keepdc
opt_clean

check

opt —noff -keepdc
wreduce -keepdc [-memx]
memory_dff (if -rdff)
memory_memx (if -memx)
opt_clean
memory_collect

opt -noff -keepdc -fast

check:

stat
check

Synthesis starter covers most of these commands and what they do.

60

Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

3.1.2 Converting process blocks

The Verilog frontend converts always-blocks to RTL netlists for the expressions and “processess” for the
control- and memory elements. The proc command then transforms these “processess” to netlists of RTL
multiplexer and register cells. It also is a macro command that calls the other proc_* commands in a sensible
order:

Listing 3.1: Passes called by proc

proc_clean # removes empty branches and processes
proc_rmdead # removes unreachable branches

proc_prune

proc_init # special handling of "initial" blocks

proc_arst # identifies modeling of async resets

proc_rom

proc_mux # converts decision trees to multiplexer networks
proc_dlatch

proc_dff # extracts registers from processes

proc_memwr

proc_clean # this should remove all the processes, provided all went fine
opt_expr -keepdc

After all the proc_* commands, opt_ezpr is called. This can be disabled by calling proc -noopt. For more
information about proc, such as disabling certain sub commands, see proc - translate processes to netlists.

Many commands can not operate on modules with “processess” in them. Usually a call to proc is the first
command in the actual synthesis procedure after design elaboration.

Example

Todo

describe proc images

docs/source/code_examples/synth_flow.

Listing 3.2: proc_01.v

module test(input D, C, R, output reg Q);
always @(posedge C, posedge R)

if (R)
Q <= 0;
else
Q <= D;
endmodule

Listing 3.3: proc_01.ys

read_verilog proc_01.v
hierarchy -check -top test
proc;;

3.1. Synthesis in detail 61

https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/synth_flow

YosysHQ Yosys, Version 0.55

ARST

$4
CLK | Saafr | ‘>®

SAU2

ALOAD $4
Q
CLK | $aldff @

0906

62 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

Listing 3.4: proc_02.v

module test(input D, C, R, RV,
output reg Q);
always @(posedge C, posedge R)

if (R)
Q <= RV;
else
Q <= D;
endmodule

Listing 3.5: proc_02.ys

read_verilog proc_02.v
hierarchy -check -top test
proc;;

A

$2
B $mux
S

$mux

P

Listing 3.6: proc_03.ys

read_verilog proc_03.v
hierarchy -check -top test
proc;;

Listing 3.7: proc_03.v

module test(input A, B, C, D, E,
output reg Y);

(continues on next page)

3.1. Synthesis in detail

63

YosysHQ Yosys, Version 0.55

always @* begin

Y <= A;
if (B)
Y <= C;
if (D)
Y <= E;
end
endmodule

(continued from previous page)

3.1.3 FSM handling

The fsm command identifies, extracts, optimizes (re-encodes), and re-synthesizes finite state machines. It

again is a macro that calls a series of other commands:

Listing 3.8: Passes called by fsm

Identify and extract FSMs:
fsm_detect
fsm_extract

Basic optimizations:
fsm_opt

opt_clean

fsm_opt

Expanding to nearby gate-logic (if called with -expand):
fsm_expand

opt_clean

fsm_opt

Re-code FSM states (unless called with -norecode):
fsm_recode

Print information about FSMs:
fsm_info

Export FSMs in KISS2 file format (if called with -export):

fsm_export

Map FSMs to RTL cells (unless called with -nomap):
fsm_map

See also fsm - extract and optimize finite state machines.

The algorithms used for FSM detection and extraction are influenced by a more general reported technique

[STGR10].

FSM detection

The fsm_detect pass identifies FSM state registers. It sets the fsm_encoding = "auto" attribute on any

(multi-bit) wire that matches the following description:
o Does not already have the fsm_encoding attribute.

e Is not an output of the containing module.

64 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

o Is driven by single $dff or $adff cell.

e The D-Input of this $dff or $adff cell is driven by a multiplexer tree that only has constants or the
old state value on its leaves.

e The state value is only used in the said multiplexer tree or by simple relational cells that compare the
state value to a constant (usually $eq cells).

This heuristic has proven to work very well. It is possible to overwrite it by setting fsm_encoding = "auto"
on registers that should be considered FSM state registers and setting fsm_encoding = "none" on registers
that match the above criteria but should not be considered FSM state registers.

Note however that marking state registers with fsm_encoding that are not suitable for FSM recoding can
cause synthesis to fail or produce invalid results.

FSM extraction

The fsm_eztract pass operates on all state signals marked with the (fsm_encoding != "none") attribute.
For each state signal the following information is determined:

e The state registers

e The asynchronous reset state if the state registers use asynchronous reset

« All states and the control input signals used in the state transition functions

e The control output signals calculated from the state signals and control inputs
e A table of all state transitions and corresponding control inputs- and outputs

The state registers (and asynchronous reset state, if applicable) is simply determined by identifying the
driver for the state signal.

From there the $muz-tree driving the state register inputs is recursively traversed. All select inputs are
control signals and the leaves of the $muz-tree are the states. The algorithm fails if a non-constant leaf that
is not the state signal itself is found.

The list of control outputs is initialized with the bits from the state signal. It is then extended by adding
all values that are calculated by cells that compare the state signal with a constant value.

In most cases this will cover all uses of the state register, thus rendering the state encoding arbitrary. If
however a design uses e.g. a single bit of the state value to drive a control output directly, this bit of the
state signal will be transformed to a control output of the same value.

Finally, a transition table for the FSM is generated. This is done by using the ConstEval C++ helper class
(defined in kernel/consteval.h) that can be used to evaluate parts of the design. The ConstEval class can be
asked to calculate a given set of result signals using a set of signal-value assignments. It can also be passed
a list of stop-signals that abort the ConstEval algorithm if the value of a stop-signal is needed in order to
calculate the result signals.

The fsm_extract pass uses the ConstEval class in the following way to create a transition table. For each
state:

1. Create a ConstEval object for the module containing the FSM
2. Add all control inputs to the list of stop signals
3. Set the state signal to the current state

4. Try to evaluate the next state and control output
5. If step 4 was not successful:

o Recursively goto step 4 with the offending stop-signal set to 0.

3.1. Synthesis in detail 65

YosysHQ Yosys, Version 0.55

e Recursively goto step 4 with the offending stop-signal set to 1.
6. If step 4 was successful: Emit transition

Finally a $fsm cell is created with the generated transition table and added to the module. This new cell is
connected to the control signals and the old drivers for the control outputs are disconnected.

FSM optimization

The fsm_opt pass performs basic optimizations on $fsm cells (not including state recoding). The following
optimizations are performed (in this order):

o Unused control outputs are removed from the $fsm cell. The attribute unused_bits (that is usually
set by the opt_clean pass) is used to determine which control outputs are unused.

e Control inputs that are connected to the same driver are merged.

e When a control input is driven by a control output, the control input is removed and the transition
table altered to give the same performance without the external feedback path.

o Entries in the transition table that yield the same output and only differ in the value of a single control
input bit are merged and the different bit is removed from the sensitivity list (turned into a don’t-care

bit).
o Constant inputs are removed and the transition table is altered to give an unchanged behaviour.

o Unused inputs are removed.

FSM recoding

The fsm_recode pass assigns new bit pattern to the states. Usually this also implies a change in the width
of the state signal. At the moment of this writing only one-hot encoding with all-zero for the reset state is
supported.

The fsm_recode pass can also write a text file with the changes performed by it that can be used when
verifying designs synthesized by Yosys using Synopsys Formality.

3.1.4 Memory handling

The memory command

In the RTL netlist, memory reads and writes are individual cells. This makes consolidating the number of
ports for a memory easier. The memory pass transforms memories to an implementation. Per default that is
logic for address decoders and registers. It also is a macro command that calls the other common memory_x*
passes in a sensible order:

Listing 3.9: Passes called by memory

opt_mem
opt_mem_priority
opt_mem_feedback
memory_bmux2rom
memory_dff
opt_clean
memory_share
opt_mem_widen
memory_memx (when called with -memx)
opt_clean
memory_collect

(continues on next page)

66 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

(continued from previous page)

memory_bram -rules <bram_rules> (when called with -bram)
memory_map (skipped if called with -nomap)
Todo

Make memory_* notes less quick

Some quick notes:
e memory_dff merges registers into the memory read- and write cells.

e memory_collect collects all read and write cells for a memory and transforms them into one multi-port
memory cell.

e memory_map takes the multi-port memory cell and transforms it to address decoder logic and registers.

For more information about memory, such as disabling certain sub commands, see memory - translate mem-
ories to basic cells.

Example

Todo

describe memory images

docs/source/code_examples/synth_flow.

CLK | $rdreg[0] 9
D $dff

Listing 3.10: memory_01.ys

read_verilog memory_O1l.v
hierarchy -check -top test
proc;; memory; opt

Listing 3.11: memory_01.v

module test(input CLK, ADDR,
input [7:0] DIN,

(continues on next page)

3.1. Synthesis in detail 67

https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/synth_flow

YosysHQ Yosys, Version 0.55

(continued from previous page)
output reg [7:0] DOUT);
reg [7:0] mem [0:1];
always @(posedge CLK) begin
mem [ADDR] <= DIN;
DOUT <= mem[ADDR];
end
endmodule

RD_ADDR
RD_ARST
RD_CLK
RD_EN
RD_SRST
WR_ADDR
WR_CLK
WR_DATA
WR_EN

RD1_DATA

memory

$mem_v2 RD_DATA

RD2_DATA

WRI_DATA
WR2_DATA

8x 0:0 - 15:8
8x 0:0 - 7:0

Listing 3.12: memory_02.v

module test(

input WR1_CLK, WR2_CLK,
input WR1_WEN, WR2_WEN,
input [7:0] WR1_ADDR, WR2_ADDR,
input [7:0] WR1_DATA, WR2_DATA,
input RD1_CLK, RD2_CLK,

(continues on next page)

68 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

(continued from previous page)
input [7:0] RD1_ADDR, RD2_ADDR,
output reg [7:0] RD1_DATA, RD2_DATA
)8

reg [7:0] memory [0:255];
always Q@(posedge WR1_CLK)
if (WR1_WEN)
memory [WR1_ADDR] <= WR1_DATA;
always @(posedge WR2_CLK)
if (WR2_WEN)
memory [WR2_ADDR] <= WR2_DATA;

always @(posedge RD1_CLK)
RD1_DATA <= memory[RD1_ADDR];

always Q@(posedge RD2_CLK)
RD2_DATA <= memory[RD2_ADDR] ;

endmodule

Listing 3.13: memory_02.ys

read_verilog memory_02.v
hierarchy -check -top test
proc;; memory -nomap

opt —mux_undef -mux_bool

Memory mapping

Usually it is preferred to use architecture-specific RAM resources for memory. For example:

memory -nomap
memory_libmap -1ib my_memory_map.txt
techmap -map my_memory_map.v
memory_map

memory_libmap attempts to convert memory cells ($mem_v2 etc) into hardware supported memory using a
provided library (my_memory_map.txt in the example above). Where necessary, emulation logic is added to
ensure functional equivalence before and after this conversion. techmap -map my_memory_map.v then uses
techmap to map to hardware primitives. Any leftover memory cells unable to be converted are then picked
up by memory_map and mapped to DFFs and address decoders.

Note

More information about what mapping options are available and associated costs of each can be found
by enabling debug outputs. This can be done with the debug command, or by using the -g flag when
calling Yosys to globally enable debug messages.

For more on the lib format for memory_1libmap, see passes/memory/memlib.md

3.1. Synthesis in detail 69

https://github.com/YosysHQ/yosys/blob/main/passes/memory/memlib.md

YosysHQ Yosys, Version 0.55

Supported memory patterns

Note that not all supported patterns are included in this document, of particular note is that combinations
of multiple patterns should generally work. For example, wbe could be used in conjunction with any of
the simple dual port (SDP) models. In general if a hardware memory definition does not support a given
configuration, additional logic will be instantiated to guarantee behaviour is consistent with simulation.

Notes
Memory kind selection

The memory inference code will automatically pick target memory primitive based on memory geometry
and features used. Depending on the target, there can be up to four memory primitive classes available for
selection:

o FF RAM (aka logic): no hardware primitive used, memory lowered to a bunch of FFs and multiplexers

— Can handle arbitrary number of write ports, as long as all write ports are in the same clock
domain

— Can handle arbitrary number and kind of read ports

o LUT RAM (aka distributed RAM): uses LUT storage as RAM

Supported on most FPGAs (with notable exception of ice40)
— Usually has one synchronous write port, one or more asynchronous read ports
— Small
— Will never be used for ROMs (lowering to plain LUTs is always better)
o Block RAM: dedicated memory tiles
— Supported on basically all FPGAs

— Supports only synchronous reads

Two ports with separate clocks

Usually supports true dual port (with notable exception of ice40 that only supports SDP)

Usually supports asymmetric memories and per-byte write enables
Several kilobits in size

e Huge RAM:

— Only supported on several targets:

* Some Xilinx UltraScale devices (UltraRAM)
Two ports, both with mutually exclusive synchronous read and write
Single clock
Initial data must be all-0

% Some ice40 devices (SPRAM)
Single port with mutually exclusive synchronous read and write
Does not support initial data

* Nexus (large RAM)

Two ports, both with mutually exclusive synchronous read and write

70 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

Single clock

— Will not be automatically selected by memory inference code, needs explicit opt-in via ram__style
attribute

In general, you can expect the automatic selection process to work roughly like this:
o If any read port is asynchronous, only LUT RAM (or FF RAM) can be used.

o If there is more than one write port, only block RAM can be used, and this needs to be a hardware-
supported true dual port pattern

— ... unless all write ports are in the same clock domain, in which case FFF RAM can also be used,
but this is generally not what you want for anything but really small memories

e Otherwise, either FF RAM, LUT RAM, or block RAM will be used, depending on memory size
This process can be overridden by attaching a ram_ style attribute to the memory:
"logic" *) selects FF RAM
"distributed" *) selects LUT RAM

e (* ram_style

e (* ram_style

"block" *) selects block RAM

e (x ram_style

e (x ram_style = "huge" *) selects huge RAM
It is an error if this override cannot be realized for the given target.

Many alternate spellings of the attribute are also accepted, for compatibility with other software.

Initial data

Most FPGA targets support initializing all kinds of memory to user-provided values. If explicit initialization
is not used the initial memory value is undefined. Initial data can be provided by either initial statements
writing memory cells one by one of $readmemh or $readmemb system tasks. For an example pattern, see
sr_init.

Write port with byte enables

e Byte enables can be used with any supported pattern

e To ensure that multiple writes will be merged into one port, they need to have disjoint bit ranges, have
the same address, and the same clock

o Any write enable granularity will be accepted (down to per-bit write enables), but using smaller
granularity than natively supported by the target is very likely to be inefficient (eg. using 4-bit bytes
on ECP5 will result in either padding the bytes with 5 dummy bits to native 9-bit units or splitting
the RAM into two block RAMs)

reg [31 : 0] mem [2#*ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable[0])
mem[write_addr] [7:0] <= write_datal[7:0];
if (write_enable[1])
mem[write_addr] [15:8] <= write_data[15:8];
if (write_enable[2])
mem[write_addr] [23:16] <= write_data[23:16];
if (write_enable[3])
mem[write_addr] [31:24] <= write_datal[31:24];

(continues on next page)

3.1. Synthesis in detail 71

YosysHQ Yosys, Version 0.55

(continued from previous page)
if (read_enable)
read_data <= mem[read_addr];
end

Simple dual port (SDP) memory patterns

Todo

assorted enables, e.g. cen, wen+ren

Asynchronous-read SDP

e This will result in LUT RAM on supported targets

reg [DATA_WIDTH - 1 : O] mem [2#*ADDR_WIDTH - 1 : 0];
always @(posedge clk)
if (write_enable)
mem[write_addr] <= write_data;
assign read_data = mem[read_addr];

Synchronous SDP with clock domain crossing

e Will result in block RAM or LUT RAM depending on size

e No behavior guarantees in case of simultaneous read and write to the same address

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge write_clk) begin
if (write_enable)
mem[write_addr] <= write_data;
end

always @(posedge read_clk) begin
if (read_enable)
read_data <= mem[read_addr];
end

Synchronous SDP read first

e The read and write parts can be in the same or different processes.
o Will result in block RAM or LUT RAM depending on size

e As long as the same clock is used for both, yosys will ensure read-first behavior. This may require
extra circuitry on some targets for block RAM. If this is not necessary, use one of the patterns below.

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)

(continues on next page)

72 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

(continued from previous page)
mem[write_addr] <= write_data;
if (read_enable)
read_data <= mem[read_addr];
end

Synchronous SDP with undefined collision behavior

e Like above, but the read value is undefined when read and write ports target the same address in the
same cycle

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;

if (read_enable) begin
read_data <= mem[read_addr];

if (write_enable && read_addr == write_addr)
// this if block
read_data <= 'x;
end
end

e Or below, using the no_rw_ check attribute

(* no_rw_check *)
reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;

if (read_enable)
read_data <= mem[read_addr];
end

Synchronous SDP with write-first behavior

e Will result in block RAM or LUT RAM depending on size

e May use additional circuitry for block RAM if write-first is not natively supported. Will always use
additional circuitry for LUT RAM.

reg [DATA_WIDTH - 1 : 0] mem [2%+ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;

if (read_enable) begin

(continues on next page)

3.1. Synthesis in detail 73

YosysHQ Yosys, Version 0.55

end

read_data <= mem[read_addr];

(continued from previous page)

if (write_enable &% read_addr == write_addr)

read_data <= write_data;
end

Synchronous SDP with write-first behavior (alternate pattern)

o This pattern is supported for compatibility, but is much less flexible than the above

reg [ADDR_WIDTH - 1 : 0] read_addr_reg;
reg [DATA WIDTH - 1 : 0] mem [2#*ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin

end

if (write_enable)
mem[write_addr] <= write_data;
read_addr_reg <= read_addr;

assign read_data = mem[read_addr_reg];

Single-port RAM memory patterns

Asynchronous-read single-port RAM

Will result in single-port LUT RAM on supported targets

reg [DATA_WIDTH - 1 : 0] mem [2%*ADDR_WIDTH - 1 : 01;
always @(posedge clk)

if (write_enable)
mem[addr] <= write_data;

assign read_data = mem[addr];

Synchronous single-port RAM with mutually exclusive read/write

Will result in single-port block RAM or LUT RAM depending on size

This is the correct pattern to infer ice40 SPRAM (with manual ram_ style selection)

On targets that don’t support read/write block RAM ports (eg. ice40), will result in SDP block RAM

instead

For block RAM, will use “NO_CHANGE” mode if available

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin

end

if (write_enable)

mem[addr] <= write_data;
else if (read_enable)

read_data <= mem[addr];

74

Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

Synchronous single-port RAM with read-first behavior

e Will only result in single-port block RAM when read-first behavior is natively supported; otherwise,
SDP RAM with additional circuitry will be used

o Many targets (Xilinx, ECP5, ...) can only natively support read-first/write-first single-port RAM (or
TDP RAM) where the write enable signal implies the read_enable signal (ie. can never write without
reading). The memory inference code will run a simple SAT solver on the control signals to determine
if this is the case, and insert emulation circuitry if it cannot be easily proven.

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[addr] <= write_data;
if (read_enable)
read_data <= mem[addr];
end

Synchronous single-port RAM with write-first behavior

e Will result in single-port block RAM or LUT RAM when supported

e Block RAMs will require extra circuitry if write-first behavior not natively supported

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[addr] <= write_data;
if (read_enable)
if (write_enable)
read_data <= write_data;
else
read_data <= mem[addr];
end

Synchronous read port with initial value

e Initial read port values can be combined with any other supported pattern

e If block RAM is used and initial read port values are not natively supported by the target, small
emulation circuit will be inserted

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];
reg [DATA_WIDTH - 1 : 0] read_data;
initial read_data = 'h1234;

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
if (read_enable)
read_data <= mem[read_addr];
end

3.1. Synthesis in detail 75

YosysHQ Yosys, Version 0.55

Read register reset patterns

Resets can be combined with any other supported pattern (except that synchronous reset and asynchronous
reset cannot both be used on a single read port). If block RAM is used and the selected reset (synchronous
or asynchronous) is used but not natively supported by the target, small emulation circuitry will be inserted.

Synchronous reset, reset priority over enable

reg [DATA_WIDTH - 1 : 0] mem [2%+ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;

if (read_reset)
read_data <= 'h1234;
else if (read_enable)
read_data <= mem[read_addr];
end

Synchronous reset, enable priority over reset

reg [DATA_WIDTH - 1 : 0] mem [2%+ADDR_WIDTH - 1 : 01;

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
if (read_enable)
if (read_reset)
read_data <= 'h1234;
else
read_data <= mem[read_addr];
end

Synchronous read port with asynchronous reset

reg [DATA_WIDTH - 1 : 0] mem [2%+ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
end

always @(posedge clk, posedge read_reset) begin
if (read_reset)
read_data <= 'h1234;
else if (read_enable)
read_data <= mem[read_addr];
end

76 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

Asymmetric memory patterns

To construct an asymmetric memory (memory with read/write ports of differing widths):
e Declare the memory with the width of the narrowest intended port
e Split all wide ports into multiple narrow ports
e To ensure the wide ports will be correctly merged:

— For the address, use a concatenation of actual address in the high bits and a constant in the low
bits

Ensure the actual address is identical for all ports belonging to the wide port
— Ensure that clock is identical

— For read ports, ensure that enable/reset signals are identical (for write ports, the enable signal
may vary — this will result in using the byte enable functionality)

Asymmetric memory is supported on all targets, but may require emulation circuitry where not natively
supported. Note that when the memory is larger than the underlying block RAM primitive, hardware
asymmetric memory support is likely not to be used even if present as it is more expensive.

Wide synchronous read port

reg [7:0] mem [0:255];
wire [7:0] write_addr;
wire [5:0] read_addr;
wire [7:0] write_data;
reg [31:0] read_data;

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
if (read_enable) begin
read_data[7:0] <= mem[{read_addr, 2'b00}];
read_data[15:8] <= mem[{read_addr, 2'b01}];
read_data[23:16] <= mem[{read_addr, 2'b10}];
read_data[31:24] <= mem[{read_addr, 2'bi11}];
end
end

Wide asynchronous read port

e Note: the only target natively supporting this pattern is Xilinx UltraScale

reg [7:0] mem [0:511];
wire [8:0] write_addr;
wire [5:0] read_addr;
wire [7:0] write_data;
wire [63:0] read_data;

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
end

(continues on next page)

3.1. Synthesis in detail 77

YosysHQ Yosys, Version 0.55

(continued from previous page)

assign read_data[7:0] = mem[{read_addr, 3'b000}];

assign read_data[15:8] = mem[{read_addr, 3'b001}];
assign read_data[23:16] = mem[{read_addr, 3'b010}];
assign read_data[31:24] = mem[{read_addr, 3'b011}];
assign read_data[39:32] = mem[{read_addr, 3'b100}];
assign read_data[47:40] = mem[{read_addr, 3'b101}];
assign read_data[55:48] = mem[{read_addr, 3'b110}];
assign read_data[63:56] = mem[{read_addr, 3'b111}];

Wide write port

reg [7:0] mem [0:255];
wire [5:0] write_addr;
wire [7:0] read_addr;
wire [31:0] write_data;
reg [7:0] read_data;

always @(posedge clk) begin

end

if (write_enable[0])

mem[{write_addr, 2'b00}] <= write_datal7:0];
if (write_enable[1])

mem[{write_addr, 2'b01}] <= write_data[15:8];
if (write_enable[2])

mem[{write_addr, 2'b10}] <= write_datal[23:16];
if (write_enable[3])

mem[{write_addr, 2'bl11}] <= write_data[31:24];
if (read_enable)

read_data <= mem[read_addr];

True dual port (TDP) patterns

Many different variations of true dual port memory can be created by combining two single-port RAM
patterns on the same memory

When TDP memory is used, memory inference code has much less maneuver room to create requested
semantics compared to individual single-port patterns (which can end up lowered to SDP memory
where necessary) — supported patterns depend strongly on the target

In particular, when both ports have the same clock, it’s likely that “undefined collision” mode needs
to be manually selected to enable TDP memory inference

The examples below are non-exhaustive — many more combinations of port types are possible

Note: if two write ports are in the same process, this defines a priority relation between them (if both
ports are active in the same clock, the later one wins). On almost all targets, this will result in a bit
of extra circuitry to ensure the priority semantics. If this is not what you want, put them in separate
processes.

— Priority is not supported when using the verific front end and any priority semantics are ignored.

78

Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

TDP with different clocks, exclusive read/write

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk_a) begin
if (write_enable_a)
mem[addr_a] <= write_data_a;
else if (read_enable_a)
read_data_a <= mem[addr_a];
end

always Q(posedge clk_b) begin
if (write_enable_b)
mem[addr_b] <= write_data_b;
else if (read_enable_b)
read_data_b <= mem[addr_b];
end

TDP with same clock, read-first behavior

o This requires hardware inter-port read-first behavior, and will only work on some targets (Xilinx,
Nexus)

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always Q(posedge clk) begin
if (write_enable_a)
mem[addr_a] <= write_data_a;
if (read_enable_a)
read_data_a <= mem[addr_a];
end

always @(posedge clk) begin
if (write_enable_b)
mem[addr_b] <= write_data_b;
if (read_enable_b)
read_data_b <= mem[addr_b];
end

TDP with multiple read ports

e The combination of a single write port with an arbitrary amount of read ports is supported on all
targets — if a multi-read port primitive is available (like Xilinx RAM64M), it’ll be used as appropriate.
Otherwise, the memory will be automatically split into multiple primitives.

reg [31:0] mem [0:31];

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
end

assign read_data_a = mem[read_addr_a];
(continues on next page)

3.1. Synthesis in detail 79

YosysHQ Yosys, Version 0.55

(continued from previous page)

assign read_data_b = mem[read_addr_b];
assign read_data_c = mem[read_addr_c];

Patterns only supported with Verific

The following patterns are only supported when the design is read in using the Verific front-end.

Synchronous SDP with write-first behavior via blocking assignments

e Use sdp_wf for compatibility with Yosys Verilog frontend.

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[write_addr] = write_data;

if (read_enable)
read_data <= mem[read_addr];
end

Asymmetric memories via part selection

o Build wide ports out of narrow ports instead (see wide sr) for compatibility with Yosys Verilog fron-
tend.

reg [31:0] mem [2+*ADDR_WIDTH - 1 : 0];

wire [1:0] byte_lane;
wire [7:0] write_data;

always @(posedge clk) begin
if (write_enable)
mem[write_addr] [byte_lane * 8 +: 8] <= write_data;

if (read_enable)
read_data <= mem[read_addr];
end

Undesired patterns
Asynchronous writes

e Not supported in modern FPGAs

e Not supported in yosys code anyhow

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always @* begin
if (write_enable)
mem[write_addr] = write_data;

(continues on next page)

80 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

(continued from previous page)

end

assign read_data = mem[read_addr];

3.1.5 Optimization passes

Yosys employs a number of optimizations to generate better and cleaner results. This chapter outlines these
optimizations.
Todo

“outlines these optimizations” or “outlines some..”?

The opt macro command

The Yosys pass opt runs a number of simple optimizations. This includes removing unused signals and cells
and const folding. It is recommended to run this pass after each major step in the synthesis script. As listed
in opt - perform simple optimizations, this macro command calls the following opt_* commands:

Listing 3.14: Passes called by opt

opt_expr
opt_merge -nomux

do
opt_muxtree
opt_reduce
opt_merge
opt_share (-full only)
opt_dff (except when called with -noff)
opt_clean
opt_expr
while <changed design>

Constant folding and simple expression rewriting - opt_expr

Todo
unsure if this is too much detail and should be in Yosys internals
This pass performs constant folding on the internal combinational cell types described in Internal cell library.

This means a cell with all constant inputs is replaced with the constant value this cell drives. In some cases
this pass can also optimize cells with some constant inputs.

3.1. Synthesis in detail 81

YosysHQ Yosys, Version 0.55

Table 3.1: Const folding rules for $_AND_ cells as used in opt_expr.

A-lnput B-Input Replacement

any 0 0
0 any 0
1 1 1
X/Z X/Z X
1 X/Z X
X/Z 1 X
any X/Z 0
X/Z any 0
a 1 a
1 b b

Table 3.1 shows the replacement rules used for optimizing an $_AND_ gate. The first three rules implement
the obvious const folding rules. Note that ‘any’ might include dynamic values calculated by other parts of
the circuit. The following three lines propagate undef (X) states. These are the only three cases in which it
is allowed to propagate an undef according to Sec. 5.1.10 of IEEE Std. 1364-2005 [A+4-06].

The next two lines assume the value 0 for undef states. These two rules are only used if no other substitutions
are possible in the current module. If other substitutions are possible they are performed first, in the hope
that the ‘any’ will change to an undef value or a 1 and therefore the output can be set to undef.

The last two lines simply replace an $_AND_ gate with one constant-1 input with a buffer.

Besides this basic const folding the opt_ezpr pass can replace 1-bit wide $eq and $ne cells with buffers or
not-gates if one input is constant. Equality checks may also be reduced in size if there are redundant bits in
the arguments (i.e. bits which are constant on both inputs). This can, for example, result in a 32-bit wide
constant like 255 being reduced to the 8-bit value of 8'11111111 if the signal being compared is only 8-bit
as in addr__gen module after opt__expr; clean of Synthesis starter.

The opt_ezpr pass is very conservative regarding optimizing $muz cells, as these cells are often used to
model decision-trees and breaking these trees can interfere with other optimizations.

Listing 3.15: example verilog for demonstrating opt_exzpr

module uut(
input a,
output y, z

);
assign y = a == a;
assign z = a != a;
endmodule

Merging identical cells - opt_merge

This pass performs trivial resource sharing. This means that this pass identifies cells with identical inputs
and replaces them with a single instance of the cell.

The option -nomux can be used to disable resource sharing for multiplexer cells ($muz and $pmuz.) This
can be useful as it prevents multiplexer trees to be merged, which might prevent opt_muztree to identify
possible optimizations.

82 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

$1
$eq

$2

$ne

—()

—()

0 - ()
()

W | > ™ | >

Fig. 3.1: Before and after opt_ezpr

3.1. Synthesis in detail 83

YosysHQ Yosys, Version 0.55

Listing 3.16: example verilog for demonstrating opt_merge

module uut(
input [3:0] a, b,
output [3:0] y, z

);
assign y = a + b;
assign z = b + a;
endmodule

A
‘lfclld v
| B da
. $
$2
B | $add N
A
$1 Y
B | $add

Fig. 3.2: Before and after opt_merge

Removing never-active branches from multiplexer tree - opt_muxtree

This pass optimizes trees of multiplexer cells by analyzing the select inputs. Consider the following simple
example:

Listing 3.17: example verilog for demonstrating opt_muztree

module uut (
input a, b, ¢, d,

output y
)5

assigny=a ? (@a?b: c) : d;
endmodule

The output can never be c, as this would require a to be 1 for the outer multiplexer and 0 for the inner
multiplexer. The opt_muztree pass detects this contradiction and replaces the inner multiplexer with a

84 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

constant 1, yielding the logic fory = a 7 b : d.

A
B \$1 v —»| B \$2 v
$mux $Smux
S
A
OEoE N
$mux
o4

Fig. 3.3: Before and after opt_muztree

Simplifying large MUXes and AND/OR gates - opt_reduce

This is a simple optimization pass that identifies and consolidates identical input bits to $reduce_and
and $reduce_or cells. It also sorts the input bits to ease identification of shareable $reduce_and and
$reduce_or cells in other passes.

This pass also identifies and consolidates identical inputs to multiplexer cells. In this case the new shared
select bit is driven using a $reduce_or cell that combines the original select bits.

Lastly this pass consolidates trees of $reduce_and cells and trees of $reduce_or cells to single large
$reduce_and or $reduce_or cells.

These three simple optimizations are performed in a loop until a stable result is produced.

3.1. Synthesis in detail 85

YosysHQ Yosys, Version 0.55

Merging mutually exclusive cells with shared inputs - opt_share

This pass identifies mutually exclusive cells of the same type that:
a. share an input signal, and
b. drive the same $muz, $ MUX_, or $pmuz multiplexing cell,
allowing the cell to be merged and the multiplexer to be moved from multiplexing its output to multiplexing

the non-shared input signals.

Listing 3.18: example verilog for demonstrating opt_share

module uut(

input [15:0] a, b,

input sel,

output [15:0] res,
)g

assign res = {sel 7 a + b : a - b};
endmodule

A .
COBlal
B $sub
A]
sty
B | $add

$4
$neg

$3

— | $mux

B
|
0

Y

$1

ST |y bl g | Sadd | \Y
$mux

)
-

m|w|>

$3
/ $mux Y

\ 4

sel

Fig. 3.4: Before and after opt_share
When running opt in full, the original $muz (labeled $3) is optimized away by opt_ezpr.

Performing DFF optimizations - opt_dff

Todo

$_DFF_ isn’t a valid cell

This pass identifies single-bit d-type flip-flops ($_DFF_, $dff, and $adff cells) with a constant data input
and replaces them with a constant driver. It can also merge clock enables and synchronous reset multiplexers,

86 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

removing unused control inputs.

Called with -nodffe and -nosdff, this pass is used to prepare a design for F'SM handling.

Removing unused cells and wires - opt_clean pass

This pass identifies unused signals and cells and removes them from the design. It also creates an
unused_bits attribute on wires with unused bits. This attribute can be used for debugging or by other
optimization passes.

When to use opt or clean

Usually it does not hurt to call opt after each regular command in the synthesis script. But it increases the
synthesis time, so it is favourable to only call opt when an improvement can be achieved.

It is generally a good idea to call opt before inherently expensive commands such as sat or freduce, as
the possible gain is much higher in these cases as the possible loss.

The clean command, which is an alias for opt_clean with fewer outputs, on the other hand is very fast
and many commands leave a mess (dangling signal wires, etc). For example, most commands do not remove
any wires or cells. They just change the connections and depend on a later call to clean to get rid of the
now unused objects. So the occasional ; ;, which itself is an alias for clean, is a good idea in every synthesis
script, e.g:

hierarchy; proc; opt; memory; opt_expr;; fsm;;

Other optimizations

Todo

more on the other optimizations

e wreduce - reduce the word size of operations if possible
e peepopt - collection of peephole optimizers
e share - perform sat-based resource sharing

e abc and abc9, see also: The ABC toolbox.

3.1.6 Technology mapping

Todo

less academic, check text is coherent

Previous chapters outlined how HDL code is transformed into an RTL netlist. The RTL netlist is still based
on abstract coarse-grain cell types like arbitrary width adders and even multipliers. This chapter covers how
an RTL netlist is transformed into a functionally equivalent netlist utilizing the cell types available in the
target architecture.

Technology mapping is often performed in two phases. In the first phase RTL cells are mapped to an
internal library of single-bit cells (see Gate-level cells). In the second phase this netlist of internal gate types
is transformed to a netlist of gates from the target technology library.

3.1. Synthesis in detail 87

YosysHQ Yosys, Version 0.55

When the target architecture provides coarse-grain cells (such as block ram or ALUSs), these must be mapped
to directly form the RTL netlist, as information on the coarse-grain structure of the design is lost when it is
mapped to bit-width gate types.

Cell substitution

The simplest form of technology mapping is cell substitution, as performed by the techmap pass. This pass,
when provided with a Verilog file that implements the RTL cell types using simpler cells, simply replaces
the RTL cells with the provided implementation.

When no map file is provided, techmap uses a built-in map file that maps the Yosys RTL cell types to
the internal gate library used by Yosys. The curious reader may find this map file as techlibs/common/
techmap.v in the Yosys source tree.

Additional features have been added to techmap to allow for conditional mapping of cells (see techmap -
generic technology mapper). This can for example be useful if the target architecture supports hardware
multipliers for certain bit-widths but not for others.

A usual synthesis flow would first use the techmap pass to directly map some RTL cells to coarse-grain cells
provided by the target architecture (if any) and then use techmap with the built-in default file to map the
remaining RTL cells to gate logic.

Subcircuit substitution

Sometimes the target architecture provides cells that are more powerful than the RTL cells used by Yosys.
For example a cell in the target architecture that can calculate the absolute-difference of two numbers does
not match any single RTL cell type but only combinations of cells.

For these cases Yosys provides the extract pass that can match a given set of modules against a design and
identify the portions of the design that are identical (i.e. isomorphic subcircuits) to any of the given modules.
These matched subcircuits are then replaced by instances of the given modules.

The extract pass also finds basic variations of the given modules, such as swapped inputs on commutative
cell types.

In addition to this the extract pass also has limited support for frequent subcircuit mining, i.e. the process
of finding recurring subcircuits in the design. This has a few applications, including the design of new
coarse-grain architectures [GW13].

The hard algorithmic work done by the extract pass (solving the isomorphic subcircuit problem and frequent
subcircuit mining) is performed using the SubCircuit library that can also be used stand-alone without Yosys
(see SubCircuit).

Gate-level technology mapping

Todo

newer techmap libraries appear to be largely .v instead of .1lib

On the gate-level the target architecture is usually described by a “Liberty file”. The Liberty file format is
an industry standard format that can be used to describe the behaviour and other properties of standard
library cells .

Mapping a design utilizing the Yosys internal gate library (e.g. as a result of mapping it to this representation
using the techmap pass) is performed in two phases.

First the register cells must be mapped to the registers that are available on the target architectures. The
target architecture might not provide all variations of d-type flip-flops with positive and negative clock edge,

88 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

high-active and low-active asynchronous set and/or reset, etc. Therefore the process of mapping the registers
might add additional inverters to the design and thus it is important to map the register cells first.

Mapping of the register cells may be performed by using the dfflibmap pass. This pass expects a Liberty file
as argument (using the -liberty option) and only uses the register cells from the Liberty file.

Secondly the combinational logic must be mapped to the target architecture. This is done using the external
program ABC via the abc pass by using the -liberty option to the pass. Note that in this case only the
combinatorial cells are used from the cell library.

Occasionally Liberty files contain trade secrets (such as sensitive timing information) that cannot be shared
freely. This complicates processes such as reporting bugs in the tools involved. When the information
in the Liberty file used by Yosys and ABC are not part of the sensitive information, the additional tool
yosys-filterlib (see yosys-filterlib) can be used to strip the sensitive information from the Liberty file.

3.1.7 The extract pass

e Like the techmap pass, the eztract pass is called with a map file. It compares the circuits inside the
modules of the map file with the design and looks for sub-circuits in the design that match any of the
modules in the map file.

e If a match is found, the eztract pass will replace the matching subcircuit with an instance of the
module from the map file.

e In a way the exztract pass is the inverse of the techmap pass.

Todo

add/expand supporting text, also mention custom pattern matching and pmgen

Example code can be found in docs/source/code_examples/macc.

read_verilog macc_simple_test.v
hierarchy -check -top test;;

Y
$mul
B Nl N

B | $add Y\A .
O DG

Fig. 3.5: before eztract

o

extract -constports -map macc_simple_xmap.v;;

3.1. Synthesis in detail 89

https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/macc

YosysHQ Yosys, Version 0.55

$8

macc_16_16_32 y \
Al $3
/ B | Sadd | ¥ —>®

|

Fig. 3.6: after eztract

Listing 3.19: macc_simple_test.v

module test(a, b, c, d, y);
input [15:0] a, b;

input [31:0] c, d;

output [31:0] y;

assign y = a *x b + ¢c + d;
endmodule

Listing 3.20: macc_simple_xmap.v

module macc_16_16_32(a, b, c, y);
input [15:0] a, b;

input [31:0] c;

output [31:0] y;

assign y = a*xb + c;

endmodule

Listing 3.21: macc_simple_test_01l.v

module test(a, b, c, d, x, y);
input [15:0] a, b, c, d;

input [31:0] x;

output [31:0] y;

assign y = axb + cxd + x;
endmodule

Listing 3.22: macc_simple_test_02.v

module test(a, b, c, d, x, y);
input [15:0] a, b, c, d;

(continues on next page)

90 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

$11

$mul

Al $13

$12

$mul

B | $add Y\A

N7

Wl

$14
$add

$19

macc_16_16 32 | ¥ \

Al $14

$12
$mul

i

o

B | $add

3.1. Synthesis in detail

91

YosysHQ Yosys, Version 0.55

(continued from previous page)
input [31:0] x;
output [31:0] y;
assign y = a*b + (c*d + x);
endmodule

\ Alse |y
®—> B | $mul

Al $23

B | $mul Y Al $24
®/ / B | $add

Al $25

a
$31
ﬂ
@ ® | mace_16.16.32 | ¥ _>®

$30
macc_16_16_32 y

;

The wrap-extract-unwrap method

Often a coarse-grain element has a constant bit-width, but can be used to implement operations with a smaller
bit-width. For example, a 18x25-bit multiplier can also be used to implement 16x20-bit multiplication.

A way of mapping such elements in coarse grain synthesis is the wrap-extract-unwrap method:

wrap

92 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

Identify candidate-cells in the circuit and wrap them in a cell with a constant wider bit-width using
techmap. The wrappers use the same parameters as the original cell, so the information about the
original width of the ports is preserved. Then use the connwrappers command to connect up the
bit-extended in- and outputs of the wrapper cells.

extract
Now all operations are encoded using the same bit-width as the coarse grain element. The eztract
command can be used to replace circuits with cells of the target architecture.

unwrap
The remaining wrapper cell can be unwrapped using techmap .

Example: DSP48_MACC

This section details an example that shows how to map MACC operations of arbitrary size to MACC cells
with a 18x25-bit multiplier and a 48-bit adder (such as the Xilinx DSP48 cells).

Preconditioning: macc_xilinx_swap_map.v

Make sure A is the smaller port on all multipliers

Todo

add/expand supporting text

Listing 3.23: macc_xilinx_swap_map.v

(* techmap_celltype = "$mul" *)
module mul_swap_ports (A, B, Y);
parameter A_SIGNED = O;
parameter B_SIGNED = O;

parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

wire _TECHMAP FAIL_ = A_WIDTH <= B_WIDTH;

\$mul #(
.A_SIGNED(B_SIGNED),
.B_SIGNED(A_SIGNED),
.A_WIDTH(B_WIDTH),
.B_WIDTH(A_WIDTH),
.Y_WIDTH(Y_WIDTH)

) _TECHMAP_REPLACE_ (

.A(B),
.B(W),
YY)
);
endmodule

3.1. Synthesis in detail 93

YosysHQ Yosys, Version 0.55

Wrapping multipliers: macc_xilinx_wrap_map.v

Listing 3.24: macc_xilinx_wrap_map.v

(* techmap_celltype = "$mul" *)
module mul_wrap (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = O;
parameter A_WIDTH
parameter B_WIDTH
parameter Y_WIDTH

13
1;
13
input [A_WIDTH-1:0] A;

input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

wire [17:0] A_18 = A;

wire [24:0] B_25 = B;

wire [47:0] Y_48;

assign Y = Y_48;

wire [1023:0] _TECHMAP_DO_ = "proc; clean";

reg _TECHMAP_FAIL_;
initial begin
_TECHMAP_FAIL_ <= 0;
if (A_SIGNED || B_SIGNED)
_TECHMAP_FAIL_ <= 1;
if (A_WIDTH < 4 || B_WIDTH < 4)
_TECHMAP_FAIL_ <= 1;
if (A_WIDTH > 18 || B_WIDTH > 25)
_TECHMAP_FAIL_ <= 1;
if (A_WIDTH*B_WIDTH < 100)
_TECHMAP_FAIL_ <= 1;
end

\$__mul_wrapper #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(A_WIDTH),
.B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)

) _TECHMAP_REPLACE_ (
A(A_18),

.B(B_25),
.Y(Y_48)
);

endmodule

Wrapping adders: macc_xilinx_wrap_map.v

94 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

Listing 3.25: macc_xilinx_wrap_map.v

(* techmap_celltype = "$add" *)
module add_wrap (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = O
parameter A_WIDTH
parameter B_WIDTH

parameter Y_WIDTH = 1;

>

In
]
= e

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

[os]

wire [47:0] A_48 = A;

wire [47:0] B_48 = B;

wire [47:0] Y_48;

assign Y = Y_48;

wire [1023:0] _TECHMAP_DO_ = "proc; clean";

reg _TECHMAP_FAIL_;
initial begin
_TECHMAP_FAIL_ <= 0;
if (A_SIGNED || B_SIGNED)
_TECHMAP_FAIL_ <= 1;
if (A_WIDTH < 10 && B_WIDTH < 10)
_TECHMAP_FAIL_ <= 1;
end

\$__add_wrapper #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(A_WIDTH),
.B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)

) _TECHMAP_REPLACE_ (

.A(A_48),
.B(B_48),
.Y(Y_48)
g
endmodule

Extract: macc_xilinx_xmap.v

Listing 3.26: macc_xilinx_xmap.v

module DSP48_MACC (a, b, c, y);

input [17:0] a;
input [24:0] b;

(continues on next page)

3.1. Synthesis in detail 95

YosysHQ Yosys, Version 0.55

input [47:0] c;
output [47:0] y;

assign y = a*xb + c;

endmodule

(continued from previous page)

. simply use the same wrapping commands on this module as on the design to create a template for the

extract command.

