
User Documentation for ARKODE v6.3.0
SUNDIALS v7.3.0

Daniel R. Reynolds1, David J. Gardner2, Carol S. Woodward2, Cody J. Balos2 Rujeko Chinomona3, and Mustafa Aggul1

1Department of Mathematics, Southern Methodist University
2Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

3Department of Mathematics, Temple University

April 07, 2025

LLNL-SM-668082

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The current SUNDIALS
team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R. Reynolds, and Carol S. Woodward.
We thank Radu Serban for significant and critical past contributions.

Other contributors to SUNDIALS include: Mustafa Aggul, James Almgren-Bell, Lawrence E. Banks, Peter N. Brown,
George Byrne, Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee, Shelby L. Lockhart,
John Loffeld, Daniel McGreer, Yu Pan, Slaven Peles, Cosmin Petra, Steven B. Roberts, H. Hunter Schwartz, Jean M.
Sexton, Dan Shumaker, Steve G. Smith, Shahbaj Sohal, Allan G. Taylor, Hilari C. Tiedeman, Chris White, Ting Yan,
and Ulrike M. Yang.

Contents

1 Introduction 3
1.1 Changes to SUNDIALS in release 6.3.0 . 4
1.2 Reading this User Guide . 7
1.3 SUNDIALS License and Notices . 8

2 Mathematical Considerations 11
2.1 Adaptive single-step methods . 12
2.2 Interpolation . 12
2.3 ARKStep – Additive Runge–Kutta methods . 14
2.4 ERKStep – Explicit Runge–Kutta methods . 15
2.5 ForcingStep – Forcing method . 16
2.6 LSRKStep – Low-Storage Runge–Kutta methods . 16
2.7 MRIStep – Multirate infinitesimal step methods . 17
2.8 SplittingStep – Operator splitting methods . 20
2.9 SPRKStep – Symplectic Partitioned Runge–Kutta methods . 21
2.10 Error norms . 22
2.11 Time step adaptivity . 23
2.12 Initial step size estimation . 26
2.13 Explicit stability . 28
2.14 Fixed time stepping . 28
2.15 Algebraic solvers . 29
2.16 Rootfinding . 39
2.17 Inequality Constraints . 40
2.18 Relaxation Methods . 40
2.19 Adjoint Sensitivity Analysis . 41

3 Code Organization 43

4 Getting Started 45
4.1 Data Types . 46
4.2 The SUNContext Type . 48
4.3 Error Checking . 54
4.4 Status and Error Logging . 56
4.5 Performance Profiling . 61
4.6 Getting Version Information . 64
4.7 Fortran Interface . 65
4.8 Features for GPU Accelerated Computing . 74

5 Using ARKODE 77
5.1 Access to library and header files . 78
5.2 A skeleton of the user’s main program . 79
5.3 ARKODE User-callable functions . 82
5.4 User-supplied functions . 164

i

5.5 Relaxation Methods . 181
5.6 Preconditioner modules . 187
5.7 Using the ARKStep time-stepping module . 196
5.8 Using the ERKStep time-stepping module . 278
5.9 Using the ForcingStep time-stepping module . 314
5.10 Using the LSRKStep time-stepping module . 317
5.11 Using the MRIStep time-stepping module . 325
5.12 Using the SplittingStep time-stepping module . 383
5.13 Using the SPRKStep time-stepping module . 394
5.14 Adjoint Sensitivity Analysis . 409

6 Butcher Table Data Structure 413
6.1 ARKodeButcherTable functions . 414

7 SPRK Method Table Structure 419
7.1 ARKodeSPRKTable functions . 420

8 Vector Data Structures 423
8.1 Description of the NVECTOR Modules . 423
8.2 Description of the NVECTOR operations . 431
8.3 NVECTOR functions required by ARKODE . 444
8.4 The NVECTOR_SERIAL Module . 445
8.5 The NVECTOR_PARALLEL Module . 448
8.6 The NVECTOR_OPENMP Module . 452
8.7 The NVECTOR_PTHREADS Module . 455
8.8 The NVECTOR_PARHYP Module . 459
8.9 The NVECTOR_PETSC Module . 461
8.10 The NVECTOR_CUDA Module . 463
8.11 The NVECTOR_HIP Module . 468
8.12 The NVECTOR_SYCL Module . 473
8.13 The NVECTOR_RAJA Module . 478
8.14 The NVECTOR_KOKKOS Module . 481
8.15 The NVECTOR_OPENMPDEV Module . 484
8.16 The NVECTOR_TRILINOS Module . 487
8.17 The NVECTOR_MANYVECTOR Module . 488
8.18 The NVECTOR_MPIMANYVECTOR Module . 491
8.19 The NVECTOR_MPIPLUSX Module . 495
8.20 NVECTOR Examples . 496

9 Matrix Data Structures 501
9.1 Description of the SUNMATRIX Modules . 501
9.2 Description of the SUNMATRIX operations . 504
9.3 The SUNMATRIX_DENSE Module . 506
9.4 The SUNMATRIX_MAGMADENSE Module . 509
9.5 The SUNMATRIX_ONEMKLDENSE Module . 513
9.6 The SUNMATRIX_BAND Module . 518
9.7 The SUNMATRIX_CUSPARSE Module . 524
9.8 The SUNMATRIX_SPARSE Module . 527
9.9 The SUNMATRIX_SLUNRLOC Module . 533
9.10 The SUNMATRIX_GINKGO Module . 535
9.11 The SUNMATRIX_KOKKOSDENSE Module . 537
9.12 SUNMATRIX Examples . 541
9.13 SUNMATRIX functions used by ARKODE . 541

10 Linear Algebraic Solvers 543

ii

10.1 The SUNLinearSolver API . 544
10.2 ARKODE SUNLinearSolver interface . 557
10.3 The SUNLinSol_Band Module . 559
10.4 The SUNLinSol_Dense Module . 561
10.5 The SUNLinSol_KLU Module . 562
10.6 The SUNLinSol_LapackBand Module . 566
10.7 The SUNLinSol_LapackDense Module . 567
10.8 The SUNLinSol_MagmaDense Module . 569
10.9 The SUNLinSol_OneMklDense Module . 571
10.10 The SUNLinSol_PCG Module . 572
10.11 The SUNLinSol_SPBCGS Module . 576
10.12 The SUNLinSol_SPFGMR Module . 579
10.13 The SUNLinSol_SPGMR Module . 583
10.14 The SUNLinSol_SPTFQMR Module . 587
10.15 The SUNLinSol_SuperLUDIST Module . 590
10.16 The SUNLinSol_SuperLUMT Module . 593
10.17 The SUNLinSol_cuSolverSp_batchQR Module . 596
10.18 The SUNLINEARSOLVER_GINKGO Module . 598
10.19 The SUNLINEARSOLVER_KOKKOSDENSE Module . 601
10.20 SUNLinearSolver Examples . 602

11 Nonlinear Algebraic Solvers 605
11.1 The SUNNonlinearSolver API . 605
11.2 ARKODE SUNNonlinearSolver interface . 614
11.3 The SUNNonlinSol_Newton implementation . 620
11.4 The SUNNonlinSol_FixedPoint implementation . 622
11.5 The SUNNonlinSol_PetscSNES implementation . 626

12 Time Step Adaptivity Controllers 629
12.1 The SUNAdaptController API . 629
12.2 The SUNAdaptController_Soderlind Module . 635
12.3 The SUNAdaptController_ImExGus Module . 641
12.4 The SUNAdaptController_MRIHTol Module . 643

13 Stepper Data Structure 647
13.1 The SUNStepper API . 647
13.2 Implementing a SUNStepper . 655

14 Adjoint Sensitivity Analysis 657
14.1 Introduction to Adjoint Sensitivity Analysis . 657
14.2 The SUNAdjointStepper Class . 659
14.3 The SUNAdjointCheckpointScheme Class . 662
14.4 The SUNAdjointCheckpointScheme_Fixed Module . 667

15 Tools for Memory Management 669
15.1 The SUNMemoryHelper API . 669
15.2 The SUNMemoryHelper_Sys Implementation . 675
15.3 The SUNMemoryHelper_Cuda Implementation . 676
15.4 The SUNMemoryHelper_Hip Implementation . 678
15.5 The SUNMemoryHelper_Sycl Implementation . 681

16 Installing SUNDIALS 685
16.1 Installing with Spack . 685
16.2 Installing with CMake . 685
16.3 Configuration options . 688

iii

16.4 Testing the Build and Installation . 715
16.5 Building and Running Examples . 715
16.6 Using SUNDIALS In Your Project . 715
16.7 Libraries and Header Files . 717

17 ARKODE Constants 737

18 Butcher Tables 743
18.1 Explicit Butcher tables . 744
18.2 Implicit Butcher tables . 765
18.3 Additive Butcher tables . 785
18.4 Symplectic Partitioned Butcher tables . 786

19 Release History 789

20 Changelog 791
20.1 Changes to SUNDIALS in release 7.3.0 . 791
20.2 Changes to SUNDIALS in release 7.2.1 . 794
20.3 Changes to SUNDIALS in release 7.2.0 . 794
20.4 Changes to SUNDIALS in release 7.1.1 . 797
20.5 Changes to SUNDIALS in release 7.1.0 . 797
20.6 Changes to SUNDIALS in release 7.0.0 . 799
20.7 Changes to SUNDIALS in release 6.7.0 . 802
20.8 Changes to SUNDIALS in release 6.6.2 . 803
20.9 Changes to SUNDIALS in release 6.6.1 . 803
20.10 Changes to SUNDIALS in release 6.6.0 . 803
20.11 Changes to SUNDIALS in release 6.5.1 . 804
20.12 Changes to SUNDIALS in release 6.5.0 . 804
20.13 Changes to SUNDIALS in release 6.4.1 . 805
20.14 Changes to SUNDIALS in release 6.4.0 . 805
20.15 Changes to SUNDIALS in release 6.3.0 . 806
20.16 Changes to SUNDIALS in release 6.2.0 . 807
20.17 Changes to SUNDIALS in release 6.1.1 . 810
20.18 Changes to SUNDIALS in release 6.1.0 . 810
20.19 Changes to SUNDIALS in release 6.0.0 . 810
20.20 Changes to SUNDIALS in release 5.8.0 . 816
20.21 Changes to SUNDIALS in release 5.7.0 . 817
20.22 Changes to SUNDIALS in release 5.6.1 . 817
20.23 Changes to SUNDIALS in release 5.6.0 . 817
20.24 Changes to SUNDIALS in release 5.5.0 . 818
20.25 Changes to SUNDIALS in release 5.4.0 . 818
20.26 Changes to SUNDIALS in release 5.3.0 . 820
20.27 Changes to SUNDIALS in release 5.2.0 . 821
20.28 Changes to SUNDIALS in release 5.1.0 . 822
20.29 Changes to SUNDIALS in release 5.0.0 . 823
20.30 Changes to SUNDIALS in release 4.1.0 . 826
20.31 Changes to SUNDIALS in release 4.0.2 . 827
20.32 Changes to SUNDIALS in release 4.0.1 . 827
20.33 Changes to SUNDIALS in release 4.0.0 . 827
20.34 Changes to SUNDIALS in release 3.2.1 . 830
20.35 Changes to SUNDIALS in release 3.2.0 . 830
20.36 Changes to SUNDIALS in release 3.1.2 . 831
20.37 Changes to SUNDIALS in release 3.1.1 . 831
20.38 Changes to SUNDIALS in release 3.1.0 . 832
20.39 Changes to SUNDIALS in release 3.0.0 . 832

iv

20.40 Changes to SUNDIALS in release 2.7.0 . 834
20.41 Changes to SUNDIALS in release 2.6.2 . 836
20.42 Changes to SUNDIALS in release 2.6.1 . 836
20.43 Changes to SUNDIALS in release 2.6.0 . 837
20.44 Changes to SUNDIALS in release 2.5.0 . 838
20.45 Changes to SUNDIALS in release 2.4.0 . 839
20.46 Changes to SUNDIALS in release 2.3.0 . 840
20.47 Changes to SUNDIALS in release 2.2.0 . 840
20.48 Changes to SUNDIALS in release 2.1.1 . 841
20.49 Changes to SUNDIALS in release 2.1.0 . 841
20.50 Changes to SUNDIALS in release 2.0.2 . 841
20.51 Changes to SUNDIALS in release 2.0.1 . 841
20.52 Changes to SUNDIALS in release 2.0.0 . 842

Bibliography 843

Index 851

v

vi

User Documentation for ARKODE, v6.3.0

This is the documentation for ARKODE, an adaptive step time integration package for stiff, nonstiff and mixed
stiff/nonstiff systems of ordinary differential equations (ODEs) using Runge–Kutta (i.e., one-step, multi-stage) meth-
ods. The ARKODE solver is a component of the SUNDIALS suite of nonlinear and differential/algebraic equation
solvers. It is designed to have a similar user experience to the CVODE solver, including user modes to allow adaptive
integration to specified output times, return after each internal step and root-finding capabilities, and for calculations in
serial, using shared-memory parallelism (e.g., via OpenMP, CUDA, Raja, Kokkos) or distributed-memory parallelism
(via MPI). The default integration and solver options should apply to most users, though control over nearly all internal
parameters and time adaptivity algorithms is enabled through optional interface routines.