Unwrapping multipliers: macc_xilinx_unwrap_map.v

Listing 3.27: $__mul_wrapper
macc_xilinx_unwrap_map.v

module in

module \$__mul_wrapper (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = O
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;

parameter Y_WIDTH 1;

>

input [17:0] A;
input [24:0] B;
output [47:0] Y;

wire [A_WIDTH-1:0] A_ORIG =
wire [B_WIDTH-1:0] B_ORIG
wire [Y_WIDTH-1:0] Y_ORIG;
assign Y = Y_ORIG;

nn
o =

\$mul #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(A_WIDTH),
.B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)

) _TECHMAP_REPLACE_ (
.A(A_ORIQ),
.B(B_ORIG),
.Y(Y_ORIG)

g

endmodule

Unwrapping adders: macc_xilinx_unwrap_map.v

Listing 3.28: $__add_wrapper
macc_xilinx_unwrap_map.v

module in

module \$__add_wrapper (A, B, Y);

(continues on next page)

96

Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

(continued from previous page)

parameter A_SIGNED = O;
parameter B_SIGNED = O
parameter A_WIDTH =
parameter B_WIDTH =
parameter Y_WIDTH

E]
’

3

I

’

input [47:0] A;
input [47:0] B;
output [47:0] Y;

wire [A_WIDTH-1:0] A_ORIG =
wire [B_WIDTH-1:0] B_ORIG =
wire [Y_WIDTH-1:0] Y_ORIG;
assign Y = Y_ORIG;

| |
o =

\$add #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(A_WIDTH),
.B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)

) _TECHMAP REPLACE_ (

.A(A_ORIG),
.B(B_ORIG),
.Y(Y_ORIG)
g
endmodule

Listing 3.29: testl of macc_xilinx_test.v

module testl(a, b, ¢, d, e, f, y);
input [19:0] a, b, c;
input [15:0] d, e, f;
output [41:0] y;
assign y = a*b + cxd + ex*f;
endmodule

Listing 3.30: test2 of macc_xilinx_test.v

module test2(a, b, c, d, e, £, y);
input [19:0] a, b, c;
input [15:0] d, e, f;
output [41:0] y;
assign y = axb + (cxd + ex*f);
endmodule

Wrapping in testl:

techmap -map macc_xilinx_wrap_map.v

connwrappers -unsigned $__mul_wrapper Y Y_WIDTH \
(continues on next page)

3.1. Synthesis in detail 97

YosysHQ Yosys, Version 0.55

Wl

Al $5
AR D

~

Wi

Al sl
B | $mul Y \
$3
AL 2 |y L gl Sadd
B $mul
(] s
/ $mu1
Al sl
B | $mul Y \
$3
A1 82 |y gl g | Sadd
B | $mul
Oz
$mul

Al $5

~ v’

98

Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

l

$7

$mul

$8

$mul

Sy

W

$7

$mul

$8

$mul

W

$6
$mul \
$10
$add
w | LS
$add
$6
$mul \
$10
$add
w | LS
$add

3.1. Synthesis in detail

99

YosysHQ Yosys, Version 0.55

AL S2 |y gl Sadd \
B | $mul
Al $s |y
/B $add

B | $mul

Al 31
@—»B $mul | ¥
e
o4

(continued from previous page)

-unsigned $__add_wrapper Y Y_WIDTH;;

742 4742) o
4L0-410

Wrapping in test2:

techmap -map macc_xilinx_wrap_map.v

connwrappers -unsigned $__mul_ wrapper Y Y_WIDTH \
-unsigned $__add_wrapper Y Y_WIDTH;;

Extract in test1:

design -push

read_verilog macc_xilinx_xmap.v
techmap -map macc_xilinx_swap_map.v
techmap -map macc_xilinx_wrap_map.v;;
design -save __macc_xilinx_xmap
design -pop

extract -constports -ignore_parameters \
-map %__macc_xilinx_xmap \

(continues on next page)

100 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

-
g

$10

$mul Y \
A

B | $mul

$add

B | $mul

-
ey
o4

()

e
oo

(0200
G Coto-sr0)
o[A]

M =T,
©_> © oo T Y EZO
°
(e,
COor—lo)

3.1. Synthesis in detail 101

YosysHQ Yosys, Version 0.55

(continued from previous page)

-swap $__add_wrapper A,B ;;

0->17:16
J—-{ 15:0- 15:0]9 a

o $36
12| DSP48_MACC

e

742 - 4740 410 -41:0

a
0 oo5] . 95 oo
©—> 12 pspas_MACC |
ol c
°
!’ $1 F
o ﬂ e

Extract in test2:

-
410410

a0-at0

a2-ara2)
A0-40

design -push

read_verilog macc_xilinx_xmap.v
techmap -map macc_xilinx_swap_map.v
techmap -map macc_xilinx_wrap_map.V;;
design -save __macc_xilinx_xmap
design -pop

extract -constports -ignore_parameters \
-map %__macc_xilinx_xmap \
-swap $__add_wrapper A,B ;;

° {5] sm {ar0-a10)®

(),
i
()

Unwrap in test2:

techmap -map macc_xilinx_unwrap_map.v;;

3.1.8 The ABC toolbox

ABC, from the University of California, Berkeley, is a logic toolbox used for fine-grained optimisation and
LUT mapping.

Yosys has two different commands, which both use this logic toolbox, but use it in different ways.

The abc pass can be used for both ASIC (e.g. abc -liberty) and FPGA (abc -lut) mapping, but this
page will focus on FPGA mapping.

The abc9 pass generally provides superior mapping quality due to being aware of combination boxes and
DFF and LUT timings, giving it a more global view of the mapping problem.

102 Chapter 3. Using Yosys (advanced)

https://github.com/berkeley-abc/abc

YosysHQ Yosys, Version 0.55

Al s6

®_,>? smu | Y [TLAL $10 1y _>®

47:42 - 47:42
41:0 - 41:0

S a
0->24:20 oo T $37
@ 19:0 - 19:0 —1 DSP48_MACC
o c
" 0->47:42),
$8 o o
st | ¥ 41:0 - 410

w

<

90

ABC: the unit delay model, simple and efficient
The abc pass uses a highly simplified view of an FPGA:

e An FPGA is made up of a network of inputs that connect through LUTs to a network of outputs.
These inputs may actually be I/O pins, D flip-flops, memory blocks or DSPs, but ABC is unaware of
this.

e Each LUT has 1 unit of delay between an input and its output, and this applies for all inputs of a
LUT, and for all sizes of LUT up to the maximum LUT size allowed; e.g. the delay between the input
of a LUT2 and its output is the same as the delay between the input of a LUT6 and its output.

e A LUT may take up a variable number of area units. This is constant for each size of LUT; e.g. a
LUT4 may take up 1 unit of area, but a LUT5 may take up 2 units of area, but this applies for all
LUT4s and LUT5s.

This is known as the “unit delay model”, because each LUT uses one unit of delay.

From this view, the problem ABC has to solve is finding a mapping of the network to LUTs that has the
lowest delay, and then optimising the mapping for size while maintaining this delay.

This approach has advantages:
e It is simple and easy to implement.
e Working with unit delays is fast to manipulate.

o It reflects some FPGA families, for example, the iCE40HX /LP fits the assumptions of the unit delay
model quite well (almost all synchronous blocks, except for adders).

But this approach has drawbacks, too:

e The network of inputs and outputs with only LUTs means that a lot of combinational cells (multipliers
and LUTRAM) are invisible to the unit delay model, meaning the critical path it optimises for is not
necessarily the actual critical path.

o LUTs are implemented as multiplexer trees, so there is a delay caused by the result propagating
through the remaining multiplexers. This means the assumption of delay being equal isn’t true in
physical hardware, and is proportionally larger for larger LUTs.

3.1. Synthesis in detail 103

YosysHQ Yosys, Version 0.55

o Even synchronous blocks have arrival times (propagation delay between clock edge to output changing)
and setup times (requirement for input to be stable before clock edge) which affect the delay of a path.

ABC9: the generalised delay model, realistic and flexible
ABC9 uses a more detailed and accurate model of an FPGA:

e An FPGA is made up of a network of inputs that connect through LUTs and combinational boxes to
a network of outputs. These boxes have specified delays between inputs and outputs, and may have
an associated network (“white boxes”) or not (“black boxes”), but must be treated as a whole.

e Each LUT has a specified delay between an input and its output in arbitrary delay units, and this
varies for all inputs of a LUT and for all sizes of LUT, but each size of LUT has the same associated
delay; e.g. the delay between input A and output is different between a LUT2 and a LUT6, but is
constant for all LUTG6s.

e A LUT may take up a variable number of area units. This is constant for each size of LUT; e.g. a
LUT4 may take up 1 unit of area, but a LUT5 may take up 2 units of area, but this applies for all
LUT4s and LUT5s.

This is known as the “generalised delay model”, because it has been generalised to arbitrary delay units.
ABC9 doesn’t actually care what units you use here, but the Yosys convention is picoseconds. Note the
introduction of boxes as a concept. While the generalised delay model does not require boxes, they naturally
fit into it to represent combinational delays. Even synchronous delays like arrival and setup can be emulated
with combinational boxes that act as a delay. This is further extended to white boxes, where the mapper is
able to see inside a box, and remove orphan boxes with no outputs, such as adders.

Again, ABC9 finds a mapping of the network to LUTs that has the lowest delay, and then minimises it to
find the lowest area, but it has a lot more information to work with about the network.

The result here is that ABC9 can remove boxes (like adders) to reduce area, optimise better around those
boxes, and also permute inputs to give the critical path the fastest inputs.

Todo

more about logic minimization & register balancing et al with ABC

Setting up a flow for ABC9

Much of the configuration comes from attributes and specify blocks in Verilog simulation models.

specify syntax

Since specify is a relatively obscure part of the Verilog standard, a quick guide to the syntax:

specify // begins a specify block

(A => B) = 123; // simple combinational path from A to B with a delay,
—of 123.

(A x> B) = 123; // simple combinational path from A to all bits of B,
—with a delay of 123 for all.

if (F0O0) (A => B) = 123; // paths may apply under specific conditions.

(posedge CLK => (Q : D)) = 123; // combinational path triggered on the positive edge,
—of CLK; used for clock-to-{ arrival paths.

$setup(A, posedge CLK, 123); // setup constraint for an input relative to a clock.
endspecify // ends a specify block

104 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

By convention, all delays in specify blocks are in integer picoseconds. Files containing specify blocks
should be read with the -specify option to read_verilog so that they aren’t skipped.

LUTs

LUTSs need to be annotated with an (* abc9_lut=N *) attribute, where N is the relative area of that LUT
model. For example, if an architecture can combine LUTs to produce larger LUTs, then the combined LUTs
would have increasingly larger N. Conversely, if an architecture can split larger LUTs into smaller LUTs, then
the smaller LUTs would have smaller N.

LUTs are generally specified with simple combinational paths from the LUT inputs to the LUT output.

DFFs

DFFs should be annotated with an (¥ abc9_flop *) attribute, however ABC9 has some specific require-
ments for this to be valid: - the DFF must initialise to zero (consider using dfflegalize to ensure this). -
the DFF cannot have any asynchronous resets/sets (see the simplification idiom and the Boxes section for
what to do here).

It is worth noting that in pure abc9 mode, only the setup and arrival times are passed to ABC9 (specifically,
they are modelled as buffers with the given delay). In abc9 -dff, the flop itself is passed to ABC9, permitting
sequential optimisations.

Some vendors have universal DFF models which include async sets/resets even when they’re unused. There-
fore the simplification idiom exists to handle this: by using a techmap file to discover flops which have a
constant driver to those asynchronous controls, they can be mapped into an intermediate, simplified flop
which qualifies as an (* abc9_flop *), ran through abc9, and then mapped back to the original flop. This
is used in synth_intel_alm and synth_quicklogic for the PolarPro3.

DFFs are usually specified to have setup constraints against the clock on the input signals, and an arrival
time for the Q output.

Boxes

A “box” is a purely-combinational piece of hard logic. If the logic is exposed to ABC9, it’s a “whitebox”,
otherwise it’s a “blackbox”. Carry chains would be best implemented as whiteboxes, but a DSP would be
best implemented as a blackbox (multipliers are too complex to easily work with). LUT RAMs can be
implemented as whiteboxes too.

Boxes are arguably the biggest advantage that ABC9 has over ABC: by being aware of carry chains and
DSPs, it avoids optimising for a path that isn’t the actual critical path, while the generally-longer paths
result in ABC9 being able to reduce design area by mapping other logic to slower cells with greater logic
density.

3.1.9 Mapping to cell libraries

While much of this documentation focuses on the use of Yosys with FPGAs, it is also possible to map to
cell libraries which can be used in designing ASICs. This section will cover a brief example project, available
in the Yosys source code under docs/source/code_examples/intro/. The project contains a simple ASIC
synthesis script (counter.ys), a digital design written in Verilog (counter.v), and a simple CMOS cell
library (mycells.lib). Many of the early steps here are already covered in more detail in the Synthesis
starter document.

Note

3.1. Synthesis in detail 105

https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/intro

YosysHQ Yosys, Version 0.55

The counter.ys script includes the commands used to generate the images in this document. Code
snippets in this document skip these commands; including line numbers to allow the reader to follow
along with the source.

To learn more about these commands, check out A look at the show command.

A simple counter

First, let’s quickly look at the design:

Listing 3.31: counter.v

module counter (clk, rst, en, count);

input clk, rst, en;
output reg [1:0] count;

always Q@(posedge clk)
if (rst)
count <= 2'd0;
else if (en)
count <= count + 2'dil;

endmodule

This is a simple counter with reset and enable. If the reset signal, rst, is high then the counter will reset to
0. Otherwise, if the enable signal, en, is high then the count register will increment by 1 each rising edge of
the clock, clk.

Loading the design

Listing 3.32: counter.ys - read design

read design
read_verilog counter.v
hierarchy -check -top counter

Our circuit now looks like this:
Coarse-grain representation

Listing 3.33: counter.ys - the high-level stuff

the high-level stuff
proc; opt

memory; opt

fsm; opt

Logic gate mapping

106 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

Al $ v
—> B | $add
PROC $1]

counter.v:6.2-10.26

()6 ©

Fig. 3.7: counter after hierarchy

clk
CLK count
D $10 o
EN | $sdffe Al
Y
p— B | $add

/

Fig. 3.8: Coarse-grain representation of the counter module

3.1. Synthesis in detail 107

YosysHQ Yosys, Version 0.55

Listing 3.34: counter.ys - mapping to internal cell library

mapping to internal cell library
techmap; opt

clk $119

1 C | Alsnor | Y

| D | $91 Q

& | S_SDFFE_PPOP_ @ Al g0

| E | 12] Y

R B | $_XOR_
92
§ Q

$_SDFFE_PPOP_

e

<[5 o

Fig. 3.9: counter after techmap
Mapping to hardware
For this example, we are using a Liberty file to describe a cell library which our internal cell library will be

mapped to:

Todo

find a Liberty pygments style?

Listing 3.35: mycells.lib

library(demo) {
cell (BUF) {
area: 6;
pin(A) { direction: input; }
pin(Y) { direction: output;
function: "A"; }
}
cell(NOT) A
area: 3;
pin(A) { direction: input; }
pin(Y) { direction: output;
function: "A'"; }
}
cell (NAND) {
area: 4;
pin(A) { direction: input; }
pin(B) { direction: input; }
pin(Y) { direction: output;
function: "(AxB)'"; }
}
cell(NOR) {

(continues on next page)

108 Chapter 3. Using Yosys (advanced)

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

20

21

22

23

24

25

26

YosysHQ Yosys, Version 0.55

(continued from previous page)
area: 4;
pin(A) { direction: input; }
pin(B) { direction: input; }
pin(Y) { direction: output;
function: "(A+B)'"; }
}
cell (DFF) {
area: 18;
f£(IQ, IQN) { clocked_on: C;
next_state: D; }
pin(C) { direction: input;
clock: true; }
pin(D) { direction: input; }
pin(Q) { direction: output;
function: "IQ"; }

Recall that the Yosys built-in logic gate types are $ NOT |, $ AND_, $ OR_, $ XOR_, and $_MUX_ with an
assortment of dff memory types. mycells.lib defines our target cells as BUF, NOT, NAND, NOR, and DFF. Mapping
between these is performed with the commands dfflibmap and abc as follows:

Listing 3.36: counter.ys - mapping to hardware

dfflibmap -liberty mycells.lib

mapping logic to mycells.lib
abc -liberty mycells.lib

cleanup
clean

The final version of our counter module looks like this:

$131
NOT

$136 .

Fig. 3.10: counter after hardware cell mapping

Before finally being output as a verilog file with write_verilog, which can then be loaded into another
tool:

3.1. Synthesis in detail 109

30

31

YosysHQ Yosys, Version 0.55

Listing 3.37: counter.ys - write synthesized design

write synthesized design
write_verilog synth.v

3.2 More scripting

Todo

brief overview for the more scripting index

Todo

troubleshooting document(?)

3.2.1 Loading a design
keyword: Frontends

e read_verilog - read modules from Verilog file

Todo

include read_verilog <<EQF, also other methods of loading designs

read_verilog filel.v
read_verilog -I include_dir -D enable_foo -D WIDTH=12 file2.v
read_verilog -1ib cell_library.v

verilog_defaults -add -I include_dir
read_verilog file3.v

read_verilog file4.v
verilog_defaults -clear

verilog_defaults -push
verilog_defaults -add -I include_dir
read_verilog fileb5.v

read_verilog file6.v
verilog_defaults -pop

Todo

more info on other read_* commands, also is this the first time we mention verific?

Note

110 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

The Verific frontend for Yosys, which provides the verific command, requires Yosys to be built with
Verific. For full functionality, custom modifications to the Verific source code from YosysHQ are required,
but limited useability can be achieved with some stock Verific builds. Check Compiling with Verific library
for more.

Others:
e read - load HDL designs
e GHDL plugin for VHDL
o read_rtlil - read modules from RTLIL file (direct textual representation of Yosys internal state)
e read_aiger - read AIGER file
o read_Dblif - read BLIF file
e read_json - read JSON file

e read_liberty - read cells from liberty file

3.2.2 Selections

The selection framework

Todo

reduce overlap with Scripting in Yosys select section

The select command can be used to create a selection for subsequent commands. For example:

select foobar # select the module foobar
delete # delete selected objects

Normally the select command overwrites a previous selection. The commands select -add and select
-del can be used to add or remove objects from the current selection.

The command select -clear can be used to reset the selection to the default, which is a complete selection
of everything in the current module.

This selection framework can also be used directly in many other commands. Whenever a command has
[selection] as last argument in its usage help, this means that it will use the engine behind the select
command to evaluate additional arguments and use the resulting selection instead of the selection created
by the last select command.

For example, the command delete will delete everything in the current selection; while delete foobar will
only delete the module foobar. If no select command has been made, then the “current selection” will be
the whole design.

Note

Many of the examples on this page make use of the show command to visually demonstrate the effect of
selections. For a more detailed look at this command, refer to A look at the show command.

3.2. More scripting 111

https://github.com/ghdl/ghdl-yosys-plugin

YosysHQ Yosys, Version 0.55

How to make a selection

Selection by object name

The easiest way to select objects is by object name. This is usually only done in synthesis scripts that are
hand-tailored for a specific design.

select module foobar

select all modules whose names start with foo

select all objects matching bar* from modules matching foox*
select objects named clk from all modules

select foobar
select foox
select foo*/bar*
select */clk

H H H H

Module and design context

Commands can be executed in module/ or design/ context. Until now, all commands have been executed
in design context. The cd command can be used to switch to module context.

In module context, all commands only effect the active module. Objects in the module are selected without
the <module_name>/ prefix. For example:

cd foo # switch to module foo

delete bar # delete object foo/bar

cd mycpu # switch to module mycpu

dump reg_x* # print details on all objects whose names start with reg_
cd .. # switch back to design

Note: Most synthesis scripts never switch to module context. But it is a very powerful tool which we explore
more in Interactive design investigation.

Selecting by object property or type

Special patterns can be used to select by object property or type. For example:
o select all wires whose names start with reg_: select w:reg_x

o select all objects with the attribute foobar set: select a:foobar

select all objects with the attribute foobar set to 42: select a:foobar=42
o select all modules with the attribute blabla set: select A:blabla
e select all $add cells from the module foo: select foo/t:$add

A complete list of pattern expressions can be found in select - modify and view the list of selected objects.

Operations on selections

Combining selections

The select command is actually much more powerful than it might seem at first glance. When it is called
with multiple arguments, each argument is evaluated and pushed separately on a stack. After all arguments
have been processed it simply creates the union of all elements on the stack. So select t:$add a:foo will
select all $add cells and all objects with the foo attribute set:

112 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

Listing 3.38: Test module for operations on selections

module foobaraddsub(a, b, c, d, fa, fs, ba, bs);
input [7:0] a, b, c, d;
output [7:0] fa, fs, ba, bs;

assign fa = a + (* foo *) b;
assign fs = a - (x foo *) b;
assign ba = ¢ + (* bar *) d;
assign bs = ¢ - (* bar *) d;

endmodule

Listing 3.39: Output for command select t:$add a:foo -list
on Listing 3.38

yosys> select t:$add a:foo -list

foobaraddsub/addfoobaraddsub.v:6$3
foobaraddsub/subfoobaraddsub.v:5$2
foobaraddsub/addfoobaraddsub.v:4$1

In many cases simply adding more and more stuff to the selection is an ineffective way of selecting the
interesting part of the design. Special arguments can be used to combine the elements on the stack. For
example the %i arguments pops the last two elements from the stack, intersects them, and pushes the result
back on the stack. So select t:$add a:foo %i will select all $add cells that have the foo attribute set:

Listing 3.40: Output for command select t:$add a:foo %i
-list on Listing 3.38

yosys> select t:$add a:foo %i -list
foobaraddsub/addfoobaraddsub.v:4$1

Some of the special %-codes:
e %u: union of top two elements on stack — pop 2, push 1
e ’d: difference of top two elements on stack — pop 2, push 1
e %i: intersection of top two elements on stack — pop 2, push 1
e 7n: inverse of top element on stack — pop 1, push 1

See select - modify and view the list of selected objects for the full list.

Expanding selections

Listing 3.41 uses the Yosys non-standard {... *} syntax to set the attribute sumstuff on all cells generated
by the first assign statement. (This works on arbitrary large blocks of Verilog code and can be used to mark
portions of code for analysis.)

Listing 3.41: Another test module for operations on selections

module sumprod(a, b, c, sum, prod);

input [7:0] a, b, c;
output [7:0] sum, prod;

{* sumstuff *}
(continues on next page)

3.2. More scripting 113

YosysHQ Yosys, Version 0.55

(continued from previous page)

assign sum = a + b + c;

{x *}
assign prod = a * b * c;

endmodule

Selecting a:sumstuff in this module will yield the following circuit diagram:

/ B | $add

\ Al ¢
/ B | $add

sumprod

Fig. 3.11: Output of show a:sumstuff on Listing 3.41

As only the cells themselves are selected, but not the temporary wire $1_Y, the two adders are shown as
two disjunct parts. This can be very useful for global signals like clock and reset signals: just unselect them
using a command such as select -del clk rst and each cell using them will get its own net label.

In this case however we would like to see the cells connected properly. This can be achieved using the %x
action, that broadens the selection, i.e. for each selected wire it selects all cells connected to the wire and
vice versa. So show a:sumstuff Y%x yields the diagram shown in Fig. 3.12:

Selecting logic cones

Fig. 3.12 shows what is called the input cone of sum, i.e. all cells and signals that are used to generate
the signal sum. The %ci action can be used to select the input cones of all object in the top selection in the
stack maintained by the select command.

As with the %x action, these commands broaden the selection by one “step”. But this time the operation
only works against the direction of data flow. That means, wires only select cells via output ports and cells
only select wires via input ports.

114 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

Y
B | Sadd | iy -
/ B | $add

sumprod

Fig. 3.12: Output of show a:sumstuff %x on Listing 3.41

The following sequence of diagrams demonstrates this step-wise expansion:

sumprod

Fig. 3.13: Output of show prod on Listing 3.41

Notice the subtle difference between show prod %ci and show prod %ci %ci. Both images show the $mul
cell driven by some inputs $3_Y and c. However it is not until the second image, having called %ci the
second time, that show is able to distinguish between $3_Y being a wire and ¢ being an input. We can see
this better with the dump command instead:

Listing 3.42: Output of dump prod Y%ci

attribute \src "sumprod.v:4.21-4.25"
wire width 8 output 5 \prod

attribute \src "sumprod.v:10.17-10.26"
cell $mul mulsumprod.v:10$4
parameter \A_SIGNED O
parameter \A_WIDTH 8
parameter \B_SIGNED O

(continues on next page)

3.2. More scripting 115

YosysHQ Yosys, Version 0.55

GCONGTS

sumprod

Fig. 3.14: Output of show prod %ci on Listing 3.41

! Al 4
/B $mul Y @

sumprod

Fig. 3.15: Output of show prod %ci %ci on Listing 3.41

116 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

B | $mul Y\A “
-——””'.. B $n1u1

sumprod

Fig. 3.16: Output of show prod %ci %ci %ci on Listing 3.41

(continued from previous page)
parameter \B_WIDTH 8
parameter \Y_WIDTH 8
connect \A mulsumprod.v:10$3_Y
connect \B \c
connect \Y \prod
end

Listing 3.43: Output of dump prod %ci %ci

attribute \src "sumprod.v:10.17-10.22"
wire width 8 mulsumprod.v:10$3_Y

attribute \src "sumprod.v:3.21-3.22"
wire width 8 input 3 \c

attribute \src "sumprod.v:4.21-4.25"
wire width 8 output 5 \prod

attribute \src "sumprod.v:10.17-10.26"
cell $mul mulsumprod.v:10$4
parameter \A_SIGNED O
parameter \A_WIDTH 8
parameter \B_SIGNED O
parameter \B_WIDTH 8
parameter \Y_WIDTH 8
connect \A mulsumprod.v:10$3_Y
connect \B \c
connect \Y \prod
end

When selecting many levels of logic, repeating %ci over and over again can be a bit dull. So there is a

3.2. More scripting 117

YosysHQ Yosys, Version 0.55

shortcut for that: the number of iterations can be appended to the action. So for example the action %ci3
is identical to performing the %ci action three times.

The action %ci* performs the %ci action over and over again until it has no effect anymore.

Advanced logic cone selection

In most cases there are certain cell types and/or ports that should not be considered for the %ci action, or
we only want to follow certain cell types and/or ports. This can be achieved using additional patterns that
can be appended to the %ci action.

Lets consider Listing 3.44. It serves no purpose other than being a non-trivial circuit for demonstrating some
of the advanced Yosys features. This code is available in docs/source/code_examples/selections of the
Yosys source repository.

Listing 3.44: memdemo.v

module memdemo(clk, d, y);

input clk;
input [3:0] d;
output reg [3:0] y;

integer i;
reg [1:0] s1, s2;
reg [3:0] mem [0:3];

always @(posedge clk) begin
for (i = 0; i < 4; i = i+1)
mem[i] <= mem[(i+1) % 4] + mem[(i+2) ¥ 4];
{s2,s1}=4d7{s1, s2} " d: 4'b0;
mem[s1] <= d;
y <= mem[s2];
end

endmodule

The script memdemo . ys is used to generate the images included here. Let’s look at the first section:

Listing 3.45: Synthesizing memdemo.v

read_verilog memdemo.v
prep -top memdemo; memory; opt

This loads Listing 3.44 and synthesizes the included module. Note that this code can be copied and run
directly in a Yosys command line session, provided memdemo.v is in the same directory. We can now change
to the memdemo module with cd memdemo, and call show to see the diagram in Fig. 3.17.

There’s a lot going on there, but maybe we are only interested in the tree of multiplexers that select the
output value. Let’s start by just showing the output signal, y, and its immediate predecessors. Remember
Selecting logic cones from above, we can use show y %ci2:

From this we would learn that y is driven by a $dff cell, that y is connected to the output port Q, that the
clk signal goes into the CLK input port of the cell, and that the data comes from an auto-generated wire
into the input D of the flip-flop cell (indicated by the $ at the start of the name). Let’s go a bit further now
and try show y %ci5:

118 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

Fig. 3.17: Complete circuit diagram for the design shown in Listing 3.44

CLK | $rdreg[0] o
D $dff

<>

memdemo

Fig. 3.18: Output of show y %ci2

$82
$mux Y
\ CLK | $rdreg[0] 0
A / D $adff
$85 Y » B $79 v
$mux — $mux
4'0000 N

$33
$mux

e

memdemo

Fig. 3.19: Output of show y %cib

3.2. More scripting 119

YosysHQ Yosys, Version 0.55

That’s starting to get a bit messy, so maybe we want to ignore the mux select inputs. To add a pattern we
add a colon followed by the pattern to the %ci action. The pattern itself starts with - or +, indicating if it
is an include or exclude pattern, followed by an optional comma separated list of cell types, followed by an
optional comma separated list of port names in square brackets. In this case, we want to exclude the S port
of the $muz cell type with show y %cib:-$mux[S]:

\
\
\

$0\s2[1:0] [0]

$82
$mux

m|tx‘|3>

CLK | $rdreg[0] 0
D $dff

$mux

$mux

m|w|>

A
$85 |y 'B$79Y]
S

$0N\s2[1:0] [1]

memdemo

Fig. 3.20: Output of show y %cib:-$mux[S]

We could use a command such as show y %ci2:+$dff [Q,D] Y%ci*:-$mux[S]:-$dff in which the first Yci
jumps over the initial d-type flip-flop and the 2nd action selects the entire input cone without going over
multiplexer select inputs and flip-flop cells:

Or we could use show y %ci*:-[CLK,S] :+$dff:+$mux instead, following the input cone all the way but
only following $dff and $muz cells, and ignoring any ports named CLK or S:

Todo

pending discussion on whether rule ordering is a bug or a feature

Similar to %ci exists an action %co to select output cones that accepts the same syntax for pattern and
repetition. The %x action mentioned previously also accepts this advanced syntax.

These actions for traversing the circuit graph, combined with the actions for boolean operations such as
intersection (%i) and difference (%d) are powerful tools for extracting the relevant portions of the circuit
under investigation.

Again, see select - modify and view the list of selected objects for full documentation of these expressions.

120 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

N\

A

T | $82

B | $mux Y
- | S
.$0\52[1:0] [0] @

/ B $85 v B $79 %
g
S S

$0N\s2[1:0] [1]

$0\s2[1:0] [0]

memdemo

Fig. 3.21: Output of show y %ci2:+$dff [Q,D] %ci*:-$mux[S]:-$dff

CLK | $71
p | $dff Q

HI0
b

$104
$mux

\\

CLK | $73 Q > A
bdff [| $82
S118 ’ \i $mux Y
$mux S

CLK $75
sarr | Q> ~~

\

GO~

CLI

=

$rdreg[0]
sar | Q _>®

S/

A A D
1 $85 o] $79 /
‘:LZ?(/% $mux Y 7% $mux | ¥
Tz
b | sam | Q
$142]
$mux | ¥

memdemo

Fig. 3.22: Output of show y %ci*:-[CLK,S]:+$dff,$mux

3.2. More scripting 121

YosysHQ Yosys, Version 0.55

Incremental selection

Sometimes a selection can most easily be described by a series of add/delete operations. As mentioned
previously, the commands select -add and select -del respectively add or remove objects from the
current selection instead of overwriting it.

select -none # start with an empty selection
select -add reg_x* # select a bunch of objects
select -del reg_42 # but not this one

select —add state Y%ci # and add more stuff

Within a select expression the token % can be used to push the previous selection on the stack.

select t:$add t:$sub # select all $add and $sub cells
select % Y%ci % %d # select only the input wires to those cells

Storing and recalling selections

Todo

reflow for not presentation

The current selection can be stored in memory with the command select -set <name>. It can later be
recalled using select @<name>. In fact, the @<name> expression pushes the stored selection on the stack
maintained by the select command. So for example select @foo @bar %i will select the intersection
between the stored selections foo and bar.

In larger investigation efforts it is highly recommended to maintain a script that sets up relevant selections,
so they can easily be recalled, for example when Yosys needs to be re-run after a design or source code
change.

The history command can be used to list all recent interactive commands. This feature can be useful for
creating such a script from the commands used in an interactive session.

Remember that select expressions can also be used directly as arguments to most commands. Some com-
mands also accept a single select argument to some options. In those cases selection variables must be used
to capture more complex selections.

Example code from docs/source/code_examples/selections:

Listing 3.46: select.v

module test(clk, s, a, y);
input clk, s;
input [15:0] a;
output [15:0] y;
reg [15:0] b, c;

always @(posedge clk) begin
b <= a;
c <= b;

end

wire [15:0] state_a = (a ~ b) + c;

(continues on next page)

122 Chapter 3. Using Yosys (advanced)

https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/selections

YosysHQ Yosys, Version 0.55

(continued from previous page)
wire [15:0] state_b = (a = b) - c;
assign y = !s 7 state_a : state_b;
endmodule

Listing 3.47: select.ys

read_verilog select.v
prep -top test

cd test

select -set cone_a state_a Yci*:-$dff

select —-set cone_b state_b Y%ci*:-$dff

select -set cone_ab @cone_a @cone_b %i

show -prefix select -format dot -notitle \
-color red Q@cone_ab -color magenta Qcone_a \
—color blue @cone_b

~—— S CLK | 59 AL s |y Ly

CLK | g8 p | $dff Q . B | $add ¥ \
ol Zat
> Al 5 LA] ss
& B | $xor Y B | $sub Y

@/

$7
$mux Y _>®

m[w[>

Fig. 3.23: Circuit diagram produced by Listing 3.47

3.2.3 Interactive design investigation

Todo

interactive design opening text

A look at the show command

Todo

merge into Scripting in Yosys show section

This section explores the show command and explains the symbols used in the circuit diagrams generated
by it. The code used is included in the Yosys code base under docs/source/code_examples/show.

A simple circuit

example.v below provides the Verilog code for a simple circuit which we will use to demonstrate the usage
of show in a simple setting.

3.2. More scripting 123

https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/show

YosysHQ Yosys, Version 0.55

Listing 3.48: example.v

module example(input clk, a, b, c,
output reg [1:0] y);
always @(posedge clk)
if (c)
y<=c?a+b: 2'd0;
endmodule

The Yosys synthesis script we will be running is included as Listing 3.49. Note that show is called with the
-pause option, that halts execution of the Yosys script until the user presses the Enter key. Using show
-pause also allows the user to enter an interactive shell to further investigate the circuit before continuing
synthesis.

Listing 3.49: example_show.ys

read_verilog example.v
show -pause # first
proc

show -pause # second
opt

show -pause # third

This script, when executed, will show the design after each of the three synthesis commands. We will now
look at each of these diagrams and explain what is shown.

Note

The images uses in this document are generated from the example.ys file, rather than example_show.
ys. example.ys outputs the schematics as .dot files rather than displaying them directly. You can view
these images yourself by running yosys example.ys and then xdot example_first.dot etc.

The first output shows the design directly after being read by the Verilog front-end. Input and output ports
are displayed as octagonal shapes. Cells are displayed as rectangles with inputs on the left and outputs on
the right side. The cell labels are two lines long: The first line contains a unique identifier for the cell and
the second line contains the cell type. Internal cell types are prefixed with a dollar sign. For more details
on the internal cell library, see Internal cell library.

Constants are shown as ellipses with the constant value as label. The syntax <bit_width>'<bits> is used
for constants that are not 32-bit wide and/or contain bits that are not 0 or 1 (i.e. x or z). Ordinary 32-bit
constants are written using decimal numbers.

Single-bit signals are shown as thin arrows pointing from the driver to the load. Signals that are multiple
bits wide are shown as thick arrows.

Finally processes are shown in boxes with round corners. Processes are Yosys’ internal representation of the
decision-trees and synchronization events modelled in a Verilog always-block. The label reads PROC followed
by a unique identifier in the first line and contains the source code location of the original always-block
in the second line. Note how the multiplexer from the 7:-expression is represented as a $muz cell but the
multiplexer from the if-statement is yet still hidden within the process.

The proc command transforms the process from the first diagram into a multiplexer and a d-type flip-flop,
which brings us to the second diagram:

The Rhombus shape to the right is a dangling wire. (Wire nodes are only shown if they are dangling or

124 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

B | $add

o

$3

example

PROC $1
example.v:3.5-5.35

Fig. 3.24: Output of the first show command in Listing 3.49

$6
safr | ©

Al %

B | $add

w|m|>

$4

$mux

@\@\
7

example

Fig. 3.25: Output of the second show command in Listing 3.49

3.2. More scripting

125

YosysHQ Yosys, Version 0.55

have “public” names, for example names assigned from the Verilog input.) Also note that the design now
contains two instances of a BUF-node. These are artefacts left behind by the proc command. It is quite
usual to see such artefacts after calling commands that perform changes in the design, as most commands
only care about doing the transformation in the least complicated way, not about cleaning up after them.
The next call to clean (or opt, which includes clean as one of its operations) will clean up these artefacts.
This operation is so common in Yosys scripts that it can simply be abbreviated with the ;; token, which
doubles as separator for commands. Unless one wants to specifically analyze this artefacts left behind some
operations, it is therefore recommended to always call clean before calling show.

In this script we directly call opt as the next step, which finally leads us to the third diagram:

N CLK
$2 $7
5 1 sadd | Y P12 sae | Q
EN
example

Fig. 3.26: Output of the third show command in exzample show.ys

Here we see that the opt command not only has removed the artifacts left behind by proc, but also
determined correctly that it can remove the first $muz cell without changing the behavior of the circuit.

Break-out boxes for signal vectors

The code listing below shows a simple circuit which uses a lot of spliced signal accesses.

Listing 3.50: splice.v

module splice_demo(a, b, c, d, e, £, x, y);

input [1:0] a, b, ¢, 4, e, f;
output [1:0] x;
assign x = {al0], al1l};

output [11:0] y;
assign {y[11:4], y[1:0], y[3:2]1} =
{a, b, —{c, da}, ~{e, £}};

endmodule

126 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

Notice how the output for this circuit from the show command (Fig. 3.27) appears quite complex. This is
an unfortunate side effect of the way Yosys handles signal vectors (aka. multi-bit wires or buses) as native
objects. While this provides great advantages when analyzing circuits that operate on wide integers, it also
introduces some additional complexity when the individual bits of of a signal vector are accessed.

splice_demo

Fig. 3.27: Output of yosys -p 'prep -top splice_demo; show' splice.v

The key elements in understanding this circuit diagram are of course the boxes with round corners and rows
labeled <MSB_LEFT>:<LSB_LEFT> - <MSB_RIGHT>:<LSB_RIGHT>. Each of these boxes have one signal per
row on one side and a common signal for all rows on the other side. The <MSB>:<LSB> tuples specify which
bits of the signals are broken out and connected. So the top row of the box connecting the signals a and x
indicates that the bit 0 (i.e. the range 0:0) from signal a is connected to bit 1 (i.e. the range 1:1) of signal x.

Lines connecting such boxes together and lines connecting such boxes to cell ports have a slightly different
look to emphasise that they are not actual signal wires but a necessity of the graphical representation. This
distinction seems like a technicality, until one wants to debug a problem related to the way Yosys internally
represents signal vectors, for example when writing custom Yosys commands.

Gate level netlists

Fig. 3.28 shows two common pitfalls when working with designs mapped to a cell library:

3.2. More scripting 127

YosysHQ Yosys, Version 0.55

$113
NOR

$112
NOR

$109
NOT

$110
NOT

$111

NOR
1:1-00 [——1 Y

cmos_demo

Fig. 3.28: A half-adder built from simple CMOS gates, demonstrating common pitfalls when using show

128 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

Listing 3.51: Generating Fig. 3.28

read_verilog cmos.v

prep -top cmos_demo

techmap

abc -liberty ../intro/mycells.lib;;
show -format dot -prefix cmos_00

First, Yosys did not have access to the cell library when this diagram was generated, resulting in all cell
ports defaulting to being inputs. This is why all ports are drawn on the left side the cells are awkwardly
arranged in a large column. Secondly the two-bit vector y requires breakout-boxes for its individual bits,
resulting in an unnecessary complex diagram.

$222
A NOT Y o i $224 v
B | NOR
SEN e
A | $225 B | NOR

B NORY
$223
Alnor | Y

cmos_demo

Fig. 3.29: Effects of splitnets command and of providing a cell library on design in Fig. 3.28

Listing 3.52: Generating Fig. 3.29

read_verilog cmos.v

prep —top cmos_demo

techmap

splitnets -ports

abc -liberty ../intro/mycells.lib;;

show -1lib ../intro/mycells.v -format dot -prefix cmos_01

For Fig. 3.29, Yosys has been given a description of the cell library as Verilog file containing blackbox
modules. There are two ways to load cell descriptions into Yosys: First the Verilog file for the cell library
can be passed directly to the show command using the -1ib <filename> option. Secondly it is possible to
load cell libraries into the design with the read_verilog -1ib <filename> command. The second method
has the great advantage that the library only needs to be loaded once and can then be used in all subsequent
calls to the show command.

In addition to that, Fig. 3.29 was generated after splitnet -ports was run on the design. This command
splits all signal vectors into individual signal bits, which is often desirable when looking at gate-level circuits.
The -ports option is required to also split module ports. Per default the command only operates on interior
signals.

3.2. More scripting 129

YosysHQ Yosys, Version 0.55

Miscellaneous notes

Per default the show command outputs a temporary dot file and launches xdot to display it. The options
-format, -viewer and -prefix can be used to change format, viewer and filename prefix. Note that the
pdf and ps format are the only formats that support plotting multiple modules in one run. The dot format
can be used to output multiple modules, however xdot will raise an error when trying to read them.

In densely connected circuits it is sometimes hard to keep track of the individual signal wires. For these cases
it can be useful to call show with the ~colors <integer> argument, which randomly assigns colors to the
nets. The integer (> 0) is used as seed value for the random color assignments. Sometimes it is necessary it
try some values to find an assignment of colors that looks good.

The command help show prints a complete listing of all options supported by the show command.

Navigating the design

Plotting circuit diagrams for entire modules in the design brings us only helps in simple cases. For complex
modules the generated circuit diagrams are just stupidly big and are no help at all. In such cases one first
has to select the relevant portions of the circuit.

In addition to what to display one also needs to carefully decide when to display it, with respect to the
synthesis flow. In general it is a good idea to troubleshoot a circuit in the earliest state in which a problem
can be reproduced. So if, for example, the internal state before calling the techmap command already fails to
verify, it is better to troubleshoot the coarse-grain version of the circuit before techmap than the gate-level
circuit after techmap .

Note

It is generally recommended to verify the internal state of a design by writing it to a Verilog file using
write_verilog -noexpr and using the simulation models from simlib.v and simcells.v from the
Yosys data directory (as printed by yosys-config --datdir).

Interactive navigation

Once the right state within the synthesis flow for debugging the circuit has been identified, it is recommended
to simply add the shell command to the matching place in the synthesis script. This command will stop the
synthesis at the specified moment and go to shell mode, where the user can interactively enter commands.

For most cases, the shell will start with the whole design selected (i.e. when the synthesis script does
not already narrow the selection). The command ls can now be used to create a list of all modules. The
command cd can be used to switch to one of the modules (type cd .. to switch back). Now the 1s command
lists the objects within that module. This is demonstrated below using example.v from A simple circuit:

Listing 3.53: Output of 1s and cd after running yosys example.v

yosys> ls

1 modules:
example

yosys> cd example
yosys [example]> 1ls

8 wires:

(continues on next page)

130 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

(continued from previous page)
$0\y [1:0]
addexample.v:5$2_Y
$ternary$example.v:5$3_Y
a
b
c
clk

y

2 cells:
addexample.v:5$2
$ternary$example.v:5$3

1 processes:
$procPexample.v:3$1

When a module is selected using the cd command, all commands (with a few exceptions, such as the read_
and write_ commands) operate only on the selected module. This can also be useful for synthesis scripts
where different synthesis strategies should be applied to different modules in the design.

We can see that the cell names from Fig. 3.26 are just abbreviations of the actual cell names, namely the
part after the last dollar-sign. Most auto-generated names (the ones starting with a dollar sign) are rather
long and contains some additional information on the origin of the named object. But in most cases those
names can simply be abbreviated using the last part.

Usually all interactive work is done with one module selected using the cd command. But it is also possible to
work from the design-context (cd ..). In this case all object names must be prefixed with <module_name>/.
For example a*/b* would refer to all objects whose names start with b from all modules whose names start
with a.

The dump command can be used to print all information about an object. For example, calling dump $2
after the cd example above:

3.2. More scripting 131

YosysHQ Yosys, Version 0.55

Listing 3.54: Output of dump $2 after Listing 3.53

attribute \src "example.v:5.22-5.27"
cell $add addexample.v:5$2
parameter \Y_WIDTH 2
parameter \B_WIDTH 1
parameter \A_WIDTH 1
parameter \B_SIGNED O
parameter \A_SIGNED O
connect \Y addexample.v:5$2_Y
connect \B \b
connect \A \a
end

This can for example be useful to determine the names of nets connected to cells, as the net-names are
usually suppressed in the circuit diagram if they are auto-generated. Note that the output is in the RTLIL
representation, described in The RTL Intermediate Language (RTLIL).

Interactive Design Investigation

Yosys can also be used to investigate designs (or netlists created from other tools).

e The selection mechanism, especially patterns such as %ci and %co, can be used to figure out how parts
of the design are connected.

e Commands such as submod, ezpose, and splice can be used to transform the design into an equivalent
design that is easier to analyse.

o Commands such as eval and sat can be used to investigate the behavior of the circuit.
e show - generate schematics using graphviz.
e dump - print parts of the design in RTLIL format.

e add - add objects to the design and delete - delete objects in the design can be used to modify and
reorganize a design dynamically.

The code used is included in the Yosys code base under docs/source/code_examples/scrambler.

Changing design hierarchy

Commands such as flatten and submod can be used to change the design hierarchy, i.e. flatten the hierarchy
or moving parts of a module to a submodule. This has applications in synthesis scripts as well as in reverse
engineering and analysis. An example using submod is shown below for reorganizing a module in Yosys and
checking the resulting circuit.

Listing 3.55: scrambler.v

module scrambler (
input clk, rst, in_bit,
output reg out_bit
)g
reg [31:0] xs;
always @(posedge clk) begin
if (rst)
xs = 1;
xs = xs = (xs << 13);

(continues on next page)

132 Chapter 3. Using Yosys (advanced)

https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/scrambler

YosysHQ Yosys, Version 0.55

(continued from previous page)
xs = xs = (xs >> 17);
xs = xs = (xs << B);
out_bit <= in_bit ~ xs[0];
end
endmodule

Listing 3.56: scrambler.ys

read_verilog scrambler.v
hierarchy; proc;;

cd scrambler
submod -name xorshift32 xs %c %ci %D %c %ci:+[D] %D %ci*:-$dff xs Y%co %ci %d

[lﬁ:(l - 31:15)—»(14:1) . |4;(Do—o(|4:o - 31:17)—»

RO, :

$10 | xorshift32 oo
xonhiﬁSZ nl 0:0-0:0

3

$mux

m‘m‘>

| “ 14:0 - 31:17
16:0 - 16:0

Al ¢
18:0 - 31:13 o2 B XOr

31 27 - 31:27
31:5 - 26:0

Analyzing the resulting circuit with eval - evaluate the circuilt given an input:

Todo

replace inline code

> cd xorshift32
> rename n2 in
> rename nl out

> eval -set in 1 -show out
Eval result: \out = 270369.

> eval -set in 270369 -show out
Eval result: \out = 67634689.

(continues on next page)

3.2. More scripting 133

YosysHQ Yosys, Version 0.55

(continued from previous page)

> sat —set out 632435482

Signal Name Dec Hex Bin
\in 745495504 2c6£5bd0 00101100011011110101101111010000
\out 632435482 25b2331a 00100101101100100011001100011010

Behavioral changes

Commands such as techmap can be used to make behavioral changes to the design, for example changing
asynchronous resets to synchronous resets. This has applications in design space exploration (evaluation of
various architectures for one circuit).

The following techmap map file replaces all positive-edge async reset flip-flops with positive-edge sync reset
flip-flops. The code is taken from the example Yosys script for ASIC synthesis of the Amber ARMv2 CPU.

Todo

replace inline code

(* techmap_celltype = "$adff" *)
module adff2dff (CLK, ARST, D, Q);

parameter WIDTH = 1;

parameter CLK_POLARITY = 1;

parameter ARST_POLARITY = 1;

parameter ARST_VALUE = O;

input CLK, ARST;

input [WIDTH-1:0] D;

output reg [WIDTH-1:0] Q;

wire [1023:0] _TECHMAP_DO_ = "proc";

wire TECHMAP_FAIL_ = !CLK_POLARITY || !ARST_POLARITY;

always @(posedge CLK)

if (ARST)
Q <= ARST_VALUE;
else
Q <= D;
endmodule

For more on the techmap command, see the page on Techmap by example.

Advanced investigation techniques

When working with very large modules, it is often not enough to just select the interesting part of the module.
Instead it can be useful to extract the interesting part of the circuit into a separate module. This can for
example be useful if one wants to run a series of synthesis commands on the critical part of the module and

134 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

wants to carefully read all the debug output created by the commands in order to spot a problem. This kind
of troubleshooting is much easier if the circuit under investigation is encapsulated in a separate module.

Recall the memdemo design from Advanced logic cone selection:

Fig. 3.30: memdemo
Because this produces a rather large circuit, it can be useful to split it into smaller parts for viewing and
working with. Listing 3.57 does exactly that, utilising the submod command to split the circuit into three

sections: outstage, selstage, and scramble.

Listing 3.57: Using submod to break up the circuit from memdemo . v

select -set outstage y %ci2:+$dff [Q,D] Yci*:-$mux[S]:-$dff
select -set selstage y %ci2:+$dff [Q,D] Yci*:-$dff Qoutstage ’%d
select -set scramble mem* %ci2 %ci*:-$dff mem* %d @selstage ’%d
submod -name scramble @scramble

submod -name outstage Qoutstage

submod -name selstage @selstage

The -name option is used to specify the name of the new module and also the name of the new cell in the
current module. The resulting circuits are shown below.

Evaluation of combinatorial circuits

The eval command can be used to evaluate combinatorial circuits. As an example, we will use the selstage
subnet of memdemo which we found above and is shown in Fig. 3.32.

Todo

replace inline code

yosys [selstage]l> eval -set s2,s1 4'b1001 -set d 4'hc -show n2 -show nl

1. Executing EVAL pass (evaluate the circuit given an input).

Full command line: eval -set s2,s1 4'b1001 -set d 4'hc -show n2 -show nl
Eval result: \n2 = 2'10.

Eval result: \nl = 2'10.

So the -set option is used to set input values and the -show option is used to specify the nets to evaluate.
If no -show option is specified, all selected output ports are used per default.

3.2. More scripting 135

YosysHQ Yosys, Version 0.55

Coenor)

A
B $32 v
— 1 $mux
S
0:0 - 0:0 O/O
\ CLK | $rdreg[0]

A A D saf | Q
51 85 |y gl 5 | ST Y/
L— 1 $mux L~ | $mux
S S

1:1-0:0

outstage

Fig. 3.31: outstage

4'0000 \

A
A E—
| A $31 v > B $33
B | $xor I — | $mux

S

cemmid
@ A $reduce_bool Y
selstage

Fig. 3.32: selstage

136 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

Fig. 3.33: scramble

If a necessary input value is not given, an error is produced. The option -set-undef can be used to instead
set all unspecified input nets to undef (x).

The -table option can be used to create a truth table. For example:

yosys [selstagel> eval -set-undef -set d[3:1] 0 -table s1,d[0]

10. Executing EVAL pass (evaluate the circuit given an input).
Full command line: eval -set-undef -set d[3:1] O -table s1,d[0]

\s1 \d [0] | \nl \n2

2'00 1'0 | 2'00 2'00
2'00 1'1 | 2'xx 2'00
2'01 1'0 | 2'00 2'00
2'01 1'1 | 2'xx 2'01
2'10 1'0 | 2'00 2'00
2'10 1'1 | 2'xx 2'10
2'11 1'0 | 2'00 2'00
2'11 1'1 | 2'xx 2'11

Assumed undef (x) value for the following signals: \s2

Note that the eval command (as well as the sat command discussed in the next sections) does only operate
on flattened modules. It can not analyze signals that are passed through design hierarchy levels. So the
flatten command must be used on modules that instantiate other modules before these commands can be
applied.

Solving combinatorial SAT problems

Often the opposite of the eval command is needed, i.e. the circuits output is given and we want to find the
matching input signals. For small circuits with only a few input bits this can be accomplished by trying all
possible input combinations, as it is done by the eval -table command. For larger circuits however, Yosys
provides the sat command that uses a SAT solver, MiniSAT, to solve this kind of problems.

3.2. More scripting 137

http://en.wikipedia.org/wiki/Circuit_satisfiability
http://minisat.se/

YosysHQ Yosys, Version 0.55

Note

While it is possible to perform model checking directly in Yosys, it is highly recommended to use SBY
or EQY for formal hardware verification.

The sat command works very similar to the eval command. The main difference is that it is now also
possible to set output values and find the corresponding input values. For Example:

Todo

replace inline code

yosys [selstagel> sat -show sl1,s2,d -set sl s2 -set n2,nl 4'b1001

11. Executing SAT pass (solving SAT problems in the circuit).
Full command line: sat -show s1,s2,d -set sl s2 -set n2,nl 4'b1001

Setting up SAT problem:

Import set-constraint: \sl = \s2

Import set-constraint: { \n2 \nl } = 4'1001

Final constraint equation: { \n2 \nl \s1 } = { 4'1001 \s2 }
Imported 3 cells to SAT database.

Import show expression: { \sl \s2 \d }

Solving problem with 81 variables and 207 clauses..
SAT solving finished - model found:

Signal Name Dec Hex Bin
\d 9 9 1001
\s1 0 0 00
\s2 0 0 00

Note that the sat command supports signal names in both arguments to the -set option. In the above
example we used -set sl s2 to constraint s1 and s2 to be equal. When more complex constraints are
needed, a wrapper circuit must be constructed that checks the constraints and signals if the constraint was
met using an extra output port, which then can be forced to a value using the -set option. (Such a circuit
that contains the circuit under test plus additional constraint checking circuitry is called a miter circuit.)

138 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

Listing 3.58: primetest.v, a simple miter circuit for testing if a
number is prime. But it has a problem.

module primetest(p, a, b, ok);

input [15:0] p, a, b;

output ok = p != a*b || a == || b ==1;
endmodule

Listing 3.58 shows a miter circuit that is supposed to be used as a prime number test. If ok is 1 for all input
values a and b for a given p, then p is prime, or at least that is the idea.

Todo

replace inline code

Listing 3.59: Experiments with the miter circuit from primetest.
v.

yosys [primetest]> sat -prove ok 1 -set p 31

1. Executing SAT pass (solving SAT problems in the circuit).
Full command line: sat -prove ok 1 -set p 31

Setting up SAT problem:

Import set-constraint: \p = 16'0000000000011111
Final constraint equation: \p = 16'0000000000011111
Imported 6 cells to SAT database.

Import proof-constraint: \ok = 1'1

Final proof equation: \ok = 1'1

Solving problem with 2790 variables and 8241 clauses..
SAT proof finished - model found: FAIL!

(____ \ / _2) / _2) (GOAN I

_____)) ____l1__ I D I IR B B
'/) _ N/ _C 2 C __l____ vt ___1/_ 1l
N O A O B (I /A I R G G I O
I b N___/ ___/ |_I l_ N_____ I_IND) DN____I_I
Signal Name Dec Hex Bin
\a 15029 3abb 0011101010110101
\b 4099 1003 0001000000000011
\ok 0 0 0
\p 31 1f 0000000000011111

The Yosys shell session shown in Listing 3.59 demonstrates that SAT solvers can even find the unexpected
solutions to a problem: Using integer overflow there actually is a way of “factorizing” 31. The clean solution
would of course be to perform the test in 32 bits, for example by replacing p != a*b in the miter with p !=
{16'd0,al}b, or by using a temporary variable for the 32 bit product axb. But as 31 fits well into 8 bits (and

3.2. More scripting 139

YosysHQ Yosys, Version 0.55

as the purpose of this document is to show off Yosys features) we can also simply force the upper 8 bits of
a and b to zero for the sat call, as is done below.

Todo

replace inline code

Listing 3.60: Miter circuit from primetest.v, with the upper 8
bits of a and b constrained to prevent overflow.

yosys [primetest]> sat -prove ok 1 -set p 31 -set a[15:8],b[15:8] 0

1. Executing SAT pass (solving SAT problems in the circuit).
Full command line: sat -prove ok 1 -set p 31 -set a[15:8],b[15:8] 0O

Setting up SAT problem:

Import set-constraint: \p = 16'0000000000011111

Import set-constraint: { \a [15:8] \b [15:8] } = 16'0000000000000000

Final constraint equation: { \a [15:8] \b [15:8] \p } = { 16'0000000000000000 16
~'0000000000011111 }

Imported 6 cells to SAT database.

Import proof-constraint: \ok = 1'1

Final proof equation: \ok = 1'1

Solving problem with 2790 variables and 8257 clauses..
SAT proof finished - no model found: SUCCESS!

/$833$$ /83333588 /3338888
/88__ $8% | $$_____ / | $$__ 8%
| 38 \ $% | $3 | $8 \ $%
| $8 | $% | $333% | $8 | $3
| $8 | $% | $$__/ | $8 | $3
| $$/88 $3 | $$ | $8 | $3
| $88833/ /88| $3$88833 /881 $335888//8%
N\ 8881 __/________ I/ /N__/
__/

The -prove option used in Listing 3.60 works similar to -set, but tries to find a case in which the two
arguments are not equal. If such a case is not found, the property is proven to hold for all inputs that satisfy
the other constraints.

It might be worth noting, that SAT solvers are not particularly efficient at factorizing large numbers. But
if a small factorization problem occurs as part of a larger circuit problem, the Yosys SAT solver is perfectly
capable of solving it.

Solving sequential SAT problems

The SAT solver functionality in Yosys can not only be used to solve combinatorial problems, but can also
solve sequential problems. Let’s consider the memdemo design from Advanced logic cone selection again, and
suppose we want to know which sequence of input values for d will cause the output y to produce the sequence
1, 2, 3 from any initial state. Let’s use the following command:

140 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

Todo

replace inline code?

sat -seq 6 -show y -show d -set-init-undef \
-max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3

The -seq 6 option instructs the sat command to solve a sequential problem in 6 time steps. (Experiments
with lower number of steps have show that at least 3 cycles are necessary to bring the circuit in a state from
which the sequence 1, 2, 3 can be produced.)

The -set-init-undef option tells the sat command to initialize all registers to the undef (x) state. The
way the x state is treated in Verilog will ensure that the solution will work for any initial state.

The -max_undef option instructs the sat command to find a solution with a maximum number of undefs.
This way we can see clearly which inputs bits are relevant to the solution.

Finally the three -set-at options add constraints for the y signal to play the 1, 2, 3 sequence, starting with
time step 4.

This produces the following output:

Todo

replace inline code

Listing 3.61: Solving a sequential SAT problem in the memdemo
module.

yosys [memdemo]> sat -seq 6 -show y -show d -set-init-undef \
-max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3

1. Executing SAT pass (solving SAT problems in the circuit).
Full command line: sat -seq 6 -show y -show d -set-init-undef
-max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3

Setting up time step 1:
Final constraint equation: { } = { }
Imported 29 cells to SAT database.

Setting up time step 2:
Final constraint equation: { } = { }
Imported 29 cells to SAT database.

Setting up time step 3:
Final constraint equation: { } = { }
Imported 29 cells to SAT database.

Setting up time step 4:

Import set-constraint for timestep: \y = 4'0001
Final constraint equation: \y = 4'0001
Imported 29 cells to SAT database.

(continues on next page)

3.2. More scripting 141

YosysHQ Yosys, Version 0.55

(continued from previous page)

Setting up time step 5:

Import set-constraint for timestep: \y = 4'0010
Final constraint equation: \y = 4'0010
Imported 29 cells to SAT database.

Setting up time step 6:

Import set-constraint for timestep: \y = 4'0011

Final constraint equation: \y = 4'0011
Imported 29 cells to SAT database.

Setting up initial state:
Final constraint equation: { \y \s2 \sl \mem[3] \mem[2] \mem[1]
\mem[0] } = 24'XXXXXXXXXXXXXXXXXXXXXXXX

Import show expression: \y
Import show expression: \d

Solving problem with 10322 variables and 27881 clauses..
SAT model found. maximizing number of undefs.
SAT solving finished - model found:

Time Signal Name Dec Hex Bin
init \mem[O] - - XXXX
init \mem[1] -- -- XXXX
init \mem[2] == == XXXX
init \mem[3] == == XXXX
init \si == == XX
init \s2 - — XX
init \y = == XXXX
1 \d 0 0 0000
1 \y == == XXXX
2 \d 1 1 0001
2 \y = == XXXX
3 \d 2 2 0010
3 \y 0 0 0000
4 \d 3 3 0011
4 \y 1 1 0001
5 \d == == 001x
5 \y 2 2 0010
6 \d - -- XXXX
6 \y 3 3 0011

It is not surprising that the solution sets d = 0 in the first step, as this is the only way of setting the s1 and
s2 registers to a known value. The input values for the other steps are a bit harder to work out manually,
but the SAT solver finds the correct solution in an instant.

142 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

There is much more to write about the sat command. For example, there is a set of options that can be
used to performs sequential proofs using temporal induction [EenSorensson03]. The command help sat can
be used to print a list of all options with short descriptions of their functions.

3.2.4 Symbolic model checking

Todo

check text context

Note

While it is possible to perform model checking directly in Yosys, it is highly recommended to use SBY
or EQY for formal hardware verification.

Symbolic Model Checking (SMC) is used to formally prove that a circuit has (or has not) a given property.

One application is Formal Equivalence Checking: Proving that two circuits are identical. For example this
is a very useful feature when debugging custom passes in Yosys.

Other applications include checking if a module conforms to interface standards.

The sat command in Yosys can be used to perform Symbolic Model Checking.

Checking techmap

Todo

add/expand supporting text

Let’s take a look at an example included in the Yosys code base under docs/source/code_examples/
synth_flow:

Listing 3.62: techmap_01_map.v

module \$add (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = O
parameter A_WIDTH =
parameter B_WIDTH
parameter Y_WIDTH

)
’

’

Il
= e

’

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

generate
if ((A_WIDTH == 32) && (B_WIDTH == 32))
begin
wire [16:0] S1 = A[15:0] + B[15:0];

(continues on next page)

3.2. More scripting 143

https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/synth_flow
https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/synth_flow

YosysHQ Yosys, Version 0.55

(continued from previous page)
wire [15:0] S2 = A[31:16] + B[31:16] + S1[16];
assign Y = {S2[15:0], S1[15:01};
end
else
wire _TECHMAP_FAIL_ = 1;
endgenerate

endmodule

Listing 3.63: techmap_01.v

module test(input [31:0] a, b,
output [31:0] y);

assign y = a + b;

endmodule

Listing 3.64: techmap_01.ys

read_verilog techmap_01.v
hierarchy -check -top test
techmap -map techmap_01_map.v;;

To see if it is correct we can use the following code:

Todo

replace inline code

read test design
read_verilog techmap_01.v
hierarchy -top test

create two version of the design: test_orig and test_mapped
copy test test_orig
rename test test_mapped

apply the techmap only to test_mapped
techmap -map techmap_0O1_map.v test_mapped

create a miter circuit to test equivalence
miter -equiv -make_assert -make_outputs test_orig test_mapped miter
flatten miter

run equivalence check
sat -verify -prove-asserts -show-inputs -show-outputs miter

Result:

Solving problem with 945 variables and 2505 clauses..
SAT proof finished - no model found: SUCCESS!

144 Chapter 3. Using Yosys (advanced)

YosysHQ Yosys, Version 0.55

AXI14 Stream Master
The code used in this section is included in the Yosys code base under docs/source/code_examples/axis.

The following AXI4 Stream Master has a bug. But the bug is not exposed if the slave keeps tready asserted
all the time. (Something a test bench might do.)

Symbolic Model Checking can be used to expose the bug and find a sequence of values for tready that yield
the incorrect behavior.

Todo

add/expand supporting text

Listing 3.65: axis_master.v

module axis_master(aclk, aresetn, tvalid, tready, tdata);
input aclk, aresetn, tready;
output reg tvalid;
output reg [7:0] tdata;

reg [31:0] state;
always @(posedge aclk) begin
if ('aresetn) begin
state <= 314159265;
tvalid <= 0;
tdata <= 'bx;
end else begin
if (tvalid && tready)

tvalid <= 0;
if (!tvalid || !tready) begin
// ~- should not be inverted!

state = state = state << 13;

state = state ~ state >> 7;

state = state ~ state << 17;

if (state[9:8] == 0) begin
tvalid <= 1;
tdata <= state;

end

end
end
end
endmodule

Listing 3.66: axis_test.v

module axis_test(aclk, tready);
input aclk, tready;
wire aresetn, tvalid;
wire [7:0] tdata;

integer counter = 0;
reg aresetn = 0;
(continues on next page)

3.2. More scripting 145

https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/axis

YosysHQ Yosys, Version 0.55

(continued from previous page)

axis_master uut (aclk, aresetn, tvalid, tready, tdata) ;

always @(posedge aclk) begin
if (aresetn && tready && tvalid) begin

if (counter == 0) assert(tdata == 19);
if (counter == 1) assert(tdata == 99);
if (counter == 2) assert(tdata == 1);

if (counter == 3) assert(tdata == 244);
if (counter == 4) assert(tdata == 133);
if (counter == 5) assert(tdata == 209);
if (counter == 6) assert(tdata == 241);
if (counter == 7) assert(tdata == 137);
if (counter == 8) assert(tdata == 176);
if (counter == 9) assert(tdata == 6);
counter <= counter + 1;

end

aresetn <= 1;

end
endmodule

Listing 3.67: test.ys

read_verilog -sv axis_master.v axis_test.v
hierarchy -top axis_test

proc; flatten;;
sat -seq 50 -prove-asserts

Result with unmodified axis_master.v:

Todo

replace inline code

Solving problem with 159344 variables and 442126 clauses..
SAT proof finished - model found: FAIL!

Result with fixed axis_master.v:

Solving problem with 159144 variables and 441626 clauses..
SAT proof finished - no model found: SUCCESS!

3.2.5 Dataflow tracking

Yosys can be used to answer questions such as “can this signal affect this other signal?” via its dataflow
tracking support. For this, four special cells, $get_tag, $set_tag, $overwrite_tag and $original_tag
are inserted into the design (e.g. by a custom Yosys pass) and then the dft_tag is run, which converts these
cells into ordinary logic. Typically, one would then use SBY to prove assertions involving these cells.

Ordinarily in Yosys, the state of a bit is simply 0 or 1 (or one of the special values, z and x). During dataflow
tracking they are augmented with a set of tags. For example, the state of a bit could be 0 and the set of

146 Chapter 3. Using Yosys (advanced)

https://yosyshq.readthedocs.io/projects/sby

YosysHQ Yosys, Version 0.55

tags "KEY" and "OVERFLOW".

In addition to their usual operations on the logical bits, Yosys operations must now also process the status
of the tags. For this, tags are simply forwarded or propagated (i.e. copied) from inputs to outputs, according
to the following general rule:

A tag is forwarded from an input to an output if the input can affect the output, for that
particular state of all other inputs.

For example, XOR, AND and OR cells propagate tags as follows:

1. XOR simply forwards all tags from its inputs to its output, because inputs to XOR can always affect
the output.

2. AND forwards tags on a given input only if the other input is 1. Because if one input is 0, the other
input can never affect the output.

3. Similarly, OR forwards tags only if the other input is 0.
There are two exceptions to this rule:

1. In general, propagation is only determined approximately. For example, unless the dft_tag code knows
about a cell, it simply assumes the worst-case behaviour that all inputs can affect all outputs. Further,
the code also does not consider that, when a signal affects multiple inputs of a cell, the resulting
simultaneous changes of the inputs can cancel each other out, for example A ~ Aor A =~ (B ~ A) is
independent of A, but its tags would be propagated nonetheless.

2. If tag groups are used, the rules are modified (see below).

Because of this propagation behaviour, we can answer questions about what signals are affected by a certain
signal, by injecting a tag at that point in the circuit, and observing where the tag is visible.

Example use cases

As an example use case, consider a cryptographic processor which is not supposed to expose its secret keys
to the outside world. We can tag all key bits with the "KEY" tag and use SBY to formally verify that no
external signal ever carries the "KEY" tag, meaning that key information is not visible to the outside. As
a caveat, we have to manually clear the "KEY" tag during cryptographic operations, as proving that the
cryptographic operations themselves do not leak key information is beyond the ability of Yosys. However
we can still easily detect, if e.g. an engineer forgot to remove debugging code that allows reading back key
data.

As a different use case, we can modify all adders in the design to set the "OVERFLOW" tag on their output
bits, if the addition overflowed, and then add asserts to all flip-flop inputs and output signals that they do
not carry the "OVERFLOW" tag, i.e. that the results of overflowed additions never affect system state. Note
that in this particular example we use the ability of tag insertion to be conditional on logic, in this case the
overflow condition of an adder.

Semantics of dataflow tracking cells

$set_tag has inputs A, SET, CLR, an output Y and a string parameter TAG. The logic value of A and all tags
other than the one named by the TAG parameter are simply copied to Y. If SET is 1, then the named tag is
added to Y. Otherwise, if CLR is 1, then the named tag is removed. Otherwise, the tag is unchanged, i.e. it
is present in Y if it is present in A.

$get_tag has an input A and an output Y and a string parameter TAG. $get_tag inspects A for the presence
or absence of a tag of the given name and sets Y to 1 if the tag is present. The logical value of A is completely
ignored.

$overwrite_tag functions like $set_tag, but lacks the Y output. Instead of providing a modified version
of the input signal, it modifies the signal A “in-place”, i.e. if a signal is input to $overwrite_tag, that is

3.2. More scripting 147

https://yosyshq.readthedocs.io/projects/sby

YosysHQ Yosys, Version 0.55

equivalent to interposing a $set_tag between its driver and all cells it is connected to. The main purpose of
$overwrite_tag is adding tags to signals produced within a module that cannot or should not be modified
itself.

$original_tag functions identically to $get_tag, but ignores $overwrite_tag, i.e. when converting the
$overwrite_tag to $set_tag as described above, it is equivalent to inserting the $get_tag before the
$set_tag.

Tag groups

Tag groups are an advanced feature that modify the propagation rule discussed above. To use tag groups,
simply name tags according to the schema "group:name". For example, "key:0", "key:a", "key:b" would
be three tags in the "key" group.

The propagation rule is then amended by
Inputs cannot block the propagation of each other’s tags for tags of the same group.

For example, an AND gate will propagate a given tag on one input, if the other input is either 1 or carries
a tag of the same group. So if one input is 0, "key:a" and the other is 0, "key:b" the result would be
0, "key:a", "key:b", rather than simply 0. Note that if we add an unrelated "overflow" tag to the first
input, it would still not be propagated.

148 Chapter 3. Using Yosys (advanced)

CHAPTER
FOUR

YOSYS INTERNALS

Todo

less academic

Yosys is an extensible open source hardware synthesis tool. It is aimed at designers who are looking for an
easily accessible, universal, and vendor-independent synthesis tool, as well as scientists who do research in
electronic design automation (EDA) and are looking for an open synthesis framework that can be used to
test algorithms on complex real-world designs.

Yosys can synthesize a large subset of Verilog 2005 and has been tested with a wide range of real-world
designs, including the OpenRISC 1200 CPU, the openMSP430 CPU, the OpenCores [12C master, and the
k68 CPU.

Todo
add RISC-V core example

Yosys is written in C4++, targeting C++417 at minimum. This chapter describes some of the fundamental
Yosys data structures. For the sake of simplicity the C++ type names used in the Yosys implementation are
used in this chapter, even though the chapter only explains the conceptual idea behind it and can be used
as reference to implement a similar system in any language.

4.1 Internal flow

A (usually short) synthesis script controls Yosys.
These scripts contain three types of commands:
o Frontends, that read input files (usually Verilog);
e Passes, that perform transformations on the design in memory;

o Backends, that write the design in memory to a file (various formats are available: Verilog, BLIF,
EDIF, SPICE, BTOR, ...).

4.1.1 Flow overview

149

https://github.com/openrisc/or1200
http://opencores.org/projects/openmsp430
http://opencores.org/projects/i2c
http://opencores.org/projects/k68

YosysHQ Yosys, Version 0.55

Todo

less academic

Figure 4.1 shows the simplified data flow within Yosys. Rectangles in the figure represent program modules
and ellipses internal data structures that are used to exchange design data between the program modules.

Design data is read in using one of the frontend modules. The high-level HDL frontends for Verilog and
VHDL code generate an abstract syntax tree (AST) that is then passed to the AST frontend. Note that
both HDL frontends use the same AST representation that is powerful enough to cover the Verilog HDL and
VHDL language.

The AST Frontend then compiles the AST to Yosys’s main internal data format, the RTL Intermediate
Language (RTLIL). A more detailed description of this format is given in The RTL Intermediate Language
(RTLIL).

There is also a text representation of the RTLIL data structure that can be parsed using the RTLIL Frontend
which is described in RTLIL text representation.

The design data may then be transformed using a series of passes that all operate on the RTLIL representation
of the design.

Finally the design in RTLIL representation is converted back to text by one of the backends, namely the
Verilog Backend for generating Verilog netlists and the RTLIL Backend for writing the RTLIL data in the
same format that is understood by the RTLIL Frontend.

With the exception of the AST Frontend, which is called by the high-level HDL frontends and can’t be
called directly by the user, all program modules are called by the user (usually using a synthesis script that
contains text commands for Yosys).

By combining passes in different ways and/or adding additional passes to Yosys it is possible to adapt Yosys
to a wide range of applications. For this to be possible it is key that (1) all passes operate on the same data
structure (RTLIL) and (2) that this data structure is powerful enough to represent the design in different
stages of the synthesis.

4.1.2 Control and data flow

Todo

less academic

The data- and control-flow of a typical synthesis tool is very similar to the data- and control-flow of a typical
compiler: different subsystems are called in a predetermined order, each consuming the data generated by
the last subsystem and generating the data for the next subsystem (see Fig. 4.2).

The first subsystem to be called is usually called a frontend. It does not process the data generated by
another subsystem but instead reads the user input—in the case of a HDL synthesis tool, the behavioural
HDL code.

The subsystems that consume data from previous subsystems and produce data for the next subsystems
(usually in the same or a similar format) are called passes.

The last subsystem that is executed transforms the data generated by the last pass into a suitable output
format and writes it to a disk file. This subsystem is usually called the backend.

In Yosys all frontends, passes and backends are directly available as commands in the synthesis script. Thus
the user can easily create a custom synthesis flow just by calling passes in the right order in a synthesis

150 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

Verilog Frontend i VHDL Frontend 3 RTLIL Frontend

AST Frontend

Passes

Verilog Backend RTLIL Backend i Other Backends 3

Fig. 4.1: Yosys simplified data flow (ellipses: data structures, rectangles: program modules)

High-Level Low-Level
=
z 7 7 7 E
- B < < - < o e
) Ay ol n, g
= m
HDL | Internal Format(s) | Netlist

Fig. 4.2: General data- and control-flow of a synthesis tool

4.1. Internal flow 151

YosysHQ Yosys, Version 0.55

script.

4.1.3 The Verilog and AST frontends

This chapter provides an overview of the implementation of the Yosys Verilog and AST frontends. The
Verilog frontend reads Verilog-2005 code and creates an abstract syntax tree (AST) representation of the
input. This AST representation is then passed to the AST frontend that converts it to RTLIL data, as
illustrated in Fig. 4.3.

S/ Preprocessor
3 ’ !
Verilog Frontend Lexer

N Parser

\ I

Simplifier
AST Frontend l
RTLIL Generator

\
\
\
\

Verilog Source

Fig. 4.3: Simplified Verilog to RTLIL data flow

Transforming Verilog to AST

The Verilog frontend converts the Verilog sources to an internal AST representation that closely resembles the
structure of the original Verilog code. The Verilog frontend consists of three components, the Preprocessor,
the Lexer and the Parser.

The source code to the Verilog frontend can be found in frontends/verilog/ in the Yosys source tree.

The Verilog preprocessor

The Verilog preprocessor scans over the Verilog source code and interprets some of the Verilog compiler
directives such as ~include, “define and ~ifdef.

It is implemented as a C++ function that is passed a file descriptor as input and returns the pre-processed
Verilog code as a std: :string.

The source code to the Verilog Preprocessor can be found in frontends/verilog/preproc.cc in the Yosys
source tree.

152 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

The Verilog lexer

The Verilog Lexer is written using the lexer generator flex. Its source code can be found in frontends/
verilog/verilog_lexer.l in the Yosys source tree. The lexer does little more than identifying all keywords
and literals recognised by the Yosys Verilog frontend.

The lexer keeps track of the current location in the Verilog source code using some global variables. These
variables are used by the constructor of AST nodes to annotate each node with the source code location it
originated from.

Finally the lexer identifies and handles special comments such as “// synopsys translate_off” and “/
/ synopsys full_case”. (It is recommended to use ~ifdef constructs instead of the Synsopsys trans-
late__on/off comments and attributes such as (* full_case *) over “// synopsys full_case” whenever
possible.)

The Verilog parser

The Verilog Parser is written using the parser generator bison. Its source code can be found in frontends/
verilog/verilog_parser.y in the Yosys source tree.

It generates an AST using the AST::AstNode data structure defined in frontends/ast/ast.h. An

AST: : AstNode object has the following properties:

Table 4.1: AST node types with their corresponding Verilog
constructs.
AST Node Type Corresponding Verilog Construct
AST NONE This Node type should never be used.
AST DESIGN This node type is used for the top node of the AST

tree. It has no corresponding Verilog construct.

AST MODULE, AST TASK, AST FUNCTION
AST WIRE

AST MEMORY

AST AUTOWIRE

AST PARAMETER, AST LOCALPARAM
AST PARASET

AST ARGUMENT

AST RANGE

AST CONSTANT

AST CELLTYPE

AST IDENTIFIER

AST_PREFIX

AST FCALL, AST TCALL

AST TO SIGNED, AST TO UNSIGNED
AST CONCAT, AST REPLICATE

AST BIT NOT, AST BIT AND,
AST BIT OR, AST BIT XOR,
AST BIT XNOR

AST REDUCE AND, AST REDUCE OR,
AST REDUCE XOR, AST REDUCE XNOR

module, task and function

input, output, wire, reg and integer

Verilog Arrays

Created by the simplifier when an undeclared signal
name is used.

parameter and localparam

Parameter set in cell instantiation

Port connection in cell instantiation

Bit-Index in a signal or element index in array

A literal value

The type of cell in cell instantiation

An Identifier (signal name in expression or
cell/task/etc. name in other contexts)

Construct an identifier in the form <pre-
fix>[<index>].<suffix> (used only in advanced
generate constructs)

Call to function or task

The $signed () and $unsigned() functions

The {...} and {...{...}} operators

The bitwise operators ~, &, |, ~ and ~~

The unary reduction operators ~, &, |, ~ and ~~

continues on next page

4.1. Internal flow

153

YosysHQ Yosys, Version 0.55

Table 4.1 — continued from previous page

AST REDUCE_BOOL

AST SHIFT LEFT, AST SHIFT RIGHT,
AST SHIFT SLEFT, AST SHIFT SRIGHT
AST LT, AST LE, AST EQ, AST NE,
AST GE, AST GT

AST ADD, AST SUB, AST MUL, AST DIV,
AST MOD, AST POW
AST POS, AST NEG
AST LOGIC AND,
AST LOGIC_NOT
AST TERNARY

AST MEMRD AST MEMWR

AST LOGIC_OR,

AST ASSIGN

AST CELL

AST PRIMITIVE

AST ALWAYS, AST_INITIAL

AST BLOCK

AST ASSIGN_EQ. AST ASSIGN_LE

AST CASE. AST _COND, AST DEFAULT

AST_ FOR

AST GENVAR, AST GENBLOCK,
AST GENFOR, AST GENIF
AST POSEDGE,

AST EDGE

AST NEGEDGE,

Conversion from multi-bit value to boolean value
(equivalent to AST REDUCE_ OR)
The shift operators <<, >>, <<< and >>>

The relational operators <, <=, ==, !=, >= and >
The binary operators +, —, *, /, % and **

The prefix operators + and -
The logic operators &%, | | and !

The ternary ?:-operator

Read and write memories. These nodes are gener-
ated by the AST simplifier for writes/reads to/from
Verilog arrays.

An assign statement

A cell instantiation

A primitive cell (and, nand, or, etc.)

Verilog always- and initial-blocks

A begin-end-block

Blocking (=) and nonblocking (<=) assignments
within an always- or initial-block

The case (if) statements, conditions within a case
and the default case respectively

A for-loop with an always- or initial-block
The genvar and generate keywords and for and
if within a generate block.

Event conditions for always blocks.

e The node type

This enum (AST: : AstNodeType) specifies the role of the node. Table 4.1 contains a list of all node

types.
e The child nodes

This is a list of pointers to all children in the abstract syntax tree.

o Attributes

As almost every AST node might have Verilog attributes assigned to it, the AST: : AstNode has direct
support for attributes. Note that the attribute values are again AST nodes.

¢ Node content

Each node might have additional content data. A series of member variables exist to hold such data.
For example the member std: :string str can hold a string value and is used e.g. in the
AST_IDENTIFIER node type to store the identifier name.

¢ Source code location

Each AST: : AstNode is automatically annotated with the current source code location by the
AST: : AstNode constructor. It is stored in the std::string filename and int linenum member

variables.

The AST: :AstNode constructor can be called with up to two child nodes that are automatically added to
the list of child nodes for the new object. This simplifies the creation of AST nodes for simple expressions a
bit. For example the bison code for parsing multiplications:

154

Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

basic_expr 'x' attr basic_expr {
$$ = new AstNode(AST_MUL, $1, $4);
append_attr($$, $3);

The generated AST data structure is then passed directly to the AST frontend that performs the actual
conversion to RTLIL.

Note that the Yosys command read_verilog provides the options -yydebug and -dump_ast that can be
used to print the parse tree or abstract syntax tree respectively.

Transforming AST to RTLIL

The AST Frontend converts a set of modules in AST representation to modules in RTLIL representation
and adds them to the current design. This is done in two steps: simplification and RTLIL generation.

The source code to the AST frontend can be found in frontends/ast/ in the Yosys source tree.

AST simplification

A full-featured AST is too complex to be transformed into RTLIL directly. Therefore it must first be brought
into a simpler form. This is done by calling the AST: : AstNode: : simplify () method of all AST_MODULE nodes
in the AST. This initiates a recursive process that performs the following transformations on the AST data
structure:

o Inline all task and function calls.
o Evaluate all generate-statements and unroll all for-loops.

o Perform const folding where it is necessary (e.g. in the value part of AST_PARAMETER, AST_LOCALPARAM,
AST_PARASET and AST_RANGE nodes).

e Replace AST_PRIMITIVE nodes with appropriate AST_ASSIGN nodes.

e Replace dynamic bit ranges in the left-hand-side of assignments with AST_CASE nodes with AST_COND
children for each possible case.

e Detect array access patterns that are too complicated for the RTLIL: : Memory abstraction and replace
them with a set of signals and cases for all reads and/or writes.

e Otherwise replace array accesses with AST_MEMRD and AST_MEMWR nodes.

In addition to these transformations, the simplifier also annotates the AST with additional information that
is needed for the RTLIL generator, namely:

o All ranges (width of signals and bit selections) are not only const folded but (when a constant value is
found) are also written to member variables in the AST _RANGE node.

o All identifiers are resolved and all AST_IDENTIFIER nodes are annotated with a pointer to the AST
node that contains the declaration of the identifier. If no declaration has been found, an AST_AUTOWIRE
node is created and used for the annotation.

This produces an AST that is fairly easy to convert to the RTLIL format.

Generating RTLIL
After AST simplification, the AST: : AstNode: : genRTLIL() method of each AST_MODULE node in the AST is
called. This initiates a recursive process that generates equivalent RTLIL data for the AST data.

The AST: :AstNode: :genRTLIL() method returns an RTLIL: :SigSpec structure. For nodes that represent
expressions (operators, constants, signals, etc.), the cells needed to implement the calculation described by

4.1. Internal flow 155

YosysHQ Yosys, Version 0.55

the expression are created and the resulting signal is returned. That way it is easy to generate the circuits
for large expressions using depth-first recursion. For nodes that do not represent an expression (such as
AST_CELL), the corresponding circuit is generated and an empty RTLIL: : SigSpec is returned.

Synthesizing Verilog always blocks

For behavioural Verilog code (code utilizing always- and initial-blocks) it is necessary to also generate
RTLIL: :Process objects. This is done in the following way:

Whenever AST: :AstNode: :genRTLIL() encounters an always- or initial-block, it creates an instance of
AST_INTERNAL: :ProcessGenerator. This object then generates the RTLIL: :Process object for the block.
It also calls AST: : AstNode: : genRTLIL() for all right-hand-side expressions contained within the block.

First the AST_INTERNAL: :ProcessGenerator creates a list of all signals assigned within the block. It then
creates a set of temporary signals using the naming scheme $ <number> \ <original_name> for each of the
assigned signals.

Then an RTLIL: :Process is created that assigns all intermediate values for each left-hand-side signal to the
temporary signal in its RTLIL: : CaseRule/RTLIL: : SwitchRule tree.

Finally a RTLIL::SyncRule is created for the RTLIL: :Process that assigns the temporary signals for the
final values to the actual signals.

A process may also contain memory writes. A RTLIL: :MemWriteAction is created for each of them.

Calls to AST::AstNode::genRTLIL() are generated for right hand sides as needed. When blocking as-
signments are used, AST: :AstNode: :genRTLIL() is configured using global variables to use the temporary
signals that hold the correct intermediate values whenever one of the previously assigned signals is used in
an expression.

Unfortunately the generation of a correct RTLIL: : CaseRule/RTLIL: : SwitchRule tree for behavioural code
is a non-trivial task. The AST frontend solves the problem using the approach described on the following
pages. The following example illustrates what the algorithm is supposed to do. Consider the following
Verilog code:

always @(posedge clock) begin
outl = inl;
if (in2)
outl = !outl;
out2 <= outl;
if (in3)
out2 <= out2;
if (in4)
if (inb)
out3 <= in6;
else
out3 <= in7;
outl = outl ~ out2;
end

This is translated by the Verilog and AST frontends into the following RTLIL code (attributes, cell parameters
and wire declarations not included):

cell $logic_not $logic_not$<input>:4$2
connect \A \inl
connect \Y $logic_not$<input>:4$2_Y
end

(continues on next page)

156 Chapter 4. Yosys internals

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

YosysHQ Yosys, Version 0.55

(continued from previous page)

cell $xor xor<input>:13$3
connect \A $1\out1[0:0]
connect \B \out2
connect \Y xor<input>:13$3_Y
end
process $proc$<input>:1$1
assign $0\out3[0:0] \out3
assign $0\out2[0:0] $1\out1[0:0]
assign $0\out1[0:0] xor<input>:13$3_Y
switch \in2
case 1'1
assign $1\out1[0:0] $logic_not$<input>:4$2_Y
case
assign $1\out1[0:0] \inl
end
switch \in3
case 1'1
assign $0\out2[0:0] \out2
case
end
switch \in4
case 1'1
switch \inb
case 1'1
assign $0\out3[0:0] \in6
case
assign $0\out3[0:0] \in7
end
case
end
sync posedge \clock
update \outl $0\out1[0:0]
update \out2 $0\out2[0:0]
update \out3 $0\out3[0:0]
end

Note that the two operators are translated into separate cells outside the generated process. The signal
out1l is assigned using blocking assignments and therefore out1 has been replaced with a different signal in
all expressions after the initial assignment. The signal out?2 is assigned using nonblocking assignments and
therefore is not substituted on the right-hand-side expressions.

The RTLIL: :CaseRule/RTLIL: : SwitchRule tree must be interpreted the following way:

o On each case level (the body of the process is the root case), first the actions on this level are evaluated
and then the switches within the case are evaluated. (Note that the last assignment on line 13 of the
Verilog code has been moved to the beginning of the RTLIL process to line 13 of the RTLIL listing.)

I.e. the special cases deeper in the switch hierarchy override the defaults on the upper levels. The
assignments in lines 12 and 22 of the RTLIL code serve as an example for this.

Note that in contrast to this, the order within the RTLIL::SwitchRule objects within a
RTLIL: :CaseRule is preserved with respect to the original AST and Verilog code.

o The whole RTLIL: :CaseRule/RTLIL: :SwitchRule tree describes an asynchronous circuit. ILe. the
decision tree formed by the switches can be seen independently for each assigned signal. Whenever one

4.1. Internal flow 157

YosysHQ Yosys, Version 0.55

assigned signal changes, all signals that depend on the changed signals are to be updated. For example
the assignments in lines 16 and 18 in the RTLIL code in fact influence the assignment in line 12, even
though they are in the “wrong order”.

The only synchronous part of the process is in the RTLIL: : SyncRule object generated at line 35 in the RTLIL
code. The sync rule is the only part of the process where the original signals are assigned. The synchronization
event from the original Verilog code has been translated into the synchronization type (posedge) and signal
(\clock) for the RTLIL: :SyncRule object. In the case of this simple example the RTLIL: : SyncRule object
is later simply transformed into a set of d-type flip-flops and the RTLIL::CaseRule/RTLIL::SwitchRule
tree to a decision tree using multiplexers.

In more complex examples (e.g. asynchronous resets) the part of the RTLIL: : CaseRule/RTLIL: : SwitchRule
tree that describes the asynchronous reset must first be transformed to the correct RTLIL: : SyncRule objects.
This is done by the proc_arst pass.

The ProcessGenerator algorithm

The AST_INTERNAL: :ProcessGenerator uses the following internal state variables:

e subst_rvalue_from and subst_rvalue_to

These two variables hold the replacement pattern that should be used by
AST: :AstNode: : genRTLIL() for signals with blocking assignments. After initialization of
AST_INTERNAL: :ProcessGenerator these two variables are empty.

e subst_lvalue_from and subst_lvalue_to
These two variables contain the mapping from left-hand-side signals (\ <name>) to the current
temporary signal for the same thing (initially $0\ <name>).

e current_case

A pointer to a RTLIL: :CaseRule object. Initially this is the root case of the generated
RTLIL: :Process.

As the algorithm runs these variables are continuously modified as well as pushed to the stack and later
restored to their earlier values by popping from the stack.

On startup the ProcessGenerator generates a new RTLIL::Process object with an empty root case and
initializes its state variables as described above. Then the RTLIL: :SyncRule objects are created using the
synchronization events from the AST ALWAYS node and the initial values of subst_lvalue_from and
subst_lvalue_to. Then the AST for this process is evaluated recursively.

During this recursive evaluation, three different relevant types of AST nodes can be discovered:
AST_ASSIGN_LE (nonblocking assignments), AST_ASSIGN_EQ (blocking assignments) and AST_CASE (if or
case statement).

Handling of nonblocking assignments

When an AST_ASSIGN_LE node is discovered, the following actions are performed by the ProcessGenerator:

e The left-hand-side is evaluated using AST: :AstNode: : genRTLIL() and mapped to a temporary signal
name using subst_lvalue_from and subst_lvalue_to.

e The right-hand-side is evaluated using AST::AstNode::genRTLIL(). For this call, the values of
subst_rvalue_from and subst_rvalue_to are used to map blocking-assigned signals correctly.

e Remove all assignments to the same left-hand-side as this assignment from the current_case and all
cases within it.

e Add the new assignment to the current_case.

158 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

Handling of blocking assignments

When an AST_ASSIGN_EQ node is discovered, the following actions are performed by the ProcessGenerator:

Perform all the steps that would be performed for a nonblocking assignment (see above).

Remove the found left-hand-side (before lvalue mapping) from subst_rvalue_from and also remove
the respective bits from subst_rvalue_to.

Append the found left-hand-side (before lvalue mapping) to subst_rvalue_from and append the found
right-hand-side to subst_rvalue_to.

Handling of cases and if-statements

When an AST_CASE node is discovered, the following actions are performed by the ProcessGenerator:

The values of subst_rvalue_from, subst_rvalue_to, subst_lvalue_from and subst_lvalue_to are
pushed to the stack.

A new RTLIL::SwitchRule object is generated, the selection expression is evaluated using
AST: :AstNode: :genRTLIL() (with the use of subst_rvalue_from and subst_rvalue_to) and added
to the RTLIL: :SwitchRule object and the object is added to the current_case.

All lvalues assigned to within the AST_CASE node using blocking assignments are collected and saved
in the local variable this_case_eq_lvalue.

New temporary signals are generated for all signals in this_case_eq_lvalue and stored in
this_case_eq_ltemp.

The signals in this_case_eq_lvalue are mapped using subst_rvalue_from and subst_rvalue_to
and the resulting set of signals is stored in this_case_eq_rvalue.

Then the following steps are performed for each AST_COND node within the AST_CASE node:

Set subst_rvalue_from, subst_rvalue_to, subst_lvalue_from and subst_lvalue_to to the values
that have been pushed to the stack.

Remove this_case_eq_lvalue from subst_1value_from/subst_1va1ue_to.

Append this_case_eq_lvalue to subst_lvalue_from and append this_case_eq_ltemp to
subst_1lvalue_to.

Push the value of current_case.

Create a new RTLIL: :CaseRule. Set current_case to the new object and add the new object to the
RTLIL: :SwitchRule created above.

Add an assignment from this_case_eq_rvalue to this_case_eq_ltemp to the new current_case.

Evaluate the compare value for this case using AST::AstNode::genRTLIL() (with the use of
subst_rvalue_from and subst_rvalue_to) modify the new current_case accordingly.

Recursion into the children of the AST_COND node.

Restore current_case by popping the old value from the stack.

Finally the following steps are performed:

The values of subst_rvalue_from, subst_rvalue_to, subst_lvalue_from and subst_lvalue_to are
popped from the stack.

The signals from this_case_eq_lvalue are removed from the subst_rvalue_from/subst_rvalue_to-
pair.

4.1.

Internal flow 159

YosysHQ Yosys, Version 0.55

e The value of this_case_eq_lvalue is appended to subst_rvalue_from and the value of
this_case_eq_ltemp is appended to subst_rvalue_to.

o Map the signals in this_case_eq_lvalue using subst_lvalue_from/subst_lvalue_to.
e Remove all assignments to signals in this_case_eq_lvalue in current_case and all cases within it.

e Add an assignment from this_case_eq_ltemp to this_case_eq_lvalue to current_case.

Further analysis of the algorithm for cases and if-statements

With respect to nonblocking assignments the algorithm is easy: later assignments invalidate earlier assign-
ments. For each signal assigned using nonblocking assignments exactly one temporary variable is generated
(with the $0-prefix) and this variable is used for all assignments of the variable.

Note how all the _eq_-variables become empty when no blocking assignments are used and many of the steps
in the algorithm can then be ignored as a result of this.

For a variable with blocking assignments the algorithm shows the following behaviour: First a new temporary
variable is created. This new temporary variable is then registered as the assignment target for all assignments
for this variable within the cases for this AST_CASE node. Then for each case the new temporary variable is
first assigned the old temporary variable. This assignment is overwritten if the variable is actually assigned
in this case and is kept as a default value otherwise.

This yields an RTLIL: : CaseRule that assigns the new temporary variable in all branches. So when all cases
have been processed a final assignment is added to the containing block that assigns the new temporary vari-
able to the old one. Note how this step always overrides a previous assignment to the old temporary variable.
Other than nonblocking assignments, the old assignment could still have an effect somewhere in the design, as
there have been calls to AST: :AstNode: :genRTLIL() with a subst_rvalue_from/subst_rvalue_to-tuple
that contained the right-hand-side of the old assignment.

The proc pass

The ProcessGenerator converts a behavioural model in AST representation to a behavioural model in
RTLIL: :Process representation. The actual conversion from a behavioural model to an RTL representation
is performed by the proc pass and the passes it launches:

e proc_clean and proc_rmdead

These two passes just clean up the RTLIL: :Process structure. The proc_clean pass removes empty
parts (eg. empty assignments) from the process and proc_rmdead detects and removes unreachable
branches from the process’s decision trees.

e proc_arst

This pass detects processes that describe d-type flip-flops with asynchronous resets and rewrites the
process to better reflect what they are modelling: Before this pass, an asynchronous reset has two
edge-sensitive sync rules and one top-level RTLIL: : SwitchRule for the reset path. After this pass the
sync rule for the reset is level-sensitive and the top-level RTLIL: : SwitchRule has been removed.

e proc_muz
This pass converts the RTLIL: :CaseRule/RTLIL: : SwitchRule-tree to a tree of multiplexers per

written signal. After this, the RTLIL: :Process structure only contains the RTLIL: : SyncRule s that
describe the output registers.

e proc_dff
This pass replaces the RTLIL: : SyncRules to d-type flip-flops (with asynchronous resets if necessary).

e proc_memwr
This pass replaces the RTLIL: :MemWriteActions with $memwr cells.