ARKODE is written in C, with C++ and Fortran interfaces.

ARKODE is developed by Southern Methodist University and Lawrence Livermore National Security, with support
by the US Department of Energy, Office of Science.

Contents 1

https://computing.llnl.gov/projects/sundials
https://computing.llnl.gov/casc/sundials/description/description.html#descr_cvode
https://www.smu.edu
https://www.llnl.gov
http://www.doe.gov
https://www.energy.gov/science/office-science

User Documentation for ARKODE, v6.3.0

2 Contents

Chapter 1

Introduction

The ARKODE infrastructure provides adaptive-step time integration modules for stiff, nonstiff and mixed stiff/nonstiff
systems of ordinary differential equations (ODEs). ARKODE itself is structured to support a wide range of one-step (but
multi-stage) methods, allowing for rapid development of parallel implementations of state-of-the-art time integration
methods. At present, ARKODE is packaged with four time-stepping modules, ARKStep, ERKStep, SPRKStep, and
MRIStep.

ARKStep supports ODE systems posed in split, linearly-implicit form,

M(t) ẏ = fE(t, y) + f I(t, y), y(t0) = y0, (1.1)

where t is the independent variable, y is the set of dependent variables (in RN), M is a user-specified, nonsingular
operator from RN to RN , and the right-hand side function is partitioned into up to two components:

• fE(t, y) contains the “nonstiff” time scale components to be integrated explicitly, and

• f I(t, y) contains the “stiff” time scale components to be integrated implicitly.

Either of these operators may be disabled, allowing for fully explicit, fully implicit, or combination implicit-explicit
(ImEx) time integration.

The algorithms used in ARKStep are adaptive- and fixed-step additive Runge–Kutta methods. Such methods are defined
through combining two complementary Runge–Kutta methods: one explicit (ERK) and the other diagonally implicit
(DIRK). Through appropriately partitioning the ODE right-hand side into explicit and implicit components (1.1), such
methods have the potential to enable accurate and efficient time integration of stiff, nonstiff, and mixed stiff/nonstiff
systems of ordinary differential equations. A key feature allowing for high efficiency of these methods is that only
the components in f I(t, y) must be solved implicitly, allowing for splittings tuned for use with optimal implicit solver
algorithms.

This framework allows for significant freedom over the constitutive methods used for each component, and ARKODE is
packaged with a wide array of built-in methods for use. These built-in Butcher tables include adaptive explicit methods
of orders 2-9, adaptive implicit methods of orders 2-5, and adaptive ImEx methods of orders 2-5.

ERKStep focuses specifically on problems posed in explicit form,

ẏ = f(t, y), y(t0) = y0. (1.2)

allowing for increased computational efficiency and memory savings. The algorithms used in ERKStep are adaptive-
and fixed-step explicit Runge–Kutta methods. As with ARKStep, the ERKStep module is packaged with adaptive
explicit methods of orders 2-9.

SPRKStep focuses on Hamiltonian systems posed in the form,

H(t, p, q) = T (t, p) + V (t, q)

3

User Documentation for ARKODE, v6.3.0

ṗ = f1(t, q) =
∂V (t, q)

∂q
, q̇ = f2(t, p) =

∂T (t, p)

∂p
, (1.3)

allowing for conservation of quadratic invariants.

MRIStep focuses specifically on problems posed in additive form,

ẏ = fE(t, y) + f I(t, y) + fF (t, y), y(t0) = y0. (1.4)

where here the right-hand side function is additively split into three components:

• fE(t, y) contains the “slow-nonstiff” components of the system (this will be integrated using an explicit method
and a large time step hS),

• f I(t, y) contains the “slow-stiff” components of the system (this will be integrated using an implicit method and
a large time step hS), and

• fF (t, y) contains the “fast” components of the system (this will be integrated using a possibly different method
than the slow time scale and a small time step hF � hS).

For such problems, MRIStep provides fixed-step slow step multirate infinitesimal step (MIS), multirate infinitesimal
GARK (MRI-GARK), and implicit-explicit MRI-GARK (IMEX-MRI-GARK) methods, allowing for evolution of the
problem (1.4) using multirate methods having orders of accuracy 2-4.

For ARKStep or MRIStep problems that include nonzero implicit term f I(t, y), the resulting implicit system (assumed
nonlinear, unless specified otherwise) is solved approximately at each integration step, using a SUNNonlinearSolver
module, supplied either by the user or from the underlying SUNDIALS infrastructure. For nonlinear solver algorithms
that internally require a linear solver, ARKODE may use a variety of SUNLinearSolver modules provided with SUN-
DIALS, or again may utilize a user-supplied module.

1.1 Changes to SUNDIALS in release 6.3.0

Major Features

A new discrete adjoint capability for explicit Runge–Kutta methods has been added to the ARKODE ERKStep
and ARKStep stepper modules. This is based on a new set of shared classes, SUNAdjointStepper and SUNAd-
jointCheckpointScheme. A new example demonstrating this capability can be found in examples/arkode/C_-
serial/ark_lotka_volterra_ASA.c. See the Adjoint Sensitivity Analysis section of the ARKODE user guide for
details.

New Features and Enhancements

ARKODE

The following changes have been made to the default ERK, DIRK, and ARK methods in ARKODE to utilize more
efficient methods:

4 Chapter 1. Introduction

User Documentation for ARKODE, v6.3.0

Type Old Default New Default
2nd Order
Explicit

ARKODE_HEUN_EULER_2_1_2 ARKODE_RALSTON_3_1_2

4th Order
Explicit

ARKODE_ZONNEVELD_5_3_4 ARKODE_SOFRONIOU_SPALETTA_5_3_4

5th Order
Explicit

ARKODE_CASH_KARP_6_4_5 ARKODE_TSITOURAS_7_4_5

6th Order
Explicit

ARKODE_VERNER_8_5_6 ARKODE_VERNER_9_5_6

8th Order
Explicit

ARKODE_FEHLBERG_13_7_8 ARKODE_VERNER_13_7_8

2nd Order
Implicit

ARKODE_SDIRK_2_1_2 ARKODE_ARK2_DIRK_3_1_2

3rd Order
Implicit

ARKODE_ARK324L2SA_DIRK_4_2_3 ARKODE_ESDIRK325L2SA_5_2_3

4th Order
Implicit

ARKODE_SDIRK_5_3_4 ARKODE_ESDIRK436L2SA_6_3_4

5th Order
Implicit

ARKODE_ARK548L2SA_DIRK_8_4_5 ARKODE_ESDIRK547L2SA2_7_4_5

4th Order
ARK

ARKODE_ARK436L2SA_ERK_6_3_4 and
ARKODE_ARK436L2SA_DIRK_6_3_4

ARKODE_ARK437L2SA_ERK_7_3_4 and
ARKODE_ARK437L2SA_DIRK_7_3_4

5th Order
ARK

ARKODE_ARK548L2SA_ERK_8_4_5 and
ARKODE_ARK548L2SA_DIRK_8_4_5

ARKODE_ARK548L2SAb_ERK_8_4_5 and
ARKODE_ARK548L2SAb_DIRK_8_4_5

The old default methods can be loaded using the functions ERKStepSetTableName() or ERKStepSetTableNum()
with ERKStep and ARKStepSetTableName() or ARKStepSetTableNum() with ARKStep and passing the desired
method name string or constant, respectively. For example, the following call can be used to load the old default fourth
order method with ERKStep:

/* Load the old 4th order ERK method using the table name */
ierr = ERKStepSetTableName(arkode_mem, "ARKODE_ZONNEVELD_5_3_4");

Similarly with ARKStep, the following calls can be used for ERK, DIRK, or ARK methods, respectively:

/* Load the old 4th order ERK method by name */
ierr = ARKStepSetTableName(arkode_mem, "ARKODE_DIRK_NONE",

"ARKODE_ZONNEVELD_5_3_4");

/* Load the old 4th order DIRK method by name */
ierr = ARKStepSetTableName(arkode_mem, "ARKODE_SDIRK_5_3_4",

"ARKODE_ERK_NONE");

/* Load the old 4th order ARK method by name */
ierr = ARKStepSetTableName(arkode_mem, "ARKODE_ARK436L2SA_DIRK_6_3_4",

"ARKODE_ARK436L2SA_ERK_6_3_4");

Additionally, the following changes have been made to the default time step adaptivity parameters in ARKODE:

1.1. Changes to SUNDIALS in release 6.3.0 5

User Documentation for ARKODE, v6.3.0

Parameter Old Default New Default
Controller PID (PI for ERKStep) I
Safety Factor 0.96 0.9
Bias 1.5 (1.2 for ERKStep) 1.0
Fixed Step Bounds [1.0, 1.5] [1.0, 1.0]
Adaptivity Adjustment -1 0

The following calls can be used to restore the old defaults for ERKStep:

SUNAdaptController controller = SUNAdaptController_Soderlind(ctx);
SUNAdaptController_SetParams_PI(controller, 0.8, -0.31);
ARKodeSetAdaptController(arkode_mem, controller);
SUNAdaptController_SetErrorBias(controller, 1.2);
ARKodeSetSafetyFactor(arkode_mem, 0.96);
ARKodeSetFixedStepBounds(arkode_mem, 1, 1.5);
ARKodeSetAdaptivityAdjustment(arkode_mem, -1);

The following calls can be used to restore the old defaults for other ARKODE integrators:

SUNAdaptController controller = SUNAdaptController_PID(ctx);
ARKodeSetAdaptController(arkode_mem, controller);
SUNAdaptController_SetErrorBias(controller, 1.5);
ARKodeSetSafetyFactor(arkode_mem, 0.96);
ARKodeSetFixedStepBounds(arkode_mem, 1, 1.5);
ARKodeSetAdaptivityAdjustment(arkode_mem, -1);

In both cases above, destroy the controller at the end of the run with SUNAdaptController_Destroy(controller);
.

The Soderlind time step adaptivity controller now starts with an I controller until there is sufficient history of past time
steps and errors.

Added ARKodeSetAdaptControllerByName() to set a time step adaptivity controller with a string. There are
also four new controllers: SUNAdaptController_H0211(), SUNAdaptController_H0321(), SUNAdaptCon-
troller_H211(), and SUNAdaptController_H312().

Added the ARKODE_RALSTON_3_1_2 and ARKODE_TSITOURAS_7_4_5 explicit Runge-Kutta Butcher tables.

Improved the precision of the coefficients for ARKODE_ARK324L2SA_ERK_4_2_3, ARKODE_VERNER_9_5_6, ARKODE_-
VERNER_10_6_7, ARKODE_VERNER_13_7_8, ARKODE_ARK324L2SA_DIRK_4_2_3, and ARKODE_ESDIRK324L2SA_-
4_2_3.

CVODE / CVODES

Added support for resizing CVODE and CVODES when solving initial value problems where the number of equations
and unknowns changes over time. Resizing requires a user supplied history of solution and right-hand side values at
the new problem size, see CVodeResizeHistory() for more information.

KINSOL

Added support in KINSOL for setting user-supplied functions to compute the damping factor and, when using An-
derson acceleration, the depth in fixed-point or Picard iterations. See KINSetDampingFn() and KINSetDepthFn(),
respectively, for more information.

SUNDIALS Types

6 Chapter 1. Introduction

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeResizeHistory
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDampingFn
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDepthFn

User Documentation for ARKODE, v6.3.0

A new type, suncountertype, was added for the integer type used for counter variables. It is currently an alias for
long int.

Bug Fixes

ARKODE

Fixed bug in ARKodeResize() which caused it return an error for MRI methods.

Removed error floors from the SUNAdaptController implementations which could unnecessarily limit the time size
growth, particularly after the first step.

Fixed bug in ARKodeSetFixedStep() where it could return ARK_SUCCESS despite an error occurring.

Fixed bug in the ARKODE SPRKStep SPRKStepReInit() function and ARKodeReset() function with SPRKStep
that could cause a segmentation fault when compensated summation is not used.

KINSOL

Fixed a bug in KINSOL where an incorrect damping parameter is applied on the initial iteration with Anderson ac-
celeration unless KINSetDamping() and KINSetDampingAA() are both called with the same value when enabling
damping.

Fixed a bug in KINSOL where errors that occurred when computing Anderson acceleration were not captured.

Added missing return values to KINGetReturnFlagName().

CMake

Fixed the behavior of SUNDIALS_ENABLE_ERROR_CHECKS so additional runtime error checks are disabled by default
with all release build types. Previously, MinSizeRel builds enabled additional error checking by default.

Deprecation Notices

All work space functions, e.g., CVodeGetWorkSpace and ARKodeGetLinWorkSpace, have been deprecated and will
be removed in version 8.0.0.

For changes in prior versions of SUNDIALS see §20.

1.2 Reading this User Guide

This user guide is a combination of general usage instructions and specific example programs. We expect that some
readers will want to concentrate on the general instructions, while others will refer mostly to the examples, and the
organization is intended to accommodate both styles.

The structure of this document is as follows:

• In the next section we provide a thorough presentation of the underlying mathematical algorithms used within
the ARKODE family of solvers.