160 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

proc_clean
A final call to proc_clean removes the now empty RTLIL: :Process objects.

Performing these last processing steps in passes instead of in the Verilog frontend has two important benefits:

First it improves the transparency of the process. Everything that happens in a separate pass is easier to
debug, as the RTLIL data structures can be easily investigated before and after each of the steps.

Second it improves flexibility. This scheme can easily be extended to support other types of storage-elements,
such as sr-latches or d-latches, without having to extend the actual Verilog frontend.

Todo

Synthesizing Verilog arrays

Add some information on the generation of $memrd and $memwr cells and how they are processed in the
memory pass.

Todo

Synthesizing parametric designs

Add some information on the RTLIL: :Module: :derive () method and how it is used to synthesize para-
metric modules via the hierarchy pass.

4.2 Internal formats

Yosys uses two different internal formats. The first is used to store an abstract syntax tree (AST) of a
Verilog input file. This format is simply called AST and is generated by the Verilog Frontend. This data
structure is consumed by a subsystem called AST Frontend'. This AST Frontend then generates a design in
Yosys’ main internal format, the Register-Transfer-Level-Intermediate-Language (RTLIL) representation. It
does that by first performing a number of simplifications within the AST representation and then generating
RTLIL from the simplified AST data structure.

The
over

The

RTLIL representation is used by all passes as input and outputs. This has the following advantages
using different representational formats between different passes:

The passes can be rearranged in a different order and passes can be removed or inserted.

Passes can simply pass-thru the parts of the design they don’t change without the need to convert
between formats. In fact Yosys passes output the same data structure they received as input and
performs all changes in place.

All passes use the same interface, thus reducing the effort required to understand a pass when reading
the Yosys source code, e.g. when adding additional features.

RTLIL representation is basically a netlist representation with the following additional features:

An internal cell library with fixed-function cells to represent RTL datapath and register cells as well
as logical gate-level cells (single-bit gates and registers).

Support for multi-bit values that can use individual bits from wires as well as constant bits to represent
coarse-grain netlists.

Support for basic behavioural constructs (if-then-else structures and multi-case switches with a sensi-
tivity list for updating the outputs).

1 In Yosys the term pass is only used to refer to commands that operate on the RTLIL data structure.

4.2,

Internal formats 161

YosysHQ Yosys, Version 0.55

e Support for multi-port memories.

The use of RTLIL also has the disadvantage of having a very powerful format between all passes, even when
doing gate-level synthesis where the more advanced features are not needed. In order to reduce complexity
for passes that operate on a low-level representation, these passes check the features used in the input RTLIL
and fail to run when unsupported high-level constructs are used. In such cases a pass that transforms the
higher-level constructs to lower-level constructs must be called from the synthesis script first.

4.2.1 The RTL Intermediate Language (RTLIL)

All frontends, passes and backends in Yosys operate on a design in RTLIL representation. The only exception
are the high-level frontends that use the AST representation as an intermediate step before generating RTLIL
data.

In order to avoid reinventing names for the RTLIL classes, they are simply referred to by their full C++
name, i.e. including the RTLIL: : namespace prefix, in this document.

Figure 4.4 shows a simplified Entity-Relationship Diagram (ER Diagram) of RTLIL. In 1 : N relationships
the arrow points from the N side to the 1. For example one RTLIL: :Design contains N (zero to many)
instances of RTLIL: :Module . A two-pointed arrow indicates a 1 : 1 relationship.

The RTLIL: :Design is the root object of the RTLIL data structure. There is always one “current design” in
memory which passes operate on, frontends add data to and backends convert to exportable formats. But in
some cases passes internally generate additional RTLIL: :Design objects. For example when a pass is reading
an auxiliary Verilog file such as a cell library, it might create an additional RTLIL: :Design object and call
the Verilog frontend with this other object to parse the cell library.

RTLIL::Cell
RTLIL: :Wire RTLIL: :SyncRule
RTLIL: :Design |~ “{RTLIL: :Module RTLIL: :Process ~— RTLIL: :CaseRule

\ ‘

RTLIL: :Memory RTLIL: :SwitchRule

Fig. 4.4: Simplified RTLIL Entity-Relationship Diagram

There is only one active RTLIL: :Design object that is used by all frontends, passes and backends called
by the user, e.g. using a synthesis script. The RTLIL: :Design then contains zero to many RTLIL: :Module
objects. This corresponds to modules in Verilog or entities in VHDL. Each module in turn contains objects
from three different categories:

e RTLIL::Cell and RTLIL::Wire objects represent classical netlist data.

e RTLIL::Process objects represent the decision trees (if-then-else statements, etc.) and synchronization
declarations (clock signals and sensitivity) from Verilog always and VHDL process blocks.

162 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

e RTLIL::Memory objects represent addressable memories (arrays).

Usually the output of the synthesis procedure is a netlist, i.e. all RTLIL: :Process and RTLIL: :Memory
objects must be replaced by RTLIL: :Cell and RTLIL: :Wire objects by synthesis passes.

All features of the HDL that cannot be mapped directly to these RTLIL classes must be transformed to
an RTLIL-compatible representation by the HDL frontend. This includes Verilog-features such as generate-
blocks, loops and parameters.

The following sections contain a more detailed description of the different parts of RTLIL and rationale
behind some of the design decisions.

RTLIL identifiers

All identifiers in RTLIL (such as module names, port names, signal names, cell types, etc.) follow the
following naming convention: they must either start with a backslash (\) or a dollar sign ($).

Identifiers starting with a backslash are public visible identifiers. Usually they originate from one of the
HDL input files. For example the signal name \sig42 is most likely a signal that was declared using the
name sig4?2 in an HDL input file. On the other hand the signal name $sigd?2 is an auto-generated signal
name. The backends convert all identifiers that start with a dollar sign to identifiers that do not collide with
identifiers that start with a backslash.

This has three advantages:

o First, it is impossible that an auto-generated identifier collides with an identifier that was provided by
the user.

e Second, the information about which identifiers were originally provided by the user is always available
which can help guide some optimizations. For example, opt_clean tries to preserve signals with a
user-provided name but doesn’t hesitate to delete signals that have auto-generated names when they
just duplicate other signals. Note that this can be overridden with the -purge option to also delete
internal nets with user-provided names.

e Third, the delicate job of finding suitable auto-generated public visible names is deferred to one central
location. Internally auto-generated names that may hold important information for Yosys developers
can be used without disturbing external tools. For example the Verilog backend assigns names in the
form _123_.

Whitespace and control characters (any character with an ASCII code 32 or less) are not allowed in RTLIL
identifiers; most frontends and backends cannot support these characters in identifiers.

In order to avoid programming errors, the RTLIL data structures check if all identifiers start with either a
backslash or a dollar sign, and contain no whitespace or control characters. Violating these rules results in
a runtime error.

All RTLIL identifiers are case sensitive.

Some transformations, such as flattening, may have to change identifiers provided by the user to avoid name
collisions. When that happens, attribute hdlname is attached to the object with the changed identifier. This
attribute contains one name (if emitted directly by the frontend, or is a result of disambiguation) or multiple
names separated by spaces (if a result of flattening). All names specified in the hd1lname attribute are public
and do not include the leading \.

RTLIL::Design and RTLIL::Module

The RTLIL: :Design object is basically just a container for RTLIL: :Module objects. In addition to a list of
RTLIL: :Module objects the RTLIL: :Design also keeps a list of selected objects, i.e. the objects that passes
should operate on. In most cases the whole design is selected and therefore passes operate on the whole
design. But this mechanism can be useful for more complex synthesis jobs in which only parts of the design
should be affected by certain passes.

4.2. Internal formats 163

YosysHQ Yosys, Version 0.55

Besides the objects shown in the FR diagram above, an RTLIL: :Module object contains the following addi-
tional properties:

e The module name

e A list of attributes

e A list of connections between wires

e An optional frontend callback used to derive parametrized variations of the module

The attributes can be Verilog attributes imported by the Verilog frontend or attributes assigned by passes.
They can be used to store additional metadata about modules or just mark them to be used by certain part
of the synthesis script but not by others.

Verilog and VHDL both support parametric modules (known as “generic entities” in VHDL). The RTLIL
format does not support parametric modules itself. Instead each module contains a callback function into
the AST frontend to generate a parametrized variation of the RTLIL: :Module as needed. This callback then
returns the auto-generated name of the parametrized variation of the module. (A hash over the parameters
and the module name is used to prohibit the same parametrized variation from being generated twice. For
modules with only a few parameters, a name directly containing all parameters is generated instead of a
hash string.)

RTLIL::Cell and RTLIL::Wire

A module contains zero to many RTLIL: :Cell and RTLIL: :Wire objects. Objects of these types are used
to model netlists. Usually the goal of all synthesis efforts is to convert all modules to a state where the
functionality of the module is implemented only by cells from a given cell library and wires to connect these
cells with each other. Note that module ports are just wires with a special property.

An RTLIL: :Wire object has the following properties:
e The wire name
o A list of attributes
o A width (buses are just wires with a width more than 1)
o Bus direction (MSB to LSB or vice versa)
o Lowest valid bit index (LSB or MSB depending on bus direction)
o If the wire is a port: port number and direction (input/output/inout)

As with modules, the attributes can be Verilog attributes imported by the Verilog frontend or attributes
assigned by passes.

In Yosys, busses (signal vectors) are represented using a single wire object with a width more than 1. So
Yosys does not convert signal vectors to individual signals. This makes some aspects of RTLIL more complex
but enables Yosys to be used for coarse grain synthesis where the cells of the target architecture operate on
entire signal vectors instead of single bit wires.

In Verilog and VHDL, busses may have arbitrary bounds, and LSB can have either the lowest or the highest
bit index. In RTLIL, bit 0 always corresponds to LSB; however, information from the HDL frontend is
preserved so that the bus will be correctly indexed in error messages, backend output, constraint files, etc.

An RTLIL: :Cell object has the following properties:
e The cell name and type
o A list of attributes
o A list of parameters (for parametric cells)

e Cell ports and the connections of ports to wires and constants

164 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

The connections of ports to wires are coded by assigning an RTLIL::SigSpec to each cell port. The
RTLIL::SigSpec data type is described in the next section.

RTLIL::SigSpec
A “signal” is everything that can be applied to a cell port. lL.e.

e Any constant value of arbitrary bit-width
lem For example: 1337, 16'b0000010100111001, 1'bl, 1'bx

o All bits of a wire or a selection of bits from a wire
lem For example: mywire, mywire[24], mywire[15:8]

« Concatenations of the above
lem For example: {16'd1337, mywire[15:8]%}

The RTLIL::SigSpec data type is used to represent signals. The RTLIL::Cell object contains one
RTLIL: :SigSpec for each cell port.

In addition, connections between wires are represented using a pair of RTLIL: : SigSpec objects. Such pairs
are needed in different locations. Therefore the type name RTLIL: :SigSig was defined for such a pair.
RTLIL::Process

When a high-level HDL frontend processes behavioural code it splits it up into data path logic (e.g. the
expression a + b is replaced by the output of an adder that takes a and b as inputs) and an RTLIL: :Process
that models the control logic of the behavioural code. Let’s consider a simple example:

module ff_with_en_and_async_reset(clock, reset, enable, d, q);
input clock, reset, enable, d;
output reg q;
always @(posedge clock, posedge reset)
if (reset)

q <= 0;
else if (enable)
q <= d;
endmodule

In this example there is no data path and therefore the RTLIL: :Module generated by the frontend only
contains a few RTLIL: :Wire objects and an RTLIL: :Process. The RTLIL: :Process in RTLIL syntax:

process $proc$ff_with_en_and_async_reset.v:4$1
assign $0\q[0:0] \q
switch \reset
case 1'1
assign $0\q[0:0] 1'0
case
switch \enable
case 1'1
assign $0\q[0:0] \d
case
end
end
sync posedge \clock
update \q $0\q[0:0]
sync posedge \reset

(continues on next page)

4.2. Internal formats 165

YosysHQ Yosys, Version 0.55

(continued from previous page)

update \g $0\q[0:0]

This RTLIL: :Process contains two RTLIL::SyncRule objects, two RTLIL: :SwitchRule objects and five
RTLIL: :CaseRule objects. The wire $0\q[0:0] is an automatically created wire that holds the next value
of \q. The lines 2..12 describe how $0\q[0:0] should be calculated. The lines 13..16 describe how the value
of $0\q[0:0] is used to update \qg.

An RTLIL::Process is a container for zero or more RTLIL::SyncRule objects and exactly one
RTLIL: :CaseRule object, which is called the root case.

An RTLIL: :SyncRule object contains an (optional) synchronization condition (signal and edge-type), zero
or more assignments (RTLIL::SigSig), and zero or more memory writes (RTLIL: :MemWriteAction). The
always synchronization condition is used to break combinatorial loops when a latch should be inferred instead.

An RTLIL::CaseRule is a container for zero or more assignments (RTLIL::SigSig) and zero or
more RTLIL::SwitchRule objects. An RTLIL::SwitchRule objects is a container for zero or more
RTLIL: :CaseRule objects.

In the above example the lines 2..12 are the root case. Here $0\q[0:0] is first assigned the old value \q
as default value (line 2). The root case also contains an RTLIL: :SwitchRule object (lines 3..12). Such an
object is very similar to the C switch statement as it uses a control signal (\reset in this case) to determine
which of its cases should be active. The RTLIL: :SwitchRule object then contains one RTLIL: :CaseRule
object per case. In this example there is a case' for \reset == 1 that causes $0\q[0:0] to be set (lines 4
and 5) and a default case that in turn contains a switch that sets $0\q[0:0] to the value of \d if \enable
is active (lines 6..11).

A case can specify zero or more compare values that will determine whether it matches. Each of the compare
values must be the exact same width as the control signal. When more than one compare value is specified,
the case matches if any of them matches the control signal; when zero compare values are specified, the case
always matches (i.e. it is the default case).

A switch prioritizes cases from first to last: multiple cases can match, but only the first matched case becomes
active. This normally synthesizes to a priority encoder. The parallel case attribute allows passes to assume
that no more than one case will match, and full _case attribute allows passes to assume that exactly one case
will match; if these invariants are ever dynamically violated, the behavior is undefined. These attributes
are useful when an invariant invisible to the synthesizer causes the control signal to never take certain bit
patterns.

The lines 13..16 then cause \q to be updated whenever there is a positive clock edge on \clock or \reset.

In order to generate such a representation, the language frontend must be able to handle blocking and
nonblocking assignments correctly. However, the language frontend does not need to identify the correct
type of storage element for the output signal or generate multiplexers for the decision tree. This is done by
passes that work on the RTLIL representation. Therefore it is relatively easy to substitute these steps with
other algorithms that target different target architectures or perform optimizations or other transformations
on the decision trees before further processing them.

One of the first actions performed on a design in RTLIL representation in most synthesis scripts is identifying
asynchronous resets. This is usually done using the proc_arst pass. This pass transforms the above example
to the following RTLIL: :Process:

process $proc$ff_with_en_and_async_reset.v:4$1
assign $0\q[0:0] \q

(continues on next page)

I The syntax 1'1 in the RTLIL code specifies a constant with a length of one bit (the first 1), and this bit is a one (the
second 1).

166 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

(continued from previous page)

switch \enable
case 1'1
assign $0\q[0:0] \d
case
end
sync posedge \clock
update \q $0\q[0:0]
sync high \reset
update \g 1'0
end

This pass has transformed the outer RTLIL: : SwitchRule into a modified RTLIL: : SyncRule object for the \
reset signal. Further processing converts the RTLIL: :Process into e.g. a d-type flip-flop with asynchronous
reset and a multiplexer for the enable signal:

cell $adff $procdff$e
parameter \ARST_POLARITY 1'1
parameter \ARST_VALUE 1'0
parameter \CLK_POLARITY 1'1
parameter \WIDTH 1
connect \ARST \reset
connect \CLK \clock
connect \D $0\q[0:0]
connect \Q \q

end

cell $mux $procmux$3
parameter \WIDTH 1
connect \A \q
connect \B \d
connect \S \enable
connect \Y $0\q[0:0]

end

Different combinations of passes may yield different results. Note that $adff and $muz are internal cell
types that still need to be mapped to cell types from the target cell library.

Some passes refuse to operate on modules that still contain RTLIL: :Process objects as the presence of these
objects in a module increases the complexity. Therefore the passes to translate processes to a netlist of
cells are usually called early in a synthesis script. The proc pass calls a series of other passes that together
perform this conversion in a way that is suitable for most synthesis tasks.

RTLIL::Memory

For every array (memory) in the HDL code an RTLIL: :Memory object is created. A memory object has the
following properties:

e The memory name

e A list of attributes

e The width of an addressable word

e The size of the memory in number of words

All read accesses to the memory are transformed to $memrd cells and all write accesses to $memwr cells by
the language frontend. These cells consist of independent read- and write-ports to the memory. Memory

4.2. Internal formats 167

YosysHQ Yosys, Version 0.55

initialization is transformed to $meminit cells by the language frontend. The \MEMID parameter on these
cells is used to link them together and to the RTLIL: :Memory object they belong to.

The rationale behind using separate cells for the individual ports versus creating a large multiport memory
cell right in the language frontend is that the separate $memrd and $memwr cells can be consolidated using
resource sharing. As resource sharing is a non-trivial optimization problem where different synthesis tasks
can have different requirements it lends itself to do the optimisation in separate passes and merge the
RTLIL: :Memory objects and $memrd and $memwr cells to multiport memory blocks after resource sharing is
completed.

The memory pass performs this conversion and can (depending on the options passed to it) transform the
memories directly to d-type flip-flops and address logic or yield multiport memory blocks (represented using
$mem cells).

See Memories for details about the memory cell types.

4.3 Working with the Yosys codebase

This section goes into additional detail on the Yosys source code and git repository. This information is not
needed for simply using Yosys, but may be of interest for developers looking to customise Yosys builds.

4.3.1 Writing extensions

Todo

check text is coherent

Todo

update to use /code_examples/extensions/test*.log

This chapter contains some bits and pieces of information about programming yosys extensions. Don’t be
afraid to ask questions on the YosysHQ Slack.

Todo

mention coding guide

Quick guide
Code examples from this section are included in the docs/source/code_examples/extensions directory of

the Yosys source code.

Program components and data formats

See The RTL Intermediate Language (RTLIL)document for more information about the internal data storage
format used in Yosys and the classes that it provides.

This document will focus on the much simpler version of RTLIL left after the commands proc and memory
(or memory -nomap):

It is possible to only work on this simpler version:

168 Chapter 4. Yosys internals

https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/extensions

YosysHQ Yosys, Version 0.55

RTLIL: :Cell

A

RTLIL: :Design |- RTLIL: :Module RTLIL: :Wire

Fig. 4.5: Simplified RTLIL entity-relationship diagram without memories and processes

Todo

consider replacing inline code

for (RTLIL::Module *module : design->selected_modules() {
if (module->has_memories_warn() || module->has_processes_warn())
continue;

When trying to understand what a command does, creating a small test case to look at the output of dump
and show before and after the command has been executed can be helpful. Selections has more information
on using these commands.

Creating a command

Todo

add/expand supporting text

Let’s create a very simple test command which prints the arguments we called it with, and lists off the
current design’s modules.

Listing 4.1: Example command my_cmd from my_cmd.cc

#1include <kernel/yosys.h>
USING_YOSYS_NAMESPACE

struct MyPass : public Pass {
MyPass() : Pass('"my_cmd", "just a simple test") { }
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
log("Arguments to my_cmd:\n");
for (auto &arg : args)
log(" %s\n", arg.c_str());

log("Modules in current design:\n");
for (auto mod : design->modules())
log(" Y%s (%d wires, %d cells)\n", log_id(mod),

(continues on next page)

4.3. Working with the Yosys codebase 169

YosysHQ Yosys, Version 0.55

(continued from previous page)
GetSize(mod->wires()), GetSize(mod->cells()));

}
} MyPass;

Note that we are making a global instance of a class derived from Yosys: :Pass, which we get by including
kernel/yosys.h.

Compiling to a plugin

Yosys can be extended by adding additional C++ code to the Yosys code base, or by loading plugins into
Yosys. For maintainability it is generally recommended to create plugins.

The following command compiles our example my_cmd to a Yosys plugin:

Todo

replace inline code

yosys-config --exec --cxx --cxxflags --1ldflags \
-o my_cmd.so -shared my_cmd.cc --1dlibs

Or shorter:

yosys-config --build my_cmd.so my_cmd.cc

Running Yosys with the -m option allows the plugin to be used. Here’s a quick example that also uses the
-p option to run my_cmd foo bar.

$ yosys -m ./my_cmd.so -p 'my_cmd foo bar'

-- Running command “my_cmd foo bar' --
Arguments to my_cmd:

my_cmd

foo

bar
Modules in current design:

Creating modules from scratch

Let’s create the following module using the RTLIL API:

Listing 4.2: absval_ref.v

module absval_ref (input signed [3:0] a, output [3:0] y);
assign y = a[3] 7 -a : a;
endmodule

We'll do the same as before and format it as a a Yosys: :Pass.

170 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

Listing 4.3: testl - creating the absval module, from my_cmd.cc

struct TestlPass : public Pass {
Test1Pass() : Pass("testl", "creating the absval module") { }
void execute(std::vector<std::string>, RTLIL::Design *design) override

{
if (design->has("\\absval") != 0)
log_error("A module with the name absval already exists!\n");

RTLIL: :Module #*module = design->addModule("\\absval");
log("Name of this module: %s\n", log_id(module)) ;

RTLIL: :Wire *a = module->addWire("\\a", 4);
a->port_input = true;
a->port_id = 1;

RTLIL: :Wire *y
y—>port_output
y—>port_id = 2;

module->addWire ("\\y", 4);
true;

RTLIL: :Wire *a_inv = module->addWire(NEW_ID, 4);
module->addNeg(NEW_ID, a, a_inv, true);
module->addMux (NEW_ID, a, a_inv, RTLIL::SigSpec(a, 3), y);

module->fixup_ports();

}
} TestlPass;

$ yosys -m ./my_cmd.so -p 'testl' -Q

-- Running command “testl' --
Name of this module: absval

And if we look at the schematic for this new module we see the following:

Modifying modules

Most commands modify existing modules, not create new ones.
When modifying existing modules, stick to the following DOs and DON’Ts:

e Do not remove wires. Simply disconnect them and let a successive clean command worry about
removing it.

e Use module->fixup_ports() after changing the port_* properties of wires.

e You can safely remove cells or change the connections property of a cell, but be careful when changing
the size of the SigSpec connected to a cell port.

o Use the SigMap helper class (see next section) when you need a unique handle for each signal bit.

4.3. Working with the Yosys codebase 171

YosysHQ Yosys, Version 0.55

$Smux

Fig. 4.6: Output of yosys -m ./my_cmd.so -p 'testl; show'

Using the SigMap helper class

Consider the following module:

Listing 4.4: sigmap_test.v

module test(input a, output x, y);
assign x = a, y = a;
endmodule

In this case a, x, and y are all different names for the same signal. However:

Todo

use my__cmd.cc literalincludes

RTLIL: :SigSpec a(module->wire("\\a")), x(module->wire("\\x")),
y(module->wire ("\\y"));
log("%d %d %d\n", a == x, x == y, y == a); // will print "0 0 0"

The SigMap helper class can be used to map all such aliasing signals to a unique signal from the group
(usually the wire that is directly driven by a cell or port).

SigMap sigmap(module);
log("%d %d %d\n", sigmap(a) == sigmap(x), sigmap(x) == sigmap(y),
sigmap(y) == sigmap(a)); // will print "1 1 1"

172 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

Printing log messages

The 1log() function is a printf ()-like function that can be used to create log messages.

Use log_signal () to create a C-string for a SigSpec object:

log("Mapped signal x: %s\n", log_signal(sigmap(x)));

The pointer returned by log_signal() is automatically freed by the log framework at a later time.

Use log_id () to create a C-string for an RTLIL: : IdString:

log("Name of this module: %s\n", log_id(module->name));

Use log_header () and log_push()/log_pop() to structure log messages:

Todo

replace inline code

log_header(design, "Doing important stuff!\n");
log_pushQ);
for (int i = 0; i < 10; i++)
log("Log message #/d.\n", i);
log_pop(O);

Error handling

Use log_error() to report a non-recoverable error:

Todo

replace inline code

if (design->modules.count (module->name) != 0)
log_error("A module with the name %s already exists!\n",
RTLIL::id2cstr(module->name)) ;

Use log_cmd_error () to report a recoverable error:

if (design->selection().empty())
log_cmd_error("This command can't operator on an empty selection!\n");

Use log_assert () and log_abort () instead of assert() and abort().

The “stubnets” example module

The following is the complete code of the “stubnets” example module. It is included in the Yosys source
distribution under docs/source/code_examples/stubnets.

4.3. Working with the Yosys codebase 173

https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/stubnets

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

YosysHQ Yosys, Version 0.55

Listing 4.5: stubnets.cc

// This is free and unencumbered software released into the public domain.
/7

// Anyone is free to copy, modify, publish, use, compile, sell, or

// distribute this software, either in source code form or as a compiled
// binary, for any purpose, commercial or mon—-commercial, and by any

// means.

#include <kernel/yosys.h>
#include <kernel/sigtools.h>

#include <string>
#include <map>
#include <set>

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

// this function is called for each module in the design
static void find_stub_nets(RTLIL: :Design *design, RTLIL::Module *module, bool report_
—bits)
{
// use a SigMap to convert nets to a unique representation
SigMap sigmap(module);

// count how many times a single-bit signal ts used
std: :map<RTLIL::SigBit, int> bit_usage_count;

// count output lines for this module (needed only for summary output at the end)
int line_count = 0;

log("Looking for stub wires in module %s:\n", RTLIL::id2cstr(module->name));

// For all ports on all cells
for (auto &cell_iter : module->cells_)
for (auto &conn : cell_iter.second->connections())
{
// Get the signals on the port
// (use sigmap to get a unige signal name)
RTLIL::SigSpec sig = sigmap(conn.second);

// add each bit to bit_usage_count, unless it is a constant
for (auto &bit : sig)
if (bit.wire != NULL)
bit_usage_count [bit]++;

}

// for each wire in the module
for (auto &wire_iter : module->wires_)

{
RTLIL: :Wire *wire = wire_iter.second;

(continues on next page)

174 Chapter 4. Yosys internals

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

YosysHQ Yosys, Version 0.55

(continued from previous page)

// .. but only selected wires
if (!design->selected(module, wire))
continue;

// add +1 usage if this wire actually is a port
int usage_offset = wire->port_id > 0 7 1 : 0;

// we will record which bits of the (possibly multi-bit) wire are stuby
—signals
std: :set<int> stub_bits;

// get a signal description for this wire and split it into separate bits
RTLIL::SigSpec sig = sigmap(wire);

// for each bit (unless it s a constant):
// check if it ts used at least two times and add to stub_bits otherwise
for (int i = 0; i < GetSize(sig); i++)
if (sigl[i].wire != NULL && (bit_usage_count[sig[i]] + usage_
—offset) < 2)
stub_bits.insert(i);

// continue if no stub bits found
if (stub_bits.size() == 0)
continue;

// report stub bits and/or stub wires, don't report single bits
// if called with report_bits set to false.

if (GetSize(stub_bits) == GetSize(sig)) {
log(" found stub wire: %s\n", RTLIL::id2cstr(wire->name)) ;
} else {
if (!report_bits)
continue;
log(" found wire with stub bits: %s [", RTLIL::id2cstr(wire->
—name)) ;
for (int bit : stub_bits)
log("%s%d", bit == *stub_bits.begin() 7 "" : ", ", bit);
log("I\n");
}
// we have outputted a line, increment summary counter
line_count++;
}

// report summary
if (report_bits)

log(" found %d stub wires or wires with stub bits.\n", line_count);
else

log(" found %d stub wires.\n", line_count);

3

// each pass contains a singleton object that is derived from Pass

(continues on next page)

4.3. Working with the Yosys codebase 175

YosysHQ Yosys, Version 0.55

(continued from previous page)

struct StubnetsPass : public Pass {
StubnetsPass() : Pass("stubnets") { }
void execute(std::vector<std::string> args, RTLIL::Design *design) override

{
// variables to mirror information from passed options
bool report_bits = O;
log_header(design, "Executing STUBNETS pass (find stub nets).\n");
// parse options
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
std::string arg = args[argidx];
if (arg == "-report_bits") {
report_bits = true;
continue;
}
break;
}
// handle extra options (e.g. selection)
extra_args(args, argidx, design);
// call find_stub_nets() for each module that is either
// selected as a whole or contains selected objects.
for (auto &it : design->modules_)
if (design->selected_module(it.first))
find_stub_nets(design, it.second, report_bits);
3

} StubnetsPass;

PRIVATE_NAMESPACE_END

Listing 4.6: Makefile

.PHONY: all dots examples
all: dots examples

dots:

examples:

.PHONY: test
test: stubnets.so

yosys -ql testl.log -m ./stubnets.so test.v -p "stubnets"

yosys -ql test2.log -m ./stubnets.so test.v -p "opt; stubnets"

yosys -ql test3.log -m ./stubnets.so test.v -p "techmap; opt; stubnets -report_
—bits"

tail testl.log test2.log test3.log

stubnets.so: stubnets.cc
yosys-config --exec --cxx --cxxflags -I../../../../ --ldflags -o $0 -shared $~ --
—1dlibs

(continues on next page)

176 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

(continued from previous page)
.PHONY: clean
clean:
rm -f testl.log test2.log test3.log
rm -f stubnets.so stubnets.d

Listing 4.7: test.v

module uut(inl, in2, in3, outl, out2);

input [8:0] inl, in2, in3;
output [8:0] outl, out2;

assign outl = inl + in2 + (in3 >> 4);

endmodule

4.3.2 Compiling with Verific library

The easiest way to get Yosys with Verific support is to contact YosysHQ for a Tabby CAD Suite evaluation
license and download link. The TabbyCAD Suite includes additional patches and a custom extensions library
in order to get the most out of the Verific parser when using Yosys.

If you already have a license for the Verific parser, in either source or binary form, you may be able to
compile Yosys with partial Verific support yourself.

The Yosys-Verific patch

YosysHQ maintains and develops a patch for Verific in order to better integrate with Yosys and to provide
features required by some of the formal verification front-end tools. To license this patch for your own Yosys
builds, contact YosysHQ.

Warning

While synthesis from RTL may be possible without this patch, YosysHQ provides no guarantees of
correctness and is unable to provide support.

We recommend against using unpatched Yosys+Verific builds in conjunction with the formal verification
front-end tools unless you are familiar with their inner workings. There are cases where the tools will appear
to work, while producing incorrect results.

Note

Some of the formal verification front-end tools may not be fully supported without the full TabbyCAD
suite. If you want to use these tools, including SBY, make sure to ask us if the Yosys-Verific patch is
right for you.

4.3. Working with the Yosys codebase 177

https://www.yosyshq.com/contact
https://www.yosyshq.com/tabby-cad-datasheet
https://www.yosyshq.com/contact

YosysHQ Yosys, Version 0.55

Compile options

To enable Verific support ENABLE_VERIFIC has to be set to 1 and VERIFIC_DIR needs to point to the location
where the library is located.

Parameter Default Description
ENABLE_ VERIFIC 0 Enable compilation with Verific
VERIFIC_ DIR Jusr/local/src/verific_lib Library and headers location

Since there are multiple Verific library builds and they can have different features, there are compile options
to select them.

Parameter Default Description

ENABLE_ VERIFIC_SYSTEMVERILOG
ENABLE_VERIFIC_VHDL

ENABLE VERIFIC HIER TREE

ENABLE_ VERIFIC_YOSYSHQ_EXTENSIONS
ENABLE_VERIFIC_EDIF
ENABLE_VERIFIC_LIBERTY

SystemVerilog support

VHDL support

Hierarchy tree support

YosysHQ specific extensions support
EDIF support

Liberty file support

OIS Ol ==

To find the compile options used for a given Yosys build, call yosys-config --cxxflags. This documenta-
tion was built with the following compile options:

--cxxflags -02 -flto=auto -ffat-lto-objects -fexceptions -g \
-grecord-gcc-switches -pipe -Wall -Werror=format-security \
-Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 \
—Wp,-D_GLIBCXX_ASSERTIONS \
-specs=/usr/lib/rpm/redhat/redhat-hardened-ccl \
-fstack-protector-strong \
-specs=/usr/1ib/rpm/redhat/redhat-annobin-ccl -m64 \
-mcpu=power8 -mtune=power8 -fasynchronous-unwind-tables \
-fstack-clash-protection -Wall -Wextra -ggdb \
-I"/usr/include/yosys" -MD -MP -D_YOSYS_ -fPIC \
-I/usr/include -DYOSYS_VER=\"0.55\" -DYOSYS_MAJOR=0 \
-DYOSYS_MINOR=55 -DYOSYS_COMMIT=0.55 -std=c++17 -03 \
-DYOSYS_ENABLE_READLINE -DYOSYS_ENABLE_PLUGINS \
-DYOSYS_ENABLE_GLOB -DYOSYS_ENABLE_ZLIB \
-DTCL_WITH_EXTERNAL_TOMMATH -DWITH_GZFILEQOP \
-DYOSYS_ENABLE_TCL -DYOSYS_ENABLE_ABC -DYOSYS_ENABLE_COVER

Note

The YosysHQ specific extensions are only available with the TabbyCAD suite.

Required Verific features

The following features, along with their corresponding Yosys build parameters, are required for the Yosys-
Verific patch:

e RTL elaboration with

178 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

— SystemVerilog with ENABLE_VERIFIC_SYSTEMVERILOG, and/or
— VHDL support with ENABLE_VERIFIC_VHDL.
e Hierarchy tree support and static elaboration with ENABLE_VERIFIC_HIER_TREE.

Please be aware that the following Verific configuration build parameter needs to be enabled in order to
create the fully supported build:

database/DBCompileFlags.h:
DB_PRESERVE_INITIAL_VALUE

Note

Yosys+ Verific builds may compile without these features, but we provide no guarantees and cannot offer
support if they are disabled or the Yosys-Verific patch is not used.

Optional Verific features

The following Verific features are available with TabbyCAD and can be enabled in Yosys builds:
« EDIF support with ENABLE_VERIFIC_EDIF, and
o Liberty file support with ENABLE_VERIFIC_LIBERTY.

Partially supported builds

This section describes Yosys+ Verific configurations which we have confirmed as working in the past, however
they are not a part of our regular tests so we cannot guarantee they are still functional.

To be able to compile Yosys with Verific, the Verific library must have support for at least one HDL language
with RTL elaboration enabled. The following table lists a series of build configurations which are possible,
but only provide a limited subset of features. Please note that support is limited without YosysHQ specific
extensions of Verific library.

Configuration values:
a. ENABLE_VERIFIC_SYSTEMVERILOG
b. ENABLE_VERIFIC_VHDL
c. ENABLE_VERIFIC_HIER_TREE
d. ENABLE_VERIFIC_YOSYSHQ_EXTENSIONS

Configuration values

Features a b c d
SystemVerilog + RTL elaboration 1 0 0 0
VHDL + RTL elaboration 0 1 0 0
SystemVerilog + VHDL + RTL elaboration 1 1 0 0
SystemVerilog + RTL elaboration + Static elaboration + Hier tree 1 0 1 0
VHDL + RTL elaboration + Static elaboration + Hier tree 0 1 1 0
SystemVerilog + VHDL 4+ RTL elaboration + Static elaboration + Hier 1 1 1 0

tree

4.3. Working with the Yosys codebase 179

YosysHQ Yosys, Version 0.55

Note

In case your Verific build has EDIF and/or Liberty support, you can enable those options. These are not
mentioned above for simplification and since they are disabled by default.

4.3.3 Writing a new backend using FunctionallR

What is FunctionallR

To simplify the writing of backends for functional languages or similar targets, Yosys provides an alternative
intermediate representation called FunctionallR which maps more directly on those targets.

FunctionallR represents the design as a function (inputs, current_state) -> (outputs, next_state).
This function is broken down into a series of assignments to variables. Fach assignment is a simple operation,
such as an addition. Complex operations are broken up into multiple steps. For example, an RTLIL addition
will be translated into a sign/zero extension of the inputs, followed by an addition.

Like SSA form, each variable is assigned to exactly once. We can thus treat variables and assignments
as equivalent and, since this is a graph-like representation, those variables are also called “nodes”. Unlike
RTLIL’s cells and wires representation, this representation is strictly ordered (topologically sorted) with
definitions preceding their use.

Every node has a “sort” (the FunctionallR term for what might otherwise be called a “type”). The sorts
available are

e bit[n] for an n-bit bitvector, and
e memory[n,m] for an immutable array of 2**n values of sort bit [m].

In terms of actual code, Yosys provides a class Functional::IR that represents a design in FunctionallR.

Functional::IR::from_module generates an instance from an RTLIL module. The entire design is stored

as a whole in an internal data structure. To access the design, the Functional: :Node class provides a

reference to a particular node in the design. The Functional: : IR class supports the syntax for (auto node
ir) to iterate over every node.

Functional: :IR also keeps track of inputs, outputs and states. By a “state” we mean a pair of a “current
state” input and a “next state” output. One such pair is created for every register and for every memory.
Every input, output and state has a name (equal to their name in RTLIL), a sort and a kind. The kind
field usually remains as the default value $input, $output or $state, however some RTLIL cells such as
$assert or $anyseq generate auxiliary inputs/outputs/states that are given a different kind to distinguish
them from ordinary RTLIL inputs/outputs/states.

o To access an individual input/output/state, use ir.input (name, kind), ir.output(name, kind) or
ir.state(name, kind). kind defaults to the default kind.

o To iterate over all inputs/outputs/states of a certain kind, methods ir.inputs, ir.outputs, ir.
states are provided. Their argument defaults to the default kinds mentioned.

o To iterate over inputs/outputs/states of any kind, use ir.all_inputs, ir.all_outputs and ir.
all_states.

e Outputs have a node that indicate the value of the output, this can be retrieved via output.value().

e States have a node that indicate the next value of the state, this can be retrieved via
state.next_value(). They also have an initial value that is accessed as either state.
initial_value_signal() or state.initial_value_memory(), depending on their sort.

Each node has a “function”, which defines its operation (for a complete list of functions and a specifica-
tion of their operation, see functional.h). Functions are represented as an enum Functional::Fn and
the function field can be accessed as node.fn(). Since the most common operation is a switch over the

180 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

function that also accesses the arguments, the Node class provides a method visit that implements the visi-
tor pattern. For example, for an addition node node with arguments ni1 and n2, node.visit(visitor)
would call visitor.add(node, n1, n2). Thus typically one would implement a class with a method
for every function. Visitors should inherit from either Functional::AbstractVisitor<ReturnType> or
Functional: :DefaultVisitor<ReturnType>. The former will produce a compiler error if a case is unhan-
dled, the latter will call default_handler(node) instead. Visitor methods should be marked as override
to provide compiler errors if the arguments are wrong.

Utility classes

functional.h also provides utility classes that are independent of the main FunctionallR representation but
are likely to be useful for backends.

Functional: :Writer provides a simple formatting class that wraps a std::ostream and provides the fol-
lowing methods:

e writer << value wraps os << value.

e writer.print(fmt, valueO, valuel, value2, ...) replaces {0}, {1}, {2}, etc in the string fmt
with value0, valuel, value2, resp. Each value is formatted using os << value. It is also possible to
write {} to refer to one past the last index, i.e. {1} {} {} {7} {} is equivalent to {1} {2} {3} {7}

{8%}.

e writer.print_with(fn, fmt, valueO, valuel, value2, ...) functions much the same as print
but it uses os << fn(value) to print each value and falls back to os << value if fn(value) is not
legal.

Functional: :Scope keeps track of variable names in a target language. It is used to translate between
different sets of legal characters and to avoid accidentally re-defining identifiers. Users should derive a class
from Scope and supply the following:

e Scope<Id> takes a template argument that specifies a type that’s used to uniquely distinguish variables.
Typically this would be int (if variables are used for Functional: : IR nodes) or IdString.

o The derived class should provide a constructor that calls reserve for every reserved word in the target
language.

e A method bool is_character_legal(char c, int index) has to be provided that returns true iff
c is legal in an identifier at position index.

Given an instance scope of the derived class, the following methods are then available:
e scope.reserve(std::string name) marks the given name as being in-use

e scope.unique_name (IdString suggestion) generates a previously unused name and attempts to
make it similar to suggestion.

e scope(Id id, IdString suggestion) functions similar to unique_name, except that multiple calls
with the same id are guaranteed to retrieve the same name (independent of suggestion).

sexpr.h provides classes that represent and pretty-print s-expressions. S-expressions can be constructed with
SExpr::list, for example SExpr expr = SExpr::list("add", "x", SExpr::list("mul", "y", "z"))
represents (add x (mul y z)) (by adding using SExprUtil::list to the top of the file, 1ist can be used
as shorthand for SExpr: :1ist). For prettyprinting, SExprWriter wraps an std: :ostream and provides the
following methods:

e writer << sexpr writes the provided expression to the output, breaking long lines and adding appro-
priate indentation.

4.3. Working with the Yosys codebase 181

YosysHQ Yosys, Version 0.55

e writer.open(sexpr) is similar to writer << sexpr but will omit the last closing parenthesis. Further
arguments can then be added separately with << or open. This allows for printing large s-expressions
without needing to construct the whole expression in memory first.

e writer.open(sexpr, false) is similar to writer.open(sexpr) but further arguments will not be
indented. This is used to avoid unlimited indentation on structures with unlimited nesting.

e writer.close(n = 1) closes the last n open s-expressions.

e writer.push() and writer.pop() are used to automatically close s-expressions. writer.pop() closes
all s-expressions opened since the last call to writer.push().

e writer.comment(string) writes a comment on a separate-line. writer.comment(string, true)
appends a comment to the last printed s-expression.

e writer.flush() flushes any buffering and should be called before any direct access to the underlying
std::ostream. It does not close unclosed parentheses.

e The destructor calls flush but also closes all unclosed parentheses.

Example: A minimal functional backend

At its most basic, there are three steps we need to accomplish for a minimal functional backend.
First, we need to convert our design into FunctionallR. This is most easily done by calling the
Functional::IR::from_module () static method with our top-level module, or iterating over and converting
each of the modules in our design. Second, we need to handle each of the Functional: :Nodes in our design.
Iterating over the Functional: :IR includes reading the module inputs and current state, but not writing
the results. So our final step is to handle the outputs and next state.

In order to add an output command to Yosys, we implement the Yosys: :Backend class and provide an

instance of it:

Listing 4.8: Example source code for a minimal functional backend,
dummy . cc

#include "kernel/functional.h”
#include "kernel/yosys.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

struct FunctionalDummyBackend : public Backend {
FunctionalDummyBackend() : Backend("functional dummy", "dump generated
—Functional IR") {}
void execute(std::ostream *&f, std: :string filename, std::vector<std::string>
—args, RTLIL::Design *design) override
{
// backend pass botiler plate
log_header(design, "Executing dummy functional backend.\n");

size_t argidx = 1;
extra_args(f, filename, args, argidx, design);

for (auto module : design->selected_modules())
{

log("Processing module ~%s”.\n", module->name.c_str());

(continues on next page)

182 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

(continued from previous page)

// convert module to FunctionallIR
auto ir = Functional::IR::from_module(module) ;
*f << "module " << module->name.c_str() << "\n";

// write node functions
for (auto node : ir)
*f << " assign " << id2cstr(node.name())
<< " = " << node.to_string() << "\n";
*f << ll\nll;

// write outputs and next state
for (auto output : ir.outputs())

*f << " " << id2cstr(output->kind)
<< " " << jid2cstr(output->name)
<< " = " << id2cstr(output->value() .name()) << "\n";
for (auto state : ir.states())
#f << " " << id2cstr(state->kind)
<< " " << id2cstr(state->name)
<< " = " << id2cstr(state->next_value() .name()) << "\n

}
3

} FunctionalDummyBackend;

PRIVATE_NAMESPACE_END

Because we are wusing the Backend class, our "functional_dummy" is registered as the
write_functional_dummy command. The execute method is the part that runs when the user calls
the command, handling any options, preparing the output file for writing, and iterating over selected
modules in the design. Since we don’t have any options here, we set argidx = 1 and call the extra_args()
method. This method will read the command arguments, raising an error if there are any unexpected ones.
It will also assign the pointer f to the output file, or stdout if none is given.

Note

For more on adding new commands to Yosys and how they work, refer to Writing extensions.

For this minimal example all we are doing is printing out each node. The node.name () method returns an
RTLIL::IdString, which we convert for printing with id2cstr (). Then, to print the function of the node,
we use node.to_string() which gives us a string of the form function(args). The function part is the
result of Functional: :IR::fn_to_string(node.fn()); while args is the zero or more arguments passed to
the function, most commonly the name of another node. Behind the scenes, the node.to_string() method
actually wraps node.visit(visitor) with a private visitor whose return type is std: :string.

Finally we iterate over the module’s outputs and states, using Functional::IROutput::value() and
Functional::IRState: :next_value() respectively in order to get the results of the transfer function.

4.3. Working with the Yosys codebase 183

YosysHQ Yosys, Version 0.55

Example: Adapting SMT-LIB backend for Rosette

This section will introduce the SMT-LIB functional backend (write_functional_smt2) and what changes
are needed to work with another s-expression target, Rosette (write_functional_rosette).

Overview

Rosette is a solver-aided programming language that extends Racket with language constructs
for program synthesis, verification, and more. To verify or synthesize code, Rosette compiles it
to logical constraints solved with off-the-shelf SMT solvers.

—https://emina.github.io/rosette/

Rosette, being backed by SMT solvers and written with s-expressions, uses code very similar to the
write_functional_smt2 output. As a result, the SMT-LIB functional backend can be used as a start-
ing point for implementing a Rosette backend.

Full code listings for the initial SMT-LIB backend and the converted Rosette backend are included in the
Yosys source repository under backends/functional as smtlib.cc and smtlib_rosette.cc respectively.
Note that the Rosette language is an extension of the Racket language; this guide tends to refer to Racket
when talking about the underlying semantics/syntax of the language.

The major changes from the SMT-LIB backend are as follows:
o all of the Smt prefixes in names are replaced with Smtr to mean smtlib_rosette;
e syntax is adjusted for Racket;

o data structures for input/output/state are changed from using declare-datatype with statically typed
fields, to using struct with no static typing;

« the transfer function also loses its static typing;

« sign/zero extension in Rosette use the output width instead of the number of extra bits, gaining static
typing;
« the single scope is traded for a global scope with local scope for each struct;

« initial state is provided as a constant value instead of a set of assertions;

e and the -provides option is introduced to more easily use generated code within Rosette based appli-
cations.

Scope

Our first addition to the minimal backend above is that for both SMT-LIB and Rosette backends, we are
now targetting real languages which bring with them their own sets of constraints with what we can use
as identifiers. This is where the Functional: :Scope class described above comes in; by using this class
we can safely rename our identifiers in the generated output without worrying about collisions or illegal
names/characters.