• We follow this with an overview of how the source code for ARKODE is organized.

• The largest section follows, providing a full account of how to use ARKODE within C and C++ applications,
including any instructions that are specific to a given time-stepping modules, ARKStep, ERKStep, or MRIStep.
This section then includes additional information on how to use ARKODE from applications written in Fortran,
as well as information on how to leverage GPU accelerators within ARKODE.

• A much smaller section follows, describing ARKODE’s Butcher table structure, that is used by both ARKStep
and ERKStep.

• Subsequent sections discuss shared SUNDIALS features that are used by ARKODE: vector data structures,
matrix data structures, linear solver data structures, nonlinear solver data structures, memory management
utilities, and the installation procedure.

1.2. Reading this User Guide 7

https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDamping
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDampingAA
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINGetReturnFlagName

User Documentation for ARKODE, v6.3.0

• The final sections catalog the full set of ARKODE constants, that are used for both input specifications and return
codes, and the full set of Butcher tables that are packaged with ARKODE.

1.3 SUNDIALS License and Notices

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

Note

If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, SuperLU_MT, PETSc,
or hypre), be sure to review the respective license of the package as that license may have more restrictive terms
than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked KLU, the build is
subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.

1.3.1 BSD 3-Clause License

Copyright (c) 2002-2025, Lawrence Livermore National Security and Southern Methodist University.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘’AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

8 Chapter 1. Introduction

User Documentation for ARKODE, v6.3.0

1.3.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)

UCRL-CODE-155951 (CVODE)

UCRL-CODE-155950 (CVODES)

UCRL-CODE-155952 (IDA)

UCRL-CODE-237203 (IDAS)

LLNL-CODE-665877 (KINSOL)

1.3. SUNDIALS License and Notices 9

User Documentation for ARKODE, v6.3.0

10 Chapter 1. Introduction

Chapter 2

Mathematical Considerations

ARKODE solves ODE initial value problems (IVP) in RN posed in the form

M(t) ẏ = f(t, y), y(t0) = y0. (2.1)

Here, t is the independent variable (e.g. time), and the dependent variables are given by y ∈ RN , where we use the
notation ẏ to denote dy/dt.

For each value of t,M(t) is a user-specified linear operator fromRN → RN . This operator is assumed to be nonsingular
and independent of y. For standard systems of ordinary differential equations and for problems arising from the spatial
semi-discretization of partial differential equations using finite difference, finite volume, or spectral finite element
methods, M is typically the identity matrix, I . For PDEs using standard finite-element spatial semi-discretizations,
M is typically a well-conditioned mass matrix that is fixed throughout a simulation (or at least fixed between spatial
rediscretization events).

The ODE right-hand side is given by the function f(t, y) – in general we make no assumption that the problem (2.1)
is autonomous (i.e., f = f(y)) or linear (f = Ay). In general, the time integration methods within ARKODE support
additive splittings of this right-hand side function, as described in the subsections that follow. Through these splittings,
the time-stepping methods currently supplied with ARKODE are designed to solve stiff, nonstiff, mixed stiff/nonstiff,
and multirate problems. As per Ascher and Petzold [12], a problem is “stiff” if the stepsize needed to maintain stability
of the forward Euler method is much smaller than that required to represent the solution accurately.

In the sub-sections that follow, we elaborate on the numerical methods utilized in ARKODE. We first discuss the “single-
step” nature of the ARKODE infrastructure, including its usage modes and approaches for interpolated solution output.
We then discuss the current suite of time-stepping modules supplied with ARKODE, including

• ARKStep for additive Runge–Kutta methods

• ERKStep that is optimized for explicit Runge–Kutta methods

• ForcingStep for a forcing method

• LSRKStep that supports low-storage Runge–Kutta methods

• MRIStep for multirate infinitesimal step (MIS), multirate infinitesimal GARK (MRI-GARK), and implicit-explicit
MRI-GARK (IMEX-MRI-GARK) methods

• SplittingStep for operator splitting methods

• SPRKStep for symplectic partitioned Runge–Kutta methods

We then discuss the adaptive temporal error controllers shared by the time-stepping modules, including discussion of
our choice of norms for measuring errors within various components of the solver.

11

User Documentation for ARKODE, v6.3.0

We then discuss the nonlinear and linear solver strategies used by ARKODE for solving implicit algebraic systems
that arise in computing each stage and/or step: nonlinear solvers, linear solvers, preconditioners, error control within
iterative nonlinear and linear solvers, algorithms for initial predictors for implicit stage solutions, and approaches for
handling non-identity mass-matrices.

We conclude with a section describing ARKODE’s rootfinding capabilities, that may be used to stop integration of a
problem prematurely based on traversal of roots in user-specified functions.

2.1 Adaptive single-step methods

The ARKODE infrastructure is designed to support single-step, IVP integration methods, i.e.

yn = ϕ(yn−1, hn)

where yn−1 is an approximation to the solution y(tn−1), yn is an approximation to the solution y(tn), tn = tn−1 +hn,
and the approximation method is represented by the function ϕ.

The choice of step size hn is determined by the time-stepping method (based on user-provided inputs, typically accuracy
requirements). However, users may place minimum/maximum bounds on hn if desired.

ARKODE may be run in a variety of “modes”:

• NORMAL – The solver will take internal steps until it has just overtaken a user-specified output time, tout, in
the direction of integration, i.e. tn−1 < tout ≤ tn for forward integration, or tn ≤ tout < tn−1 for backward
integration. It will then compute an approximation to the solution y(tout) by interpolation (using one of the dense
output routines described in the section §2.2).

• ONE-STEP – The solver will only take a single internal step yn−1 → yn and then return control back to the
calling program. If this step will overtake tout then the solver will again return an interpolated result; otherwise
it will return a copy of the internal solution yn.

• NORMAL-TSTOP – The solver will take internal steps until the next step will overtake tout. It will then limit
this next step so that tn = tn−1 + hn = tout, and once the step completes it will return a copy of the internal
solution yn.

• ONE-STEP-TSTOP – The solver will check whether the next step will overtake tout – if not then this mode is
identical to “one-step” above; otherwise it will limit this next step so that tn = tn−1 + hn = tout. In either case,
once the step completes it will return a copy of the internal solution yn.

We note that interpolated solutions may be slightly less accurate than the internal solutions produced by the solver.
Hence, to ensure that the returned value has full method accuracy one of the “tstop” modes may be used.

2.2 Interpolation

As mentioned above, the ARKODE supports interpolation of solutions y(tout) and derivatives y(d)(tout), where tout
occurs within a completed time step from tn−1 → tn. Additionally, this module supports extrapolation of solutions
and derivatives for t outside this interval (e.g. to construct predictors for iterative nonlinear and linear solvers). To this
end, ARKODE currently supports construction of polynomial interpolants pq(t) of polynomial degree up to q = 5,
although users may select interpolants of lower degree.

ARKODE provides two complementary interpolation approaches: “Hermite” and “Lagrange”. The former approach
has been included with ARKODE since its inception, and is more suitable for non-stiff problems; the latter is a more
recent approach that is designed to provide increased accuracy when integrating stiff problems. Both are described in
detail below.

12 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v6.3.0

2.2.1 Hermite interpolation module

For non-stiff problems, polynomial interpolants of Hermite form are provided. Rewriting the IVP (2.1) in standard
form,

ẏ = f̂(t, y), y(t0) = y0.

we typically construct temporal interpolants using the data
{
yn−1, f̂n−1, yn, f̂n

}
, where here we use the simplified

notation f̂k to denote f̂(tk, yk). Defining a normalized “time” variable, τ , for the most-recently-computed solution
interval tn−1 → tn as

τ(t) =
t− tn
hn

,

we then construct the interpolants pq(t) as follows:

• q = 0: constant interpolant

p0(τ) =
yn−1 + yn

2
.

• q = 1: linear Lagrange interpolant

p1(τ) = −τ yn−1 + (1 + τ) yn.

• q = 2: quadratic Hermite interpolant

p2(τ) = τ2 yn−1 + (1− τ2) yn + hn(τ + τ2) f̂n.

• q = 3: cubic Hermite interpolant

p3(τ) = (3τ2 + 2τ3) yn−1 + (1− 3τ2 − 2τ3) yn + hn(τ2 + τ3) f̂n−1 + hn(τ + 2τ2 + τ3) f̂n.

• q = 4: quartic Hermite interpolant

p4(τ) = (−6τ2 − 16τ3 − 9τ4) yn−1 + (1 + 6τ2 + 16τ3 + 9τ4) yn +
hn
4

(−5τ2 − 14τ3 − 9τ4) f̂n−1

+ hn(τ + 2τ2 + τ3) f̂n +
27hn

4
(−τ4 − 2τ3 − τ2) f̂a,

where f̂a = f̂

(
tn −

hn
3
, p3

(
−1

3

))
. We point out that interpolation at this degree requires an additional

evaluation of the full right-hand side function f̂(t, y), thereby increasing its cost in comparison with p3(t).

• q = 5: quintic Hermite interpolant

p5(τ) = (54τ5 + 135τ4 + 110τ3 + 30τ2) yn−1 + (1− 54τ5 − 135τ4 − 110τ3 − 30τ2) yn

+
hn
4

(27τ5 + 63τ4 + 49τ3 + 13τ2) f̂n−1 +
hn
4

(27τ5 + 72τ4 + 67τ3 + 26τ2 + τ) f̂n

+
hn
4

(81τ5 + 189τ4 + 135τ3 + 27τ2) f̂a +
hn
4

(81τ5 + 216τ4 + 189τ3 + 54τ2) f̂b,

where f̂a = f̂

(
tn −

hn
3
, p4

(
−1

3

))
and f̂b = f̂

(
tn −

2hn
3
, p4

(
−2

3

))
. We point out that interpolation at

this degree requires four additional evaluations of the full right-hand side function f̂(t, y), thereby significantly
increasing its cost over p4(t).

We note that although interpolants of order q > 5 are possible, these are not currently implemented due to their
increased computing and storage costs.

2.2. Interpolation 13

User Documentation for ARKODE, v6.3.0

2.2.2 Lagrange interpolation module

For stiff problems where f̂ may have large Lipschitz constant, polynomial interpolants of Lagrange form are provided.
These interpolants are constructed using the data {yn, yn−1, . . . , yn−ν} where 0 ≤ ν ≤ 5. These polynomials have
the form

p(t) =

ν∑
j=0

yn−jpj(t), where

pj(t) =

ν∏
l=0
l 6=j

(
t− tl
tj − tl

)
, j = 0, . . . , ν.

Since we assume that the solutions yn−j have length much larger than ν ≤ 5 in ARKODE-based simulations, we
evaluate p at any desired t ∈ R by first evaluating the Lagrange polynomial basis functions at the input value for t, and
then performing a simple linear combination of the vectors {yk}νk=0. Derivatives p(d)(t) may be evaluated similarly as

p(d)(t) =

ν∑
j=0

yn−j p
(d)
j (t),

however since the algorithmic complexity involved in evaluating derivatives of the Lagrange basis functions increases
dramatically as the derivative order grows, our Lagrange interpolation module currently only provides derivatives up
to d = 3.

We note that when using this interpolation module, during the first (ν−1) steps of integration we do not have sufficient
solution history to construct the full ν-degree interpolant. Therefore during these initial steps, we construct the highest-
degree interpolants that are currently available at the moment, achieving the full ν-degree interpolant once these initial
steps have completed.

2.3 ARKStep – Additive Runge–Kutta methods

The ARKStep time-stepping module in ARKODE is designed for IVPs of the form

M(t) ẏ = fE(t, y) + f I(t, y), y(t0) = y0, (2.2)

i.e. the right-hand side function is additively split into two components:

• fE(t, y) contains the “nonstiff” components of the system (this will be integrated using an explicit method);

• f I(t, y) contains the “stiff” components of the system (this will be integrated using an implicit method);

and the left-hand side may include a nonsingular, possibly time-dependent, matrix M(t).

In solving the IVP (2.2), we first consider the corresponding problem in standard form,

ẏ = f̂E(t, y) + f̂ I(t, y), y(t0) = y0, (2.3)

where f̂E(t, y) = M(t)−1 fE(t, y) and f̂ I(t, y) = M(t)−1 f I(t, y). ARKStep then utilizes variable-step, embedded,
additive Runge–Kutta methods (ARK), corresponding to algorithms of the form

zi = yn−1 + hn

i−1∑
j=1

AEi,j f̂
E(tEn,j , zj) + hn

i∑
j=1

AIi,j f̂
I(tIn,j , zj), i = 1, . . . , s,

yn = yn−1 + hn

s∑
i=1

(
bEi f̂

E(tEn,i, zi) + bIi f̂
I(tIn,i, zi)

)
,

ỹn = yn−1 + hn

s∑
i=1

(
b̃Ei f̂

E(tEn,i, zi) + b̃Ii f̂
I(tIn,i, zi)

)
.