In the SMT-LIB version, the SmtScope class implements Scope<int>; provides a constructor that iterates
over a list of reserved keywords, calling reserve on each; and defines the is_character_legal method to
reject any characters which are not allowed in SMT-LIB variable names to then be replaced with underscores
in the output. To use this scope we create an instance of it, and call the Scope: :unique_name () method to
generate a unique and legal name for each of our identifiers.

In the Rosette version we update the list of legal ascii characters in the is_character_legal method to
only those allowed in Racket variable names.

184 Chapter 4. Yosys internals

http://emina.github.io/rosette/
http://racket-lang.org/
http://smtlib.cs.uiowa.edu/
https://emina.github.io/rosette/

YosysHQ Yosys, Version 0.55

Listing 4.9: diff of Scope class

-struct SmtScope : public Functional::Scope<int> {
- SmtScope () {
+struct SmtrScope : public Functional::Scope<int> {

+ SmtrScope () {
for(const char **p = reserved_keywords; *p != nullptr; p++)
reserve (*p) ;

}

bool is_character_legal(char c, int index) override {
= return isascii(c) && (isalpha(c) || (isdigit(c) && index > 0) || strchr(
S 1% TEx_—+=<>.7/", ¢));
+ return isascii(c) && (isalpha(c) || (isdigit(c) && index > 0) || strchr(
"e$% Tk _+=.", c));

}
};

For the reserved keywords we trade the SMT-LIB specification for Racket to prevent parts of our design
from accidentally being treated as Racket code. We also no longer need to reserve pair, first, and second.
In write_functional_smt2 these are used for combining the (inputs, current_state) and (outputs,
next_state) into a single variable. Racket provides this functionality natively with cons, which we will see
later.

Listing 4.10: diff of reserved_keywords list

const char *reserved_keywords[] = {
- // reserved keywords from the smtlib spec

// reserved keywords from the racket spec

+
+
// reserved for our own purposes
- '"pair", "Pair", "first", "second",
- '"inputs", "state",
+ '"inputs", "state", "name",
nullptr
i
Note

We skip over the actual list of reserved keywords from both the smtlib and racket specifications to save
on space in this document.

Sort

Next up in write_functional_smt2 we see the Sort class. This is a wrapper for the Functional: :Sort
class, providing the additional functionality of mapping variable declarations to s-expressions with the
to_sexpr() method. The main change from SmtSort to SmtrSort is a syntactical one with signals rep-
resented as bitvectors, and memories as lists of signals.

4.3. Working with the Yosys codebase 185

YosysHQ Yosys, Version 0.55

Listing 4.11: diff of Sort wrapper

SExpr to_sexpr() const {

if (sort.is_memory()) {
- return list("Array", list("_", "BitVec", sort.addr_width()),
~list("_", "BitVec", sort.data_width()));
+ return list("list", list("bitvector", sort.addr_width()), list(
—"bitvector", sort.data_width()));

} else if(sort.is_signal()) {
- return list("_", "BitVec", sort.width());
+ return list("bitvector", sort.width());

} else {

log_error ("unknown sort");

3

Struct

As we saw in the minimal backend above, the Functional: : IR class tracks the set of inputs, the set of out-
puts, and the set of “state” variables. The SMT-LIB backend maps each of these sets into its own SmtStruct,
with each variable getting a corresponding field in the struct and a specified Sort. write_functional_smt2
then defines each of these structs as a new datatype, with each element being strongly-typed.

In Rosette, rather than defining new datatypes for our structs, we use the native struct. We also only
declare each field by name because Racket provides less static typing. For ease of use, we provide the
expected type for each field as comments.

Listing 4.12: diff of write_definition method

void write_definition(SExprWriter &w) {
= w.open(list("declare-datatype", name));
- w.open(list());
= w.open(list(name)) ;
= for(const auto &field : fields)
= w << list(field.accessor, field.sort.to_sexpr());
- w.close(3);
vector<SExpr> field_list;
for(const auto &field : fields) {
field list.emplace_back(field.name) ;
}
w.push();
w.open(list("struct", name, field_list, "#:transparent"));
if (field_names.size()) {
for (const auto &field : fields) {
auto bv_type = field.sort.to_sexpr();
w.comment (field.name + " " + bv_type.to_string());

}
w.pop(Q);

+ 4+ + + + + + + + o+ o+ o+ o+

3

Each field is added to the SmtStruct with the insert method, which also reserves a unique name (or accessor)
within the Scope. These accessors combine the struct name and field name and are globally unique, being
used in the access method for reading values from the input/current state.

186 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

Listing 4.13: Struct::access() method

SExpr access(SExpr record, IdString name) {
size_t i = field_names.at(name);
return list(fields[i].accessor, std::move(record));

In Rosette, struct fields are accessed as <struct_name>-<field_name> so including the struct name in the
field name would be redundant. For write_functional_rosette we instead choose to make field names
unique only within the struct, while accessors are unique across the whole module. We thus modify the class
constructor and insert method to support this; providing one scope that is local to the struct (Local_scope)
and one which is shared across the whole module (global_scope), leaving the access method unchanged.

Listing 4.14: diff of struct constructor

= SmtStruct(std: :string name, SmtScope &scope) : scope(scope), name(name) {}
- void insert(IdString field_name, SmtSort sort) {

+ SmtrStruct (std: :string name, SmtrScope &scope) : global_scope(scope), local_
—scope(), name(name) {}
+ void insert(IdString field_name, SmtrSort sort) {
field_names(field_name) ;
= auto accessor = scope.unique_name("\\" + name + "_" + RTLIL::unescape_

—id(field_name));

- fields.emplace_back(Field{sort, accessor});

auto base_name = local_scope.unique_name(field_name) ;
auto accessor = name + "-" + base_name;
global_scope.reserve(accessor) ;
fields.emplace_back(Field{sort, accessor, base_namel);

+ + + +

3

Finally, SmtStruct also provides a write_value template method which calls a provided function on each
element in the struct. This is used later for assigning values to the output/next state pair. The only change
here is to remove the check for zero-argument constructors since this is not necessary with Rosette structs.

Listing 4.15: diff of write_value method

template<typename Fn> void write_value(SExprWriter &w, Fn fn) {
- if (field_names.empty()) {
- // Zero-argument constructors in SMTLIB must not be called as

—functions.

- w << name;

= } else {

= w.open(list(name));

- for(auto field _name : field_names) {

= w << fn(field_name) ;

= w.comment (RTLIL: :unescape_id(field_name), true);
- }

= w.close(Q);

+ w.open(list (name)) ;

+ for(auto field _name : field_names) {

+ w << fn(field_name);

+ w.comment (RTLIL: :unescape_id(field_name), true);

(continues on next page)

4.3. Working with the Yosys codebase 187

YosysHQ Yosys, Version 0.55

(continued from previous page)

+ w.close();

PrintVisitor

Remember in the minimal backend we converted nodes into strings for writing using the node.to_string()
method, which wrapped node.visit() with a private visitor. We now want a custom visitor which can
convert nodes into s-expressions. This is where the PrintVisitor comes in, implementing the abstract
Functional: :AbstractVisitor class with a return type of SExpr. For most functions, the Rosette output
is very similar to the corresponding SMT-LIB function with minor adjustments for syntax.

Listing 4.16: portion of Functional::AbstractVisitor imple-
mentation diff showing similarities

SExpr logical_shift_left(Node, Node a, Node b) override { return list("bvshl",
—n(a), extend(n(b), b.width(), a.width())); }

SExpr logical_shift_right(Node, Node a, Node b) override { return list("bvlshr",
— n(a), extend(n(b), b.width(), a.width())); }

SExpr arithmetic_shift_right(Node, Node a, Node b) override { return list(
—"bvashr", n(a), extend(n(b), b.width(), a.width())); }
- SExpr mux(Node, Node a, Node b, Node s) override { return list("ite", to_
—~bool(n(s)), n(b), n(a)); }
= SExpr constant(Node, RTLIL::Const const &value) override { return smt_
—.const(value); }
- SExpr memory_read(Node, Node mem, Node addr) override { return list("select",
~n(mem), n(addr)); }
= SExpr memory_write(Node, Node mem, Node addr, Node data) override { return list(
—"store", n(mem), n(addr), n(data)); }

+ SExpr mux(Node, Node a, Node b, Node s) override { return list("if", to_
~bool(n(s)), n(b), n(a));

+ SExpr constant(Node, RTLIL::Const const& value) override { return list("bv",,
—smt_const(value), value.size()); }

+ SExpr memory_read(Node, Node mem, Node addr) override { return list("list-ref-bv
", n(mem), n(addr)); }

+ SExpr memory_write(Node, Node mem, Node addr, Node data) override { return list(

—"list-set-bv", n(mem), n(addr), n(data)); }

However there are some differences in the two formats with regards to how booleans are handled, with
Rosette providing built-in functions for conversion.

Listing 4.17: portion of Functional::AbstractVisitor imple-
mentation diff showing differences

SExpr from_bool (SExpr &&arg) {
- return list("ite", std::move(arg), "#bl", "#b0");
+ return list("bool->bitvector", std::move(arg));
}
SExpr to_bool(SExpr &&arg) {
= return list("=", std::move(arg), "#bl");
+ return list("bitvector->bool", std::move(arg));

}

Of note here is the rare instance of the Rosette implementation gaining static typing rather than losing it.

188 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

Where SMT__LIB calls zero/sign extension with the number of extra bits needed (given by out_width -
a.width()), Rosette instead specifies the type of the output (given by list("bitvector", out_width)).

Listing 4.18: zero/sign extension implementation diff

- SExpr zero_extend(Node, Node a, int out_width) override { return list(list("_",
~"zero_extend", out_width - a.width()), n(a)); }
- SExpr sign_extend(Node, Node a, int out_width) override { return list(list("_",
—"sign_extend", out_width - a.width()), n(a)); }

+ SExpr zero_extend(Node, Node a, int out_width) override { return list("zero-
—extend", n(a), list("bitvector", out_width)); }
+ SExpr sign_extend(Node, Node a, int out_width) override { return list("sign-

—extend", n(a), list("bitvector", out_width)); }

Note

Be sure to check the source code for the full list of differences here.

Module

With most of the supporting classes out of the way, we now reach our three main steps from the minimal
backend. These are all handled by the SmtModule class, with the mapping from RTLIL module to Func-
tionallR happening in the constructor. Each of the three SmtStructs; inputs, outputs, and state; are also
created in the constructor, with each value in the corresponding lists in the IR being inserted.

Listing 4.19: SmtModule constructor

SmtModule (Module *module)

: ir(Functional: :IR::from_module(module))

, scope()

, name(scope.unique_name (module->name))
input_struct(scope.unique_name (module->name.str() + "_Inputs"), scope)
, output_struct(scope.unique_name(module->name.str() + "_Outputs"),,

—.scope)
, state_struct(scope.unique_name(module->name.str() + "_State"), scope)
{
scope.reserve(name + "-initial");
for (auto input : ir.inputs())
input_struct.insert (input->name, input->sort);
for (auto output : ir.outputs())
output_struct.insert (output->name, output->sort);
for (auto state : ir.states())
state_struct.insert(state->name, state->sort);
}

Since Racket uses the - to access struct fields, the SmtrModule instead uses an underscore for the name of
the initial state.

4.3. Working with the Yosys codebase 189

YosysHQ Yosys, Version 0.55

Listing 4.20: diff of Module constructor

- scope.reserve (name + "-initial");
+ scope.reserve(name + "_initial");

The write method is then responsible for writing the FunctionallR to the output file, formatted for the
corresponding backend. SmtModule::write() breaks the output file down into four parts: defining the
three structs, declaring the pair datatype, defining the transfer function (inputs, current_state) ->
(outputs, next_state) with write_eval, and declaring the initial state with write_initial. The only
change for the SmtrModule is that the pair declaration isn’t needed.

Listing 4.21: diff of Module: :write() method

void write(std::ostream &out)

{
SExprWriter w(out);

input_struct.write_definition(w);
output_struct.write_definition(w);
state_struct.write_definition(w);

= w << list("declare-datatypes",

= list(list("Pair", 2)),

= list(list("par", list("X", "Y"), list(list("pair", list("first",
. "X"), list("second", "Y"))))));

write_eval(w);
write_initial(w);

}

The write_eval method is where the FunctionallR nodes, outputs, and next state are handled. Just
as with the minimal backend, we iterate over the nodes with for(auto n : ir), and then use the
Struct::write_value() method for the output_struct and state_struct to iterate over the outputs
and next state respectively.

Listing 4.22: iterating over FunctionallR nodes in
SmtModule: :write_eval ()

for(auto n : ir)
if(linlined(n)) {
w.open(list("let", list(list(node_to_sexpr(n), n.
—visit(visitor)))), false);
w.comment (SmtSort (n.sort()) .to_sexpr() .to_string(),
—true);

The main differences between our two backends here are syntactical. First we change the define-fun for
the Racket style define which drops the explicitly typed inputs/outputs. And then we change the final
result from a pair to the native cons which acts in much the same way, returning both the outputs and
the next_state in a single variable.

190 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

Listing 4.23: diff of Module: :write_eval() transfer function dec-
laration

- w.open(list("define-fun", name,

- list(list("inputs", input_struct.name),

- list("state", state_struct.name)),

= list("Pair", output_struct.name, state_struct.name)));
+ w.open(list("define", list(name, "inputs", "state")));

Listing 4.24: diff of output/next state handling
Module: :write_eval()

- w.open(list("pair"));
+ w.open(list("cons"));

output_struct.write_value(w, [&] (IdString name) { return node_to_
—sexpr (ir.output (name) .value()); 1});

state_struct.write_value(w, [&](IdString name) { return node_to_
—sexpr(ir.state(name) .next_value()); });

w.pop () ;

For the write_initial method, the SMT-LIB backend uses declare-const and asserts which must always
hold true. For Rosette we instead define the initial state as any other variable that can be used by external
code. This variable, [name] _initial, can then be used in the [name] function call; allowing the Rosette
code to be used in the generation of the next_state, whereas the SMT-LIB code can only verify that a
given next_state is correct.

Listing 4.25: diff of Module: :write_initial() method

void write_initial (SExprWriter &w)

- std::string initial = name + "-initial";
- w << list("declare-const", initial, state_struct.name);
+ w.push();
+ auto initial = name + "_initial";
+ w.open(list("define", initial));
+ w.open(list(state_struct.name));
for (auto state : ir.states()) {
= if (state->sort.is_signal())
= w << list("assert", list("=", state_struct.
—access(initial, state->name), smt_const(state->initial_value_signal())));
= else if (state->sort.is_memory()) {

+ if (state->sort.is_signal())
+ w << list("bv", smt_const(state->initial_value_
—signal()), state->sort.width());
+ else if (state->sort.is_memory()) {

const auto &contents = state->initial_value_memory();
+ w.open(list("list"));

for(int i = 0; i < 1<<state->sort.addr_width(); i++) {
- auto addr = smt_const(RTLIL::Const(i, state->
—sort.addr_width()));
= w << list("assert", list("=", list("select",,
—.state_struct.access(initial, state->name), addr), smt_const(contents[i])));
+ w << 1list("bv", smt_const(contents[i]), state->

(continues on next page)

4.3. Working with the Yosys codebase 191

YosysHQ Yosys, Version 0.55

(continued from previous page)

—sort.data_width());
}

+ w.close();

+ w.pop();

Backend

The final part is the Backend itself, with much of the same boiler plate as the minimal backend. The main
difference is that we use the Module to perform the actual processing.

Listing 4.26: The FunctionalSmtBackend

struct FunctionalSmtBackend : public Backend {
FunctionalSmtBackend() : Backend("functional smt2", "Generate SMT-LIB from,
—Functional IR") {}

void help() override { log("\nFunctional SMT Backend.\n\n"); }

void execute(std::ostream *&f, std: :string filename, std::vector<std::string>
—args, RTLIL::Design *design) override

{
log_header(design, "Executing Functional SMT Backend.\n");
size_t argidx = 1;
extra_args(f, filename, args, argidx, design);
for (auto module : design->selected_modules()) {
log("Processing module “%s”.\n", module->name.c_str());
SmtModule smt(module);
smt.write (*f);
}
}

} FunctionalSmtBackend;

There are two additions here for Rosette. The first is that the output file needs to start with the #lang
definition which tells the compiler/interpreter that we want to use the Rosette language module. The second
is that the write_functional_rosette command takes an optional argument, -provides. If this argument
is given, then the output file gets an additional line declaring that everything in the file should be exported
for use; allowing the file to be treated as a Racket package with structs and mapping function available for
use externally.

Listing 4.27: relevant portion of diff of Backend::execute()
method

*f << "#lang rosette/safe\n";
if (provides) {
*xf << "(provide (all-defined-out))\n";

+ + + +

}

(continues on next page)

192 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

(continued from previous page)

4.3.4 Contributing to Yosys

Note

For information on making a pull request on github, refer to our CONTRIBUTING.md file.

Coding Style

Formatting of code

e Yosys code is using tabs for indentation. Tabs are 8 characters.
e A continuation of a statement in the following line is indented by two additional tabs.
o Lines are as long as you want them to be. A good rule of thumb is to break lines at about column 150.

o Opening braces can be put on the same or next line as the statement opening the block (if, switch,
for, while, do). Put the opening brace on its own line for larger blocks, especially blocks that contains
blank lines.

e Otherwise stick to the Linux Kernel Coding Style.

C++ Language

Yosys is written in C+-+17.

In general Yosys uses int instead of size_t. To avoid compiler warnings for implicit type casts, always use
GetSize(foobar) instead of foobar.size(). (GetSize() is defined in kernel/yosys.h)

Use range-based for loops whenever applicable.

4.3.5 Testing Yosys

Todo

more about the included test suite and how to add tests

Automatic testing

The Yosys Git repo has automatic testing of builds and running of the included test suite on both Ubuntu
and macOS, as well as across range of compiler versions. For up to date information, including OS versions,
refer to the git actions page.

Todo

are unit tests currently working

4.3. Working with the Yosys codebase 193

https://github.com/YosysHQ/yosys/CONTRIBUTING.md
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/yosys/actions

YosysHQ Yosys, Version 0.55

4.4 Techmap by example

As a quick recap, the techmap command replaces cells in the design with implementations given as Verilog
code (called “map files”). It can replace Yosys’ internal cell types (such as $or) as well as user-defined cell

types.
e Verilog parameters are used extensively to customize the internal cell types.
o Additional special parameters are used by techmap to communicate meta-data to the map files.
e Special wires are used to instruct techmap how to handle a module in the map file.
o Generate blocks and recursion are powerful tools for writing map files.

Code examples used in this document are included in the Yosys code base under docs/source/
code_examples/techmap.

4.4.1 Mapping OR3X1

Todo

add/expand supporting text

Note

This is a simple example for demonstration only. Techmap shouldn’t be used to implement basic logic
optimization.

Listing 4.28: red_or3x1_map.v

module \$reduce_or (A, Y);

parameter A_SIGNED = O;
parameter A_WIDTH = O;
parameter Y_WIDTH = O;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;

function integer min;
input integer a, b;

begin
if (a < b)
min = a;
else
min = b;
end
endfunction
genvar ij;

generate begin
if (A_WIDTH == 0) begin

(continues on next page)

194 Chapter 4. Yosys internals

https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/techmap
https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/techmap

YosysHQ Yosys, Version 0.55

(continued from previous page)

assign Y = 0;
end
if (A_WIDTH == 1) begin
assign Y = A;
end
if (A_WIDTH == 2) begin
wire ybuf;
OR3X1 g (.ACA[0]), .B(A[11), .C(1'b0O), .Y(ybuf));
assign Y = ybuf;
end
if (A_WIDTH == 3) begin
wire ybuf;
OR3X1 g (.ACA[0]), .B(A[1]1), .C(A[2]), .Y(ybuf));
assign Y = ybuf;
end
if (A_WIDTH > 3) begin
localparam next_stage_sz = (A_WIDTH+2) / 3;
wire [next_stage_sz-1:0] next_stage;
for (i = 0; i < next_stage_sz; i = i+l) begin
localparam bits = min(A_WIDTH - 3*i, 3);

assign next_stagel[i] = [A[3*i +: bits];
end
assign Y = |next_stage;
end
end endgenerate
endmodule

A A

$5.genblk0.genblk4.g

B OR3X1 Y
:
; :

B $6.genblk0.genblk4.g v > B $8.genblk0.genblk4.g % _>®

OR3X1 OR3X1

i c

4.4. Techmap by example

195

YosysHQ Yosys, Version 0.55

Listing 4.29: red_or3x1_test.ys

read_verilog red_or3xl_test.v
hierarchy -check -top test

techmap -map red_or3xl_map.v;;

splitnets -ports
show -prefix red_or3xl -format dot -notitle -1lib red_or3xl_cells.v

Listing 4.30: red_or3x1_test.v

module test (A, Y);
input [6:0] A;
output Y;
assign Y = |A;

endmodule

4.4.2 Conditional techmap
e In some cases only cells with certain properties should be substituted.

e The special wire _TECHMAP_FAIL_ can be used to disable a module in the map file for a certain set of
parameters.

e The wire _TECHMAP_FAIL_ must be set to a constant value. If it is non-zero then the module is disabled
for this set of parameters.

o Example use-cases:
— coarse-grain cell types that only operate on certain bit widths
— memory resources for different memory geometries (width, depth, ports, etc.)

Example:

A $l.g %
B | MYMUL
A
$2 v
B | $mul

196 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

Listing 4.31: sym_mul_map.v

module \$mul (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = O;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

W

wire TECHMAP FAIL = A _WIDTH != B_WIDTH || B_WIDTH != Y_WIDTH;

MYMUL #(.WIDTH(Y_WIDTH)) g (.A(CA), .B(B), .Y(Y));
endmodule

Listing 4.32: sym_mul_test.v

module test(A, B, C, Y1, Y2);
input [7:0] A, B, C;
output [7:0] Y1 =
output [15:0] Y2
endmodule

i
* X -
Q @

Listing 4.33: sym_mul_test.ys

read_verilog sym_mul_test.v
hierarchy -check -top test

techmap -map sym_mul_map.v;;

show -prefix sym_mul -format dot -notitle -1lib sym_mul_cells.v

4.4.3 Scripting in map modules

e The special wires _TECHMAP_DO_* can be used to run Yosys scripts in the context of the replacement
module.

o The wire that comes first in alphabetical oder is interpreted as string (must be connected to constants)
that is executed as script. Then the wire is removed. Repeat.

e You can even call techmap recursively!
e Example use-cases:
— Using always blocks in map module: call proc
— Perform expensive optimizations (such as freduce) on cells where this is known to work well.

— Interacting with custom commands.

Note

4.4, Techmap by example 197

YosysHQ Yosys, Version 0.55

PROTTIP:

Commands such as shell, show -pause, and dump can be used in the _TECHMAP_DO_x* scripts for de-
bugging map modules.

Example:

S\

G2l s T 13
B | $add \? $15 v
I — | $mux
/ S xwi
° 0:0-1:1]o/o? $$ald(ii Y =B | $?r13x Y —>®
l0->0£ S

oy

Listing 4.34: mymul_map.v

module MYMUL(A, B, Y);
parameter WIDTH = 1;
input [WIDTH-1:0] A, B;
output reg [WIDTH-1:0] Y;

wire [1023:0] _TECHMAP_DO_ = "proc; clean";

integer i;
always @* begin

Y = 0;
for (i = 0; i < WIDTH; i=i+1)
if (A[iD)
Y=Y+ (B<<i);
end
endmodule

Listing 4.35: mymul_test.v

module test(A, B, Y);
input [1:0] A, B;
output [1:0] Y = A * B;
endmodule

Listing 4.36: mymul_test.ys

read_verilog mymul_test.v
hierarchy -check -top test

(continues on next page)

198 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

(continued from previous page)

techmap -map sym_mul_map.v \
-map mymul_map.v;;

rename test test_mapped
read_verilog mymul_test.v

miter -equiv test test_mapped miter
flatten miter

sat -verify -prove trigger O miter

splitnets -ports test_mapped/A
show -prefix mymul -format dot -notitle test_mapped

4.4.4 Handling constant inputs

e The special parameters _TECHMAP_CONSTMSK_<port-name>_ and _TECHMAP_CONSTVAL_<port-name>_
can be used to handle constant input values to cells.

e The former contains 1-bits for all constant input bits on the port.
o The latter contains the constant bits or undef (x) for non-constant bits.
o Example use-cases:

— Converting arithmetic (for example multiply to shift).

— Identify constant addresses or enable bits in memory interfaces.

Example:

@{l 0->2:0) @

$1.g
8'00000110 B | MYMUL

Listing 4.37: mulshift_map.v

module MYMUL(A, B, Y);
parameter WIDTH = 1;
input [WIDTH-1:0] A, B;
output reg [WIDTH-1:0] Y;

(continues on next page)

4.4, Techmap by example 199

YosysHQ Yosys, Version 0.55

(continued from previous page)

parameter _TECHMAP_CONSTVAL_A_ = WIDTH'bx;
parameter _TECHMAP_CONSTVAL_B_ = WIDTH'bx;
reg _TECHMAP_FAIL_;

wire [1023:0] _TECHMAP_DO_ = "proc; clean";

integer i;
always @* begin
_TECHMAP_FAIL_ <= 1;
for (i = 0; i < WIDTH; i=i+1) begin
if (_TECHMAP_CONSTVAL_A_ === WIDTH'dl << i) begin
_TECHMAP_FAIL_ <= 0;
Y <= B << i;
end
if (_TECHMAP_CONSTVAL_B_ === WIDTH'dl << i) begin
_TECHMAP_FAIL_ <= 0;
Y <= A << i
end
end
end
endmodule

Listing 4.38: mulshift_test.v

module test (A, X, Y);
input [7:0] A;
output [7:0] X
output [7:0] Y
endmodule

A * 8'd 6;
A * 8'd 8;

Listing 4.39: mulshift_test.ys

read_verilog mulshift_test.v
hierarchy -check -top test

techmap -map sym_mul_map.v \
-map mulshift_map.v;;

show -prefix mulshift -format dot -notitle -1lib sym_mul_cells.v

4.4.5 Handling shorted inputs

e The special parameters _TECHMAP_BITS_CONNMAP_ and _TECHMAP_CONNMAP_<port-name>_ can be used
to handle shorted inputs.

e Each bit of the port correlates to an _TECHMAP_BITS_CONNMAP_ bits wide number in
_TECHMAP_CONNMAP_<port-name>_.

e Each wunique signal bit is assigned its own number. Identical fields in the
_TECHMAP_CONNMAP_<port-name>_ parameters mean shorted signal bits.

e The numbers 0-3 are reserved for 0, 1, x, and z respectively.

200 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

o Example use-cases:
— Detecting shared clock or control signals in memory interfaces.
— In some cases this can be used for for optimization.

Example:

Al 31
B | $add Y
Al $5
B | $shl Y

Listing 4.40: addshift_map.v

module \$add (A, B, Y);
parameter A_SIGNED = O;
parameter B_SIGNED = O

parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

parameter _TECHMAP_BITS_CONNMAP_ = O;
parameter _TECHMAP_CONNMAP_A_ = O;
parameter _TECHMAP_CONNMAP_B_ = O;

wire _TECHMAP FAIL_ = A_WIDTH '= B_WIDTH || B_WIDTH < Y_WIDTH ||
_TECHMAP_CONNMAP_A_ != _TECHMAP_CONNMAP B_;

assign Y = A << 1;
endmodule

Listing 4.41: addshift_test.v

module test (A, B, X, Y);
input [7:0] A, B;

(continues on next page)

4.4, Techmap by example 201

YosysHQ Yosys, Version 0.55

(continued from previous page)

|
=
d
&

output [7:0] X =
output [7:0] Y =
endmodule

|
=
b
E

Listing 4.42: addshift_test.ys

read_verilog addshift_test.v
hierarchy -check -top test

techmap -map addshift_map.v;;

show -prefix addshift -format dot -notitle

4.4.6 Notes on using techmap
e Don’t use positional cell parameters in map modules.

e You can use the $__-prefix for internal cell types to avoid collisions with the user-namespace. But
always use two underscores or the internal consistency checker will trigger on these cells.

e Techmap has two major use cases:

— Creating good logic-level representation of arithmetic functions. This also means using dedicated
hardware resources such as half- and full-adder cells in ASICS or dedicated carry logic in FPGAs.

— Mapping of coarse-grain resources such as block memory or DSP cells.

4.5 Notes on Verilog support in Yosys

Todo

how much of this is specific to the read_verilog and should be in The Verilog and AST frontends?

4.5.1 Unsupported Verilog-2005 Features

The following Verilog-2005 features are not supported by Yosys and there are currently no plans to add
support for them:

o Non-synthesizable language features as defined in
IEC 62142(E):2005 / IEEE Std. 1364.1(E):2002

e The tri, triand and trior net types

e The config and disable keywords and library map files

4.5.2 Verilog Attributes and non-standard features

o The full_case attribute on case statements is supported (also the non-standard // synopsys
full_case directive)

e The parallel_case attribute on case statements is supported (also the non-standard // synopsys
parallel_case directive)

o The // synopsys translate_off and // synopsys translate_on directives are also supported (but
the use of = “ifdef .. “endif ° is strongly recommended instead).

202 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

The nomem2reg attribute on modules or arrays prohibits the automatic early conversion of arrays to
separate registers. This is potentially dangerous. Usually the front-end has good reasons for converting
an array to a list of registers. Prohibiting this step will likely result in incorrect synthesis results.

The mem2reg attribute on modules or arrays forces the early conversion of arrays to separate registers.

The nomeminit attribute on modules or arrays prohibits the creation of initialized memories. This
effectively puts mem2reg on all memories that are written to in an initial block and are not ROMs.

The nolatches attribute on modules or always-blocks prohibits the generation of logic-loops for latches.
Instead all not explicitly assigned values default to x-bits. This does not affect clocked storage elements
such as flip-flops.

The nosync attribute on registers prohibits the generation of a storage element. The register itself
will always have all bits set to ‘x’ (undefined). The variable may only be used as blocking assigned
temporary variable within an always block. This is mostly used internally by Yosys to synthesize
Verilog functions and access arrays.

The nowrshmsk attribute on a register prohibits the generation of shift-and-mask type circuits for
writing to bit slices of that register.

The onehot attribute on wires mark them as one-hot state register. This is used for example for
memory port sharing and set by the fsm_ map pass.

The blackbox attribute on modules is used to mark empty stub modules that have the same ports
as the real thing but do not contain information on the internal configuration. This modules are only
used by the synthesis passes to identify input and output ports of cells. The Verilog backend also
does not output blackbox modules on default. read_verilog, unless called with -noblackbox will
automatically set the blackbox attribute on any empty module it reads.

The noblackbox attribute set on an empty module prevents read_verilog from automatically setting
the blackbox attribute on the module.

The whitebox attribute on modules triggers the same behavior as blackbox, but is for whitebox
modules, i.e. library modules that contain a behavioral model of the cell type.

The 1ib_whitebox attribute overwrites whitebox when read_verilog isrun in -1ib mode. Otherwise
it’s automatically removed.

The dynports attribute is used by the Verilog front-end to mark modules that have ports with a width
that depends on a parameter.

The hdlname attribute is used by some passes to document the original (HDL) name of a module when
renaming a module. It should contain a single name, or, when describing a hierarchical name in a
flattened design, multiple names separated by a single space character.

The keep attribute on cells and wires is used to mark objects that should never be removed by the
optimizer. This is used for example for cells that have hidden connections that are not part of the
netlist, such as 10 pads. Setting the keep attribute on a module has the same effect as setting it on
all instances of the module.

The keep_hierarchy attribute on cells and modules keeps the flatten command from flattening the
indicated cells and modules.

The gate_cost_equivalent attribute on a module can be used to specify the estimated cost of the
module as a number of basic gate instances. See the help message of command keep_hierarchy which
interprets this attribute.

The init attribute on wires is set by the frontend when a register is initialized “FPGA-style” with
reg foo = val. It can be used during synthesis to add the necessary reset logic.

4.5.

Notes on Verilog support in Yosys 203

YosysHQ Yosys, Version 0.55

The top attribute on a module marks this module as the top of the design hierarchy. The hierarchy
command sets this attribute when called with -top. Other commands, such as flatten and various
backends use this attribute to determine the top module.

The src attribute is set on cells and wires created by to the string <ndl-file-name>:<line-number>
by the HDL front-end and is then carried through the synthesis. When entities are combined, a new
|-separated string is created that contains all the strings from the original entities.

The defaultvalue attribute is used to store default values for module inputs. The attribute is attached
to the input wire by the HDL front-end when the input is declared with a default value.

The parameter and localparam attributes are used to mark wires that represent module parameters
or localparams (when the HDL front-end is run in -pwires mode).

Wires marked with the hierconn attribute are connected to wires with the same name (format
cell_name.identifier) when they are imported from sub-modules by flatten.

The clkbuf_driver attribute can be set on an output port of a blackbox module to mark it as a clock
buffer output, and thus prevent clkbufmap from inserting another clock buffer on a net driven by such
output.

The clkbuf_sink attribute can be set on an input port of a module to request clock buffer insertion
by the clkbufmap pass.

The clkbuf_inv attribute can be set on an output port of a module with the value set to the name
of an input port of that module. When the clkbufmap would otherwise insert a clock buffer on this
output, it will instead try inserting the clock buffer on the input port (this is used to implement clock
inverter cells that clock buffer insertion will “see through”).

The clkbuf _inhibit is the default attribute to set on a wire to prevent automatic clock buffer insertion
by clkbufmap. This behaviour can be overridden by providing a custom selection to clkbufmap .

The invertible_pin attribute can be set on a port to mark it as invertible via a cell parameter. The
name of the inversion parameter is specified as the value of this attribute. The value of the inversion
parameter must be of the same width as the port, with 1 indicating an inverted bit and 0 indicating a
non-inverted bit.

The iopad_external_pin attribute on a blackbox module’s port marks it as the external-facing pin
of an I/O pad, and prevents iopadmap from inserting another pad cell on it.

The module attribute abc9_lut is an integer attribute indicating to abc9 that this module describes
a LUT with an area cost of this value, and propagation delays described using specify statements.

The module attribute abc9_box is a boolean specifying a black/white-box definition, with propagation
delays described using specify statements, for use by abc9.

The port attribute abc9_carry marks the carry-in (if an input port) and carry-out (if output port) ports
of a box. This information is necessary for abc9 to preserve the integrity of carry-chains. Specifying
this attribute onto a bus port will affect only its most significant bit.

The module attribute abc9_flop is a boolean marking the module as a flip-flop. This allows abc9 to
analyse its contents in order to perform sequential synthesis.

The frontend sets attributes always_comb, always_latch and always_ff on processes derived from
SystemVerilog style always blocks according to the type of the always. These are checked for correctness
in proc_dlatch.

The cell attribute wildcard_port_conns represents wildcard port connections (SystemVerilog . *).
These are resolved to concrete connections to matching wires in hzerarchy.

204

Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

e In addition to the (x ... *) attribute syntax, Yosys supports the non-standard {* ... *} attribute
syntax to set default attributes for everything that comes after the {* ... *} statement. (Reset by
adding an empty {* *} statement.)

e In module parameter and port declarations, and cell port and parameter lists, a trailing comma is
ignored. This simplifies writing Verilog code generators a bit in some cases.

o Modules can be declared with module mod_name(...); (with three dots instead of a list of module
ports). With this syntax it is sufficient to simply declare a module port as ‘input’ or ‘output’ in the
module body.

e When defining a macro with \"define, all text between triple double quotes is interpreted as macro
body, even if it contains unescaped newlines. The triple double quotes are removed from the macro
body. For example:

“define MY_MACRO(a, b) """
assign a = 23;
assign b = 42;

nnn

o The attribute via_celltype can be used to implement a Verilog task or function by instantiating the
specified cell type. The value is the name of the cell type to use. For functions the name of the output
port can be specified by appending it to the cell type separated by a whitespace. The body of the task
or function is unused in this case and can be used to specify a behavioral model of the cell type for
simulation. For example:

module my_add3(A, B, C, Y);
parameter WIDTH = 8;
input [WIDTH-1:0] A, B, C;
output [WIDTH-1:0] Y;

endmodule
module top;

(* via_celltype = "my_add3 Y" *)
(* via_celltype_defparam_WIDTH = 32 *)
function [31:0] add3;

input [31:0] A, B, C;

begin

add3 = A + B + C;

end

endfunction

endmodule

e The wiretype attribute is added by the verilog parser for wires of a typedef’d type to indicate the
type identifier.

e Various enum_value_{value} attributes are added to wires of an enumerated type to give a map of
possible enum items to their values.

e The enum_base_type attribute is added to enum items to indicate which enum they belong to (enums
— anonymous and otherwise — are automatically named with an auto-incrementing counter). Note that
enums are currently not strongly typed.

o A limited subset of DPI-C functions is supported. The plugin mechanism (see help plugin) can

4.5. Notes on Verilog support in Yosys 205

YosysHQ Yosys, Version 0.55

be used to load .so files with implementations of DPI-C routines. As a non-standard extension it is
possible to specify a plugin alias using the <alias>: syntax. For example:

module dpitest;
import "DPI-C" function foo:round = real my_round (real);
parameter real r = my_round(12.345);

endmodule

$ yosys -p 'plugin -a foo -i /1ib/libm.so; read_verilog dpitest.v'

e Sized constants (the syntax <size>'s?[bodh]<value>) support constant expressions as <size>. If
the expression is not a simple identifier, it must be put in parentheses. FExamples: WIDTH'd42,
(4+2) 'b101010

e The system tasks $finish, $stop and $display are supported in initial blocks in an unconditional
context (only if/case statements on expressions over parameters and constant values are allowed). The
intended use for this is synthesis-time DRC.

e There is limited support for converting specify .. endspecify statements to special $specify2,
$specify3, and $specrule cells, for use in blackboxes and whiteboxes. Use read_verilog -specify
to enable this functionality. (By default these blocks are ignored.)

e The reprocess_after internal attribute is used by the Verilog frontend to mark cells with bindings
which might depend on the specified instantiated module. Modules with such cells will be reprocessed
during the hierarchy pass once the referenced module definition(s) become available.

e The smtlib2_module attribute can be set on a blackbox module to specify a formal model directly
using SMT-LIB 2. For such a module, the smt1ib2_comb_expr attribute can be used on output ports
to define their value using an SMT-LIB 2 expression. For example:

(* blackbox *)

(* smtlib2_module *)

module submod(a, b);
input [7:0] a;

(* smtlib2_comb_expr = "(bvnot a)" *)
output [7:0] b;
endmodule

4.5.3 Non-standard or SystemVerilog features for formal verification

e Support for assert, assume, restrict, and cover is enabled when read_verilog is called with
—-formal.

e The system task $initstate evaluates to 1 in the initial state and to 0 otherwise.

e The system function $anyconst evaluates to any constant value. This is equivalent to declaring a reg
as rand const, but also works outside of checkers. (Yosys also supports rand const outside checkers.)

e The system function $anyseq evaluates to any value, possibly a different value in each cycle. This is
equivalent to declaring a reg as rand, but also works outside of checkers. (Yosys also supports rand
variables outside checkers.)

e The system functions $allconst and $allseq can be used to construct formal exist-forall problems.
Assumptions only hold if the trace satisfies the assumption for all $allconst/$allseq values. For
assertions and cover statements it is sufficient if just one $allconst/$allseq value triggers the property
(similar to $anyconst/$anyseq).

206 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

Wires/registers declared using the anyconst/anyseq/allconst/allseq attribute (for example (*
anyconst *) reg [7:0] foobar;) will behave as if driven by a $anyconst/$anyseq/$allconst/
$allseq function.

The SystemVerilog tasks $past, $stable, $rose and $fell are supported in any clocked block.

The syntax @($global_clock) can be used to create FFs that have no explicit clock input ($ff
cells). The same can be achieved by using @(posedge <netname>) or @(negedge <netname>) when
<netname> is marked with the (* gclk =) Verilog attribute.

4.5.4 Supported features from SystemVerilog

When read_verilog is called with -sv, it accepts some language features from SystemVerilog:

The assert statement from SystemVerilog is supported in its most basic form. In module context:
assert property (<expression>); and within an always block: assert(<expression>);. It is
transformed to an $assert cell.

The assume, restrict, and cover statements from SystemVerilog are also supported. The same
limitations as with the assert statement apply.

The keywords always_comb, always_ff and always_latch, logic and bit are supported.
Declaring free variables with rand and rand const is supported.

Checkers without a port list that do not need to be instantiated (but instead behave like a named
block) are supported.

SystemVerilog packages are supported. Once a SystemVerilog file is read into a design with
read_verilog, all its packages are available to SystemVerilog files being read into the same design
afterwards.

typedefs are supported (including inside packages)
— type casts are currently not supported
enums are supported (including inside packages)
— but are currently not strongly typed
packed structs and unions are supported
— arrays of packed structs/unions are currently not supported
— structure literals are currently not supported
multidimensional arrays are supported
— array assignment of unpacked arrays is currently not supported
— array literals are currently not supported

SystemVerilog interfaces (SVIs) are supported. Modports for specifying whether ports are inputs or
outputs are supported.

Assignments within expressions are supported.

The unique, unique0, and priority SystemVerilog keywords are supported on if and case con-
ditionals. (The Verilog frontend will process conditionals using these keywords by annotating their
representation with the appropriate full_case and/or parallel_case attributes, which are described
above.)

4.5.

Notes on Verilog support in Yosys 207

YosysHQ Yosys, Version 0.55

4.6 Hashing and associative data structures in Yosys

4.6.1 Container classes based on hashing

Yosys uses dict<K, T> and pool<T> as main container classes. dict<K, T> is essentially a replacement
for std::unordered_map<K, T> and pool<T> is a replacement for std::unordered_set<T>. The main
characteristics are:

e dict<K, T> and pool<T> are about 2x faster than the std containers
(though this claim hasn’t been verified for over 10 years)

o references to elements in a dict<K, T> or pool<T> are invalidated by
insert and remove operations (similar to std: :vector<T> on push_back()).

e some iterators are invalidated by erase (). specifically, iterators
that have not passed the erased element yet are invalidated. (erase() itself returns valid iterator
to the next element.)

e no iterators are invalidated by insert (). elements are inserted at
begin(). i.e. only a new iterator that starts at begin() will see the inserted elements.

o the method .count(key, iterator) is like .count (key) but only
considers elements that can be reached via the iterator.

e iterators can be compared. itl < it2 means that the position of t2
can be reached via t1 but not vice versa.

e the method .sort() can be used to sort the elements in the container
the container stays sorted until elements are added or removed.

e dict<K, T> and pool<T> will have the same order of iteration across
all compilers, standard libraries and architectures.

In addition to dict<K, T> and pool<T> there is also an idict<K> that creates a bijective map from X to
the integers. For example:

idict<string, 42> si;

log("%d\n", si("hello")); // will print 42
log("%d\n", si("world")); // will print 43
log("%d\n", si.at("world")); // will print 43
log("%d\n", si.at("dummy")); // will throw exception
log("%s\n", si[42].c_str())); // will print hello
log("%s\n", si[43].c_str())); // will print world
log("%s\n", si[44].c_str())); // will throw exception

It is not possible to remove elements from an idict.

Finally mfp<K> implements a merge-find set data structure (aka. disjoint-set or union-find) over the type K
(“mfp” = merge-find-promote).

4.6.2 The hash function
The hash function generally used in Yosys is the XOR version of DJB2:

state = ((state << 5) + state) ~ value

This is an old-school hash designed to hash ASCII characters. Yosys doesn’t hash a lot of ASCII text, but
it still happens to be a local optimum due to factors described later.

208 Chapter 4. Yosys internals

YosysHQ Yosys, Version 0.55

Hash function quality is multi-faceted and highly dependent on what is being hashed. Yosys isn’t concerned
by any cryptographic qualities, instead the goal is minimizing total hashing collision risk given the data
patterns within Yosys. In general, a good hash function typically folds values into a state accumulator with
a mathematical function that is fast to compute and has some beneficial properties. One of these is the
avalanche property, which demands that a small change such as flipping a bit or incrementing by one in the
input produces a large, unpredictable change in the output. Additionally, the bit independence criterion
states that any pair of output bits should change independently when any single input bit is inverted. These
properties are important for avoiding hash collision on data patterns like the hash of a sequence not colliding
with its permutation, not losing from the state the information added by hashing preceding elements, etc.

DJB2 lacks these properties. Instead, since Yosys hashes large numbers of data structures composed of
incrementing integer IDs, Yosys abuses the predictability of DJB2 to get lower hash collisions, with regular
nature of the hashes surviving through the interaction with the “modulo prime” operations in the associative
data structures. For example, some most common objects in Yosys are interned IdStrings of incrementing
indices or SigBits with bit offsets into wire (represented by its unique IdString name) as the typical case.
This is what makes DJB2 a local optimum. Additionally, the ADD version of DJB2 (like above but with
addition instead of XOR) is used to this end for some types, abandoning the general pattern of folding values
into a state value.

4.6.3 Making a type hashable

Let’s first take a look at the external interface on a simplified level. Generally, to get the hash for T obj, you
would call the utility function run_hash<T>(const T& obj), corresponding to hash_ops<T>: :hash(obj),
the default implementation of which uses hash_ops<T>: :hash_into(Hasher(), obj). Hasher is the class
actually implementing the hash function, hiding its initialized internal state, and passing it out on hash_t
yield () with perhaps some finalization steps.

hash_ops<T> is the star of the show. By default it pulls the Hasher h through a Hasher
T::hash_into(Hasher h) method. That’s the method you have to implement to make a record (class
or struct) type easily hashable with Yosys hashlib associative data structures.

hash_ops<T> is specialized for built-in types like int or bool and treats pointers the same as integers, so it
doesn’t dereference pointers. Since many RTLIL data structures like RTLIL: :Wire carry their own unique
index Hasher::hash_t hashidx_;, there are specializations for hash_ops<Wire*> and others in kernel/
hashlib.h that actually dereference the pointers and call hash_into on the instances pointed to.

hash_ops<T> is also specialized for simple compound types like std::pair<U> by calling hash_into in
sequence on its members. For flexible size containers like std: : vector<U> the size of the container is hashed
first. That is also how implementing hashing for a custom record data type should be - unless there is strong
reason to do otherwise, call h.eat (m) on the Hasher h you have received for each member in sequence and
return h;.

The hash_ops<T>::hash(obj) method is not indended to be called when context of implementing
the hashing for a record or other compound type. When writing it, you should connect it to
hash_ops<T>: :hash_into(Hasher h) as shown below. If you have a strong reason to do so, and you have to
create a special implementation for top-level hashing, look at how hash_ops<RTLIL::SigBit>::hash(...)
is implemented in kernel/rt1il.h.

4.6.4 Porting plugins from the legacy interface

Previously, the interface to implement hashing on custom types was just unsigned int T::hash() const.
This meant hashes for members were computed independently and then ad-hoc combined with the hash
function with some xorshift operations thrown in to mix bits together somewhat. A plugin can stay com-
patible with both versions prior and after the break by implementing both interfaces based on the existance
and value of YS_HASHING_VERSION.

4.6. Hashing and associative data structures in Yosys 209

YosysHQ Yosys, Version 0.55

Listing 4.43: Example hash compatibility wrapper

#1ifndef YS_HASHING VERSION

unsigned int T::hash() const {
return mkhash(a, b);

}

#elif YS_HASHING_VERSION == 1

Hasher T::hash_into(Hasher h) const {

h.eat(a);
h.eat(b);
return h;
¥
Hasher T::hash() const {
Hasher h;
h.eat (*this);
return h;
}
#else

#error "Unsupported hashing interface”
#endif

Feel free to contact Yosys maintainers with related issues.

210

Chapter 4. Yosys internals

CHAPTER
FIVE

A PRIMER ON DIGITAL CIRCUIT SYNTHESIS

This chapter contains a short introduction to the basic principles of digital circuit synthesis.

5.1 Levels of abstraction

Digital circuits can be represented at different levels of abstraction. During the design process a circuit is
usually first specified using a higher level abstraction. Implementation can then be understood as finding a
functionally equivalent representation at a lower abstraction level. When this is done automatically using
software, the term synthesis is used.

So synthesis is the automatic conversion of a high-level representation of a circuit to a functionally equivalent
low-level representation of a circuit. Figure 5.1 lists the different levels of abstraction and how they relate
to different kinds of synthesis.

System Level -

System Design

High Level .

High Level Synthesis (HLS)

Behavioral Level T T
Behavioral Synthesis

Register-Transfer Level (RTL) T

RTL Synthesis Yosys
Logical Gate Level .

Logic Synthesis
Physical Gate Level + L
Cell Library

Switch Level *

Fig. 5.1: Different levels of abstraction and synthesis.

Regardless of the way a lower level representation of a circuit is obtained (synthesis or manual design), the
lower level representation is usually verified by comparing simulation results of the lower level and the higher
level representation’. Therefore even if no synthesis is used, there must still be a simulatable representation
of the circuit in all levels to allow for verification of the design.

Note: The exact meaning of terminology such as “High-Level” is of course not fixed over time. For example
the HDL “ABEL” was first introduced in 1985 as “A High-Level Design Language for Programmable Logic

1 In recent years formal equivalence checking also became an important verification method for validating RTL and lower
abstraction representation of the design.

211

YosysHQ Yosys, Version 0.55

Devices” [LHBB85], but would not be considered a “High-Level Language” today.

5.1.1 System level

The System Level abstraction of a system only looks at its biggest building blocks like CPUs and computing
cores. At this level the circuit is usually described using traditional programming languages like C/C++ or
Matlab. Sometimes special software libraries are used that are aimed at simulation circuits on the system
level, such as SystemC.

Usually no synthesis tools are used to automatically transform a system level representation of a circuit to
a lower-level representation. But system level design tools exist that can be used to connect system level
building blocks.

The IEEE 1685-2009 standard defines the IP-XACT file format that can be used to represent designs on the
system level and building blocks that can be used in such system level designs. [A+10]

5.1.2 High level

The high-level abstraction of a system (sometimes referred to as algorithmic level) is also often represented
using traditional programming languages, but with a reduced feature set. For example when representing a
design at the high level abstraction in C, pointers can only be used to mimic concepts that can be found in
hardware, such as memory interfaces. Full featured dynamic memory management is not allowed as it has
no corresponding concept in digital circuits.

Tools exist to synthesize high level code (usually in the form of C/C++/SystemC code with additional
metadata) to behavioural HDL code (usually in the form of Verilog or VHDL code). Aside from the many
commercial tools for high level synthesis there are also a number of FOSS tools for high level synthesis.

5.1.3 Behavioural level

At the behavioural abstraction level a language aimed at hardware description such as Verilog or VHDL is
used to describe the circuit, but so-called behavioural modelling is used in at least part of the circuit descrip-
tion. In behavioural modelling there must be a language feature that allows for imperative programming to
be used to describe data paths and registers. This is the always-block in Verilog and the process-block in
VHDL.

In behavioural modelling, code fragments are provided together with a sensitivity list; a list of signals and
conditions. In simulation, the code fragment is executed whenever a signal in the sensitivity list changes
its value or a condition in the sensitivity list is triggered. A synthesis tool must be able to transfer this
representation into an appropriate datapath followed by the appropriate types of register.

For example consider the following Verilog code fragment:

always @(posedge clk)
y <= a + b;

In simulation the statement y <= a + b is executed whenever a positive edge on the signal clk is detected.
The synthesis result however will contain an adder that calculates the sum a + b all the time, followed by
a d-type flip-flop with the adder output on its D-input and the signal y on its Q-output.

Usually the imperative code fragments used in behavioural modelling can contain statements for conditional
execution (if- and case-statements in Verilog) as well as loops, as long as those loops can be completely
unrolled.

Interestingly there seems to be no other FOSS Tool that is capable of performing Verilog or VHDL be-
havioural syntheses besides Yosys.

212 Chapter 5. A primer on digital circuit synthesis

YosysHQ Yosys, Version 0.55

5.1.4 Register-Transfer Level (RTL)

On the Register-Transfer Level the design is represented by combinatorial data paths and registers (usually
d-type flip flops). The following Verilog code fragment is equivalent to the previous Verilog example, but is
in RTL representation:

assign tmp = a + b; // combinatorial data path
always @(posedge clk) // register
y <= tmp;

A design in RTL representation is usually stored using HDLs like Verilog and VHDL. But only a very limited
subset of features is used, namely minimalistic always-blocks (Verilog) or process-blocks (VHDL) that model
the register type used and unconditional assignments for the datapath logic. The use of HDLs on this level
simplifies simulation as no additional tools are required to simulate a design in RTL representation.

Many optimizations and analyses can be performed best at the RTL level. Examples include FSM detection
and optimization, identification of memories or other larger building blocks and identification of shareable
resources.

Note that RTL is the first abstraction level in which the circuit is represented as a graph of circuit elements
(registers and combinatorial cells) and signals. Such a graph, when encoded as list of cells and connections,
is called a netlist.

RTL synthesis is easy as each circuit node element in the netlist can simply be replaced with an equivalent
gate-level circuit. However, usually the term RTL synthesis does not only refer to synthesizing an RTL
netlist to a gate level netlist but also to performing a number of highly sophisticated optimizations within
the RTL representation, such as the examples listed above.

A number of FOSS tools exist that can perform isolated tasks within the domain of RTL synthesis steps.
But there seems to be no FOSS tool that covers a wide range of RTL synthesis operations.

5.1.5 Logical gate level

At the logical gate level the design is represented by a netlist that uses only cells from a small number
of single-bit cells, such as basic logic gates (AND, OR, NOT, XOR, etc.) and registers (usually D-Type
Flip-flops).

A number of netlist formats exists that can be used on this level, e.g. the Electronic Design Interchange
Format (EDIF), but for ease of simulation often a HDL netlist is used. The latter is a HDL file (Verilog or
VHDL) that only uses the most basic language constructs for instantiation and connecting of cells.

There are two challenges in logic synthesis: First finding opportunities for optimizations within the gate level
netlist and second the optimal (or at least good) mapping of the logic gate netlist to an equivalent netlist of
physically available gate types.

The simplest approach to logic synthesis is two-level logic synthesis, where a logic function is converted into a
sum-of-products representation, e.g. using a Karnaugh map. This is a simple approach, but has exponential
worst-case effort and cannot make efficient use of physical gates other than AND/NAND-;, OR/NOR- and
NOT-Gates.

Therefore modern logic synthesis tools utilize much more complicated multi-level logic synthesis algorithms
[BHSV90]. Most of these algorithms convert the logic function to a Binary-Decision-Diagram (BDD) or
And-Inverter-Graph (AIG) and work from that representation. The former has the advantage that it has a
unique normalized form. The latter has much better worst case performance and is therefore better suited
for the synthesis of large logic functions.

Good FOSS tools exists for multi-level logic synthesis.

5.1. Levels of abstraction 213

YosysHQ Yosys, Version 0.55

Yosys contains basic logic synthesis functionality but can also use ABC for the logic synthesis step. Using
ABC is recommended.

5.1.6 Physical gate level

On the physical gate level only gates are used that are physically available on the target architecture. In some
cases this may only be NAND, NOR and NOT gates as well as D-Type registers. In other cases this might
include cells that are more complex than the cells used at the logical gate level (e.g. complete half-adders).
In the case of an FPGA-based design the physical gate level representation is a netlist of LUTs with optional
output registers, as these are the basic building blocks of FPGA logic cells.

For the synthesis tool chain this abstraction is usually the lowest level. In case of an ASIC-based design
the cell library might contain further information on how the physical cells map to individual switches
(transistors).

5.1.7 Switch level

A switch level representation of a circuit is a netlist utilizing single transistors as cells. Switch level modelling
is possible in Verilog and VHDL, but is seldom used in modern designs, as in modern digital ASIC or FPGA
flows the physical gates are considered the atomic build blocks of the logic circuit.

5.1.8 Yosys

Yosys is a Verilog HDL synthesis tool. This means that it takes a behavioural design description as input
and generates an RTL, logical gate or physical gate level description of the design as output. Yosys’ main
strengths are behavioural and RTL synthesis. A wide range of commands (synthesis passes) exist within
Yosys that can be used to perform a wide range of synthesis tasks within the domain of behavioural, RTL
and logic synthesis. Yosys is designed to be extensible and therefore is a good basis for implementing custom
synthesis tools for specialised tasks.

5.2 Features of synthesizable Verilog

The subset of Verilog [A+06] that is synthesizable is specified in a separate IEEE standards document, the
IEEE standard 1364.1-2002 [A+02]. This standard also describes how certain language constructs are to be
interpreted in the scope of synthesis.

This section provides a quick overview of the most important features of synthesizable Verilog, structured
in order of increasing complexity.

5.2.1 Structural Verilog

Structural Verilog (also known as Verilog Netlists) is a Netlist in Verilog syntax. Ouly the following language
constructs are used in this case:

e Constant values

e Wire and port declarations

e Static assignments of signals to other signals
e Cell instantiations

Many tools (especially at the back end of the synthesis chain) only support structural Verilog as input. ABC
is an example of such a tool. Unfortunately there is no standard specifying what Structural Verilog actually
is, leading to some confusion about what syntax constructs are supported in structural Verilog when it comes
to features such as attributes or multi-bit signals.

214 Chapter 5. A primer on digital circuit synthesis

YosysHQ Yosys, Version 0.55

5.2.2 Expressions in Verilog

In all situations where Verilog accepts a constant value or signal name, expressions using arithmetic oper-
ations such as +, - and *, boolean operations such as & (AND), | (OR) and ~ (XOR) and many others
(comparison operations, unary operator, etc.) can also be used.

During synthesis these operators are replaced by cells that implement the respective function.

Many FOSS tools that claim to be able to process Verilog in fact only support basic structural Verilog and
simple expressions. Yosys can be used to convert full featured synthesizable Verilog to this simpler subset,
thus enabling such applications to be used with a richer set of Verilog features.

5.2.3 Behavioural modelling

Code that utilizes the Verilog always statement is using Behavioural Modelling. In behavioural modelling,
a circuit is described by means of imperative program code that is executed on certain events, namely any
change, a rising edge, or a falling edge of a signal. This is a very flexible construct during simulation but is
only synthesizable when one of the following is modelled:

e Asynchronous or latched logic

In this case the sensitivity list must contain all expressions that are used within the always block.
The syntax @* can be used for these cases. Examples of this kind include:

1 | // asynchronous
2 |always @* begin

3 if (add_mode)

4 y <= a + b;
5 else

6 y <= a - b;
7 | end

o |// latched
10 |always @ begin

11 if ('hold)
12 y <= a + b;
13 |end

Note that latched logic is often considered bad style and in many cases just the result of sloppy HDL
design. Therefore many synthesis tools generate warnings whenever latched logic is generated.

» Synchronous logic (with optional synchronous reset)

This is logic with d-type flip-flops on the output. In this case the sensitivity list must only contain
the respective clock edge. Example:

1 | // counter with synchronous reset
2 |always @(posedge clk) begin

3 if (reset)

4 y <= 0;

5 else

6 y<=y+1;

7 |end

¢ Synchronous logic with asynchronous reset
This is logic with d-type flip-flops with asynchronous resets on the output. In this case the sensitivity
list must only contain the respective clock and reset edges. The values assigned in the reset branch
must be constant. Example:

5.2. Features of synthesizable Verilog 215

YosysHQ Yosys, Version 0.55

1 | // counter with asynchronous reset

2 |always @(posedge clk, posedge reset) begin
3 if (reset)

4 y <= 0;

5 else

o y<=y+1;

7 |end

Many synthesis tools support a wider subset of flip-flops that can be modelled using always-statements
(including Yosys). But only the ones listed above are covered by the Verilog synthesis standard and when
writing new designs one should limit herself or himself to these cases.

In behavioural modelling, blocking assignments (=) and non-blocking assignments (<=) can be used. The
concept of blocking vs. non-blocking assignment is one of the most misunderstood constructs in Verilog
[CI00].

The blocking assignment behaves exactly like an assignment in any imperative programming language, while
with the non-blocking assignment the right hand side of the assignment is evaluated immediately but the
actual update of the left hand side register is delayed until the end of the time-step. For example the Verilog
code a <= b; b <= a; exchanges the values of the two registers.

5.2.4 Functions and tasks

Verilog supports Functions and Tasks to bundle statements that are used in multiple places (similar to
Procedures in imperative programming). Both constructs can be implemented easily by substituting the
function/task-call with the body of the function or task.

5.2.5 Conditionals, loops and generate-statements
Verilog supports if-else-statements and for-loops inside always-statements.

It also supports both features in generate-statements on the module level. This can be used to selectively
enable or disable parts of the module based on the module parameters (if-else) or to generate a set of
similar subcircuits (for).

While the if-else-statement inside an always-block is part of behavioural modelling, the three other cases
are (at least for a synthesis tool) part of a built-in macro processor. Therefore it must be possible for
the synthesis tool to completely unroll all loops and evaluate the condition in all if-else-statement in
generate-statements using const-folding..

5.2.6 Arrays and memories

Verilog supports arrays. This is in general a synthesizable language feature. In most cases arrays can be
synthesized by generating addressable memories. However, when complex or asynchronous access patterns
are used, it is not possible to model an array as memory. In these cases the array must be modelled using
individual signals for each word and all accesses to the array must be implemented using large multiplexers.

In some cases it would be possible to model an array using memories, but it is not desired. Consider the
following delay circuit:

module (clk, in_data, out_data);

parameter BITS

= 8;
parameter STAGES =

4s

input clk;

(continues on next page)

216 Chapter 5. A primer on digital circuit synthesis

YosysHQ Yosys, Version 0.55

(continued from previous page)
input [BITS-1:0] in_data;
output [BITS-1:0] out_data;
reg [BITS-1:0] ffs [STAGES-1:0];

integer 1i;
always Q(posedge clk) begin
ffs[0] <= in_data;
for (i = 1; i < STAGES; i = i+1)
ffs[i] <= ffs[i-1];
end

assign out_data = ffs[STAGES-1];

endmodule

This could be implemented using an addressable memory with STAGES input and output ports. A better
implementation would be to use a simple chain of flip-flops (a so-called shift register). This better imple-
mentation can either be obtained by first creating a memory-based implementation and then optimizing it
based on the static address signals for all ports or directly identifying such situations in the language front
end and converting all memory accesses to direct accesses to the correct signals.

5.3 Challenges in digital circuit synthesis

This section summarizes the most important challenges in digital circuit synthesis. Tools can be characterized
by how well they address these topics.

5.3.1 Standards compliance

The most important challenge is compliance with the HDL standards in question (in case of Verilog the
IEEE Standards 1364.1-2002 and 1364-2005). This can be broken down in two items:

e Completeness of implementation of the standard
e Correctness of implementation of the standard

Completeness is mostly important to guarantee compatibility with existing HDL code. Once a design has
been verified and tested, HDL designers are very reluctant regarding changes to the design, even if it is only
about a few minor changes to work around a missing feature in a new synthesis tool.

Correctness is crucial. In some areas this is obvious (such as correct synthesis of basic behavioural models).
But it is also crucial for the areas that concern minor details of the standard, such as the exact rules for
handling signed expressions, even when the HDL code does not target different synthesis tools. This is
because (unlike software source code that is only processed by compilers), in most design flows HDL code is
not only processed by the synthesis tool but also by one or more simulators and sometimes even a formal
verification tool. It is key for this verification process that all these tools use the same interpretation for the
HDL code.

5.3.2 Optimizations

Generally it is hard to give a one-dimensional description of how well a synthesis tool optimizes the design.
First of all because not all optimizations are applicable to all designs and all synthesis tasks. Some opti-
mizations work (best) on a coarse-grained level (with complex cells such as adders or multipliers) and others
work (best) on a fine-grained level (single bit gates). Some optimizations target area and others target speed.
Some work well on large designs while others don’t scale well and can only be applied to small designs.

5.3. Challenges in digital circuit synthesis 217

YosysHQ Yosys, Version 0.55

A good tool is capable of applying a wide range of optimizations at different levels of abstraction and gives
the designer control over which optimizations are performed (or skipped) and what the optimization goals
are.

5.3.3 Technology mapping

Technology mapping is the process of converting the design into a netlist of cells that are available in the
target architecture. In an ASIC flow this might be the process-specific cell library provided by the fab. In
an FPGA flow this might be LUT cells as well as special function units such as dedicated multipliers. In a
coarse-grain flow this might even be more complex special function units.

An open and vendor independent tool is especially of interest if it supports a wide range of different types
of target architectures.

5.4 Script-based synthesis flows

A digital design is usually started by implementing a high-level or system-level simulation of the desired
function. This description is then manually transformed (or re-implemented) into a synthesizable lower-level
description (usually at the behavioural level) and the equivalence of the two representations is verified by
simulating both and comparing the simulation results.

Then the synthesizable description is transformed to lower-level representations using a series of tools and
the results are again verified using simulation. This process is illustrated in Fig. 5.2.

synthesis synthesis
/\ /\
System Level Behavioral RTL Gate-Level
Model Model Model Model
~_ ~_ ~_
verify verify verify

Fig. 5.2: Typical design flow. Green boxes represent manually created models. Orange boxes represent
models generated by synthesis tools.

In this example the System Level Model and the Behavioural Model are both manually written design
files. After the equivalence of system level model and behavioural model has been verified, the lower level
representations of the design can be generated using synthesis tools. Finally the RTL Model and the Gate-
Level Model are verified and the design process is finished.

However, in any real-world design effort there will be multiple iterations for this design process. The reason
for this can be the late change of a design requirement or the fact that the analysis of a low-abstraction
model (e.g. gate-level timing analysis) revealed that a design change is required in order to meet the design
requirements (e.g. maximum possible clock speed).

Whenever the behavioural model or the system level model is changed their equivalence must be re-verified
by re-running the simulations and comparing the results. Whenever the behavioural model is changed the
synthesis must be re-run and the synthesis results must be re-verified.

In order to guarantee reproducibility it is important to be able to re-run all automatic steps in a design
project with a fixed set of settings easily. Because of this, usually all programs used in a synthesis flow can
be controlled using scripts. This means that all functions are available via text commands. When such a
tool provides a GUI, this is complementary to, and not instead of, a command line interface.

Usually a synthesis flow in an UNIX/Linux environment would be controlled by a shell script that calls all
required tools (synthesis and simulation/verification in this example) in the correct order. Each of these

218 Chapter 5. A primer on digital circuit synthesis

YosysHQ Yosys, Version 0.55

tools would be called with a script file containing commands for the respective tool. All settings required
for the tool would be provided by these script files so that no manual interaction would be necessary. These
script files are considered design sources and should be kept under version control just like the source code
of the system level and the behavioural model.

5.5 Methods from compiler design

Some parts of synthesis tools involve problem domains that are traditionally known from compiler design.
This section addresses some of these domains.

5.5.1 Lexing and parsing

The best known concepts from compiler design are probably lexing and parsing. These are two methods
that together can be used to process complex computer languages easily. [ASUSG|

A lexer consumes single characters from the input and generates a stream of lexical tokens that consist of a
type and a value. For example the Verilog input assign foo = bar + 42; might be translated by the lexer
to the list of lexical tokens given in Tab. 5.1.

Table 5.1: Exemplary token list for the statement assign foo =

bar + 42;
Token-Type Token-Value
TOK__ASSIGN -
TOK_IDENTIFIER “foo”
TOK_EQ =
TOK_IDENTIFIER “bar”
TOK__PLUS -
TOK_NUMBER 42

TOK SEMICOLON -

The lexer is usually generated by a lexer generator (e.g. flex) from a description file that is using regular
expressions to specify the text pattern that should match the individual tokens.

The lexer is also responsible for skipping ignored characters (such as whitespace outside string constants and
comments in the case of Verilog) and converting the original text snippet to a token value.

Note that individual keywords use different token types (instead of a keyword type with different token val-
ues). This is because the parser usually can only use the Token-Type to make a decision on the grammatical
role of a token.

The parser then transforms the list of tokens into a parse tree that closely resembles the productions from
the computer languages grammar. As the lexer, the parser is also typically generated by a code generator
(e.g. bison) from a grammar description in Backus-Naur Form (BNF).

Let’s consider the following BNF (in Bison syntax):

assign_stmt: TOK_ASSIGN TOK_IDENTIFIER TOK_EQ expr TOK_SEMICOLON;
expr: TOK_IDENTIFIER | TOK_NUMBER | expr TOK_PLUS expr;

The parser converts the token list to the parse tree in Fig. 5.3. Note that the parse tree never actually
exists as a whole as data structure in memory. Instead the parser calls user-specified code snippets (so-called
reduce-functions) for all inner nodes of the parse tree in depth-first order.

In some very simple applications (e.g. code generation for stack machines) it is possible to perform the
task at hand directly in the reduce functions. But usually the reduce functions are only used to build an

5.5. Methods from compiler design 219

YosysHQ Yosys, Version 0.55

TOK_IDENTIFIER TOK_NUMBER

Fig. 5.3: Example parse tree for the Verilog expression assign foo = bar + 42;

in-memory data structure with the relevant information from the parse tree. This data structure is called
an abstract syntax tree (AST).

The exact format for the abstract syntax tree is application specific (while the format of the parse tree and
token list are mostly dictated by the grammar of the language at hand). Figure 5.4 illustrates what an AST
for the parse tree in Fig. 5.3 could look like.

Usually the AST is then converted into yet another representation that is more suitable for further processing.
In compilers this is often an assembler-like three-address-code intermediate representation. [ASUSG]

»

Fig. 5.4: Example abstract syntax tree for the Verilog expression assign foo = bar + 42;

5.5.2 Multi-pass compilation

Complex problems are often best solved when split up into smaller problems. This is certainly true for
compilers as well as for synthesis tools. The components responsible for solving the smaller problems can be
connected in two different ways: through Single-Pass Pipelining and by using Multiple Passes.

Traditionally a parser and lexer are connected using the pipelined approach: The lexer provides a function
that is called by the parser. This function reads data from the input until a complete lexical token has been
read. Then this token is returned to the parser. So the lexer does not first generate a complete list of lexical

220 Chapter 5. A primer on digital circuit synthesis

YosysHQ Yosys, Version 0.55

tokens and then pass it to the parser. Instead they run concurrently and the parser can consume tokens as
the lexer produces them.

The single-pass pipelining approach has the advantage of lower memory footprint (at no time must the
complete design be kept in memory) but has the disadvantage of tighter coupling between the interacting
components.

Therefore single-pass pipelining should only be used when the lower memory footprint is required or the
components are also conceptually tightly coupled. The latter certainly is the case for a parser and its lexer.
But when data is passed between two conceptually loosely coupled components it is often beneficial to use
a multi-pass approach.

In the multi-pass approach the first component processes all the data and the result is stored in a in-memory
data structure. Then the second component is called with this data. This reduces complexity, as only one
component is running at a time. It also improves flexibility as components can be exchanged easier.

Most modern compilers are multi-pass compilers.

5.5.3 Static Single Assignment (SSA) form

In imperative programming (and behavioural HDL design) it is possible to assign the same variable multiple
times. This can either mean that the variable is independently used in two different contexts or that the
final value of the variable depends on a condition.

The following examples show C code in which one variable is used independently in two different contexts:

void demol()

{
int a = 1;
printf ("/d\n", a);
a = 2;
printf ("/d\n", a);
}
void demol ()
{
int a = 1;
printf ("/d\n", a);
int b = 2;
printf ("/d\n", b);
}
void demo2(bool foo)
{
int a;
if (foo) {
a = 23;
printf("%d\n", a);
} else {
a = 42;
printf ("%d\n", a);
}
}

5.5. Methods from compiler design 221

YosysHQ Yosys, Version 0.55

void demo2(bool foo)

{
int a, b;
if (foo) {
a = 23;
printf ("%d\n", a);
} else {
b = 42;
printf ("%d\n", Db);
}
}

In both examples the left version (only variable a) and the right version (variables a and b) are equivalent.
Therefore it is desired for further processing to bring the code in an equivalent form for both cases.

In the following example the variable is assigned twice but it cannot be easily replaced by two variables:

void demo3(bool foo)

{
int a = 23
if (foo)
a = 42;
printf ("/d\n", a);
}

Static single assignment (SSA) form is a representation of imperative code that uses identical representations
for the left and right version of demos 1 and 2, but can still represent demo 3. In SSA form each assignment
assigns a new variable (usually written with an index). But it also introduces a special ®-function to merge
the different instances of a variable when needed. In C-pseudo-code the demo 3 would be written as follows
using SSA from:

void demo3(bool foo)
{
int a_1, a_2, a_3;
a1l =23
if (foo)
a_2 = 42;
a_3 = phi(a_1, a_2);
printf ("/d\n", a_3);

The ®-function is usually interpreted as “these variables must be stored in the same memory location” during
code generation. Most modern compilers for imperative languages such as C/C++ use SSA form for at least
some of its passes as it is very easy to manipulate and analyse.

222 Chapter 5. A primer on digital circuit synthesis

CHAPTER

SIX

RTLIL TEXT REPRESENTATION

This appendix documents the text representation of RTLIL in extended Backus-Naur form (EBNF).

The grammar is not meant to represent semantic limitations. That is, the grammar is “permissive”, and
later stages of processing perform more rigorous checks.

The grammar is also not meant to represent the exact grammar used in the RTLIL frontend, since that gram-
mar is specific to processing by lex and yacc, is even more permissive, and is somewhat less understandable
than simple EBNF notation.

Finally, note that all statements (rules ending in -stmt) terminate in an end-of-line. Because of this, a
statement cannot be broken into multiple lines.

6.1 Lexical elements

6.1.1 Characters

An RTLIL file is a stream of bytes. Strictly speaking, a “character” in an RTLIL file is a single byte. The
lexer treats multi-byte encoded characters as consecutive single-byte characters. While other encodings may
work, UTF-8 is known to be safe to use. Byte order marks at the beginning of the file will cause an error.

ASCII spaces (32) and tabs (9) separate lexer tokens.

A nonws character, used in identifiers, is any character whose encoding consists solely of bytes above ASCII
space (32).

An eol is one or more consecutive ASCII newlines (10) and carriage returns (13).

6.1.2 Identifiers
There are two types of identifiers in RTLIL:
e Publically visible identifiers

o Auto-generated identifiers

<id>
<public-id>
<autogen-id>

<public-id> | <autogen-id>

\ <nonws>+
$ <nonws>+

6.1.3 Values
A wvalue consists of a width in bits and a bit representation, most significant bit first. Bits may be any of:
e 0: A logic zero value

e 1: A logic one value

223

YosysHQ Yosys, Version 0.55

o x: An unknown logic value (or don’t care in case patterns)
o z: A high-impedance value (or don’t care in case patterns)
o m: A marked bit (internal use only)

e —: A don’t care value

An integer is simply a signed integer value in decimal format. Warning: Integer constants are limited to 32
bits. That is, they may only be in the range [—2147483648,2147483648). Integers outside this range will
result in an error.

<value> ::= <decimal-digit>+ ' <binary-digit>*
ol1l1213141516l1l71819
Olt1lxlzl|lml-

-? <decimal-digit>+

<decimal-digit> ::
<binary-digit>
<integer>

6.1.4 Strings

A string is a series of characters delimited by double-quote characters. Within a string, any character except
ASCII NUL (0) may be used. In addition, certain escapes can be used:

e \n: A newline
« \t: A tab
e \ooo: A character specified as a one, two, or three digit octal value
All other characters may be escaped by a backslash, and become the following character. Thus:
¢ \\: A backslash
e \": A double-quote

e \r: An ‘r’ character

6.1.5 Comments

A comment starts with a # character and proceeds to the end of the line. All comments are ignored.

6.2 File

A file consists of an optional autoindex statement followed by zero or more modules.

<file> ::= <autoidx-stmt>?7 <module>*

6.2.1 Autoindex statements

The autoindex statement sets the global autoindex value used by Yosys when it needs to generate a unique
name, e.g. flattenN. The N part is filled with the value of the global autoindex value, which is subsequently
incremented. This global has to be dumped into RTLIL, otherwise e.g. dumping and running a pass would
have different properties than just running a pass on a warm design.

<autoidx-stmt> ::= autoidx <integer> <eol>

224 Chapter 6. RTLIL text representation

YosysHQ Yosys, Version 0.55

6.2.2 Modules

Declares a module, with zero or more attributes, consisting of zero or more wires, memories, cells, processes,
and connections.

<module> 1= <attr-stmt>* <module-stmt> <module-body> <module-end-stmt>
<module-stmt> ::= module <id> <eol>
<module-body> ::= (<param-stmt>
| <wire>
| <memory>
| <cell>
| <process>)*
<param-stmt> ::= parameter <id> <constant>? <eol>
<constant> ::= <value> | <integer> | <string>
<module-end-stmt> ::= end <eol>

6.2.3 Attribute statements

Declares an attribute with the given identifier and value.

<attr-stmt> ::= attribute <id> <constant> <eol>

6.2.4 Signal specifications

A signal is anything that can be applied to a cell port, i.e. a constant value, all bits or a selection of bits
from a wire, or concatenations of those.

Warning: When an integer constant is a sigspec, it is always 32 bits wide, 2’s complement. For example, a
constant of —1 is the same as 32'11111111111111111111111111111111, while a constant of 1 is the same
as 32'1.

See RTLIL::SigSpec for an overview of signal specifications.

<sigspec> :.:= <constant>
| <wire-id>
| <sigspec> [<integer> (:<integer>)?]
| { <sigspec>* }

6.2.5 Connections

Declares a connection between the given signals.

<conn-stmt> ::= connect <sigspec> <sigspec> <eol>

6.2.6 Wires
Declares a wire, with zero or more attributes, with the given identifier and options in the enclosing module.

See RTLIL::Cell and RTLIL:: Wire for an overview of wires.

<wire> 1= <attr-stmt>* <wire-stmt>
<wire-stmt> ::= wire <wire-option>* <wire-id> <eol>
<wire-id> 1= <id>

<wire-option> ::= width <integer>

| offset <integer>

(continues on next page)

6.2. File 225

YosysHQ Yosys, Version 0.55

(continued from previous page)
input <integer>
output <integer>
inout <integer>
upto
signed

6.2.7 Memories

Declares a memory, with zero or more attributes, with the given identifier and options in the enclosing
module.

See RTLIL::Memory for an overview of memory cells, and Memories for details about memory cell types.

<memory> 1 := <attr-stmt>* <memory-stmt>
<memory-stmt> ::= memory <memory-option>* <id> <eol>
<memory-option> ::= width <integer>

| size <integer>
| offset <integer>

6.2.8 Cells

Declares a cell, with zero or more attributes, with the given identifier and type in the enclosing module.

Cells perform functions on input signals. See Internal cell library for a detailed list of cell types.

<cell> 1= <attr-stmt>* <cell-stmt> <cell-body-stmt>* <cell-end-stmt>
<cell-stmt> ::= cell <cell-type> <cell-id> <eol>
<cell-id> 1= <id>
<cell-type> 1= <id>
<cell-body-stmt> ::= parameter (signed | real)? <id> <constant> <eol>
| connect <id> <sigspec> <eol>
<cell-end-stmt> ::= end <eol>

6.2.9 Processes

Declares a process, with zero or more attributes, with the given identifier in the enclosing module. The body
of a process consists of zero or more assignments followed by zero or more switches and zero or more syncs.

See RTLIL::Process for an overview of processes.

<process> 1= <attr-stmt>* <proc-stmt> <process-body> <proc-end-stmt>
<proc-stmt> ::= process <id> <eol>

<process-body> ::= <assign-stmt>* <switch>* <sync>*

<assign-stmt> ::= assign <dest-sigspec> <src-sigspec> <eol>
<dest-sigspec> ::= <sigspec>

<src-sigspec> ::= <sigspec>

<proc-end-stmt> ::= end <eol>

6.2.10 Switches

Switches test a signal for equality against a list of cases. Each case specifies a comma-separated list of signals
to check against. If there are no signals in the list, then the case is the default case. The body of a case
consists of zero or more assignments followed by zero or more switches. Both switches and cases may have
zero or more attributes.

226 Chapter 6. RTLIL text representation

YosysHQ Yosys, Version 0.55

<switch> ::= <switch-stmt> <case>* <switch-end-stmt>
<switch-stmt> := <attr-stmt>* switch <sigspec> <eol>
<case> ::= <attr-stmt>* <case-stmt> <case-body>
<case-stmt> ::= case <compare>? <eol>

<compare> ::= <sigspec> (, <sigspec>)x*

<case-body> ::= <assign-stmt>* <switch>x*
<switch-end-stmt> ::= end <eol>

6.2.11 Syncs

Syncs update signals with other signals when an event happens. Such an event may be:

e An edge or level on a signal
« Global clock ticks

o Initialization

o Always
<sync> ::= <sync-stmt> <update-stmt>*
<sync-stmt> ::= sync <sync-type> <sigspec> <eol>
| sync global <eol>
| sync init <eol>
| sync always <eol>
<sync-type> ::= low | high | posedge | negedge | edge
<update-stmt> ::= update <dest-sigspec> <src-sigspec> <eol>

6.2. File

227

YosysHQ Yosys, Version 0.55

228 Chapter 6. RTLIL text representation

CHAPTER
SEVEN

AUXILIARY LIBRARIES

The Yosys source distribution contains some auxiliary libraries that are compiled into Yosys and can be used
in plugins.

7.1 Bigint

The files in 1ibs/bigint/ provide a library for performing arithmetic with arbitrary length integers. It is
written by Matt McCutchen.

The Biglnt library is used for evaluating constant expressions, e.g. using the ConstEval class provided in
kernel/consteval.h.

See also: http://mattmccutchen.net/bigint/

7.2 difcn-win32

The dlfcn library enables runtime loading of plugins without requiring recompilation of Yosys. The files in
libs/dlfcn-win32 provide an implementation of d1fcn for Windows.

See also: https://github.com/dlfcn-win32/dlfen-win32

7.3 ezSAT

The files in 1ibs/ezsat provide a library for simplifying generating CNF formulas for SAT solvers. It also
contains bindings of MiniSAT. The ezSAT library is written by C. Wolf. It is used by the sat pass (see sat
- solve a SAT problem in the circuit).

7.4 fst

libfst files from gtkwave are included in 1ibs/fst to support reading/writing signal traces from/to the
GTKWave developed FST format. This is primarily used in the sim command.

7.5 jsonll

For reading/writing designs from/to JSON, read_json and write_json should be used. For everything
else there is the jsonll library:

jsonll is a tiny JSON library for C4++11, providing JSON parsing and serialization.

This library is used for outputting machine-readable statistics (stat with -json flag), using the RPC
frontend (connect_rpc), and the yosys-witness yw format.

229

http://mattmccutchen.net/bigint/
https://github.com/dlfcn-win32/dlfcn-win32
https://github.com/gtkwave/gtkwave
https://github.com/dropbox/json11

YosysHQ Yosys, Version 0.55

7.6 MiniSAT

The files in 1ibs/minisat provide a high-performance SAT solver, used by the sat command.

7.7 SHA1

The files in libs/shal/ provide a public domain SHA1 implementation written by Steve Reid, Bruce
Guenter, and Volker Grabsch. It is used for generating unique names when specializing parameterized
modules.

7.8 SubCircuit

The files in 1ibs/subcircuit provide a library for solving the subcircuit isomorphism problem. It is written
by C. Wolf and based on the Ullmann Subgraph Isomorphism Algorithm [Ull76]. It is used by the extract
pass (see extract - find subcircuits and replace them with cells).

230 Chapter 7. Auxiliary libraries

CHAPTER

EIGHT

Besides the main yosys executable, the Yosys distribution contains a set of additional helper programs.

AUXILIARY PROGRAMS

8.1 yosys-config

The yosys-config tool (an auto-generated shell-script) can be used to query compiler options and other
information needed for building loadable modules for Yosys. See Writing extensions for details.

Usage: ./yosys-config [--exec] [--prefix pf] args..
./yosys-config --build modname.so cppsources..

Replacement args:

--CXX
--cxxflags

--linkflags
--ldflags
--1libs

—1ltommath

A1l

Use

—--1d1libs
—-bindir
-—datdir

g+t

-02 -flto=auto -ffat-lto-objects -fexceptions -g \
-grecord-gcc-switches -pipe -Wall -Werror=format-security \
-Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 \
-Wp,-D_GLIBCXX_ASSERTIONS \
-specs=/usr/1lib/rpm/redhat/redhat-hardened-ccl \
-fstack-protector-strong \
-specs=/usr/lib/rpm/redhat/redhat-annobin-ccl -m64 \
-mcpu=power8 -mtune=power8 -fasynchronous-unwind-tables \
-fstack-clash-protection -Wall -Wextra -ggdb \
-I"/usr/include/yosys" -MD -MP -D_YOSYS_ -fPIC \
-I/usr/include -DYOSYS_VER=\"0.55\" -DYOSYS_MAJOR=0 \
-DYOSYS_MINOR=55 -DYOSYS_COMMIT=0.55 -std=c++17 -03 \
-DYOSYS_ENABLE_READLINE -DYOSYS_ENABLE_PLUGINS \
-DYOSYS_ENABLE_GLOB -DYOSYS_ENABLE_ZLIB \
-DTCL_WITH_EXTERNAL_TOMMATH -DWITH_GZFILEQOP \
-DYOSYS_ENABLE_TCL -DYOSYS_ENABLE_ABC -DYOSYS_ENABLE_COVER

-rdynamic

(alias of --linkflags)

-lstdc++ -1m -1rt -lreadline -1ffi -1dl -1z -1tcl9.0 -ltclstub -

(alias of --libs)
/usr/bin
/usr/share/yosys

other args are passed through as they are.

--exec to call a command instead of generating output. Example usage:

(continues on next page)

231

YosysHQ Yosys, Version 0.55

(continued from previous page)

./yosys-config --exec --cxx --cxxflags --1ldflags -o plugin.so -shared plugin.cc --libs
The above command can be abbreviated as:
./yosys-config --build plugin.so plugin.cc

Use --prefix to change the prefix for the special args from '--' to
something else. Example:

./yosys-config --prefix @ bindir: @bindir

The args --bindir and --datdir can be directly followed by a slash and
additional text. Example:

./yosys-config --datdir/simlib.v

8.2 yosys-filterlib

Todo
how does a filterlib rules-file work?
The yosys-filterlib tool is a small utility that can be used to strip or extract information from a Liberty

file. This can be useful for removing sensitive or proprietary information such as timing or other trade
secrets.

Usage: filterlib [rules-file [liberty-file]]
or: filterlib -verilogsim [liberty-file]

8.3 yosys-abc
This is a fork of ABC with a small set of custom modifications that have not yet been accepted upstream.

Not all versions of Yosys work with all versions of ABC. So Yosys comes with its own yosys-abc to avoid
compatibility issues between the two.

8.4 yosys-smtbmc

The yosys-smtbmc tool is a utility used by SBY for interacting with smt solvers.

yosys-smtbmc [options] <yosys_smt2_output>

-h, --help
show this message

-t <num_steps>
-t <skip_steps>:<num_steps>
-t <skip_steps>:<step_size>:<num_steps>

(continues on next page)

232 Chapter 8. Auxiliary programs

YosysHQ Yosys, Version 0.55

(continued from previous page)

default: skip_steps=0, step_size=1, num_steps=20

-g
generate an arbitrary trace that satisfies
all assertions and assumptions.

-i
instead of BMC run temporal induction

-c

instead of regular BMC run cover analysis

-m <module_name>
name of the top module

—-smtc <constr_filename>
read constraints file

-—cex <cex_filename>
read cex file as written by ABC's "write_cex -n"

--aig <prefix>
read AIGER map file (as written by Yosys' "write_aiger -map")
and AIGER witness file. The file names are <prefix>.aim for
the map file and <prefix>.aiw for the witness file.

--aig <aim_filename>:<aiw_filename>
like above, but for map files and witness files that do not
share a filename prefix (or use different file extensions).

—--aig-noheader
the AIGER witness file does not include the status and
properties lines.

--yw <yosys_witness_filename>
read a Yosys witness.

—-btorwit <btor_witness_filename>
read a BTOR witness.

--noinfo
only run the core proof, do not collect and print any
additional information (e.g. which assert failed)

-—presat
check if the design with assumptions but without assertions
is SAT before checking if assertions are UNSAT. This will
detect if there are contradicting assumptions. In some cases
this will also help to "warm up" the solver, potentially
yielding a speedup.

--final-only

(continues on next page)

8.4. yosys-smtbmc 233

YosysHQ Yosys, Version 0.55

(continued from previous page)

only check final constraints, assume base case

—--assume-skipped <start_step>
assume asserts in skipped steps in BMC.
no assumptions are created for skipped steps
before <start_step>.

—-—dump-vcd <vcd_filename>
write trace to this VCD file
(hint: use 'write_smt2 -wires' for maximum
coverage of signals in generated VCD file)

—-—dump-yw <yw_filename>
write trace as a Yosys witness trace

-—dump-vlogtb <verilog_filename>
write trace as Verilog test bench

--vlogtb-top <hierarchical_name>
use the given entity as top module for the generated
Verilog test bench. The <hierarchical_name> is relative
to the design top module without the top module name.

—-—dump-smtc <constr_filename>
write trace as constraints file

-—-smtc-init
write just the last state as initial constraint to smtc file

—--smtc-top <old>[:<new>]
replace <o0ld> with <new> in constraints dumped to smtc
file and only dump object below <old> in design hierarchy.

—--noinit
do not assume initial conditions in state O

—--dump-all
when using -g or -i, create a dump file for each
step. The character '%' is replaced in all dump
filenames with the step number.

--append <num_steps>
add <num_steps> time steps at the end of the trace
when creating a counter example (this additional time
steps will still be constrained by assumptions)

—--binary
dump anyconst values as raw bit strings

--keep-going
continue BMC after the first failed assertion and report
further failed assertions. To output multiple traces

(continues on next page)

234 Chapter 8. Auxiliary programs

YosysHQ Yosys, Version 0.55

(continued from previous page)
covering all found failed assertions, the character 'J' is
replaced in all dump filenames with an increasing number.
In cover mode, don't stop when a cover trace contains a failed
assertion.

—-check-witness
check that the used witness file contains sufficient
constraints to force an assertion failure.

--detect-loops
check if states are unique in temporal induction counter examples
(this feature is experimental and incomplete)

--incremental
run in incremental mode (experimental)

-—track-assumes
track individual assumptions and report a subset of used
assumptions that are sufficient for the reported outcome. This
can be used to debug PREUNSAT failures as well as to find a
smaller set of sufficient assumptions.

--minimize-assumes
when using --track-assumes, solve for a minimal set of sufficient assumptioms.

-s <solver>
set SMT solver: z3, yices, boolector, bitwuzla, cvc4, cvcd, mathsat, dummy
default: yices

-S <opt>
pass <opt> as command line argument to the solver

-—timeout <value>
set the solver timeout to the specified value (in seconds) .

--logic <smt2_logic>
use the specified SMT2 logic (e.g. QF_AUFBV)

—-—dummy <filename>
if solver is "dummy", read solver output from that file
otherwise: write solver output to that file

--smt2-option <option>=<value>
enable an SMT-LIBv2 option.

-v
enable debug output

--unroll
unroll uninterpreted functions

—-noincr

(continues on next page)

8.4. yosys-smtbmc 235

YosysHQ Yosys, Version 0.55

(continued from previous page)

don't use incremental solving, instead restart solver for
each (check-sat). This also avoids (push) and (pop).

—-noprogress
disable timer display during solving
(this option is set implicitly on Windows)

—-—dump-smt2 <filename>
write smt2 statements to file

--info <smt2-info-stmt>
include the specified smt2 info statement in the smt2 output

—-—nocomments
strip all comments from the generated smt2 code

8.5 yosys-witness

yosys-witness is a new tool to inspect and convert yosys witness traces. This is used in SBY and SCY for
producing traces in a consistent format independent of the solver.

Usage: yosys-witness [OPTIONS] COMMAND [ARGS]...

Options:
--help Show this message and exit.

Commands:
aiw2yw Convert an AIGER witness trace into a Yosys witness trace.
display Display a Yosys witness trace in a human readable format.
stats Display statistics of a Yosys witness trace.
wit2yw Convert a BTOR witness trace into a Yosys witness trace.
yw2aiw Convert a Yosys witness trace into an AIGER witness trace.
yw2yw Transform a Yosys witness trace.

Note

yosys-witness requires click Python package for use.

Todo

see if we can get the two hanging appnotes as lit references

236 Chapter 8. Auxiliary programs

https://pypi.org/project/click/

CHAPTER
NINE

INTERNAL CELL LIBRARY

The intermediate language used by Yosys (RTLIL) represents logic and memory with a series of cells. This
section provides details for those cells, breaking them down into two major categories: coarse-grain word-
level cells; and fine-grain gate-level cells. An additional section contains a list of properties which may be
shared across multiple cells.

9.1 Word-level cells

Most of the RTL cells closely resemble the operators available in HDLs such as Verilog or VHDL. Therefore
Verilog operators are used in the following sections to define the behaviour of the RTL cells.

Note that all RTL cells have parameters indicating the size of inputs and outputs. When passes modify RTL
cells they must always keep the values of these parameters in sync with the size of the signals connected to
the inputs and outputs.

Simulation models for the RTL cells can be found in the file techlibs/common/simlib.v in the Yosys source
tree.

9.1.1 Unary operators

All unary RTL cells have one input port A and one output port Y. They also have the following parameters:

A_SIGNED
Set to a non-zero value if the input A is signed and therefore should be sign-extended when needed.

A_WIDTH
The width of the input port A.

Y_WIDTH
The width of the output port Y.

Table 9.1: Cell types for unary operators with their corresponding
Verilog expressions.

Verilog Cell Type

= ~A $not

= +A $pos

= -A $neg

= &A $reduce_and
[A $reduce_or

= "A $reduce_zor
= ~"A $reduce_znor
= |A $reduce_bool
= 1A $logic_not

[T ST S S S SE S SIS
Il

237

YosysHQ Yosys, Version 0.55

For the unary cells that output a logical value ($reduce_and, $reduce_or, $reduce_zor, $reduce_znor,
$reduce_bool, $logic_not), when the Y_WIDTH parameter is greater than 1, the output is zero-extended,
and only the least significant bit varies.