(2.4)

14 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v6.3.0

Here ỹn are embedded solutions that approximate y(tn) and are used for error estimation; these typically have slightly
lower accuracy than the computed solutions yn. The internal stage times are abbreviated using the notation tEn,j =

tn−1 + cEj hn and tIn,j = tn−1 + cIjhn. The ARK method is primarily defined through the coefficients AE ∈ Rs×s,
AI ∈ Rs×s, bE ∈ Rs, bI ∈ Rs, cE ∈ Rs and cI ∈ Rs, that correspond with the explicit and implicit Butcher tables.
Additional coefficients b̃E ∈ Rs and b̃I ∈ Rs are used to construct the embedding ỹn. We note that ARKStep currently
enforces the constraint that the explicit and implicit methods in an ARK pair must share the same number of stages,
s. We note that except when the problem has a time-independent mass matrix M , ARKStep allows the possibility for
different explicit and implicit abscissae, i.e. cE need not equal cI .

The user of ARKStep must choose appropriately between one of three classes of methods: ImEx, explicit, and implicit.
All of the built-in Butcher tables encoding the coefficients cE , cI , AE , AI , bE , bI , b̃E and b̃I are further described in
the section §18.

For mixed stiff/nonstiff problems, a user should provide both of the functions fE and f I that define the IVP system.
For such problems, ARKStep currently implements the ARK methods proposed in [49, 67, 70], allowing for methods
having order of accuracy q = {2, 3, 4, 5} and embeddings with orders p = {1, 2, 3, 4}; the tables for these methods
are given in section §18.3. Additionally, user-defined ARK tables are supported.

For nonstiff problems, a user may specify that f I = 0, i.e. the equation (2.2) reduces to the non-split IVP

M(t) ẏ = fE(t, y), y(t0) = y0. (2.5)

In this scenario, the coefficients AI = 0, cI = 0, bI = 0 and b̃I = 0 in (2.4), and the ARK methods reduce to classical
explicit Runge–Kutta methods (ERK). For these classes of methods, ARKODE provides coefficients with orders of
accuracy q = {2, 3, 4, 5, 6, 7, 8, 9}, with embeddings of orders p = {1, 2, 3, 4, 5, 6, 7, 8}; the tables for these methods
are given in section §18.1. As with ARK methods, user-defined ERK tables are supported.

Alternately, for stiff problems the user may specify that fE = 0, so the equation (2.2) reduces to the non-split IVP

M(t) ẏ = f I(t, y), y(t0) = y0. (2.6)

Similarly to ERK methods, in this scenario the coefficients AE = 0, cE = 0, bE = 0 and b̃E = 0 in (2.4), and the
ARK methods reduce to classical diagonally-implicit Runge–Kutta methods (DIRK). For these classes of methods,
ARKODE provides tables with orders of accuracy q = {2, 3, 4, 5}, with embeddings of orders p = {1, 2, 3, 4}; the
tables for these methods are given in section §18.2. Again, user-defined DIRK tables are supported.

2.4 ERKStep – Explicit Runge–Kutta methods

The ERKStep time-stepping module in ARKODE is designed for IVP of the form

ẏ = f(t, y), y(t0) = y0, (2.7)

i.e., unlike the more general problem form (2.2), ERKStep requires that problems have an identity mass matrix (i.e.,
M(t) = I) and that the right-hand side function is not split into separate components.

For such problems, ERKStep provides variable-step, embedded, explicit Runge–Kutta methods (ERK), corresponding
to algorithms of the form

zi = yn−1 + hn

i−1∑
j=1

Ai,jf(tn,j , zj), i = 1, . . . , s,

yn = yn−1 + hn

s∑
i=1

bif(tn,i, zi),

ỹn = yn−1 + hn

s∑
i=1

b̃if(tn,i, zi),

(2.8)

2.4. ERKStep – Explicit Runge–Kutta methods 15

User Documentation for ARKODE, v6.3.0

where the variables have the same meanings as in the previous section.

Clearly, the problem (2.7) is fully encapsulated in the more general problem (2.5), and the algorithm (2.8) is similarly
encapsulated in the more general algorithm (2.4). While it therefore follows that ARKStep can be used to solve every
problem solvable by ERKStep, using the same set of methods, we include ERKStep as a distinct time-stepping module
since this simplified form admits a more efficient and memory-friendly implementation than the more general form
(2.7).

2.5 ForcingStep – Forcing method

The ForcingStep time-stepping module in ARKODE is designed for IVPs of the form

ẏ = f1(t, y) + f2(t, y), y(t0) = y0,

with two additive partitions. One step of the forcing method implemented in ForcingStep is given by

v1(tn−1) = yn−1,

v̇1 = f1(t, v1),

f∗1 =
v1(tn)− yn−1

hn
,

v2(tn−1) = yn−1,

v̇2 = f∗1 + f2(t, v2),

yn = v2(tn).

Like a Lie–Trotter method from SplittingStep, the partitions are evolved through a sequence of inner IVPs which can be
solved with an arbitrary integrator or exact solution procedure. However, the IVP for partition two includes a “forcing”
or “tendency” term f∗1 to strengthen the coupling. This coupling leads to a first order method provided v1 and v2 are
integrated to at least first order accuracy. Currently, a fixed time step must be specified for the overall ForcingStep
integrator, but partition integrators are free to use adaptive time steps.

2.6 LSRKStep – Low-Storage Runge–Kutta methods

The LSRKStep time-stepping module in ARKODE supports a variety of so-called “low-storage” Runge–Kutta (LSRK)
methods, [43, 72, 81, 121]. This category includes traditional explicit fixed-step and low-storage Runge–Kutta methods,
adaptive low-storage Runge–Kutta methods, and others. These are characterized by coefficient tables that have an
exploitable structure, such that their implementation does not require that all stages be stored simultaneously. At
present, this module supports explicit, adaptive “super-time-stepping” (STS) and “strong-stability-preserving” (SSP)
methods.

The LSRK time-stepping module in ARKODE currently supports IVP of the form (2.7), i.e., unlike the more general
problem form (2.2), LSRKStep requires that problems have an identity mass matrix (i.e., M(t) = I) and that the
right-hand side function is not split into separate components.

LSRKStep currently supports two families of second-order, explicit, and temporally adaptive STS methods:
Runge–Kutta–Chebyshev (RKC), [121] and Runge–Kutta–Legendre (RKL), [81]. These methods have the form

z0 = yn,

z1 = z0 + hµ̃1f(tn, z0),

zj = (1− µj − νj)z0 + µjzj−1 + νjzj−2 + hγ̃jf(tn, z0) + hµ̃jf(tn + cj−1h, zj−1)

yn+1 = zs.

(2.9)

The corresponding coefficients can be found in [121] and [81], respectively.

16 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v6.3.0

LSRK methods of STS type are designed for stiff problems characterized by having Jacobians with eigenvalues that
have large real and small imaginary parts. While those problems are traditionally treated using implicit methods, STS
methods are explicit. To achieve stability for these stiff problems, STS methods use more stages than conventional
Runge-Kutta methods to extend the stability region along the negative real axis. The extent of this stability region is
proportional to the square of the number of stages used.

LSRK methods of the SSP type are designed to preserve the so-called “strong-stability” properties of advection-type
equations. For details, see [72]. The SSPRK methods in ARKODE use the following Shu–Osher representation [99]
of explicit Runge–Kutta methods:

z1 = yn,

zi =

i−1∑
j=1

(αi,jyj + βi,jhf(tn + cjh, zj)) ,

yn+1 = zs.

(2.10)

The coefficients of the Shu–Osher representation are not uniquely determined by the Butcher table [108]. In particu-
lar, the methods SSP(s,2), SSP(s,3), and SSP(10,4) implemented herein and presented in [72] have “almost” all zero
coefficients appearing in αi,i−1 and βi,i−1. This feature facilitates their implementation in a low-storage manner. The
corresponding coefficients and embedding weights can be found in [72] and [43], respectively.

2.7 MRIStep – Multirate infinitesimal step methods

The MRIStep time-stepping module in ARKODE is designed for IVPs of the form

ẏ = fE(t, y) + f I(t, y) + fF (t, y), y(t0) = y0. (2.11)

i.e., the right-hand side function is additively split into three components:

• fE(t, y) contains the “slow-nonstiff” components of the system (this will be integrated using an explicit method
and a large time step hS),

• f I(t, y) contains the “slow-stiff” components of the system (this will be integrated using an implicit method and
a large time step hS), and

• fF (t, y) contains the “fast” components of the system (this will be integrated using a possibly different method
than the slow time scale and a small time step hF � hS).

As with ERKStep, MRIStep currently requires that problems be posed with an identity mass matrix, M(t) = I . The
slow time scale may consist of only nonstiff terms (f I ≡ 0), only stiff terms (fE ≡ 0), or both nonstiff and stiff terms.

For cases with only a single slow right-hand side function (i.e., fE ≡ 0 or f I ≡ 0), MRIStep provides multirate
infinitesimal step (MIS) [95, 96, 97], first through fourth order multirate infinitesimal GARK (MRI-GARK) [92], and
second through fifth order multirate exponential Runge–Kutta (MERK) [79] methods. For problems with an additively
split slow right-hand side, MRIStep provides first through fourth order implicit-explicit MRI-GARK (IMEX-MRI-
GARK) [29] and second through fourth order implicit-explicit multirate infinitesimal stage-restart (IMEX-MRI-SR)
[45] methods. For a complete list of the methods available in MRIStep see §5.11.3.2. Additionally, users may supply
their own method by defining and attaching a coupling table, see §5.11.3 for more information.

Generally, the slow (outer) method for each family derives from a single-rate method: MIS and MRI-GARK meth-
ods derive from explicit or diagonally-implicit Runge–Kutta methods, MERK methods derive from exponential
Runge–Kutta methods, while IMEX-MRI-GARK and IMEX-MRI-SR methods derive from additive Runge–Kutta
methods. In each case, the “infinitesimal” nature of the multirate methods derives from the fact that slow stages are
computed by solving a set of auxiliary ODEs with a fast (inner) time integration method. Generally speaking, an s-stage
method from of each family adheres to the following algorithm for a single step:

1. Set z1 = yn−1.

2.7. MRIStep – Multirate infinitesimal step methods 17

User Documentation for ARKODE, v6.3.0

2. For i = 2, . . . , s, compute the stage solutions, zi, by evolving the fast IVP

v′i(t) = fF (t, vi) + ri(t) for t ∈ [t0,i, tF,i] with vi(t0,i) = v0,i (2.12)

and setting zi = v(tF,i), and/or performing a standard explicit, diagonally-implicit, or additive Runge–Kutta
stage update,

zi − θi,ihSf I(tSn,i, zi) = ai. (2.13)

where tSn,j = tn−1 + hScSj .

3. Set yn = zs.

4. If the method has an embedding, compute the embedded solution, ỹ, by evolving the fast IVP

ṽ′(t) = fF (t, ṽ) + r̃(t) for t ∈ [t̃0, t̃F] with ṽ(t̃0) = ṽ0 (2.14)

and setting ỹn = ṽ(t̃F), and/or performing a standard explicit, diagonally-implicit, or additive Runge–Kutta
stage update,

ỹn − θ̃hSf I(tn, ỹn) = ã. (2.15)

Whether a fast IVP evolution or a stage update (or both) is needed depends on the method family (MRI-GARK, MERK,
etc.). The specific aspects of the fast IVP forcing function (ri(t) or r̃(t)), the interval over which the IVP must be evolved
([t0,i, tF,i]), the Runge–Kutta coefficients (θi,i and θ̃), and the Runge–Kutta data (ai and ã), are also determined by the
method family. Generally, the forcing functions and data, are constructed using evaluations of the slow RHS functions,
fE and f I , at preceding stages, zj . The fast IVP solves can be carried out using any valid ARKODE integrator or a
user-defined integration method (see section §5.11.4).

Below we summarize the details for each method family. For additional information, please see the references listed
above.

2.7.1 MIS, MRI-GARK, and IMEX-MRI-GARK Methods

The methods in IMEX-MRI-GARK family, which includes MIS and MRI-GARK methods, are defined by a vector of
slow stage time abscissae, cS ∈ Rs, and a set of coupling tensors, Ω ∈ R(s+1)×s×k and Γ ∈ R(s+1)×s×k, that specify
the slow-to-fast coupling for the explicit and implicit components, respectively.

The fast stage IVPs, (2.12), are evolved over non-overlapping intervals [t0,i, tF,i] = [tSn,i−1, t
S
n,i] with the initial condi-

tion v0,i = zi−1. The fast IVP forcing function is given by

ri(t) =
1

∆cSi

i−1∑
j=1

ωi,j(τ)fE(tSn,j , zj) +
1

∆cSi

i∑
j=1

γi,j(τ)f I(tSn,j , zj)

where ∆cSi =
(
cSi − cSi−1

)
, τ = (t − tSn,i−1)/(hS∆cSi) is the normalized time, the coefficients ωi,j and γi,j are

polynomials in time of degree k − 1 given by

ωi,j(τ) =

k∑
`=1

Ωi,j,` τ
`−1 and γi,j(τ) =

k∑
`=1

Γi,j,` τ
`−1. (2.16)

When the slow abscissa are repeated, i.e. ∆cSi = 0, the fast IVP can be rescaled and integrated analytically leading to
the Runge–Kutta update (2.13) instead of the fast IVP evolution. In this case the stage is computed as

zi = zi−1 + hS
i−1∑
j=1

(
k∑
`=1

Ωi,j,`
`

)
fE(tSn,j , zj) + hS

i∑
j=1

(
k∑
`=1

Γi,j,`
`

)
f I(tSn,j , zj). (2.17)

18 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v6.3.0

Similarly, the embedded solution IVP, (2.14), is evolved over the interval [t̃0, t̃F] = [tSn,s−1, tn] with the initial condition
ṽ0 = zs−1.