Note that $reduce_or and $reduce_bool generally represent the same logic function. But the
read_verilog frontend will generate them in different situations. A $reduce_or cell is generated when the
prefix | operator is being used. A $reduce_bool cell is generated when a bit vector is used as a condition
in an if-statement or 7:-expression.

yosys> help $buf

A simple coarse-grain buffer cell type for the experimental buffered-normalized mode. Note this cell
does’t get removed by ‘opt_ clean’ and is not recommended for general use.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.1: simlib.v

os |module \$buf (A, Y);

99

100 parameter WIDTH = O;
101

102 input [WIDTH-1:0] A;
103 output [WIDTH-1:0] Y;
104

105 assign Y = A;

106

107 | endmodule

yosys> help $logic_not

)

A logical inverter. This corresponds to the Verilog unary prefix ‘!” operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.2: simlib.v

1513 |module \$logic_not (A, Y);

1514

1515 parameter A_SIGNED = O;

1516 parameter A_WIDTH = O;

1517 parameter Y_WIDTH = O;

1518

1519 input [A_WIDTH-1:0] A;

1520 output [Y_WIDTH-1:0] Y;

1521

1522 generate

1523 if (A_SIGNED) begin:BLOCK1
1524 assign Y = !$signed(A);
1525 end else begin:BLOCK2

(continues on next page)

238 Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

1526

1527

1528

1529

1530

(continued from previous page)
assign Y = !A;
end
endgenerate

endmodule

yosys> help $neg

An arithmetic inverter. This corresponds to the Verilog unary prefix ‘-’ operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.3: simlib.v

module \$neg (A, Y);

parameter A_SIGNED = O;
parameter A_WIDTH = O;
parameter Y_WIDTH = O;

input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;

generate
if (A_SIGNED) begin:BLOCK1
assign Y = -$signed(4);
end else begin:BLOCK2
assign Y = -A;
end
endgenerate

endmodule

yosys> help $not

40

41

42

43

44

45

46

Bit-wise inverter
This corresponds to the Verilog unary prefix ‘~" operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.4: simlib.v

module \$not (A, Y);

parameter A_SIGNED = O;
parameter A_WIDTH = O;
parameter Y_WIDTH = O;

input [A_WIDTH-1:0] A;

(continues on next page)

9.1. Word-level cells 239

YosysHQ Yosys, Version 0.55

(continued from previous page)

output [Y_WIDTH-1:0] Y;

generate
if (A_SIGNED) begin:BLOCK1
assign Y = ~$signed(4);
end else begin:BLOCK2
assign Y = ~A;
end
endgenerate

endmodule

yosys> help $pos

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

A buffer. This corresponds to the Verilog unary prefix ‘+’ operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.5: simlib.v

module \$pos (A, Y);

parameter A_SIGNED = O;
parameter A_WIDTH 0;
parameter Y_WIDTH 0;

input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;

generate
if (A_SIGNED) begin:BLOCK1
assign Y = $signed(A);
end else begin:BLOCK2
assign Y = A;
end
endgenerate

endmodule

yosys> help $reduce_and

An AND reduction. This corresponds to the Verilog unary prefix ‘&’ operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.6: simlib.v

module \$reduce_and (A, Y);

parameter A_SIGNED = O;

(continues on next page)

240

Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

273 parameter A_WIDTH = O;

274 parameter Y_WIDTH = O;

275

276 input [A_WIDTH-1:0] A;

277 output [Y_WIDTH-1:0] Y;

278

279 generate

280 if (A_SIGNED) begin:BLOCK1
281 assign Y = &$signed(4);
282 end else begin:BLOCK2

283 assign Y = &A;

284 end

285 endgenerate

286

2s7 | endmodule

(continued from previous page)

yosys> help $reduce_bool

An OR reduction. This cell type is used instead of $reduce_or when a signal is implicitly converted

to a boolean signal, e.g. for operands of ‘&&’ and ‘||.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.7: simlib.v

3s3 |module \$reduce bool (A, Y);

384

385 parameter A_SIGNED = O;

386 parameter A_WIDTH = O;

387 parameter Y_WIDTH = O;

388

389 input [A_WIDTH-1:0] A;

390 output [Y_WIDTH-1:0] Y;

391

392 generate

393 if (A_SIGNED) begin:BLOCK1
394 assign Y = !(!$signed(A));
395 end else begin:BLOCK2

396 assign Y = ! (!A);

397 end

398 endgenerate

399

400 |endmodule

yosys> help $reduce_or

An OR reduction. This corresponds to the Verilog unary prefix ¢|” operator.

Properties
1s_evaluable

Simulation model (verilog)

9.1. Word-level cells

241

YosysHQ Yosys, Version 0.55

Listing 9.8: simlib.v

208 |module \$reduce_or (A, Y);

299

300 parameter A_SIGNED = O;

301 parameter A_WIDTH = O;

302 parameter Y_WIDTH = O;

303

304 input [A_WIDTH-1:0] A;

305 output [Y_WIDTH-1:0] Y;

306

307 generate

308 if (A_SIGNED) begin:BLOCK1
309 assign Y = |$signed(A);
310 end else begin:BLOCK2

311 assign Y = |A;

312 end

313 endgenerate

314

315 | endmodule

yosys> help $reduce_xnor

A XNOR reduction. This corresponds to the Verilog unary prefix ‘~ operator.

Properties
is_evaluable

Simulation model (verilog)

Listing 9.9: simlib.v

3sa |module \$reduce_xnor (A, Y);

355

356 parameter A_SIGNED = O;

357 parameter A_WIDTH = O;

358 parameter Y_WIDTH = O;

359

360 input [A_WIDTH-1:0] A;

361 output [Y_WIDTH-1:0] Y;

362

363 generate

364 if (A_SIGNED) begin:BLOCK1
365 assign Y = ~"$signed(A);
366 end else begin:BLOCK2

367 assign Y = ~7A;

368 end

369 endgenerate

370

s71 | endmodule

yosys> help $reduce_xor

A XOR reduction. This corresponds to the Verilog unary prefix <’

Properties
1s_evaluable

operator.

242

Chapter 9.

Internal cell library

YosysHQ Yosys, Version 0.55

Simulation model (verilog)

Listing 9.10: simlib.v

326 |module \$reduce_xor (A, Y);

327

328 parameter A_SIGNED = O;

329 parameter A_WIDTH = O;

330 parameter Y_WIDTH = O;

331

332 input [A_WIDTH-1:0] A;

333 output [Y_WIDTH-1:0] Y;

334

335 generate

336 if (A_SIGNED) begin:BLOCK1
337 assign Y = “$signed(4);
338 end else begin:BLOCK2

339 assign Y = TA;

340 end

341 endgenerate

342

343 | endmodule

9.1.2 Binary operators

All binary RTL cells have two input ports A and B and one output port Y. They also have the following
parameters:

A_SIGNED
Set to a non-zero value if the input A is signed and therefore should be sign-extended when needed.

A_WIDTH
The width of the input port A.

B_SIGNED
Set to a non-zero value if the input B is signed and therefore should be sign-extended when needed.

B_WIDTH
The width of the input port B.

Y_WIDTH
The width of the output port Y.

9.1. Word-level cells 243

YosysHQ Yosys, Version 0.55

Table 9.2: Cell types for binary operators with their corresponding
Verilog expressions.

Verilog Cell Type Verilog Cell Type
Y=A&B $and Y =A% B $pow
Y=A|B $or Y=A<B st
Y=A"B $zor Y=A<=B $le
Y=A-"B $znor Y=A==B $eq

Y =A< B $shl Y=A!=B $ne
Y=A>B $shr Y =A>B $ge

Y = A <<< B $sshl Y=A>B $gt

Y =A>>>B §sshr Y=A+B $add

Y =A & B $logic_and Y = A - B $subd
Y=A||B $logic_or Y=A%*B $mul

Y = A === $eqx Y=A/B $div

Y =4 !I== $nex Y=A7B $mod

N/A $shift N/A $divfloor
N/A $shiftx N/A $modfloor

The $shl and $shr cells implement logical shifts, whereas the $sshl and $sshr cells implement arithmetic
shifts. The $shl and $sshl cells implement the same operation. All four of these cells interpret the second
operand as unsigned, and require B_SIGNED to be zero.

Two additional shift operator cells are available that do not directly correspond to any operator in Verilog,
$shift and $shiftz. The $shift cell performs a right logical shift if the second operand is positive (or
unsigned), and a left logical shift if it is negative. The $shiftz cell performs the same operation as the
$shift cell, but the vacated bit positions are filled with undef (x) bits, and corresponds to the Verilog
indexed part-select expression.

For the binary cells that output a logical value ($logic_and, $logic_or, $eqz, $nex, $1t, $le, $eq, $ne,
$ge, $gt), when the Y_WIDTH parameter is greater than 1, the output is zero-extended, and only the least
significant bit varies.

Division and modulo cells are available in two rounding modes. The original $div and $mod cells are based
on truncating division, and correspond to the semantics of the verilog / and % operators. The $divfloor
and $modfloor cells represent flooring division and flooring modulo, the latter of which corresponds to the
% operator in Python. See the following table for a side-by-side comparison between the different semantics.

Table 9.3: Comparison between different rounding modes for divi-
sion and modulo cells.

Division Result Truncating Flooring
$div. $mod S$divfloor $modfloor
-10 /3 -3.3 -3 -1 -4 2
10/-3 -3.3 -3 1 -4 -2
-10 /-3 3.3 3 -1 3 -1
10/ 3 3.3 3 1 3 1

yosys> help $add
Addition of inputs ‘A’ and ‘B’. This corresponds to the Verilog ‘+’ operator.

Properties
1s_evaluable

244 Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

Simulation model (verilog)

Listing 9.11: simlib.v

or3 |module \$add (A, B, Y);

974

975 parameter A_SIGNED = O;
976 parameter B_SIGNED = O;
977 parameter A_WIDTH = O;

078 parameter B_WIDTH = O;

979 parameter Y_WIDTH = O;

980

981 input [A_WIDTH-1:0] A;

982 input [B_WIDTH-1:0] B;

983 output [Y_WIDTH-1:0] Y;

984

085 generate

986 if (A_SIGNED && B_SIGNED) begin:BLOCK1
987 assign Y = $signed(A) + $signed(B);
988 end else begin:BLOCK2
989 assign Y = A + B;
990 end

991 endgenerate

992

993 | endmodule

yosys> help $and
A bit-wise AND. This corresponds to the Verilog ‘&’ operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.12: simlib.v

146 |module \$and (A, B, Y);

147

148 parameter A_SIGNED = O;

149 parameter B_SIGNED = O;

150 parameter A_WIDTH = O;

151 parameter B_WIDTH = O;

152 parameter Y_WIDTH = O;

153

154 input [A_WIDTH-1:0] A;

155 input [B_WIDTH-1:0] B;

156 output [Y_WIDTH-1:0] Y;

157

158 generate

159 if (A_SIGNED && B_SIGNED) begin:BLOCK1
160 assign Y = $signed(A) & $signed(B);
161 end else begin:BLOCK2

162 assign Y = A & B;

163 end

(continues on next page)

9.1. Word-level cells 245

YosysHQ Yosys, Version 0.55

(continued from previous page)

endgenerate

endmodule

yosys> help $bweqx

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

Bit-wise case equality
A bit-wise version of $eqz.
Properties
e 1s_evaluable
e T-aware

Simulation model (verilog)

Listing 9.13: simlib.v

module \$bwegx (A, B, Y);
parameter WIDTH = O;

input [WIDTH-1:0] A, B;
output [WIDTH-1:0] Y;

genvar ij;
generate
for (i = 0; i < WIDTH; i = i + 1) begin:slices
assign Y[i] = A[i] === BI[il;
end
endgenerate

endmodule

yosys> help $div

1332

1333

1334

1335

1336

1337

Divider

This corresponds to the Verilog ¢/’ operator, performing division and truncating the result (rounding
towards 0).

Properties
e 1s_evaluable
e z-output

Simulation model (verilog)

Listing 9.14: simlib.v

module \$div (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = 0O
parameter A_WIDTH = O;
parameter B_WIDTH = O;

)

(continues on next page)

246

Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

(continued from previous page)

parameter Y_WIDTH = O;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) / $signed(B);
end else begin:BLOCK2
assign Y = A / B;
end
endgenerate

endmodule

yosys> help $divfloor

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

Division with floored result (rounded towards negative infinity).

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.15: simlib.v

module \$divfloor (A, B, Y);

parameter A_SIGNED
parameter B_SIGNED
parameter A_WIDTH
parameter B_WIDTH
parameter Y_WIDTH

o n T
O O O

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

(os]

generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
localparam WIDTH =
A_WIDTH >= B_WIDTH &% A_WIDTH >= Y_WIDTH ? A_WIDTH :
B_WIDTH >= A _WIDTH &% B_WIDTH >= Y _WIDTH ? B_WIDTH : Y WIDTH;
wire [WIDTH:0] A_buf, B_buf, N_buf;
assign A_buf = $signed(A);
assign B_buf = $signed(B);
assign N_buf = (A[A_WIDTH-1] == B[B_WIDTH-1]) || A == 0 ? A_buf
—$signed(A_buf - (B[B_WIDTH-1] ? B_buf+l : B_buf-1));
assign Y = $signed(N_buf) / $signed(B_buf);
end else begin:BLOCK2
assign Y = A / B;
end
endgenerate

(continues on next page)

9.1.

Word-level cells 247

YosysHQ Yosys, Version 0.55

1421

1422

(continued from previous page)

endmodule

yosys> help $eq

782

783

784

786

787

788

789

791

792

793

794

796

797

798

799

801

802

An equality comparison between inputs ‘A’ and ‘B’. This corresponds to the Verilog ‘==" operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.16: simlib.v

module \$eq (A, B, Y);

parameter A_SIGNED
parameter B_SIGNED
parameter A_WIDTH = O;
parameter B_WIDTH = O;
parameter Y_WIDTH = O;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) == $signed(B);
end else begin:BLOCK2
assign Y = A == B;
end
endgenerate

endmodule

yosys> help $eqx

847

848

Case equality

An exact equality comparison between inputs ‘A’ and ‘B’. Also known as the case equality operator.
This corresponds to the Verilog ‘===" operator. Unlike equality comparison that can give ‘x’ as
output, an exact equality comparison will strictly give ‘0" or ‘1’ as output, even if input includes ‘x’ or
‘7’ values.

Properties
e 1s_evaluable
e zT—-aware

Simulation model (verilog)

Listing 9.17: simlib.v

module \$eqx (A, B, Y);

(continues on next page)

248

Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

(continued from previous page)

849 parameter A_SIGNED = O;

850 parameter B_SIGNED = O;

851 parameter A_WIDTH = O;

852 parameter B_WIDTH = O;

853 parameter Y_WIDTH = O;

854

855 input [A_WIDTH-1:0] A;

856 input [B_WIDTH-1:0] B;

857 output [Y_WIDTH-1:0] Y;

858

859 generate

860 if (A_SIGNED && B_SIGNED) begin:BLOCK1
861 assign Y = $signed(A) === $signed(B);
862 end else begin:BLOCK2

863 assign Y = === B;

864 end

865 endgenerate

866

s67 | endmodule

yosys> help $ge

A greater-than-or-equal-to comparison between inputs ‘A’ and ‘B’ This corresponds to the Verilog
‘>=" operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.18: simlib.v

910 |module \$ge (A, B, Y);

911

912 parameter A_SIGNED = O;

913 parameter B_SIGNED = O;

914 parameter A_WIDTH = O;

915 parameter B_WIDTH = O;

916 parameter Y_WIDTH = O;

917

918 input [A_WIDTH-1:0] A;

919 input [B_WIDTH-1:0] B;

920 output [Y_WIDTH-1:0] Y;

921

922 generate

923 if (A_SIGNED && B_SIGNED) begin:BLOCK1
924 assign Y = $signed(A) >= $signed(B);
925 end else begin:BLOCK2
926 assign Y = A >= B;
927 end

928 endgenerate

929

930 |endmodule

yosys> help $gt

9.1. Word-level cells 249

YosysHQ Yosys, Version 0.55

A greater-than comparison between inputs ‘A’ and ‘B’. This corresponds to the Verilog ‘>’ operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.19: simlib.v

module \$gt (A, B, Y);

parameter A_SIGNED
parameter B_SIGNED
parameter A_WIDTH = O;
parameter B_WIDTH = O;
parameter Y_WIDTH = O;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) > $signed(B);
end else begin:BLOCK2
assign Y = A > B;
end
endgenerate

endmodule

yosys> help $le

A less-than-or-equal-to comparison between inputs ‘A’ and ‘B’. This corresponds to the Verilog ‘<=’
operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.20: simlib.v

module \$le (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = O;

)

parameter A_WIDTH = O;
parameter B_WIDTH = O;
parameter Y_WIDTH = O;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

(continues on next page)

250

Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

(continued from previous page)

762 generate

763 if (A_SIGNED && B_SIGNED) begin:BLOCK1
764 assign Y = $signed(A) <= $signed(B);
765 end else begin:BLOCK2

766 assign Y = A <= B;

767 end

768 endgenerate

769

770 endmodule

yosys> help $logic_and
A logical AND. This corresponds to the Verilog ‘&&’ operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.21: simlib.v

1541 |module \$logic_and (A, B, Y);
1542

1543 parameter A_SIGNED = O;
1544 parameter B_SIGNED = O;
1545 parameter A_WIDTH = O;

1546 parameter B_WIDTH = O;

1547 parameter Y_WIDTH = O;

1548

1549 input [A_WIDTH-1:0] A;

1550 input [B_WIDTH-1:0] B;

1551 output [Y_WIDTH-1:0] Y;
1552

1553 generate

1554 if (A_SIGNED && B_SIGNED) begin:BLOCK1
1555 assign Y = $signed(A) && $signed(B);
1556 end else begin:BLOCK2
1557 assign Y = A && B;
1558 end

1559 endgenerate

1560

1561 | endmodule

yosys> help $logic_or
A logical OR. This corresponds to the Verilog ‘||” operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.22: simlib.v

1572 |module \$logic_or (A, B, Y);
1573

(continues on next page)

9.1. Word-level cells 251

YosysHQ Yosys, Version 0.55

1574

1575

1576

1577

1578

1579

1586

1587

1588

1589

1590

1591

1592

parameter A_SIGNED
parameter B_SIGNED
parameter A_WIDTH
parameter B_WIDTH = O;
parameter Y_WIDTH

Il
o

]
o

input [A_WIDTH-1:0]
input [B_WIDTH-1:0]
output [Y_WIDTH-1:0] Y

UUD>

generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) || $signed(B);
end else begin:BLOCK2
assign Y = A || B;
end
endgenerate

endmodule

(continued from previous page)

yosys> help $1t

718

720

721

722

723

725

726

727

728

730

731

732

733

735

736

737

738

A less-than comparison between inputs ‘A’ and ‘B’. This corresponds to the Verilog ‘<’ operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.23: simlib.v

module \$1t (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = O
parameter A_WIDTH
parameter B_WIDTH
parameter Y_WIDTH = O;

nn
o O

input [A_WIDTH-1:0]
input [B_WIDTH-1:0]
output [Y_WIDTH-1:0] Y

W:l>

generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) < $signed(B);
end else begin:BLOCK2
assign Y = A < B;
end
endgenerate

endmodule

yosys> help $mod

252

Chapter 9.

Internal cell library

YosysHQ Yosys, Version 0.55

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

Modulo

This corresponds to the Verilog ‘%’ operator, giving the module (or remainder) of division and trun-

cating the result (rounding towards 0).
Invariant: $div(A, B) * B + $mod(A, B) == A
Properties
e 1s_evaluable
e z-output

Simulation model (verilog)

Listing 9.24: simlib.v

module \$mod (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = 0

)

parameter A_WIDTH = O;
parameter B_WIDTH = O;
parameter Y_WIDTH = O;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) 7, $signed(B);
end else begin:BLOCK2
assign Y = A 7 B;
end
endgenerate

endmodule

yosys> help $modfloor

1435

1436

1437

1438

1439

1440

1441

Modulo/remainder of division with floored result (rounded towards negative infinity).

Invariant: $divfloor(A, B) * B 4+ $modfloor(A, B) == A

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.25: simlib.v

module \$modfloor (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = O;
parameter A_WIDTH = O;
parameter B_WIDTH = O;
parameter Y_WIDTH = O;

(continues on next page)

9.1. Word-level cells

253

YosysHQ Yosys, Version 0.55

(continued from previous page)

1442

1443 input [A_WIDTH-1:0] A;

1444 input [B_WIDTH-1:0] B;

1445 output [Y_WIDTH-1:0] Y;

1446

1447 generate

1448 if (A_SIGNED && B_SIGNED) begin:BLOCK1

1449 localparam WIDTH = B_WIDTH >= Y _WIDTH 7 B_WIDTH : Y_WIDTH;

1450 wire [WIDTH-1:0] B_buf, Y_trunc;

1451 assign B_buf = $signed(B);

1452 assign Y_trunc = $signed(A) 7 $signed(B);

1453 // flooring mod is the same as truncating mod for positive division,
—results (4 and B have

1454 // the same sign), as well as when there's no remainder.

1455 // For all other cases, they behave as “floor - trunc = B’

1456 assign Y = (A[A_WIDTH-1] == B[B_WIDTH-1]) || Y_trunc == 0 ? Y_trunc :
—$signed(B_buf) + $signed(Y_trunc);

1457 end else begin:BLOCK2

1458 // no difference between truncating and flooring for unsigned

1459 assign Y = A 7 B;

1460 end

1461 endgenerate

1462

1463 | endmodule

yosys> help $mul
Multiplication of inputs ‘A’ and ‘B’. This corresponds to the Verilog ‘*’ operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.26: simlib.v

1037 |module \$mul (A, B, Y);

1038

1039 parameter A_SIGNED = O;

1040 parameter B_SIGNED = O;

1041 parameter A_WIDTH = O;

1042 parameter B_WIDTH = O;

1043 parameter Y_WIDTH = O;

1044

1045 input [A_WIDTH-1:0] A;

1046 input [B_WIDTH-1:0] B;

1047 output [Y_WIDTH-1:0] Y;

1048

1049 generate

1050 if (A_SIGNED && B_SIGNED) begin:BLOCK1
1051 assign Y = $signed(A) * $signed(B);
1052 end else begin:BLOCK2

1053 assign Y = A * B;

1054 end

(continues on next page)

254 Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

1057

(continued from previous page)

endgenerate

endmodule

yosys> help $ne

814

815

816

817

832

833

834

An inequality comparison between inputs ‘A’ and ‘B’. This corresponds to the Verilog ‘!=" operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.27: simlib.v

module \$ne (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = 0

El

parameter A_WIDTH = O;
parameter B_WIDTH = O;
parameter Y_WIDTH = O;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) !'= $signed(B);
end else begin:BLOCK2
assign Y = A != B;
end
endgenerate

endmodule

yosys> help $nex

879

880

Case inequality
This corresponds to the Verilog ‘!==" operator.
Refer to $eqgz for more details.
Properties
e 1s_evaluable
e T-aware

Simulation model (verilog)

Listing 9.28: simlib.v

module \$nex (A, B, Y);

parameter A_SIGNED = O;

(continues on next page)

9.1.

Word-level cells 255

YosysHQ Yosys, Version 0.55

881

882

883

885

886

887

888

890

891

892

893

895

896

897

898

parameter B_SIGNED = O;
parameter A_WIDTH
parameter B_WIDTH
parameter Y_WIDTH = O;

o
o O

input [A_WIDTH-1:0]
input [B_WIDTH-1:0]
output [Y_WIDTH-1:0] Y

W:l>

generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) !== $signed(B);
end else begin:BLOCK2
assign Y = A !== B;
end
endgenerate
endmodule

(continued from previous page)

yosys> help $or

177

178

180

181

182

183

185

186

187

188

190

191

192

193

195

196

A bit-wise OR. This corresponds to the Verilog ‘| operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.29: simlib.v

module \$or (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = O;

)

parameter A_WIDTH = O;
parameter B_WIDTH = O;
parameter Y_WIDTH = O;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0]
output [Y_WIDTH-1:0] Y

m

generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) | $signed(B);
end else begin:BLOCK2
assign Y = A | B;
end
endgenerate

endmodule

yosys> help $pow

Exponentiation of an input (Y = A ** B). This corresponds to the Verilog

kko

operator.

256

Chapter 9.

Internal cell library

YosysHQ Yosys, Version 0.55

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.30: simlib.v

1477 |module \$pow (A, B, Y);

1478

1479 parameter A_SIGNED = O;

1480 parameter B_SIGNED = O;

1481 parameter A_WIDTH = O;

1482 parameter B_WIDTH = O;

1483 parameter Y_WIDTH = O;

1484

1485 input [A_WIDTH-1:0] A;

1486 input [B_WIDTH-1:0] B;

1487 output [Y_WIDTH-1:0] Y;

1488

1489 generate

1490 if (A_SIGNED && B_SIGNED) begin:BLOCK1
1401 assign Y = $signed(A) ** $signed(B);
1492 end else if (A_SIGNED) begin:BLOCK2
1493 assign Y = $signed(A) #*x B;

1494 end else if (B_SIGNED) begin:BLOCK3
1495 assign Y = A ** $signed(B);

1496 end else begin:BLOCK4

1497 assign Y = A ** B;

1498 end

1499 endgenerate

1500

1501 | endmodule

yosys> help $shift
Variable shifter

Performs a right logical shift if the second operand is positive (or unsigned), and a left logical shift if
it is negative.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.31: simlib.v

s3s |module \$shift (A, B, Y);
536

537 parameter A_SIGNED = O;
538 parameter B_SIGNED = O;
539 parameter A_WIDTH = O;
540 parameter B_WIDTH = O;
541 parameter Y_WIDTH = O;
542

543 input [A_WIDTH-1:0] A;

(continues on next page)

9.1. Word-level cells 257

YosysHQ Yosys, Version 0.55

(continued from previous page)

544 input [B_WIDTH-1:0] B;

545 output [Y_WIDTH-1:0] Y;

546

547 generate

548 if (A_SIGNED) begin:BLOCK1

549 if (B_SIGNED) begin:BLOCK2

550 assign Y = $signed(B) < 0 7 $signed(A) << -B : $signed(A) >> B;
551 end else begin:BLOCK3

552 assign Y = $signed(A) >> B;

553 end

554 end else begin:BLOCK4

555 if (B_SIGNED) begin:BLOCK5

556 assign Y = $signed(B) < 0 7 A << -B : A >> B;
557 end else begin:BLOCK6

558 assign Y = A >> B;

559 end

560 end

561 endgenerate

562

563 endmodule

yosys> help $shiftx
Indexed part-select

Same as the $shift cell, but fills with X’
Properties
e 1s_evaluable
e zT-output

Simulation model (verilog)

Listing 9.32: simlib.v

s72 |module \$shiftx (A, B, Y);
573
574 parameter A_SIGNED = O;
575 parameter B_SIGNED = O;
576 parameter A_WIDTH = O;
577 parameter B_WIDTH = O;
578 parameter Y_WIDTH = O;
579
580 input [A_WIDTH-1:0] A;
581 input [B_WIDTH-1:0] B;
582 output [Y_WIDTH-1:0] Y;
583
584 generate
585 if (Y_WIDTH > 0)
586 if (B_SIGNED) begin:BLOCK1
587 assign Y = A[$signed(B) +: Y_WIDTH];
588 end else begin:BLOCK2
589 assign Y = A[B +: Y_WIDTH];
(continues on next page)
258 Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

(continued from previous page)
590 end
591 endgenerate
592

593 | endmodule

yosys> help $shl
A logical shift-left operation. This corresponds to the Verilog ‘<<’ operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.33: simlib.v

a1 |module \$shl (A, B, Y);

412

413 parameter A_SIGNED = O;

414 parameter B_SIGNED = O;

415 parameter A_WIDTH = O;

416 parameter B_WIDTH = O;

417 parameter Y_WIDTH = O;

418

419 input [A_WIDTH-1:0] A;

1420 input [B_WIDTH-1:0] B;

421 output [Y_WIDTH-1:0] Y;

422

423 generate

424 if (A_SIGNED) begin:BLOCK1
125 assign Y = $signed(A) << B;
426 end else begin:BLOCK2
427 assign Y = A << B;
428 end

420 endgenerate

430

431 endmodule

yosys> help $shr
A logical shift-right operation. This corresponds to the Verilog ‘>>" operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.34: simlib.v

442 |module \$shr (A, B, Y);

443

444 parameter A_SIGNED = O;
445 parameter B_SIGNED = O;
446 parameter A_WIDTH = O;
447 parameter B_WIDTH = O;
448 parameter Y_WIDTH = O;

(continues on next page)

9.1. Word-level cells 259

YosysHQ Yosys, Version 0.55

(continued from previous page)

449

450 input [A_WIDTH-1:0] A;

151 input [B_WIDTH-1:0] B;

452 output [Y_WIDTH-1:0] Y;

453

454 generate

455 if (A_SIGNED) begin:BLOCK1
456 assign Y = $signed(A) >> B;
457 end else begin:BLOCK2

458 assign Y = A >> B;

459 end

460 endgenerate

461

462 | endmodule

yosys> help $sshl
An arithmatic shift-left operation. This corresponds to the Verilog ‘<<<’ operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.35: simlib.v

a7a |module \$sshl (A, B, Y);

475

476 parameter A_SIGNED = O;

477 parameter B_SIGNED = O;

478 parameter A_WIDTH = O;

479 parameter B_WIDTH = O;

480 parameter Y_WIDTH = O;

481

482 input [A_WIDTH-1:0] A;

483 input [B_WIDTH-1:0] B;

184 output [Y_WIDTH-1:0] Y;

485

486 generate

487 if (A_SIGNED) begin:BLOCK1
188 assign Y = $signed(A) <<< B;
489 end else begin:BLOCK2
490 assign Y = A <<< B;
491 end

492 endgenerate

493

4904 | endmodule

yosys> help $sshr
An arithmatic shift-right operation. This corresponds to the Verilog ‘>>>" operator.

Properties
is_evaluable

Simulation model (verilog)

260 Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

Listing 9.36: simlib.v

module \$sshr (4, B, Y);

parameter A_SIGNED
parameter B_SIGNED
parameter A_WIDTH = O;
parameter B_WIDTH = O;
parameter Y_WIDTH = O;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

generate
if (A_SIGNED) begin:BLOCK1
assign Y = $signed(d) >>> B;
end else begin:BLOCK2
assign Y = A >>> B;
end
endgenerate

endmodule

yosys> help $sub

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

Subtraction between inputs ‘A’ and ‘B’ This corresponds to the Verilog ‘-’

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.37: simlib.v

operator.

module \$sub (A, B, Y);

parameter A_SIGNED
parameter B_SIGNED
parameter A_WIDTH =
parameter B_WIDTH
parameter Y_WIDTH =

nn |

nn
o O O
50 ©o o © ©

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) - $signed(B);
end else begin:BLOCK2
assign Y = A - B;
end
endgenerate

(continues on next page)

9.1.

Word-level cells

261

YosysHQ Yosys, Version 0.55

1025

endmodule

(continued from previous page)

yosys> help $xnor

239

241

242

243

244

246

247

248

249

251

252

254

255

256

257

A bit-wise XNOR. This corresponds to the Verilog ‘~~’ operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.38: simlib.v

module \$xnor (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = O;
parameter A_WIDTH = O;
parameter B_WIDTH = O;
parameter Y_WIDTH = O;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) ~~ $signed(B);
end else begin:BLOCK2
assign Y = A ~~ B;
end
endgenerate

endmodule

yosys> help $xor

A bit-wise XOR. This corresponds to the Verilog <~ operator.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.39: simlib.v

module \$xor (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = O

)

parameter A_WIDTH = O;
parameter B_WIDTH = O;
parameter Y_WIDTH = O;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;

(continues on next page)

262

Chapter 9.

Internal cell library

YosysHQ Yosys, Version 0.55

(continued from previous page)

218 output [Y_WIDTH-1:0] Y;

219

220 generate

221 if (A_SIGNED && B_SIGNED) begin:BLOCK1
222 assign Y = $signed(A) ~ $signed(B);
223 end else begin:BLOCK2

224 assign Y = A ~ B;

225 end

226 endgenerate

227

228 | endmodule

9.1.3 Multiplexers

Multiplexers are generated by the Verilog HDL frontend for ?:-expressions. Multiplexers are also generated
by the proc pass to map the decision trees from RTLIL::Process objects to logic.

The simplest multiplexer cell type is $muz. Cells of this type have a WITDH parameter and data inputs A and
B and a data output Y, all of the specified width. This cell also has a single bit control input S. If S is 0 the
value from the input A is sent to the output, if it is 1 the value from the B input is sent to the output. So
the $muz cell implements the function Y = S 7 B : A.

The $pmuz cell is used to multiplex between many inputs using a one-hot select signal. Cells of this type
have a WIDTH and a S_WIDTH parameter and inputs A, B, and S and an output Y. The S input is S_WIDTH
bits wide. The A input and the output are both WIDTH bits wide and the B input is WIDTH*S_WIDTH bits
wide. When all bits of S are zero, the value from A input is sent to the output. If the n‘th bit from S is
set, the value n‘th WIDTH bits wide slice of the B input is sent to the output. When more than one bit from
S is set the output is undefined. Cells of this type are used to model “parallel cases” (defined by using the
parallel_case attribute, the unique or unique0 SystemVerilog keywords, or detected by an optimization).

The $tribuf cell is used to implement tristate logic. Cells of this type have a WIDTH parameter and inputs
A and EN and an output Y. The A input and Y output are WIDTH bits wide, and the EN input is one bit wide.
When EN is 0, the output is not driven. When EN is 1, the value from A input is sent to the Y output.
Therefore, the $tribuf cell implements the function Y = EN 7 A : 'bz.

Behavioural code with cascaded if-then-else- and case-statements usually results in trees of multiplexer cells.
Many passes (from various optimizations to FSM extraction) heavily depend on these multiplexer trees to
understand dependencies between signals. Therefore optimizations should not break these multiplexer trees
(e.g. by replacing a multiplexer between a calculated signal and a constant zero with an $and gate).

yosys> help $bmux
Binary-encoded multiplexer

Selects between ‘slices’ of A where each value of S corresponds to a unique slice.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.40: simlib.v

1658 |module \$bmux (A, S, Y);
1659

(continues on next page)

9.1. Word-level cells 263

YosysHQ Yosys, Version 0.55

(continued from previous page)

1660 parameter WIDTH = O;

1661 parameter S_WIDTH = O;

1662

1663 input [(WIDTH << S_WIDTH)-1:0] A;

1664 input [S_WIDTH-1:0] S;

1665 output [WIDTH-1:0] Y;

1666

1667 wire [WIDTH-1:0] bmO_out, bml_out;

1668

1669 generate

1670 if (S_WIDTH > 1) begin:muxlogic

1671 \$bmux #(.WIDTH(WIDTH), .S_WIDTH(S_WIDTH-1)) bmO (.ACA[(WIDTH << (S_
<WIDTH - 1))-1:0]), .S(S[S_WIDTH-2:0]), .Y(bmO_out));

1672 \$bmux #(.WIDTH(WIDTH), .S_WIDTH(S_WIDTH-1)) bmil (.ACA[(WIDTH << S_
—WIDTH)-1:WIDTH << (S_WIDTH - 1)1), .S(S[S_WIDTH-2:0]1), .Y(bml_out));

1673 assign Y = S[S_WIDTH-1] 7 bml_out : bmO_out;

1674 end else if (S_WIDTH == 1) begin:simple

1675 assign Y = S 7 A[2*#WIDTH-1:WIDTH] : A[WIDTH-1:0];

1676 end else begin:passthru

1677 assign Y = A;

1678 end

1679 endgenerate

1680

1681 | endmodule

yosys> help $bwmux

Bit-wise multiplexer
Equivalent to a series of 1-bit wide $muz cells.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.41: simlib.v

2027 module \$bwmux (A, B, S, Y);

2028

2029 parameter WIDTH = O;

2030

2031 input [WIDTH-1:0] A, B;

2032 input [WIDTH-1:0] S;

2033 output [WIDTH-1:0] Y;

2034

2035 genvar ij;

2036 generate

2037 for (i = 0; 1 < WIDTH; i = i + 1) begin:slices
2038 assign Y[i] = S[i] 7 B[i] : A[il;
2039 end

2040 endgenerate

2041

2042 | endmodule

264 Chapter 9.

Internal cell library

YosysHQ Yosys, Version 0.55

yosys> help $demux

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

Demultiplexer i.e routing single input to several outputs based on select signal. Unselected outputs
are driven to zero.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.42: simlib.v

module \$demux (A, S, Y);

parameter WIDTH = 1;
parameter S_WIDTH = 1;

input [WIDTH-1:0] A;
input [S_WIDTH-1:0] S;
output [(WIDTH << S_WIDTH)-1:0] Y;

genvar ij;
generate
for (i = 0; 1 < (1 << S_WIDTH); i = i + 1) begin:slices
assign Y[i*WIDTH+:WIDTH] = (S == i) 7 A : 0;
end
endgenerate

endmodule

yosys> help $mux

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

Multiplexer i.e selecting between two inputs based on select signal.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.43: simlib.v

module \$mux (A, B, S, Y);
parameter WIDTH = O;
input [WIDTH-1:0] A, B;
input S;
output [WIDTH-1:0] Y;

assign Y =S 7 B : A;

endmodule

yosys> help $pmux

Priority-encoded multiplexer

Selects between ‘slices’ of B where each slice corresponds to a single bit of S. Outputs A when all bits
of S are low.

9.1.

Word-level cells 265

YosysHQ Yosys, Version 0.55

Properties
e 1s_evaluable
e z-output

Simulation model (verilog)

Listing 9.44: simlib.v

1601 |module \$pmux (A, B, S, Y);

1692

1693 parameter WIDTH = O;

1694 parameter S_WIDTH = O;

1695

1696 input [WIDTH-1:0] A;

1697 input [WIDTH#S_WIDTH-1:0] B;

1698 input [S_WIDTH-1:0] S;

1699 output reg [WIDTH-1:0] Y;

1700

1701 integer i;

1702 reg found_active_sel_bit;

1703

1704 always @* begin

1705 Y = A;

1706 found_active_sel_bit = O;

1707 for (i = 0; i < S_WIDTH; i = i+1)
1708 case (S[l])

1709 1'bl: begin

1710 Y = found_active_sel_bit 7 'bx : B >> (WIDTH*i);
1711 found_active_sel_bit = 1;
1712 end

1713 1'b0: ;

1714 1'bx: begin

1715 Y = 'bX;

1716 found_active_sel_bit = 'bx;
1717 end

1718 endcase

1719 end

1720

1721 | endmodule

yosys> help $tribuf

A tri-state buffer. This buffer conditionally drives the output with the value of the input based on the
enable signal.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.45: simlib.v

1s0s |module \$tribuf (A, EN, Y);

1809
1810 parameter WIDTH = O;

(continues on next page)

266 Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

(continued from previous page)

1811

1812 input [WIDTH-1:0] A;

1813 input EN;

1814 output [WIDTH-1:0] Y;

1815

1816 assign Y = EN 7 A : 'bz;

1817

1818 | endmodule

9.1.4 Registers

SR-type latches are represented by $sr cells. These cells have input ports SET and CLR and an output port
Q. They have the following parameters:

WIDTH
The width of inputs SET and CLR and output Q.

SET_POLARITY
The set input bits are active-high if this parameter has the value 1'b1 and active-low if this parameter
is 1'bO0.
CLR_POLARITY
The reset input bits are active-high if this parameter has the value 1'b1 and active-low if this parameter
is 1'bO0.
Both set and reset inputs have separate bits for every output bit. When both the set and reset inputs of an
$sr cell are active for a given bit index, the reset input takes precedence.

D-type flip-flops are represented by $dff cells. These cells have a clock port CLK, an input port D and an
output port Q. The following parameters are available for $dff cells:

WIDTH
The width of input D and output Q.

CLK_POLARITY
Clock is active on the positive edge if this parameter has the value 1'b1 and on the negative edge if
this parameter is 1'b0.

D-type flip-flops with asynchronous reset are represented by $adff cells. As the $dff cells they have CLK,
D and Q ports. In addition they also have a single-bit ARST input port for the reset pin and the following
additional two parameters:

ARST_POLARITY
The asynchronous reset is active-high if this parameter has the value 1'bl and active-low if this
parameter is 1'Db0.

ARST_VALUE
The state of Q will be set to this value when the reset is active.

Usually these cells are generated by the proc pass using the information in the designs RTLIL::Process
objects.

D-type flip-flops with synchronous reset are represented by $sdff cells. As the $dff cells they have CLK,
D and Q ports. In addition they also have a single-bit SRST input port for the reset pin and the following
additional two parameters:

SRST_POLARITY
The synchronous reset is active-high if this parameter has the value 1'b1 and active-low if this param-
eter is 1'bO0.

9.1. Word-level cells 267

YosysHQ Yosys, Version 0.55

SRST_VALUE
The state of Q will be set to this value when the reset is active.

Note that the $adff and $sdff cells can only be used when the reset value is constant.

D-type flip-flops with asynchronous load are represented by $aldff cells. As the $dff cells they have CLK,
D and Q ports. In addition they also have a single-bit ALOAD input port for the async load enable pin, a AD
input port with the same width as data for the async load data, and the following additional parameter:

ALOAD_POLARITY
The asynchronous load is active-high if this parameter has the value 1'b1 and active-low if this pa-
rameter is 1'b0.

D-type flip-flops with asynchronous set and reset are represented by $dffsr cells. As the $dff cells they
have CLK, D and Q ports. In addition they also have multi-bit SET and CLR input ports and the corresponding
polarity parameters, like $sr cells.

D-type flip-flops with enable are represented by $dffe, $adffe, $aldffe, $dffsre, $sdffe, and $sdffce
cells, which are enhanced variants of $dff, $adff, $aldff, $dffsr, $sdff (with reset over enable) and
$sdff (with enable over reset) cells, respectively. They have the same ports and parameters as their base
cell. In addition they also have a single-bit EN input port for the enable pin and the following parameter:

EN_POLARITY
The enable input is active-high if this parameter has the value 1'b1 and active-low if this parameter
is 1'bO0.

D-type latches are represented by $dlatch cells. These cells have an enable port EN, an input port D, and
an output port Q. The following parameters are available for $dlatch cells:

WIDTH
The width of input D and output Q.

EN_POLARITY
The enable input is active-high if this parameter has the value 1'b1 and active-low if this parameter
is 1'bO0.

The latch is transparent when the EN input is active.

D-type latches with reset are represented by $adlatch cells. In addition to $dlatch ports and parameters,
they also have a single-bit ARST input port for the reset pin and the following additional parameters:

ARST_POLARITY
The asynchronous reset is active-high if this parameter has the value 1'bl and active-low if this
parameter is 1'Db0.

ARST_VALUE
The state of Q will be set to this value when the reset is active.

D-type latches with set and reset are represented by $dlatchsr cells. In addition to $dlatch ports and
parameters, they also have multi-bit SET and CLR input ports and the corresponding polarity parameters,
like $sr cells.

yosys> help $adff

Simulation model (verilog)

268 Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

Listing 9.46: simlib.v

module \$adff (CLK, ARST, D, Q);

parameter WIDTH = O;

parameter CLK_POLARITY = 1'bil;
parameter ARST_POLARITY = 1'b1;
parameter ARST_VALUE = O;

input CLK, ARST;

input [WIDTH-1:0] D;

output reg [WIDTH-1:0] Q;

wire pos_clk = CLK == CLK_POLARITY;
wire pos_arst = ARST == ARST_POLARITY;

always @(posedge pos_clk, posedge pos_arst) begin
if (pos_arst)
Q <= ARST_VALUE;
else

end

endmodule

yosys> help $adffe

2498

2499

2501

2502

2503

2504

2505

Simulation model (verilog)

Listing 9.47: simlib.v

module \$adffe (CLK, ARST, EN, D, Q);

parameter WIDTH = O;

parameter CLK_POLARITY = 1'bil;
parameter EN_POLARITY = 1'b1;
parameter ARST_POLARITY = 1'b1;
parameter ARST_VALUE = O;

input CLK, ARST, EN;

input [WIDTH-1:0] D;

output reg [WIDTH-1:0] Q;

wire pos_clk = CLK == CLK_POLARITY;
wire pos_arst = ARST == ARST_POLARITY;

always @(posedge pos_clk, posedge pos_arst) begin
if (pos_arst)
Q <= ARST_VALUE;
else if (EN == EN_POLARITY)
Q <= D;
end

endmodule

yosys> help $adlatch

9.1. Word-level cells

269

YosysHQ Yosys, Version 0.55

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

Simulation model (verilog)

Listing 9.48: simlib.v

module \$adlatch (EN, ARST, D, Q);

parameter WIDTH = O;

parameter EN_POLARITY = 1'bi;
parameter ARST_POLARITY = 1'bil;
parameter ARST_VALUE = O;

input EN, ARST;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;

always @* begin
if (ARST == ARST_POLARITY)
Q = ARST_VALUE;
else if (EN == EN_POLARITY)
Q = D;
end

endmodule

yosys> help $aldff

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

Simulation model (verilog)

Listing 9.49: simlib.v

module \$aldff (CLK, ALOAD, AD, D, Q);

parameter WIDTH = O;
parameter CLK_POLARITY = 1'bil;
parameter ALOAD_POLARITY = 1'bil;

input CLK, ALOAD;

input [WIDTH-1:0] AD;

input [WIDTH-1:0] D;

output reg [WIDTH-1:0] Q;

wire pos_clk = CLK == CLK_POLARITY;

wire pos_aload = ALOAD == ALOAD_POLARITY;

always @(posedge pos_clk, posedge pos_aload) begin
if (pos_aload)
Q <= AD;
else

end

endmodule

yosys> help $aldffe

Simulation model (verilog)

270

Chapter 9.