As with standard ARK and DIRK methods, implicitness at the slow time scale is characterized by nonzero values on
or above the diagonal of the k matrices in Γ. Typically, MRI-GARK and IMEX-MRI-GARK methods are at most
diagonally-implicit (i.e., Γi,j,` = 0 for all ` and j > i). Furthermore, diagonally-implicit stages are characterized as
being “solve-decoupled” if ∆cSi = 0 when Γi,i,` 6= 0, in which case the stage is computed as a standard ARK or
DIRK update. Alternately, a diagonally-implicit stage i is considered “solve-coupled” if ∆cSi Γi,j,` 6= 0, in which case
the stage solution zi is both an input to ri(t) and the result of time-evolution of the fast IVP, necessitating an implicit
solve that is coupled to the fast evolution. At present, only “solve-decoupled” diagonally-implicit MRI-GARK and
IMEX-MRI-GARK methods are supported.

2.7.2 IMEX-MRI-SR Methods

The IMEX-MRI-SR family of methods perform both the fast IVP evolution, (2.12) or (2.14), and stage update, (2.13)
or (2.15), in every stage (but these methods typically have far fewer stages than implicit MRI-GARK or IMEX-MRI-
GARK methods). These methods are defined by a vector of slow stage time abscissae cS ∈ Rs, a set of coupling tensors
Ω ∈ R(s+1)×s×k, and a Butcher table of slow-implicit coefficients, Γ ∈ R(s+1)×s.

The fast stage IVPs, (2.12), are evolved on overlapping intervals [t0,i, tF,i] = [tn−1, t
S
n,i] with the initial condition

v0,i = yn−1. The fast IVP forcing function is given by

ri(t) =
1

cSi

i−1∑
j=1

ωi,j(τ)
(
fE(tSn,j , zj) + f I(tSn,j , zj)

)
, (2.18)

where τ = (t− tn)/(hScSi) is the normalized time, and the coefficients ωi,j are polynomials in time of degree k − 1
that are also given by (2.16). The solution of these fast IVPs defines an intermediate stage solution, z̃i.

The implicit solve that follows each fast IVP must solve the algebraic equation for zi

zi = z̃i + hS
i∑

j=1

γi,jf
I(tSn,j , zj). (2.19)

We note that IMEX-MRI-SR methods are solve-decoupled by construction, and thus the structure of a given stage never
needs to be deduced based on ∆cSi . However, ARKODE still checks the value of γi,i, since if it zero then the stage
update equation (2.19) simplifies to a simple explicit Runge–Kutta-like stage update.

The overall time step solution is given by the final internal stage solution, i.e., yn = zs. The embedded solution is
computing using the above algorithm for stage index s + 1, under the definition that cSs+1 = 1 (and thus the fast IVP
portion is evolved over the full time step, [t̃0, t̃F] = [tn−1, tn]).

2.7.3 MERK Methods

The MERK family of methods are only defined for multirate applications that are explicit at the slow time scale, i.e.,
f I = 0, but otherwise they are nearly identical to IMEX-MRI-SR methods. Specifically, like IMEX-MRI-SR methods,
these evolve the fast IVPs (2.12) and (2.14) over the intervals [t0,i, tF,i] = [tn−1, t

S
n,i] and [t̃0, t̃F] = [tn−1, tn],

respectively, and begin with the initial condition v0,i = yn−1. Furthermore, the fast IVP forcing functions are given by
(2.18) with f I = 0. As MERK-based applications lack the implicit slow operator, they do not require the solution of
implicit algebraic equations.

However, unlike other MRI families, MERK methods were designed to admit a useful efficiency improvement. Since
each fast IVP begins with the same initial condition, v0,i = yn−1, if multiple stages share the same forcing function
ri(t), then they may be “grouped” together. This is achieved by sorting the final IVP solution time for each stage,
tSn,i, and then evolving the inner solver to each of these stage times in order, storing the corresponding inner solver

2.7. MRIStep – Multirate infinitesimal step methods 19

User Documentation for ARKODE, v6.3.0

solutions at these times as the stages zi. For example, the ARKODE_MERK54 method involves 11 stages, that may
be combined into 5 distinct groups. The fourth group contains stages 7, 8, 9, and the embedding, corresponding to
the cSi values 7/10, 1/2, 2/3, and 1. Sorting these, a single fast IVP for this group must be evolved over the interval
[t0,i, tF,i] = [tn−1, tn], first pausing at tn−1 + 1

2h
S to store z8, then pausing at tn−1 + 2

3h
S to store z9, then pausing

at tn−1 + 7
10h

S to store z7, and finally finishing the IVP solve to tn−1 + hS to obtain ỹn.

Note

Although all MERK methods were derived in [79] under an assumption that the fast function fF (t, y) is linear in y,
in [45] it was proven that MERK methods also satisfy all nonlinear order conditions up through their linear order.
The lone exception is ARKODE_MERK54, where it was only proven to satisfy all nonlinear conditions up to order
4 (since [45] did not establish the formulas for the order 5 conditions). All our numerical tests to date have shown
ARKODE_MERK54 to achieve fifth order for nonlinear problems, and so we conjecture that it also satisfies the
nonlinear fifth order conditions.

2.8 SplittingStep – Operator splitting methods

The SplittingStep time-stepping module in ARKODE is designed for IVPs of the form

ẏ = f1(t, y) + f2(t, y) + · · ·+ fP (t, y), y(t0) = y0,

with P > 1 additive partitions. Operator splitting methods, such as those implemented in SplittingStep, allow each par-
tition to be integrated separately, possibly with different numerical integrators or exact solution procedures. Coupling
is only performed through initial conditions which are passed from the flow of one partition to the next.

The following algorithmic procedure is used in the Splitting-Step module:

1. For i = 1, . . . , r do:

1. Set yn,i = yn−1.

2. For j = 1, . . . , s do:

1. For k = 1, . . . , P do:

1. Let tstart = tn−1 + βi,j,khn and tend = tn−1 + βi,j+1,khn.

2. Let v(tstart) = yn,i.

3. For t ∈ [tstart, tend] solve v̇ = fk(t, v).

4. Set yn,i = v(tend).

2. Set yn =
∑r
i=1 αiyn,i

Here, s denotes the number of stages, while r denotes the number of sequential methods within the overall operator
splitting scheme. The sequential methods have independent flows which are linearly combined to produce the next
step. The coefficients α ∈ Rr and β ∈ Rr×(s+1)×P determine the particular scheme and properties such as the order
of accuracy.

An alternative representation of the SplittingStep solution is

yn =

r∑
i=1

αi

(
φPγi,s,Phn

◦ φP−1γi,s,P−1hn
◦ · · · ◦ φ1γi,s,1hn

◦ φPγi,s−1,Phn
◦ · · · ◦ φ1γi,s−1,1hn

◦ · · · ◦ φPγi,1,Phn
◦ · · · ◦ φ1γi,1,1hn

)
(yn−1)

where γi,j,k = βi,j+1,k − βi,j,k is the scaling factor for the step size, hn, and φkhn
is the flow map for partition k:

φkhn
(yn−1) = v(tn),

{
v(tn−1) = yn−1,

v̇ = fk(t, v).

20 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v6.3.0

For example, the Lie–Trotter splitting [17], given by

yn = Lhn(yn−1) =
(
φPhn
◦ φP−1hn

◦ · · · ◦ φ1hn

)
(yn−1), (2.20)

is a first order, one-stage, sequential operator splitting method suitable for any number of partitions. Its coefficients are

α1 = 1,

β1,j,k =

{
0 j = 1

1 j = 2
, j = 1, 2 and k = 1, . . . , P.

Higher order operator splitting methods are often constructed by composing the Lie–Trotter splitting with its adjoint:

L∗hn
= L−1−hn

= φ1hn
◦ φ2hn

◦ · · · ◦ φPhn
. (2.21)

This is the case for the Strang splitting [110]

yn = Shn(yn−1) =
(
L∗hn/2

◦ Lhn/2

)
(yn−1), (2.22)

which has P stages and coefficients

α1 = 1,

β1,j,k =


0 j = 1

1 j + k > P + 1
1
2 otherwise

, j = 1, . . . , P + 1 and k = 1, . . . , P.

SplittingStep provides standard operator splitting methods such as the Lie–Trotter and Strang splitting, as well as
schemes of arbitrarily high order. Alternatively, users may provide their own coefficients (see §5.12.3). Generally,
methods of order three and higher with real coefficients require backward integration, i.e., there exist negative γi,j,k
coefficients. Currently, a fixed time step must be specified for the overall SplittingStep integrator, but partition integra-
tors are free to use adaptive time steps.

2.9 SPRKStep – Symplectic Partitioned Runge–Kutta methods

The SPRKStep time-stepping module in ARKODE is designed for problems where the state vector is partitioned as

y(t) =

[
p(t)
q(t)

]
and the component partitioned IVP is given by

ṗ = f1(t, q), p(t0) = p0

q̇ = f2(t, p), q(t0) = q0.
(2.23)

The right-hand side functions f1(t, p) and f2(t, q) typically arise from the separable Hamiltonian system

H(t, p, q) = T (t, p) + V (t, q)

where

f1(t, q) ≡ −∂V (t, q)

∂q
, f2(t, p) ≡ ∂T (t, p)

∂p
.

When H is autonomous, then H is a conserved quantity. Often this corresponds to the conservation of energy (for exam-
ple, in n-body problems). For non-autonomous H, the invariants are no longer directly obtainable from the Hamiltonian
[111].

2.9. SPRKStep – Symplectic Partitioned Runge–Kutta methods 21

User Documentation for ARKODE, v6.3.0

In practice, the ordering of the variables does not matter and is determined by the user. SPRKStep utilizes Symplectic
Partitioned Runge-Kutta (SPRK) methods represented by the pair of explicit and diagonally implicit Butcher tableaux,

c1 0 · · · 0 0

c2 a1 0 · · ·
...

...
...

.
...

cs a1 · · · as−1 0
a1 · · · as−1 as

ĉ1 â1 · · · 0 0

ĉ2 â1 â2 · · ·
...

...
...

.
...

ĉs â1 â2 · · · âs
â1 â2 · · · âs

.

These methods approximately conserve a nearby Hamiltonian for exponentially long times [56]. SPRKStep makes
the assumption that the Hamiltonian is separable, in which case the resulting method is explicit. SPRKStep provides
schemes with order of accuracy and conservation equal to q = {1, 2, 3, 4, 5, 6, 8, 10}. The references for these these
methods and the default methods used are given in the section §18.4.

In the default case, the algorithm for a single time-step is as follows (for autonomous Hamiltonian systems the times
provided to f1 and f2 can be ignored).

1. Set P0 = pn−1, Q1 = qn−1

2. For i = 1, . . . , s do:

1. Pi = Pi−1 + hnâif1(tn−1 + ĉihn, Qi)

2. Qi+1 = Qi + hnaif2(tn−1 + cihn, Pi)

3. Set pn = Ps, qn = Qs+1

Optionally, a different algorithm leveraging compensated summation can be used that is more robust to roundoff error at
the expense of 2 extra vector operations per stage and an additional 5 per time step. It also requires one extra vector to be
stored. However, it is significantly more robust to roundoff error accumulation [106]. When compensated summation
is enabled, the following incremental form is used to compute a time step:

1. Set ∆P0 = 0,∆Q1 = 0

2. For i = 1, . . . , s do:

1. ∆Pi = ∆Pi−1 + hnâif1(tn−1 + ĉihn, qn−1 + ∆Qi)

2. ∆Qi+1 = ∆Qi + hnaif2(tn−1 + cihn, pn−1 + ∆Pi)

3. Set ∆pn = ∆Ps,∆qn = ∆Qs+1

4. Using compensated summation, set pn = pn−1 + ∆pn, qn = qn−1 + ∆qn

Since temporal error based adaptive time-stepping is known to ruin the conservation property [56], SPRKStep requires
that ARKODE be run using a fixed time-step size.

2.10 Error norms

In the process of controlling errors at various levels (time integration, nonlinear solution, linear solution), the methods
in ARKODE use a weighted root-mean-square norm, denoted ‖ · ‖WRMS, for all error-like quantities,

‖v‖WRMS =

(
1

N

N∑
i=1

(vi wi)
2

)1/2

. (2.24)

The utility of this norm arises in the specification of the weighting vector w, that combines the units of the problem
with user-supplied values that specify an “acceptable” level of error. To this end, we construct an error weight vector
using the most-recent step solution and user-supplied relative and absolute tolerances, namely

wi =
(
RTOL · |yn−1,i|+ATOLi

)−1
. (2.25)

22 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v6.3.0

Since 1/wi represents a tolerance in the i-th component of the solution vector y, a vector whose WRMS norm is
1 is regarded as “small.” For brevity, unless specified otherwise we will drop the subscript WRMS on norms in the
remainder of this section.

Additionally, for problems involving a non-identity mass matrix, M 6= I , the units of equation (2.2) may differ from
the units of the solution y. In this case, we may additionally construct a residual weight vector,

wi =
(
RTOL ·

∣∣(M(tn−1) yn−1
)
i

∣∣+ATOL′i

)−1
, (2.26)

where the user may specify a separate absolute residual tolerance value or array, ATOL′. The choice of weighting
vector used in any given norm is determined by the quantity being measured: values having “solution” units use (2.25),
whereas values having “equation” units use (2.26). Obviously, for problems with M = I , the solution and equation
units are identical, in which case the solvers in ARKODE will use (2.25) when computing all error norms.

2.11 Time step adaptivity

A critical component of IVP “solvers” (rather than just time-steppers) is their adaptive control of local truncation error
(LTE). At every step, we estimate the local error, and ensure that it satisfies tolerance conditions. If this local error
test fails, then the step is recomputed with a reduced step size. To this end, the majority of the Runge–Kutta methods
and many of the MRI methods in ARKODE admit an embedded solution ỹn, as shown in equations (2.4), (2.8), and
(2.14)-(2.15). Generally, these embedded solutions attain a slightly lower order of accuracy than the computed solution
yn. Denoting the order of accuracy for yn as q and for ỹn as p, most of these embedded methods satisfy p = q − 1.
These values of q and p correspond to the global orders of accuracy for the method and embedding, hence each admit
local truncation errors satisfying [54]

‖yn − y(tn)‖ = Chq+1
n +O(hq+2

n),

‖ỹn − y(tn)‖ = Dhp+1
n +O(hp+2

n),
(2.27)

where C and D are constants independent of hn, and where we have assumed exact initial conditions for the step, i.e.
yn−1 = y(tn−1). Combining these estimates, we have

‖yn − ỹn‖ = ‖yn − y(tn)− ỹn + y(tn)‖ ≤ ‖yn − y(tn)‖+ ‖ỹn − y(tn)‖ ≤ Dhp+1
n +O(hp+2

n).

We therefore use the norm of the difference between yn and ỹn as an estimate for the LTE at the step n

Tn = β (yn − ỹn) = βhn

s∑
i=1

[(
bEi − b̃Ei

)
f̂E(tEn,i, zi) +

(
bIi − b̃Ii

)
f̂ I(tIn,i, zi)

]
(2.28)

for ARK methods, and similarly for ERK methods. Here, β > 0 is an error bias to help account for the error constant
D; the default value of this constant is β = 1.5, which may be modified by the user.

With this LTE estimate, the local error test is simply ‖Tn‖ < 1 since this norm includes the user-specified tolerances.
If this error test passes, the step is considered successful, and the estimate is subsequently used to determine the next
step size, the algorithms used for this purpose are described in §2.11. If the error test fails, the step is rejected and a
new step size h′ is then computed using the same error controller as for successful steps. A new attempt at the step is
made, and the error test is repeated. If the error test fails twice, then h′/h is limited above to 0.3, and limited below to
0.1 after an additional step failure. After seven error test failures, control is returned to the user with a failure message.
We note that all of the constants listed above are only the default values; each may be modified by the user.

We define the step size ratio between a prospective step h′ and a completed step h as η, i.e. η = h′/h. This value is
subsequently bounded from above by ηmax to ensure that step size adjustments are not overly aggressive. This upper
bound changes according to the step and history,

ηmax =


etamx1, on the first step (default is 10000),
growth, on general steps (default is 20),
1, if the previous step had an error test failure.

2.11. Time step adaptivity 23

User Documentation for ARKODE, v6.3.0

A flowchart detailing how the time steps are modified at each iteration to ensure solver convergence and successful
steps is given in the figure below. Here, all norms correspond to the WRMS norm, and the error adaptivity function
arkAdapt is supplied by one of the error control algorithms discussed in the subsections below.

For some problems it may be preferable to avoid small step size adjustments. This can be especially true for problems
that construct a Newton Jacobian matrix or a preconditioner for a nonlinear or an iterative linear solve, where this con-
struction is computationally expensive, and where convergence can be seriously hindered through use of an inaccurate
matrix. To accommodate these scenarios, the step is left unchanged when η ∈ [ηL, ηU]. The default values for this
interval are ηL = 1 and ηU = 1.5, and may be modified by the user.

We note that any choices for η (or equivalently, h′) are subsequently constrained by the optional user-supplied bounds
hmin and hmax. Additionally, the time-stepping algorithms in ARKODE may similarly limit h′ to adhere to a user-
provided “TSTOP” stopping point, tstop.

The time-stepping modules in ARKODE adapt the step size in order to attain local errors within desired tolerances of
the true solution. These adaptivity algorithms estimate the prospective step size h′ based on the asymptotic local error
estimates (2.27). We define the values εn, εn−1 and εn−2 as

εk ≡ ‖Tk‖ = β‖yk − ỹk‖,

corresponding to the local error estimates for three consecutive steps, tn−3 → tn−2 → tn−1 → tn. These local
error history values are all initialized to 1 upon program initialization, to accommodate the few initial time steps of a
calculation where some of these error estimates have not yet been computed. With these estimates, ARKODE supports
one of two approaches for temporal error control.

First, any valid implementation of the SUNAdaptController class §12.1 may be used by ARKODE’s adaptive time-
stepping modules to provide a candidate error-based prospective step size h′.

Second, ARKODE’s adaptive time-stepping modules currently still allow the user to define their own time step adap-
tivity function,

h′ = H(y, t, hn, hn−1, hn−2, εn, εn−1, εn−2, q, p),

24 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v6.3.0

allowing for problem-specific choices, or for continued experimentation with temporal error controllers. We note that
this support has been deprecated in favor of the SUNAdaptController class, and will be removed in a future release.

2.11.1 Multirate time step adaptivity (MRIStep)

Since multirate applications evolve on multiple time scales, MRIStep supports additional forms of temporal adaptivity.
Specifically, we consider time steps at two adjacent levels, hS > hF , where hS is the step size used by MRIStep, and
hF is the step size used to solve the corresponding fast-time-scale IVPs in MRIStep, (2.12) and (2.14).

2.11.1.1 Multirate temporal controls

We consider two categories of temporal controllers that may be used within MRI methods. The first (and simplest),
are “decoupled” controllers, that consist of two separate single-rate temporal controllers: one that adapts the slow time
scale step size, hS , and the other that adapts the fast time scale step size, hF . As these ignore any coupling between the
two time scales, these methods should work well for multirate problems where the time scales are somewhat decoupled,
and that errors introduced at one scale do not “pollute” the other.

The second category of controllers that we provide are hS-Tol multirate controllers. The basic idea is that an adaptive
time integration method will attempt to adapt step sizes to control the local error within each step to achieve a requested
tolerance. However, MRI methods must ask an adaptive “inner” solver to produce the stage solutions vi(tF,i) and ṽ(t̃F),
that result from sub-stepping over intervals [t0,i, tF,i] or [t̃0, t̃F], respectively. Local errors within the inner integrator
may accumulate, resulting in an overall inner solver error εFn that exceeds the requested tolerance. If that inner solver
can produce both vi(tF,i) and an estimation of the accumulated error, εFn,approx, then the tolerances provided to that
inner solver can be adjusted accordingly to ensure stage solutions that are within the overall tolerances requested of the
outer MRI method.

To this end, we assume that the inner solver will provide accumulated errors over each fast interval having the form

εFn = c(tn)hSn
(
RTOLFn

)
, (2.29)

where c(t) is independent of the tolerance or step size, but may vary in time. Single-scale adaptive controllers assume
that the local error at a step n with step size hn has order p, i.e.,

LTEn = c(tn)(hn)p+1,

to predict candidate values hn+1. We may therefore repurpose an existing single-scale controller to predict candidate
values RTOLFn+1 by supplying an “order” p = 0 and a “control parameter” hn =

(
RTOLFn

)
.

Thus to construct an hS-Tol controller, we require three separate single-rate adaptivity controllers:

• scontrol-H – this is a single-rate controller that adapts hSn within the slow integrator to achieve user-requested
solution tolerances.

• scontrol-Tol – this is a single-rate controller that adapts RTOLFn using the strategy described above.

• fcontrol – this adapts time steps hF within the fast integrator to achieve the current tolerance, RTOLFn .

We note that both the decoupled and hS-Tol controller families may be used in multirate calculations with an arbitrary
number of time scales, since these focus on only one scale at a time, or on how a given time scale relates to the next-faster
scale.

2.11. Time step adaptivity 25

User Documentation for ARKODE, v6.3.0

2.11.1.2 Fast temporal error estimation

MRI temporal adaptivity requires estimation of the temporal errors that arise at both the slow and fast time scales,
which we denote here as εS and εF , respectively. While the slow error may be estimated as εS = ‖yn − ỹn‖, non-
intrusive approaches for estimating εF are more challenging. ARKODE provides several strategies to help provide this
estimate, all of which assume the fast integrator is temporally adaptive and, at each of itsm steps to reach tn, computes
an estimate of the local temporal error, εFn,m. In this case, we assume that the fast integrator was run with the same
absolute tolerances as the slow integrator, but that it may have used a potentially different relative solution tolerance,
RTOLF . The fast integrator then accumulates these local error estimates using either a “maximum accumulation”
strategy,

εFmax = RTOLF max
m∈S
‖εFn,m‖WRMS , (2.30)

an “additive accumulation” strategy,

εFsum = RTOLF
∑
m∈S
‖εFn,m‖WRMS , (2.31)

or using an “averaged accumulation” strategy,

εFavg =
RTOLF

∆tS

∑
m∈S

hn,m‖εFn,m‖WRMS , (2.32)

where hn,m is the step size that gave rise to εFn,m, ∆tS denotes the elapsed time over which S is taken, and the norms
are taken using the tolerance-informed error-weight vector. In each case, the sum or the maximum is taken over the set
of all steps S since the fast error accumulator has been reset.

2.12 Initial step size estimation

Before time step adaptivity can be accomplished, an initial step must be taken. These values may always be provided
by the user; however, if these are not provided then ARKODE will estimate a suitable choice. Typically with adaptive
methods, the first step should be chosen conservatively to ensure that it succeeds both in its internal solver algorithms,
and its eventual temporal error test. However, if this initial step is too conservative then its computational cost will
essentially be wasted. We thus strive to construct a conservative step that will succeed while also progressing toward
the eventual solution.

Before commenting on the specifics of ARKODE, we first summarize two common approaches to initial step size
selection. To this end, consider a simple single-time-scale ODE,

y′(t) = f(t, y), y(t0) = y0 (2.33)

For this, we may consider two Taylor series expansions of y(t0 + h) around the initial time,

y(t0 + h) = y0 + hf(t0, y0) +
h2

2

d

dt
f(t0 + τ, y0 + η), (2.34)

and

y(t0 + h) = y0 + hf(t0 + τ, y0 + η), (2.35)

where t0 + τ is between t0 and t0 + h, and y0 + η is on the line segment connecting y0 and y(t0 + h).

Initial step size estimation based on the first-order Taylor expansion (2.34) typically attempts to determine a step size
such that an explicit Euler method for (2.33) would be sufficiently accurate, i.e.,

‖y(t0 + h0)− (y0 + h0f(t0, y0)) ‖ ≈
∥∥∥∥h22 d

dt
f(t0, y0)

∥∥∥∥ < 1,

26 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v6.3.0

where we have assumed that y(t) is sufficiently differentiable, and that the norms include user-specified tolerances such
that an error with norm less than one is deemed “acceptable.” Satisfying this inequality with a value of 1

2 and solving
for h0, we have

|h0| =
1∥∥ d

dtf(t0, y0)
∥∥1/2 .

Finally, by estimating the time derivative with finite-differences,

d

dt
f(t0, y0) ≈ 1

δt
(f(t0 + δt, y0 + δtf(t0, y0))− f(t0, y0)) ,

we obtain

|h0| =
δt1/2

‖f(t0 + δt, y0 + δtf(t0, y0))− f(t0, y0)‖1/2
. (2.36)

Initial step size estimation based on the simpler Taylor expansion (2.35) instead assumes that the first calculated time
step should be “close” to the initial state,

‖y(t0 + h0)− y0‖ ≈ ‖h0f(t0, y0)‖ < 1,

where we again satisfy the inequality with a value of 1
2 to obtain

|h0| =
1

2 ‖f(t0, y0)‖
. (2.37)

Comparing the two estimates (2.36) and (2.37), we see that the former has double the number of f evaluations, but that
it has a less conservative estimate of h0, particularly since we expect any valid time integration method to have at least
O(h) accuracy.

Of these two approaches, for calculations at a single time scale (e.g., using ARKStep), formula (2.36) is used, due to
its more aggressive estimate for h0.

2.12.1 Initial multirate step sizes

In MRI methods, initial time step selection is complicated by the fact that not only must an initial slow step size, hS0 ,
be chosen, but a smaller initial step, hF0 , must also be selected. Additionally, it is typically assumed that within MRI
methods, evaluation of fS is significantly more costly than evaluation of fF , and thus we wish to construct these initial
steps accordingly.