Internal cell library

YosysHQ Yosys, Version 0.55

Listing 9.50: simlib.v

2524 |module \$aldffe (CLK, ALOAD, AD, EN, D, Q);
2525

2526 parameter WIDTH = O;

2527 parameter CLK_POLARITY = 1'b1;

2528 parameter EN_POLARITY = 1'b1;

2529 parameter ALOAD_POLARITY = 1'bil;

2530

2531 input CLK, ALOAD, EN;

2532 input [WIDTH-1:0] D;

2533 input [WIDTH-1:0] AD;

2534 output reg [WIDTH-1:0] Q;

2535 wire pos_clk = CLK == CLK_POLARITY;

2536 wire pos_aload = ALOAD == ALOAD_POLARITY;
2537

2538 always @(posedge pos_clk, posedge pos_aload) begin
2539 if (pos_aload)

2540 Q <= AD;

2541 else if (EN == EN_POLARITY)

2542 Q <= D;

2543 end

2544

2545 | endmodule

yosys> help $dff

Simulation model (verilog)

Listing 9.51: simlib.v

2315 |module \$dff (CLK, D, Q);

2316

2317 parameter WIDTH = O;

2318 parameter CLK_POLARITY = 1'bil;
2319

2320 input CLK;

2321 input [WIDTH-1:0] D;

2322 output reg [WIDTH-1:0] Q;

2323 wire pos_clk = CLK == CLK_POLARITY;
2324

2325 always Q(posedge pos_clk) begin
2326 Q <= D;

2327 end

2328

2320 | endmodule

yosys> help $dffe

Simulation model (verilog)

9.1. Word-level cells

271

YosysHQ Yosys, Version 0.55

Listing 9.52: simlib.v

2332 |module \$dffe (CLK, EN, D, Q);

2335

2336 parameter WIDTH = O;

2337 parameter CLK_POLARITY = 1'b1;

2338 parameter EN_POLARITY = 1'b1;

2339

2340 input CLK, EN;

2341 input [WIDTH-1:0] D;

2342 output reg [WIDTH-1:0] Q;

2343 wire pos_clk = CLK == CLK_POLARITY;
2344

2345 always Q@(posedge pos_clk) begin
2316 if (EN == EN_POLARITY) Q <= D;
2347 end

2348

2340 | endmodule

yosys> help $dffsr

Simulation model (verilog)

Listing 9.53: simlib.v

2355 |module \$dffsr (CLK, SET, CLR, D, Q);

2356

2357 parameter WIDTH = O;

2358 parameter CLK_POLARITY = 1'bil;

2359 parameter SET_POLARITY = 1'bil;

2360 parameter CLR_POLARITY = 1'bil;

2361

2362 input CLK;

2363 input [WIDTH-1:0] SET, CLR, D;

2364 output reg [WIDTH-1:0] Q;

2365

2366 wire pos_clk = CLK == CLK_POLARITY;

2367 wire [WIDTH-1:0] pos_set = SET_POLARITY ? SET : ~SET;
2368 wire [WIDTH-1:0] pos_clr = CLR_POLARITY 7 CLR : ~CLR;
2369

2370 genvar ij;

2371 generate

2372 for (i = 0; 1 < WIDTH; i = i+1) begin:bitslices
2373 always Q@(posedge pos_set[i], posedge pos_clr[i], posedge pos_clk)
2374 if (pos_clrl[il)

2375 Qlil <= 0;

2376 else if (pos_set[i])

2377 Qli] <= 1;

2378 else

2379 Q[i] <= DI[il;

2380 end

2381 endgenerate

2382

(continues on next page)

272 Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

2383

endmodule

(continued from previous page)

yosys> help $dffsre

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

Simulation model (verilog)

Listing 9.54: simlib.v

module \$dffsre (CLK, SET, CLR, EN, D, Q);

parameter WIDTH = O;

parameter CLK_POLARITY = 1'bil;
parameter SET_POLARITY = 1'bil;
parameter CLR_POLARITY = 1'bil;
parameter EN_POLARITY = 1'bl;

input CLK, EN;
input [WIDTH-1:0] SET, CLR, D;
output reg [WIDTH-1:0] Q;

wire pos_clk = CLK == CLK_POLARITY;
wire [WIDTH-1:0] pos_set = SET_POLARITY ? SET : ~SET;
wire [WIDTH-1:0] pos_clr = CLR_POLARITY ? CLR : ~CLR;

genvar ij;
generate
for (i = 0; i < WIDTH; i = i+1) begin:bitslices
always @(posedge pos_set[i], posedge pos_clr[il
if (pos_clr([il)

QLi] <= 0;

else if (pos_set[i])
Qlil <= 1;

else if (EN == EN_POLARITY)
Q[i]l <= D[il;

end
endgenerate
endmodule

, posedge pos_clk)

yosys> help $dlatch

2604

2605

2606

2607

2608

2609

2610

2611

Simulation model (verilog)

Listing 9.55: simlib.v

module \$dlatch (EN, D, Q);

parameter WIDTH = O;
parameter EN_POLARITY = 1'bil;

input EN;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;

(continues on next page)

9.1.

Word-level cells

273

YosysHQ Yosys, Version 0.55

2612

2613

2614

2615

2616

2617

2618

always @* begin
if (EN == EN_POLARITY)
Q = D;
end

endmodule

(continued from previous page)

yosys> help $dlatchsr

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

Simulation model (verilog)

Listing 9.56: simlib.v

module \$dlatchsr (EN, SET, CLR, D, Q);

parameter WIDTH = O;

parameter EN_POLARITY = 1'bil;
parameter SET_POLARITY = 1'bil;
parameter CLR_POLARITY = 1'b1;

input EN;
input [WIDTH-1:0] SET, CLR, D;
output reg [WIDTH-1:0] Q;

wire pos_en = EN == EN_POLARITY;
wire [WIDTH-1:0] pos_set = SET_POLARITY ? SET : ~SET;
wire [WIDTH-1:0] pos_clr = CLR_POLARITY ? CLR : ~CLR;

genvar ij;
generate
for (i = 0; i < WIDTH; i = i+1) begin:bitslices
always @*
if (pos_clr[il)

Q[il = 0O;

else if (pos_set[il])
Qlil = 1;

else if (pos_en)
QLil = D[il;

end
endgenerate
endmodule

yosys> help $sdff

2473

2474

2475

Simulation model (verilog)

Listing 9.57: simlib.v

module \$sdff (CLK, SRST, D, Q);

parameter WIDTH = O;

(continues on next page)

274

Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

2476 parameter CLK_POLARITY = 1'bil;

2477 parameter SRST_POLARITY = 1'bl;

2478 parameter SRST_VALUE = O;

2479

2480 input CLK, SRST;

2481 input [WIDTH-1:0] D;

2482 output reg [WIDTH-1:0] Q;

2483 wire pos_clk = CLK == CLK_POLARITY;
2484 wire pos_srst = SRST == SRST_POLARITY;
2485

2486 always Q(posedge pos_clk) begin
2487 if (pos_srst)

2488 Q <= SRST_VALUE;

2489 else

2490 Q <= D;

2491 end

2492

24903 | endmodule

(continued from previous page)

yosys> help $sdffce

Simulation model (verilog)

Listing 9.58:

simlib.v

2576 |module \$sdffce (CLK, SRST, EN, D, Q);
2577

2578 parameter WIDTH = O;

2579 parameter CLK_POLARITY = 1'bil;

2580 parameter EN_POLARITY = 1'b1;

2581 parameter SRST_POLARITY = 1'bil;
2582 parameter SRST_VALUE = O;

2583

2584 input CLK, SRST, EN;

2585 input [WIDTH-1:0] D;

2586 output reg [WIDTH-1:0] Q;

2587 wire pos_clk = CLK == CLK_POLARITY;
2588 wire pos_srst = SRST == SRST_POLARITY;
2589

2590 always Q@(posedge pos_clk) begin
2591 if (EN == EN_POLARITY) begin
2592 if (pos_srst)

2593 Q <= SRST_VALUE;

2594 else

2595 Q <= D;

2596 end

2597 end

2598

2500 | endmodule

yosys> help $sdffe

Simulation model (verilog)

9.1. Word-level cells

275

YosysHQ Yosys, Version 0.55

Listing 9.59: simlib.v

2550 |module \$sdffe (CLK, SRST, EN, D, Q);
2551

2552 parameter WIDTH = O;

2553 parameter CLK_POLARITY = 1'b1;
2554 parameter EN_POLARITY = 1'b1;

2555 parameter SRST_POLARITY = 1'bil;
2556 parameter SRST_VALUE = O;

2557

2558 input CLK, SRST, EN;

2559 input [WIDTH-1:0] D;

2560 output reg [WIDTH-1:0] Q;

2561 wire pos_clk = CLK == CLK_POLARITY;
2562 wire pos_srst = SRST == SRST_POLARITY;
2563

2564 always @(posedge pos_clk) begin
2565 if (pos_srst)

2566 Q <= SRST_VALUE;

2567 else if (EN == EN_POLARITY)
2568 Q <= D;

2569 end

2570

2571 | endmodule

yosys> help $sr

Simulation model (verilog)

Listing 9.60: simlib.v

2265 |module \$sr (SET, CLR, Q);
2266
2267 parameter WIDTH = O;
2268 parameter SET_POLARITY = 1'bil;
2269 parameter CLR_POLARITY = 1'bil;
2270
2271 input [WIDTH-1:0] SET, CLR;
2272 output reg [WIDTH-1:0] Q;
2273
2274 wire [WIDTH-1:0] pos_set = SET_POLARITY ? SET : ~SET;
2275 wire [WIDTH-1:0] pos_clr = CLR_POLARITY ? CLR : ~CLR;
2276
2277 genvar 1ij;
2278 generate
2279 for (i = 0; i < WIDTH; i = i+1) begin:bitslices
2280 always O
2281 if (pos_clr[il)
2282 Q[i]l <= 0;
2283 else if (pos_set[i])
2284 QLil <= 1;
2285 end
2286 endgenerate
(continues on next page)
276 Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

(continued from previous page)

2287

2288 | endmodule

9.1.5 Memories

Memories are either represented using RTLIL: :Memory objects, $memrd_v2, $memwr_v2, and $meminit_v2
cells, or by $mem_v2 cells alone.

In the first alternative the RTLIL: :Memory objects hold the general metadata for the memory (bit width,
size in number of words, etc.) and for each port a $memrd_v2 (read port) or $memwr_v2 (write port) cell is
created. Having individual cells for read and write ports has the advantage that they can be consolidated
using resource sharing passes. In some cases this drastically reduces the number of required ports on the
memory cell. In this alternative, memory initialization data is represented by $meminit_v2 cells, which
allow delaying constant folding for initialization addresses and data until after the frontend finishes.

The $memrd_v2 cells have a clock input CLK, an enable input EN, an address input ADDR, a data output
DATA, an asynchronous reset input ARST, and a synchronous reset input SRST. They also have the following
parameters:

MEMID
The name of the RTLIL: :Memory object that is associated with this read port.

ABITS
The number of address bits (width of the ADDR input port).

WIDTH
The number of data bits (width of the DATA output port). Note that this may be a power-of-two
multiple of the underlying memory’s width — such ports are called wide ports and access an aligned
group of cells at once. In this case, the corresponding low bits of ADDR must be tied to 0.

CLK_ENABLE
When this parameter is non-zero, the clock is used. Otherwise this read port is asynchronous and the
CLK input is not used.

CLK_POLARITY
Clock is active on the positive edge if this parameter has the value 1'b1 and on the negative edge if
this parameter is 1'b0.

TRANSPARENCY_MASK
This parameter is a bitmask of write ports that this read port is transparent with. The bits of this
parameter are indexed by the write port’s PORTID parameter. Transparency can only be enabled
between synchronous ports sharing a clock domain. When transparency is enabled for a given port
pair, a read and write to the same address in the same cycle will return the new value. Otherwise the
old value is returned.

COLLISION_X_MASK
This parameter is a bitmask of write ports that have undefined collision behavior with this port. The
bits of this parameter are indexed by the write port’s PORTID parameter. This behavior can only be
enabled between synchronous ports sharing a clock domain. When undefined collision is enabled for
a given port pair, a read and write to the same address in the same cycle will return the undefined
(all-X) value.This option is exclusive (for a given port pair) with the transparency option.

ARST_VALUE
Whenever the ARST input is asserted, the data output will be reset to this value. Only used for
synchronous ports.

SRST_VALUE
Whenever the SRST input is synchronously asserted, the data output will be reset to this value. Only

9.1. Word-level cells 277

YosysHQ Yosys, Version 0.55

used for synchronous ports.

INIT_VALUE
The initial value of the data output, for synchronous ports.

CE_OVER_SRST
If this parameter is non-zero, the SRST input is only recognized when EN is true. Otherwise, SRST is
recognized regardless of EN.

The $memwr_v2 cells have a clock input CLK, an enable input EN (one enable bit for each data bit), an address
input ADDR and a data input DATA. They also have the following parameters:

MEMID
The name of the RTLIL: :Memory object that is associated with this write port.

ABITS
The number of address bits (width of the ADDR input port).

WIDTH
The number of data bits (width of the DATA output port). Like with $memrd_v2 cells, the width
is allowed to be any power-of-two multiple of memory width, with the corresponding restriction on
address.

CLK_ENABLE
When this parameter is non-zero, the clock is used. Otherwise this write port is asynchronous and the
CLK input is not used.

CLK_POLARITY
Clock is active on positive edge if this parameter has the value 1'b1 and on the negative edge if this
parameter is 1'bO0.

PORTID
An identifier for this write port, used to index write port bit mask parameters.

PRIORITY_MASK
This parameter is a bitmask of write ports that this write port has priority over in case of writing to
the same address. The bits of this parameter are indexed by the other write port’s PORTID parameter.
Write ports can only have priority over write ports with lower port ID. When two ports write to the
same address and neither has priority over the other, the result is undefined. Priority can only be set
between two synchronous ports sharing the same clock domain.

The $meminit_v2 cells have an address input ADDR, a data input DATA, with the width of the DATA port
equal to WIDTH parameter times WORDS parameter, and a bit enable mask input EN with width equal to WIDTH
parameter. All three of the inputs must resolve to a constant for synthesis to succeed.

MEMID
The name of the RTLIL: :Memory object that is associated with this initialization cell.

ABITS
The number of address bits (width of the ADDR input port).

WIDTH
The number of data bits per memory location.

WORDS
The number of consecutive memory locations initialized by this cell.

PRIORITY
The cell with the higher integer value in this parameter wins an initialization conflict.

The HDL frontend models a memory using RTLIL::Memory objects and asynchronous $memrd_v2 and
$memwr_v2 cells. The memory pass (i.e. its various sub-passes) migrates $dff cells into the $memrd_v2

278 Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

and $memwr_v2 cells making them synchronous, then converts them to a single $mem_v2 cell and (option-
ally) maps this cell type to $dff cells for the individual words and multiplexer-based address decoders for
the read and write interfaces. When the last step is disabled or not possible, a $mem_v2 cell is left in the
design.

The $mem_v2 cell provides the following parameters:

MEMID
The name of the original RTLIL: :Memory object that became this $mem_v2 cell.

SIZE
The number of words in the memory.

ABITS
The number of address bits.

WIDTH
The number of data bits per word.

INIT
The initial memory contents.

RD_PORTS
The number of read ports on this memory cell.

RD_WIDE_CONTINUATION
This parameter is RD_PORTS bits wide, containing a bitmask of “wide continuation” read ports. Such
ports are used to represent the extra data bits of wide ports in the combined cell, and must have
all control signals identical with the preceding port, except for address, which must have the proper
sub-cell address encoded in the low bits.

RD_CLK_ENABLE
This parameter is RD_PORTS bits wide, containing a clock enable bit for each read port.

RD_CLK_POLARITY
This parameter is RD_PORTS bits wide, containing a clock polarity bit for each read port.

RD_TRANSPARENCY_MASK
This parameter is RD_PORTS*WR_PORTS bits wide, containing a concatenation of all TRANSPARENCY_MASK
values of the original $memrd_v2 cells.

RD_COLLISION_X_MASK
This parameter is RD_PORTS*WR_PORTS bits wide, containing a concatenation of all COLLISION_X_MASK
values of the original $memrd_v2 cells.

RD_CE_OVER_SRST
This parameter is RD_PORTS bits wide, determining relative synchronous reset and enable priority for
each read port.

RD_INIT_VALUE
This parameter is RD_PORTS*WIDTH bits wide, containing the initial value for each synchronous read
port.

RD_ARST_VALUE
This parameter is RD_PORTS*WIDTH bits wide, containing the asynchronous reset value for each syn-
chronous read port.

RD_SRST_VALUE
This parameter is RD_PORTS*WIDTH bits wide, containing the synchronous reset value for each syn-
chronous read port.

9.1. Word-level cells 279

YosysHQ Yosys, Version 0.55

WR_PORTS
The number of write ports on this memory cell.

WR_WIDE_CONTINUATION
This parameter is WR_PORTS bits wide, containing a bitmask of “wide continuation” write ports.

WR_CLK_ENABLE
This parameter is WR_PORTS bits wide, containing a clock enable bit for each write port.

WR_CLK_POLARITY
This parameter is WR_PORTS bits wide, containing a clock polarity bit for each write port.

WR_PRIORITY_MASK
This parameter is WR_PORTS*WR_PORTS bits wide, containing a concatenation of all PRIORITY_MASK
values of the original $memwr_v2 cells.

The $mem_v2 cell has the following ports:

RD_CLK
This input is RD_PORTS bits wide, containing all clock signals for the read ports.

RD_EN
This input is RD_PORTS bits wide, containing all enable signals for the read ports.

RD_ADDR
This input is RD_PORTS*ABITS bits wide, containing all address signals for the read ports.

RD_DATA
This output is RD_PORTS*WIDTH bits wide, containing all data signals for the read ports.

RD_ARST
This input is RD_PORTS bits wide, containing all asynchronous reset signals for the read ports.

RD_SRST
This input is RD_PORTS bits wide, containing all synchronous reset signals for the read ports.

WR_CLK
This input is WR_PORTS bits wide, containing all clock signals for the write ports.

WR_EN
This input is WR_PORTS*WIDTH bits wide, containing all enable signals for the write ports.

WR_ADDR
This input is WR_PORTS*ABITS bits wide, containing all address signals for the write ports.

WR_DATA
This input is WR_PORTS*WIDTH bits wide, containing all data signals for the write ports.

The memory_collect pass can be used to convert discrete $memrd_v2, $memwr_v2, and $meminit_v2 cells
belonging to the same memory to a single $mem_v2 cell, whereas the memory_unpack pass performs the
inverse operation. The memory_dff pass can combine asynchronous memory ports that are fed by or feeding
registers into synchronous memory ports. The memory_bram pass can be used to recognize $mem_v2 cells
that can be implemented with a block RAM resource on an FPGA. The memory_map pass can be used to
implement $mem_v2 cells as basic logic: word-wide DFFs and address decoders.

yosys> help $mem

Simulation model (verilog)

280 Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

Listing 9.61: simlib.v

module \$mem (RD_CLK, RD_EN, RD_ADDR, RD DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA);

parameter MEMID = "";

parameter signed SIZE = 4;
parameter signed OFFSET = O;
parameter signed ABITS = 2
parameter signed WIDTH = 8
parameter signed INIT = 1'

H
H
bx;

parameter signed RD_PORTS = 1;
parameter RD_CLK_ENABLE = 1'bil;
parameter RD_CLK_POLARITY = 1'bi;
parameter RD_TRANSPARENT = 1'bl;

parameter signed WR_PORTS ilg
parameter WR_CLK_ENABLE = 1'b1l;
parameter WR_CLK_POLARITY 1'bl;

input [RD_PORTS-1:0] RD_CLK;

input [RD_PORTS-1:0] RD_EN;

input [RD_PORTS*ABITS-1:0] RD_ADDR;
output reg [RD_PORTS*WIDTH-1:0] RD_DATA;

input [WR_PORTS-1:0] WR_CLK;

input [WR_PORTS*WIDTH-1:0] WR_EN;
input [WR_PORTS*ABITS-1:0] WR_ADDR;
input [WR_PORTS*WIDTH-1:0] WR_DATA;

reg [WIDTH-1:0] memory [SIZE-1:0];

integer i, j;
reg [WR_PORTS-1:0] LAST_WR_CLK;
reg [RD_PORTS-1:0] LAST_RD_CLK;

function port_active;
input clk_enable;
input clk_polarity;
input last_clk;
input this_clk;
begin
casez ({clk_enable, clk_polarity, last_clk, this_clk})
4'b0777: port_active = 1;
4'b1101: port_active = 1;
4'b1010: port_active = 1;
default: port_active = O
endcase
end
endfunction

>

initial begin
for (i = 0; i < SIZE; i = i+1)

(continues on next page)

9.1. Word-level cells

281

YosysHQ Yosys, Version 0.55

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

(continued from previous page)

memory [i] = INIT >>> (i*WIDTH);
end

always Q(RD_CLK, RD_ADDR, RD_DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA) begin
SIMLIB_MEMDELAY
;

for (1 = 0; i < RD_PORTS; i = i+1) begin
if (!RD_TRANSPARENT[i] &% RD_CLK_ENABLE[i] && RD_EN[i] && port_
~active(RD_CLK_ENABLE[i], RD_CLK_POLARITY([i], LAST_RD_CLK[il, RD_CLK[il)) begin
// $display("Read from /s: addr=/b data=/b", MEMID, RD_ADDR[%*ABITS,,
—+: ABITS], memory[RD_ADDR[%*ABITS +: ABITS] - OFFSET]);
RD_DATA[i*WIDTH +: WIDTH] <= memory[RD_ADDR[i*ABITS +: ABITS] -
—0FFSET] ;
end
end

for (i = 0; i < WR_PORTS; i = i+1) begin
if (port_active(WR_CLK_ENABLE[i], WR_CLK_POLARITY[i], LAST WR_CLK[il,.
—WR_CLK[il))
for (j = 0; j < WIDTH; j = j+1)
if (WR_EN[i*WIDTH+j]) begin
// $display("Write to /s: addr=/b data=/4b", MEMID, WR_
< ADDR[i*ABITS +: ABITS], WR_DATA[%i*WIDTH+j]);
memory [WR_ADDR [i*ABITS +: ABITS] - OFFSET][j] = WR_
—DATA[i*WIDTH+j];
end
end

for (i = 0; i < RD_PORTS; i = i+l) begin
if ((RD_TRANSPARENT([i] || 'RD_CLK_ENABLE[i]) && port_active(RD_CLK_
—ENABLE[i], RD_CLK_POLARITY[i], LAST_RD_CLK[i], RD_CLK[i])) begin
// $display("Transparent Tead from /s: addr=jb data=}b", MEMID, RD_
—ADDR [1*ABITS +: ABITS], memory[RD_ADDR[%*ABITS +: ABITS] - OFFSET]);
RD_DATA[i*WIDTH +: WIDTH] <= memory[RD_ADDR[i*ABITS +: ABITS] -
—0FFSET] ;
end
end

LAST_RD_CLK <= RD_CLK;
LAST WR_CLK <= WR_CLK;

end

endmodule

yosys> help $mem_v2

Simulation model (verilog)

282

Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

Listing 9.62: simlib.v

module \$mem_v2 (RD_CLK, RD_EN, RD_ARST, RD_SRST, RD_ADDR, RD DATA, WR_CLK, WR_EN,,,

_WR_ADDR, WR_

parameter
parameter
parameter
parameter
parameter
parameter

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

parameter
parameter
parameter
parameter
parameter

input [RD_

DATA) ;

MEMID = "";

signed SIZE = 4;
signed OFFSET =
signed ABITS = 2
signed WIDTH = 8
signed INIT = 1'

signed RD_PORTS
RD_CLK_ENABLE =
RD_CLK_POLARITY
RD_TRANSPARENCY _

0;

3
5
bx;

ilg

'b1;

1'bl;
MASK = 1'b0;

(|

RD_COLLISION_X_MASK = 1'bO;

RD_WIDE_CONTINUA
RD_CE_OVER_SRST
RD_ARST_VALUE =
RD_SRST_VALUE
RD_INIT_VALUE =

signed WR_PORTS
WR_CLK_ENABLE =
WR_CLK_POLARITY
WR_PRIORITY_MASK
WR_WIDE_CONTINUA

PORTS-1:0] RD_CL

TION = 1'b0;
= 1'b0;
1'b0;

1'00;

1'00;

bi;
= 1'b0;
TION = 1'bO;

K;

input [RD_PORTS-1:0] RD_EN;

input [RD_PORTS-1:0] RD_ARST;

input [RD_PORTS-1:0] RD_SRST;

input [RD_PORTS*ABITS-1:0] RD_ADDR;
output reg [RD_PORTS*WIDTH-1:0] RD_DATA;

input [WR_PORTS-1:0] WR_CLK;

input [WR_PORTS*WIDTH-1:0] WR_EN;
input [WR_PORTS*ABITS-1:0] WR_ADDR;
input [WR_PORTS*WIDTH-1:0] WR_DATA;

reg [WIDTH-1:0] memory [SIZE-1:0];

integer i, j, k;
reg [WR_PORTS-1:0] LAST_WR_CLK;
reg [RD_PORTS-1:0] LAST_RD_CLK;

function port_active;

input
input
input
input
begin

clk_enable;
clk_polarity;
last_clk;
this_clk;

(continues on next page)

9.1. Word-level cells

283

YosysHQ Yosys, Version 0.55

(continued from previous page)

3073 casez ({clk_enable, clk_polarity, last_clk, this_clk})

3074 4'b0??7: port_active = 1;

3075 4'b1101: port_active = 1;

3076 4'b1010: port_active = 1;

3077 default: port_active = O;

3078 endcase

3079 end

3080 endfunction

3081

3082 initial begin

3083 for (i = 0; i < SIZE; i = i+1)

3084 memory[i] = INIT >>> (i*WIDTH);

5085 RD_DATA = RD_INIT_VALUE;

3086 end

3087

3088 always Q(RD_CLK, RD_ARST, RD_ADDR, RD_DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA)
—begin

3089 SIMLIB_MEMDELAY

3090 # ;

3091

3092 for (i = 0; i < RD_PORTS; i = i+1) begin

5003 if (RD_CLK_ENABLE[i] && RD_EN[i] && port_active(RD_CLK_ENABLE[i], RD_
~.CLK_POLARITY[i], LAST_RD_CLK[il, RD_CLK[il])) begin

3094 // $display("Read from js: addr=jb data=/4b", MEMID, RD_ADDR[i*ABITS,,
—+: ABITS], memory[RD_ADDR[%*ABITS +: ABITS] - OFFSET]);

3095 RD_DATA[i*WIDTH +: WIDTH] <= memory[RD_ADDR[i*ABITS +: ABITS] -
_.OFFSET] ;

3096

3097 for (j = 0; j < WR_PORTS; j = j+1) begin

5008 if (RD_TRANSPARENCY MASK[i*WR_PORTS + j] &% port_active (WR_CLK_

—ENABLE[j], WR_CLK_POLARITY[j], LAST_WR_CLK[jl, WR_CLK[j]) && RD_ADDR[i*ABITS +:
—ABITS] == WR_ADDR[j*ABITS +: ABITS])

3099 for (k = 0; k < WIDTH; k = k+1)

3100 if (WR_EN[j*WIDTH+k])

s101 RD_DATA[i*WIDTH+k] <= WR_DATA[j*WIDTH+k];

s102 if (RD_COLLISION_X_MASK[i*WR_PORTS + j] && port_active(WR_CLK_

—ENABLE[j], WR_CLK_POLARITY[j], LAST_WR_CLK[j], WR_CLK[jl) &% RD_ADDR[i*ABITS +:
—ABITS] == WR_ADDR[j*ABITS +: ABITS])

5103 for (k = 0; k < WIDTH; k = k+1)

3104 if (WR_EN [J *WIDTH+k])

3105 RD_DATA[i#WIDTH+k] <= 1'bx;

3106 end

3107 end

3108 end

3109

3110 for (i = 0; i < WR_PORTS; i = i+1) begin

s111 if (port_active(WR_CLK_ENABLE[i], WR_CLK_POLARITY[il], LAST_WR_CLK[il,.
_WR_CLK[il))

s112 for (j = 0; j < WIDTH; j = j+1)

3113 if (WR_EN [i*WIDTH+j]) begin

3114 // $display("Write to Js: addr=Jb data=4b", MEMID, WR_

—ADDR [1*ABITS +: ABITS], WR_DATA[t*WIDTH+j]);

(continues on next page)

284 Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

(continued from previous page)
memory [WR_ADDR [i*ABITS +: ABITS] - OFFSET] [j] = WR_
—DATA [i*WIDTH+j] ;
end
end

for (i = 0; i < RD_PORTS; i = i+1) begin
if (!RD_CLK_ENABLE[i]) begin
// $display("Combinatorial read from Js: addr=4b data=/b", MEMID,,
—RD_ADDR[i*ABITS +: ABITS], memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET]);
RD_DATA[i*WIDTH +: WIDTH] <= memory[RD_ADDR[i*ABITS +: ABITS] -
_.OFFSET] ;
end
end

for (i = 0; i < RD_PORTS; i = i+1) begin
if (RD_SRST[i] && port_active(RD_CLK_ENABLE[i], RD_CLK_POLARITY[il,,
—LAST_RD_CLK[i], RD_CLK[i]) && (RD_EN[i] || 'RD_CE_OVER_SRST[i]))
RD_DATA[i*WIDTH +: WIDTH] <= RD_SRST VALUE[i*WIDTH +: WIDTH];
if (RD_ARSTI[il)
RD_DATA[i*WIDTH +: WIDTH] <= RD_ARST_VALUE[i*WIDTH +: WIDTH];
end

LAST RD_CLK <= RD_CLK;

LAST_WR_CLK <= WR_CLK;
end

endmodule

yosys> help $meminit

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

Simulation model (verilog)

Listing 9.63: simlib.v

module \$meminit (ADDR, DATA);

parameter MEMID

nmn.,
)

parameter ABITS = 8;
parameter WIDTH = 8;
parameter WORDS = 1;

parameter PRIORITY = O;

input [ABITS-1:0] ADDR;
input [WORDS*WIDTH-1:0] DATA;

initial begin

2898 if (MEMID != "") begin
2899 $display("ERROR: Found non-simulatable instance of $meminit!");
2900 $finish;
2901 end
2902 end
(continues on next page)
9.1. Word-level cells 285

YosysHQ Yosys, Version 0.55

(continued from previous page)

2903

2004 |endmodule

yosys> help $meminit_v2

Simulation model (verilog)

Listing 9.64: simlib.v

2000 |module \$meminit_v2 (ADDR, DATA, EN);
2910

2011 parameter MEMID = "";

2912 parameter ABITS = 8;

2913 parameter WIDTH = 8;

2914 parameter WORDS = 1;

2915

2916 parameter PRIORITY = O;

2917

2018 input [ABITS-1:0] ADDR;

2019 input [WORDS*WIDTH-1:0] DATA;
2020 input [WIDTH-1:0] EN;

2921

2022 initial begin

2923 if (MEMID != "") begin
2924 $display("ERROR: Found non-simulatable instance of $meminit_v2!");
2925 $finish;

2926 end

2927 end

2928

2929 endmodule

yosys> help $memrd

Simulation model (verilog)

Listing 9.65: simlib.v

2776 |module \$memrd (CLK, EN, ADDR, DATA);
2777

2778 parameter MEMID = "";

2779 parameter ABITS = 8;

2780 parameter WIDTH = 8;

2781

2782 parameter CLK_ENABLE = O;
2783 parameter CLK_POLARITY = O;
2784 parameter TRANSPARENT = O;
2785

2786 input CLK, EN;

2787 input [ABITS-1:0] ADDR;

2788 output [WIDTH-1:0] DATA;
2789

2790 initial begin

2791 if (MEMID != "") begin

(continues on next page)

286 Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

2792

2793

2794

2795

2796

2797

(continued from previous page)
$display("ERROR: Found non-simulatable instance of $memrd!");
$finish;
end
end

endmodule

yosys> help $memrd_v2

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

Simulation model (verilog)

Listing 9.66: simlib.v

module \$memrd_v2 (CLK, EN, ARST, SRST, ADDR, DATA);

parameter MEMID = "";
parameter ABITS 8;
parameter WIDTH 8;

parameter CLK_ENABLE = O;
parameter CLK_POLARITY = O;

parameter TRANSPARENCY_MASK = O;
parameter COLLISION_X_MASK = O;

parameter ARST_VALUE = O;
parameter SRST_VALUE = O;
parameter INIT_VALUE = O;
parameter CE_OVER_SRST = 0;

input CLK, EN, ARST, SRST;
input [ABITS-1:0] ADDR;
output [WIDTH-1:0] DATA;

initial begin

if (MEMID != "") begin
$display("ERROR: Found non-simulatable instance of $memrd_v2!");
$finish;
end
end
endmodule

yosys> help $memwr

2832

2833

2834

2835

2836

2837

Simulation model (verilog)

Listing 9.67: simlib.v

module \$memwr (CLK, EN, ADDR, DATA);

parameter MEMID = 8
parameter ABITS = 8;
parameter WIDTH =

|
(00]

(continues on next page)

9.1.

Word-level cells 287

YosysHQ Yosys, Version 0.55

(continued from previous page)

2838 parameter CLK_ENABLE = O;
2839 parameter CLK_POLARITY = O;
2840 parameter PRIORITY = O;

2841

2842 input CLK;

2843 input [WIDTH-1:0] EN;

2844 input [ABITS-1:0] ADDR;

2845 input [WIDTH-1:0] DATA;

2846

2847 initial begin

2848 if (MEMID != "") begin
2849 $display("ERROR: Found non-simulatable instance of $memwr!");
2850 $finish;

2851 end

2852 end

2853

2854 | endmodule

yosys> help $memwr_v2

Simulation model (verilog)

Listing 9.68: simlib.v

2857 |module \$memwr_v2 (CLK, EN, ADDR, DATA);
2858

2859 parameter MEMID = "";

2860 parameter ABITS = 8;

2861 parameter WIDTH = 8;

2862

2863 parameter CLK_ENABLE = O;
2864 parameter CLK_POLARITY = O;
2865 parameter PORTID = O;

2866 parameter PRIORITY_MASK = 0;
2867

2868 input CLK;

2869 input [WIDTH-1:0] EN;

2870 input [ABITS-1:0] ADDR;

2871 input [WIDTH-1:0] DATA;

2872

2873 initial begin

2874 if (MEMID != "") begin
2875 $display("ERROR: Found non-simulatable instance of $memwr_v2!");
2876 $finish;

2877 end

2878 end

2879

2880 endmodule

288 Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

9.1.6 Finite state machines

Todo

Describe $fsm cell

yosys> help $fsm

Simulation model (verilog)

Listing 9.69: simlib.v

26s1 |module \$fsm (CLK, ARST, CTRL_IN, CTRL_OUT);
2682

2683 parameter NAME = "";

2684

2685 parameter CLK_POLARITY = 1'bil;

2686 parameter ARST_POLARITY = 1'bl;

2687

2688 parameter CTRL_IN_WIDTH = 1;

2689 parameter CTRL_QOUT_WIDTH = 1;

2690

2691 parameter STATE_BITS = 1;

2692 parameter STATE_NUM = 1;

2693 parameter STATE_NUM_LOG2 = 1;

2694 parameter STATE_RST = O;

2695 parameter STATE_TABLE = 1'bO0;

2696

2697 parameter TRANS_NUM = 1;

2698 parameter TRANS_TABLE = 4'b0x0x;

2699

2700 input CLK, ARST;

2701 input [CTRL_IN_WIDTH-1:0] CTRL_IN;
2702 output reg [CTRL_OUT_WIDTH-1:0] CTRL_OUT;
2703

2704 wire pos_clk = CLK == CLK_POLARITY;
2705 wire pos_arst = ARST == ARST_POLARITY;
2706

2707 reg [STATE_BITS-1:0] state;

2708 reg [STATE_BITS-1:0] state_tmp;

2709 reg [STATE_BITS-1:0] next_state;

2710

2711 reg [STATE_BITS-1:0] tr_state_in;

2712 reg [STATE_BITS-1:0] tr_state_out;
2713 reg [CTRL_IN_WIDTH-1:0] tr_ctrl_in;
2714 reg [CTRL_OUT_WIDTH-1:0] tr_ctrl_out;
2715

2716 integer 1i;

2717

2718 task tr_fetch;

2719 input [31:0] tr_num;

(continues on next page)

9.1. Word-level cells

289

YosysHQ Yosys, Version 0.55

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

(continued from previous page)

reg [31:0] tr_pos;
reg [STATE_NUM_L0G2-1:0] state_num;
begin
tr_pos = (2+STATE_NUM_LOG2+CTRL_IN_WIDTH+CTRL_OUT_WIDTH)*tr_num;
tr_ctrl_out = TRANS_TABLE >> tr_pos;
tr_pos = tr_pos + CTRL_OUT_WIDTH;
state_num = TRANS_TABLE >> tr_pos;
tr_state_out = STATE_TABLE >> (STATE_BITS*state_num) ;
tr_pos = tr_pos + STATE_NUM_LOG2;
tr_ctrl_in = TRANS_TABLE >> tr_pos;
tr_pos = tr_pos + CTRL_IN_WIDTH;
state_num = TRANS_TABLE >> tr_pos;
tr_state_in = STATE_TABLE >> (STATE_BITS*state_num);
tr_pos = tr_pos + STATE_NUM_LOG2;
end

endtask

always @(posedge pos_clk, posedge pos_arst) begin

—RST];

end

if (pos_arst) begin
state_tmp = STATE_TABLE[STATE_BITS#(STATE_RST+1)-1:STATE_BITS*STATE_

for (i = 0; i < STATE_BITS; i = i+1)
if (state_tmp[i] === 1'bz)
state_tmp[i] = 0;
state <= state_tmp;
end else begin
state_tmp = next_state;
for (i = 0; i < STATE_BITS; i = i+1)
if (state_tmp[i] === 1'bz)
state_tmp[i] = 0;
state <= state_tmp;
end

always @(state, CTRL_IN) begin

—out,

end

next_state <= STATE_TABLE[STATE_BITS*(STATE_RST+1)-1:STATE_BITS*STATE_RST];
CTRL_OUT <= 'bx;
// $display("-—=");
// $display("Q: /b 4b", state, CTRL_IN);
for (i = 0; i < TRANS_NUM; i = i+1) begin
tr_fetch(i);
// $display("T: 7b b => Jb Jb [7d]", tr_state_in, tr_ctrl_in, tr_state_
tr_ctrl_out, %);
casez ({state, CTRL_IN})
{tr_state_in, tr_ctrl_in}: begin
// $display("-> %b b <- MATCH", state, CTRL_IN);
{next_state, CTRL_OUT} <= {tr_state_out, tr_ctrl_out};
end
endcase
end

(continues on next page)

290

Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

(continued from previous page)

2770 | endmodule

9.1.7 Coarse arithmetics

Todo

Add information about $alu, $fa, $macc_v2, and $lcu cells.

The $macc cell type represents a generalized multiply and accumulate operation. The cell is purely combi-
national. It outputs the result of summing up a sequence of products and other injected summands.

Y = 0 +- aOfactorl * aOfactor2 +- alfactorl * alfactor2 +- ...
+ B[0] + B[1] + ...

The A port consists of concatenated pairs of multiplier inputs (“factors”). A zero length factor2 acts as a
constant 1, turning factorl into a simple summand.

In this pseudocode, u(foo) means an unsigned int that’s foo bits long.

struct A {
u(CONFIG.mul_info[0] .factorl_len) aOfactori;
u(CONFIG.mul_info[0O].factor2_len) aOfactor2;
u(CONFIG.mul_info[1].factorl_len) alfactori;
u(CONFIG.mul_info[1].factor2_len) alfactor2;

};

The cell’s CONFIG parameter determines the layout of cell port A. The CONFIG parameter carries the
following information:

struct CONFIG {

u4 num_bits;

struct mul_info {
bool is_signed;
bool is_subtract;
u(num_bits) factorl len;
u(num_bits) factor2_len;

} [num_ports];

};

B is an array of concatenated 1-bit-wide unsigned integers to also be summed up.

yosys> help $alu
Arithmetic logic unit
A building block supporting both binary addition/subtraction operations, and indirectly, comparison

operations. Typically created by the alumacc pass, which transforms: $add, $sub, $it, $le, $ge,
$gt, $eq, $eqx, $ne, $nex cells into this $alu cell.

Properties
1s_evaluable

9.1. Word-level cells 291

YosysHQ Yosys, Version 0.55

Simulation model (verilog)

Listing 9.70: simlib.v

657 |module \$alu (A, B, CI, BI, X, Y, CO);

658

659 parameter A_SIGNED = O;

660 parameter B_SIGNED = O;

661 parameter A_WIDTH = 1;

662 parameter B_WIDTH = 1;

663 parameter Y _WIDTH = 1;

664

665 input [A_WIDTH-1:0] A; // Input operand

666 input [B_WIDTH-1:0] B; // Input operand

667 output [Y_WIDTH-1:0] X; // A zor B (sign-extended, optional B inversion,
668 // used inm combination with
669 // reduction—AND for $eq/$ne ops)
670 output [Y_WIDTH-1:0] Y; // Sum

671

672 input CI; // Carry-in (set for $sub)

673 input BI; // Invert-B (set for $sub)

674 output [Y_WIDTH-1:0] CO; // Carry-out

675

676 wire [Y_WIDTH-1:0] AA, BB;

677

678 generate

679 if (A_SIGNED && B_SIGNED) begin:BLOCK1

680 assign AA = $signed(A), BB = BI 7 ~$signed(B) : $signed(B);
681 end else begin:BLOCK2

682 assign AA = $unsigned(A), BB = BI 7 ~$unsigned(B) : $unsigned(B);
683 end

684 endgenerate

685

686 // this is 'z' if Y and CO should be all 'z', and '0O' otherwise

687 wire y_co_undef = “{A, A, B, B, CI, CI, BI, BI};

688

689 assign X = AA ~ BB;

690 // Full adder

691 assign Y = (AA + BB + CI) ~ {Y_WIDTH{y_co_undef}};

692

693 function get_carry;

694 input a, b, c;

695 get_carry = (a&b) | (a&c) | (b&c);

696 endfunction

697

698 genvar 1ij;

699 generate

700 assign CO[0] = get_carry(AA[0], BB[0], CI) ~ y_co_undef;

701 for (i = 1; 1 < Y_WIDTH; i = i+1) begin:BLOCK3

702 assign CO[i] = get_carry(AA[i], BB[i], CO[i-1]) ~ y_co_undef;
703 end

704 endgenerate

705

706 | endmodule

292 Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

yosys> help $fa

597

599

600

601

602

604

605

606

607

609

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.71: simlib.v

module \$fa (A, B, C, X, Y);
parameter WIDTH = 1;

input [WIDTH-1:0] A, B, C;
output [WIDTH-1:0] X, Y;

wire [WIDTH-1:0] t1, t2, t3;

assign t1 = A~ B, t2 = A & B, t3 = C & t1;
assign Y = t1 ~C, X = (t2 | t3) - (Y - YV);

endmodule

yosys> help $lcu

625

626

628

629

630

631

633

634

635

636

638

639

640

641

643

Lookahead carry unit A building block dedicated to fast computation of carry-bits used in binary
arithmetic operations. By replacing the ripple carry structure used in full-adder blocks, the more
significant bits of the sum can be expected to be computed more quickly. Typically created during
techmap of $alu cells (see the “_90_alu” rule in 4/techmap.v).

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.72: simlib.v

module \$lcu (P, G, CI, CO);
parameter WIDTH = 1;

input [WIDTH-1:0] P; // Propagate
input [WIDTH-1:0] G; // Generate
input CI; // Carry-in

output reg [WIDTH-1:0] CO; // Carry-out

integer i;
always @* begin
CO = 'bx;
if ("{P, G, CI} !== 1'bx) begin
cofo]l = Grol II (P[0l && CI);
for (i = 1; i < WIDTH; i = i+1)
Co[i] = G[i] || (P[i] && CO[i-11);
end
end

(continues on next page)

9.1. Word-level cells 293

YosysHQ Yosys, Version 0.55

644

645

(continued from previous page)

endmodule

yosys> help $macc

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

Multiply and accumulate. A building block for summing any number of negated and unnegated signals
and arithmetic products of pairs of signals. Cell port A concatenates pairs of signals to be multiplied
together. When the second signal in a pair is zero length, a constant 1 is used instead as the second
factor. Cell port B concatenates 1-bit-wide signals to also be summed, such as “carry in” in adders.
Typically created by the alumacc pass, which transforms $add and $mul into $macc cells.

Properties
1s_evaluable

Simulation model (verilog)

Listing 9.73: simlib.v

module \$macc (A, B, Y);

parameter A_WIDTH = O;
parameter B_WIDTH = O;
parameter Y_WIDTH = O;

// CONFIG determines the layout of A, as explained below
parameter CONFIG = 4'b0000;
parameter CONFIG_WIDTH = 4;

// In the terms used for this cell, there's mized meanings for the term "port".,
—To disambiguate:

// A cell port is for example the A input (it is constructed in C++ as cell->
< setPort(ID::A, ...))

// Multiplier ports are pairs of multiplier inputs ("factors”).

// If the second signal in such a pair is zero length, mo multiplication is,
—necessary, and the first signal %s just added to the sum.

input [A_WIDTH-1:0] A; // Cell port A is the concatenation of all arithmeticy
—ports

input [B_WIDTH-1:0] B; // Cell port B is the concatenation of single-bit,
—unsigned signals to be also added to the sum

output reg [Y_WIDTH-1:0] Y; // Output sum

// Xilinz XSIM does not like $clog2() below..
function integer my_clog2;
input integer v;
begin
if (v > 0)
v=v-1;
my_clog2 = 0;
while (v) begin
v =v > 1;
my_clog2 = my_clog2 + 1;
end
end
endfunction

(continues on next page)

294

Chapter 9. Internal cell library

YosysHQ Yosys, Version 0.55

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

(continued from previous page)

// Bits that a factor's length field in CONFIG per factor in cell port A
localparam integer num_bits = CONFIG[3:0] > O ? CONFIG[3:0] : 1;

// Number of multiplier ports

localparam integer num_ports = (CONFIG_WIDTH-4) / (2 + 2*num_bits);

// Minium bit width of an induction variable to iterate over all bits of celly

—port A

localparam integer num_abits = my_clog2(A_WIDTH) > O ? my_clog2(A_WIDTH) : 1;

// In this pseudocode, u(foo) means an unsigned int that's foo bits long.
// The CONFIG parameter carries the following information:
/7 struct CONFIG {

/7 u4 nmum_bits;

// struct port_field {

// bool is_signed;

// bool %s_subtract;

/7 u(num_bits) factorl_len;
// u(num_bits) factor2_len;
// Flnum_ports];

/72w

// The A cell port carries the following information:
/7 struct A {

/7 uw(CONFIG.port_field[0]. factorl_len) portOfactorl;
// w(CONFIG.port_field[0]. factor2_len) portOfactor2;
// w(CONFIG.port_field[1]. factorl_len) portlifactori;
/7 w(CONFIG.port_field[1]. factor2_len) portlifactor2;
/7

// I

// and log(sizeof(4)) is num_abits.
// No factorl may have a zero length.
// A factor2 having a zero length implies factor2 is replaced with a constant 1.

// Additionally, B is an array of 1-bit-wide unsigned integers to also bey

—summed up.

// Finally, we have:
// Y = portOfactorl * portOfactor2 + portifactorl * portlfactor2 + ...
/7 * B[O] + B[1] + ...

function [2*num_ports*num_abits-1:0] get_port_offsets;
input [CONFIG_WIDTH-1:0] cfg;
integer i, cursor;
begin
cursor = 0;
get_port_offsets = 0;
for (i = 0; i < num_ports; i = i+1l) begin
get_port_offsets[(2+i + O)*num_abits +: num_abits] = cursor;
cursor = cursor + cfg[4 + i*(2 + 2%num_bits) + 2 +: num_bits];
get_port_offsets[(2*i + 1)+*num_abits +: num_abits] = cursor;
cursor = cursor + cfg[4 + i*(2 + 2%num_bits) + 2 + num_bits +: num_

~bits];

end
end

(continues on next page)

9.1. Word-level cells 295

YosysHQ Yosys, Version 0.55

endfunction

localparam [2+%num_ports*num_abits-1:0]

(continued from previous page)

port_offsets = get_port_offsets(CONFIG);

1157 PORT_IS_SIGNED (0 + CONFIG[4 + i*(2 + 2*num_bits)])

1158 PORT_DO_SUBTRACT (0O + CONFIG[4 + i*(2 + 2%num_bits) + 1])

1150 PORT_SIZE_A (0 + CONFIG[4 + i*(2 + 2+%num_bits) + 2 +: num_bits])

1160 PORT_SIZE_B (0 + CONFIG[4 + i*(2 + 2*num_bits) + 2 + num_bits +:
—num_bits])

1161 PORT_OFFSET_A (0 + port_offsets[2*i*num_abits +: num_abits])

1162 PORT_OFFSET_B (0 + port_offsets[2*i*num_abits + num_abits +: num_

—abits])
1163
1164 integer i, j;
1165 reg [Y_WIDTH-1:0] tmp_a, tmp_b;
1166

1167 always @* begin

5 J = 3+

+ j1;

> 0)
Y_WIDTH; j
-11;

= j+1)

;0 J = j+1)

+ jl;

> 0)
Y_WIDTH; j
=il s

=