Under an assumption that conservative steps will be selected for both time scales, the error arising from temporal
coupling between the slow and fast methods may be negligible. Thus, we estimate initial values of hS0 and hF0 inde-
pendently. Due to our assumed higher cost of fS , then for the slow time scale we employ the initial estimate (2.37) for
hS0 using f = fS . Since the function fF is assumed to be cheaper, we instead apply the estimate (2.36) for hF0 using
f = fF , and enforce an upper bound |hF0 | ≤

|hS
0 |

10 .

Note

If the fast integrator does not supply its “full RHS function” fF for the MRI method to call, then we simply initialize
hF0 =

hS
0

100 .

2.12. Initial step size estimation 27

User Documentation for ARKODE, v6.3.0

2.13 Explicit stability

For problems that involve a nonzero explicit component, i.e. fE(t, y) 6= 0 in ARKStep or for any problem in ERKStep,
explicit and ImEx Runge–Kutta methods may benefit from additional user-supplied information regarding the explicit
stability region. All ARKODE adaptivity methods utilize estimates of the local error, and it is often the case that such
local error control will be sufficient for method stability, since unstable steps will typically exceed the error control
tolerances. However, for problems in which fE(t, y) includes even moderately stiff components, and especially for
higher-order integration methods, it may occur that a significant number of attempted steps will exceed the error toler-
ances. While these steps will automatically be recomputed, such trial-and-error can result in an unreasonable number
of failed steps, increasing the cost of the computation. In these scenarios, a stability-based time step controller may
also be useful.

Since the maximum stable explicit step for any method depends on the problem under consideration, in that the value
(hnλ) must reside within a bounded stability region, where λ are the eigenvalues of the linearized operator ∂fE/∂y,
information on the maximum stable step size is not readily available to ARKODE’s time-stepping modules. How-
ever, for many problems such information may be easily obtained through analysis of the problem itself, e.g. in
an advection-diffusion calculation f I may contain the stiff diffusive components and fE may contain the compara-
bly nonstiff advection terms. In this scenario, an explicitly stable step hexp would be predicted as one satisfying the
Courant-Friedrichs-Lewy (CFL) stability condition for the advective portion of the problem,

|hexp| <
∆x

|λ|

where ∆x is the spatial mesh size and λ is the fastest advective wave speed.

In these scenarios, a user may supply a routine to predict this maximum explicitly stable step size, |hexp|. If a value for
|hexp| is supplied, it is compared against the value resulting from the local error controller, |hacc|, and the eventual time
step used will be limited accordingly,

h′ =
h

|h|
min{c |hexp|, |hacc|}.

Here the explicit stability step factor c > 0 (often called the “CFL number”) defaults to 1/2 but may be modified by
the user.

2.14 Fixed time stepping

While most of the time-stepping modules are designed for tolerance-based time step adaptivity, they additionally sup-
port a “fixed-step” mode. This mode is typically used for debugging purposes, for verification against hand-coded
methods, or for problems where the time steps should be chosen based on other problem-specific information. In this
mode, all internal time step adaptivity is disabled:

• temporal error control is disabled,

• nonlinear or linear solver non-convergence will result in an error (instead of a step size adjustment),

• no check against an explicit stability condition is performed.

Note

Since temporal error based adaptive time-stepping is known to ruin the conservation property of SPRK methods,
SPRKStep employs a fixed time-step size by default.

28 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v6.3.0

Note

Any methods that do not provide an embedding are required to be run in fixed-step mode.

Additional information on this mode is provided in the section ARKODE Optional Inputs.

2.15 Algebraic solvers

When solving a problem involving either an implicit component (e.g., in ARKStep with f I(t, y) 6= 0, or in MRIStep
with a solve-decoupled implicit slow stage), or a non-identity mass matrix (M(t) 6= I in ARKStep), systems of linear
or nonlinear algebraic equations must be solved at each stage and/or step of the method. This section therefore focuses
on the variety of mathematical methods provided in the ARKODE infrastructure for such problems, including nonlin-
ear solvers, linear solvers, preconditioners, iterative solver error control, implicit predictors, and techniques used for
simplifying the above solves when using different classes of mass-matrices.

2.15.1 Nonlinear solver methods

Methods with an implicit partition require solving implicit systems of the form

G(zi) = 0. (2.38)

In order to maximize solver efficiency, we define this root-finding problem differently based on the type of mass-matrix
supplied by the user.

• In the case that M = I within ARKStep, we define the residual as

G(zi) ≡ zi − hnAIi,if I(tIn,i, zi)− ai, (2.39)

where we have the data

ai ≡ yn−1 + hn

i−1∑
j=1

[
AEi,jf

E(tEn,j , zj) +AIi,jf
I(tIn,j , zj)

]
.

• In the case of non-identity mass matrix M 6= I within ARKStep, but where M is independent of t, we define
the residual as

G(zi) ≡Mzi − hnAIi,if I(tIn,i, zi)− ai, (2.40)

where we have the data

ai ≡Myn−1 + hn

i−1∑
j=1

[
AEi,jf

E(tEn,j , zj) +AIi,jf
I(tIn,j , zj)

]
.

Note

This form of residual, as opposed to G(zi) = zi − hnAIi,if̂ I(tIn,i, zi) − ai (with ai defined appropriately),
removes the need to perform the nonlinear solve with right-hand side function f̂ I = M−1 f I , as that would
require a linear solve with M at every evaluation of the implicit right-hand side routine.

2.15. Algebraic solvers 29

User Documentation for ARKODE, v6.3.0

• In the case of ARKStep with M dependent on t, we define the residual as

G(zi) ≡M(tIn,i)(zi − ai)− hnAIi,if I(tIn,i, zi) (2.41)

where we have the data

ai ≡ yn−1 + hn

i−1∑
j=1

[
AEi,j f̂

E(tEn,j , zj) +AIi,j f̂
I(tIn,j , zj)

]
.

Note

As above, this form of the residual is chosen to remove excessive mass-matrix solves from the nonlinear solve
process.

• Similarly, in MRIStep (that always assumes M = I), MRI-GARK and IMEX-MRI-GARK methods have the
residual

G(zi) ≡ zi − hS
∑
k≥1

Γi,i,k
k

 f I(tSn,i, zi)− ai = 0 (2.42)

where

ai ≡ zi−1 + hS
i−1∑
j=1

∑
k≥1

Γi,j,k
k

 f I(tSn,j , zj).

IMEX-MRI-SR methods have the residual

G(zi) ≡ zi − hSΓi,if
I(tSn,i, zi)− ai = 0 (2.43)

where

ai ≡ zi−1 + hS
i−1∑
j=1

Γi,jf
I(tSn,j , zj).

Upon solving for zi, method stages must store fE(tEn,j , zi) and f I(tIn,j , zi). It is possible to compute the latter without
evaluating f I after each nonlinear solve. Consider, for example, (2.39) which implies

f I(tIn,j , zi) =
zi − ai
hnAIi,i

(2.44)

when zi is the exact root, and similar relations hold for non-identity mass matrices. This optimization can be enabled
by ARKodeSetDeduceImplicitRhs() with the second argument in either function set to SUNTRUE. Another factor
to consider when using this option is the amplification of errors from the nonlinear solver to the stages. In (2.44),
nonlinear solver errors in zi are scaled by 1/(hnA

I
i,i). By evaluating f I on zi, errors are scaled roughly by the Lipshitz

constant L of the problem. If hnAIi,iL > 1, which is often the case when using implicit methods, it may be more
accurate to use (2.44). Additional details are discussed in [98].

In each of the above nonlinear residual functions, if f I(t, y) depends nonlinearly on y then (2.38) corresponds to a
nonlinear system of equations; if instead f I(t, y) depends linearly on y then this is a linear system of equations.

30 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v6.3.0

To solve each of the above root-finding problems ARKODE leverages SUNNonlinearSolver modules from the under-
lying SUNDIALS infrastructure (see section §11). By default, ARKODE selects a variant of Newton’s method,

z
(m+1)
i = z

(m)
i + δ(m+1), (2.45)

wherem is the Newton iteration index, and the Newton update δ(m+1) in turn requires the solution of the Newton linear
system

A
(
tIn,i, z

(m)
i

)
δ(m+1) = −G

(
z
(m)
i

)
, (2.46)

in which

A(t, z) ≈M(t)− γJ(t, z), J(t, z) =
∂f I(t, z)

∂z
, and γ = hnA

I
i,i

(2.47)

within ARKStep, or

A(t, z) ≈ I − γJ(t, z), J(t, z) =
∂f I(t, z)

∂z
, and γ = hS

∑
k≥1

Γi,i,k
k (2.48)

within MRIStep.

In addition to Newton-based nonlinear solvers, the SUNDIALS SUNNonlinearSolver interface allows solvers of fixed-
point type. These generally implement a fixed point iteration for solving an implicit stage zi,

z
(m+1)
i = Φ

(
z
(m)
i

)
≡ z(m)

i −M(tIn,i)
−1G

(
z
(m)
i

)
, m = 0, 1, (2.49)

Unlike with Newton-based nonlinear solvers, fixed-point iterations generally do not require the solution of a linear
system involving the Jacobian of f at each iteration.

Finally, if the user specifies that f I(t, y) depends linearly on y in ARKStep or MRIStep and if the Newton-based
SUNNonlinearSolver module is used, then the problem (2.38) will be solved using only a single Newton iteration. In this
case, an additional user-supplied argument indicates whether this Jacobian is time-dependent or not, signaling whether
the Jacobian or preconditioner needs to be recomputed at each stage or time step, or if it can be reused throughout the
full simulation.

The optimal choice of solver (Newton vs fixed-point) is highly problem dependent. Since fixed-point solvers do not
require the solution of linear systems involving the Jacobian of f , each iteration may be significantly less costly than their
Newton counterparts. However, this can come at the cost of slower convergence (or even divergence) in comparison with
Newton-like methods. While a Newton-based iteration is the default solver in ARKODE due to its increased robustness
on very stiff problems, we strongly recommend that users also consider the fixed-point solver when attempting a new
problem.

For either the Newton or fixed-point solvers, it is well-known that both the efficiency and robustness of the algorithm
intimately depend on the choice of a good initial guess. The initial guess for these solvers is a prediction z(0)i that is
computed explicitly from previously-computed data (e.g. yn−2, yn−1, and zj where j < i). Additional information on
the specific predictor algorithms is provided in section §2.15.5.

2.15.2 Linear solver methods

When a Newton-based method is chosen for solving each nonlinear system, a linear system of equations must be
solved at each nonlinear iteration. For this solve ARKODE leverages another component of the shared SUNDIALS
infrastructure, the “SUNLinearSolver,” described in section §10. These linear solver modules are grouped into two
categories: matrix-based linear solvers and matrix-free iterative linear solvers. ARKODE’s interfaces for linear solves
of these types are described in the subsections below.

2.15. Algebraic solvers 31

User Documentation for ARKODE, v6.3.0

2.15.2.1 Matrix-based linear solvers

In the case that a matrix-based linear solver is selected, a modified Newton iteration is utilized. In a modified Newton
iteration, the matrixA is held fixed for multiple Newton iterations. More precisely, each Newton iteration is computed
from the modified equation

Ã
(
t̃, z̃
)
δ(m+1) = −G

(
z
(m)
i

)
, (2.50)

in which

Ã(t̃, z̃) ≈M(t̃)− γ̃J(t̃, z̃), and γ̃ = h̃AIi,i (ARKStep) (2.51)

or

Ã(t̃, z̃) ≈ I − γ̃J(t̃, z̃), and γ̃ = h̃
∑
k≥1

Γi,i,k
k

(MRIStep). (2.52)

Here, the solution z̃, time t̃, and step size h̃ upon which the modified equation rely, are merely values of these quantities
from a previous iteration. In other words, the matrix Ã is only computed rarely, and reused for repeated solves. As
described below in section §2.15.2.3, the frequency at which Ã is recomputed defaults to 20 time steps, but may be
modified by the user.

When using the dense and band SUNMatrix objects for the linear systems (2.50), the Jacobian J may be supplied
by a user routine, or approximated internally with finite-differences. In the case of differencing, we use the standard
approximation

Ji,j(t, z) ≈
f Ii (t, z + σjej)− f Ii (t, z)

σj
,

where ej is the j-th unit vector, and the increments σj are given by

σj = max

{√
U |zj |,

σ0
wj

}
.

Here U is the unit roundoff, σ0 is a small dimensionless value, andwj is the error weight defined in (2.25). In the dense
case, this approach requires N evaluations of f I , one for each column of J . In the band case, the columns of J are
computed in groups, using the Curtis-Powell-Reid algorithm, with the number of f I evaluations equal to the matrix
bandwidth.

We note that with sparse and user-supplied SUNMatrix objects, the Jacobian must be supplied by a user routine.

2.15.2.2 Matrix-free iterative linear solvers

In the case that a matrix-free iterative linear solver is chosen, an inexact Newton iteration is utilized. Here, the matrix
A is not itself constructed since the algorithms only require the product of this matrix with a given vector. Additionally,
each Newton system (2.46) is not solved completely, since these linear solvers are iterative (hence the “inexact” in the
name). As a result. for these linear solvers A is applied in a matrix-free manner,

A(t, z) v = M(t) v − γ J(t, z) v.

The mass matrix-vector products Mv must be provided through a user-supplied routine; the Jacobian matrix-vector
products Jv are obtained by either calling an optional user-supplied routine, or through a finite difference approximation
to the directional derivative:

J(t, z) v ≈ f I(t, z + σv)− f I(t, z)
σ

,

where we use the increment σ = 1/‖v‖ to ensure that ‖σv‖ = 1.

As with the modified Newton method that reused A between solves, the inexact Newton iteration may also recompute
the preconditioner P infrequently to balance the high costs of matrix construction and factorization against the reduced
convergence rate that may result from a stale preconditioner.

32 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v6.3.0

2.15.2.3 Updating the linear solver

In cases where recomputation of the Newton matrix Ã or preconditionerP is lagged, these structures will be recomputed
only in the following circumstances:

• when starting the problem,

• when more thanmsbp = 20 steps have been taken since the last update (this value may be modified by the user),

• when the value γ̃ of γ at the last update satisfies |γ/γ̃ − 1| > ∆γmax = 0.2 (this value may be modified by the
user),

• when a non-fatal convergence failure just occurred,

• when an error test failure just occurred, or

• if the problem is linearly implicit and γ has changed by a factor larger than 100 times machine epsilon.

When an update of Ã or P occurs, it may or may not involve a reevaluation of J (in Ã) or of Jacobian data (in P),
depending on whether errors in the Jacobian were the likely cause for the update. Reevaluating J (or instructing the
user to update P) occurs when:

• starting the problem,

• more than msbj = 50 steps have been taken since the last evaluation (this value may be modified by the user),

• a convergence failure occurred with an outdated matrix, and the value γ̃ of γ at the last update satisfies
|γ/γ̃ − 1| > 0.2,

• a convergence failure occurred that forced a step size reduction, or

• if the problem is linearly implicit and γ has changed by a factor larger than 100 times machine epsilon.

However, for linear solvers and preconditioners that do not rely on costly matrix construction and factorization op-
erations (e.g. when using a geometric multigrid method as preconditioner), it may be more efficient to update these
structures more frequently than the above heuristics specify, since the increased rate of linear/nonlinear solver conver-
gence may more than account for the additional cost of Jacobian/preconditioner construction. To this end, a user may
specify that the system matrix A and/or preconditioner P should be recomputed more frequently.

As will be further discussed in section §2.15.4, in the case of most Krylov methods, preconditioning may be applied
on the left, right, or on both sides of A, with user-supplied routines for the preconditioner setup and solve operations.

2.15.3 Iteration Error Control

2.15.3.1 Nonlinear iteration error control

ARKODE provides a customized stopping test to the SUNNonlinearSolver module used for solving equation (2.38).
This test is related to the temporal local error test, with the goal of keeping the nonlinear iteration errors from interfering
with local error control. Denoting the final computed value of each stage solution as z(m)

i , and the true stage solution
solving (2.38) as zi, we want to ensure that the iteration error zi − z(m)

i is “small” (recall that a norm less than 1 is
already considered within an acceptable tolerance).

To this end, we first estimate the linear convergence rateRi of the nonlinear iteration. We initializeRi = 1, and reset it
to this value whenever Ã or P are updated. After computing a nonlinear correction δ(m) = z

(m)
i − z(m−1)i , if m > 0

we update Ri as

Ri ← max
{
crRi,

∥∥∥δ(m)
∥∥∥ / ∥∥∥δ(m−1)∥∥∥} . (2.53)

where the default factor cr = 0.3 is user-modifiable.

2.15. Algebraic solvers 33

User Documentation for ARKODE, v6.3.0

Let y(m)
n denote the time-evolved solution constructed using our approximate nonlinear stage solutions, z(m)

i , and let
y
(∞)
n denote the time-evolved solution constructed using exact nonlinear stage solutions. We then use the estimate∥∥∥y(∞)

n − y(m)
n

∥∥∥ ≈ max
i

∥∥∥z(m+1)
i − z(m)

i

∥∥∥ ≈ max
i
Ri

∥∥∥z(m)
i − z(m−1)i

∥∥∥ = max
i
Ri

∥∥∥δ(m)
∥∥∥ .

Therefore our convergence (stopping) test for the nonlinear iteration for each stage is

Ri

∥∥∥δ(m)
∥∥∥ < ε, (2.54)

where the factor ε has default value 0.1. We default to a maximum of 3 nonlinear iterations. We also declare the
nonlinear iteration to be divergent if any of the ratios

‘‖δ(m)‖/‖δ(m−1)‖ > rdiv‘ (2.55)

with m > 0, where rdiv defaults to 2.3. If convergence fails in the nonlinear solver with A current (i.e., not lagged),
we reduce the step size hn by a factor of ηcf = 0.25. The integration will be halted after maxncf = 10 convergence
failures, or if a convergence failure occurs with hn = hmin. However, since the nonlinearity of (2.38) may vary
significantly based on the problem under consideration, these default constants may all be modified by the user.

2.15.3.2 Linear iteration error control

When a Krylov method is used to solve the linear Newton systems (2.46), its errors must also be controlled. To this
end, we approximate the linear iteration error in the solution vector δ(m) using the preconditioned residual vector, e.g.
r = PAδ(m) + PG for the case of left preconditioning (the role of the preconditioner is further elaborated in the next
section). In an attempt to ensure that the linear iteration errors do not interfere with the nonlinear solution error and
local time integration error controls, we require that the norm of the preconditioned linear residual satisfies

‖r‖ ≤ εLε

10
. (2.56)

Here ε is the same value as that is used above for the nonlinear error control. The factor of 10 is used to ensure that
the linear solver error does not adversely affect the nonlinear solver convergence. Smaller values for the parameter εL
are typically useful for strongly nonlinear or very stiff ODE systems, while easier ODE systems may benefit from a
value closer to 1. The default value is εL = 0.05, which may be modified by the user. We note that for linearly implicit
problems the tolerance (2.56) is similarly used for the single Newton iteration.

2.15.4 Preconditioning

When using an inexact Newton method to solve the nonlinear system (2.38), an iterative method is used repeatedly
to solve linear systems of the form Ax = b, where x is a correction vector and b is a residual vector. If this iterative
method is one of the scaled preconditioned iterative linear solvers supplied with SUNDIALS, their efficiency may
benefit tremendously from preconditioning. A system Ax = b can be preconditioned using any one of:

(P−1A)x = P−1b [left preconditioning],
(AP−1)Px = b [right preconditioning],

(P−1L AP
−1
R)PRx = P−1L b [left and right preconditioning].

These Krylov iterative methods are then applied to a system with the matrix P−1A, AP−1, or P−1L AP
−1
R , instead of

A. In order to improve the convergence of the Krylov iteration, the preconditioner matrix P , or the product PLPR in
the third case, should in some sense approximate the system matrixA. Simultaneously, in order to be cost-effective the
matrix P (or matrices PL and PR) should be reasonably efficient to evaluate and solve. Finding an optimal point in this
trade-off between rapid convergence and low cost can be quite challenging. Good choices are often problem-dependent
(for example, see [22] for an extensive study of preconditioners for reaction-transport systems).

34 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v6.3.0

Most of the iterative linear solvers supplied with SUNDIALS allow for all three types of preconditioning (left, right
or both), although for non-symmetric matrices A we know of few situations where preconditioning on both sides is
superior to preconditioning on one side only (with the product P = PLPR). Moreover, for a given preconditioner
matrix, the merits of left vs. right preconditioning are unclear in general, so we recommend that the user experiment
with both choices. Performance can differ between these since the inverse of the left preconditioner is included in the
linear system residual whose norm is being tested in the Krylov algorithm. As a rule, however, if the preconditioner is
the product of two matrices, we recommend that preconditioning be done either on the left only or the right only, rather
than using one factor on each side. An exception to this rule is the PCG solver, that itself assumes a symmetric matrixA,
since the PCG algorithm in fact applies the single preconditioner matrix P in both left/right fashion as P−1/2AP−1/2.

Typical preconditioners are based on approximations to the system Jacobian, J = ∂f I/∂y. Since the Newton iteration
matrix involved isA = M − γJ , any approximation J̄ to J yields a matrix that is of potential use as a preconditioner,
namely P = M − γJ̄ . Because the Krylov iteration occurs within a Newton iteration and further also within a time
integration, and since each of these iterations has its own test for convergence, the preconditioner may use a very
crude approximation, as long as it captures the dominant numerical features of the system. We have found that the
combination of a preconditioner with the Newton-Krylov iteration, using even a relatively poor approximation to the
Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified Newton
iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.15.5 Implicit predictors

For problems with implicit components, a prediction algorithm is employed for constructing the initial guesses for each
implicit Runge–Kutta stage, z(0)i . As is well-known with nonlinear solvers, the selection of a good initial guess can
have dramatic effects on both the speed and robustness of the solve, making the difference between rapid quadratic
convergence versus divergence of the iteration. To this end, a variety of prediction algorithms are provided. In each
case, the stage guesses z(0)i are constructed explicitly using readily-available information, including the previous step
solutions yn−1 and yn−2, as well as any previous stage solutions zj , j < i. In most cases, prediction is performed
by constructing an interpolating polynomial through existing data, which is then evaluated at the desired stage time to
provide an inexpensive but (hopefully) reasonable prediction of the stage solution. Specifically, for most Runge–Kutta
methods each stage solution satisfies

zi ≈ y(tIn,i),

(similarly for MRI methods zi ≈ y(tSn,i)), so by constructing an interpolating polynomial pq(t) through a set of existing
data, the initial guess at stage solutions may be approximated as

z
(0)
i = pq(t

I
n,i). (2.57)

As the stage times for MRI stages and implicit ARK and DIRK stages usually have non-negative abscissae (i.e., cIj > 0),
it is typically the case that tIn,j (resp., tSn,j) is outside of the time interval containing the data used to construct pq(t),
hence (2.57) will correspond to an extrapolant instead of an interpolant. The dangers of using a polynomial interpolant
to extrapolate values outside the interpolation interval are well-known, with higher-order polynomials and predictions
further outside the interval resulting in the greatest potential inaccuracies.

The prediction algorithms available in ARKODE therefore construct a variety of interpolants pq(t), having different
polynomial order and using different interpolation data, to support “optimal” choices for different types of problems, as
described below. We note that due to the structural similarities between implicit ARK and DIRK stages in ARKStep,
and solve-decoupled implicit stages in MRIStep, we use the ARKStep notation throughout the remainder of this section,
but each statement equally applies to MRIStep (unless otherwise noted).

2.15. Algebraic solvers 35

User Documentation for ARKODE, v6.3.0

2.15.5.1 Trivial predictor

The so-called “trivial predictor” is given by the formula

p0(t) = yn−1.

While this piecewise-constant interpolant is clearly not a highly accurate candidate for problems with time-varying
solutions, it is often the most robust approach for highly stiff problems, or for problems with implicit constraints whose
violation may cause illegal solution values (e.g. a negative density or temperature).

2.15.5.2 Maximum order predictor

At the opposite end of the spectrum, ARKODE’s interpolation modules discussed in section §2.2 can be used to con-
struct a higher-order polynomial interpolant, pq(t). The implicit stage predictor is computed through evaluating the
highest-degree-available interpolant at each stage time tIn,i.

2.15.5.3 Variable order predictor

This predictor attempts to use higher-degree polynomials pq(t) for predicting earlier stages, and lower-degree inter-
polants for later stages. It uses the same interpolation module as described above, but chooses the polynomial degree
adaptively based on the stage index i, under the assumption that the stage times are increasing, i.e. cIj < cIk for j < k:

qi = max{qmax − i+ 1, 1}, i = 1, . . . , s.

2.15.5.4 Cutoff order predictor

This predictor follows a similar idea as the previous algorithm, but monitors the actual stage times to determine the

polynomial interpolant to use for prediction. Denoting τ = cIi
hn
hn−1

, the polynomial degree qi is chosen as:

qi =

{
qmax, if τ < 1

2 ,

1, otherwise.

2.15.5.5 Bootstrap predictor (M = I only) – deprecated

This predictor does not use any information from the preceding step, instead using information only within the current
step [tn−1, tn]. In addition to using the solution and ODE right-hand side function, yn−1 and f(tn−1, yn−1), this
approach uses the right-hand side from a previously computed stage solution in the same step, f(tn−1 + cIjh, zj) to
construct a quadratic Hermite interpolant for the prediction. If we define the constants h̃ = cIjh and τ = cIi h, the
predictor is given by

z
(0)
i = yn−1 +

(
τ − τ2

2h̃

)
f(tn−1, yn−1) +

τ2

2h̃
f(tn−1 + h̃, zj).

For stages without a nonzero preceding stage time, i.e. cIj 6= 0 for j < i, this method reduces to using the trivial
predictor z(0)i = yn−1. For stages having multiple preceding nonzero cIj , we choose the stage having largest cIj value,
to minimize the level of extrapolation used in the prediction.

We note that in general, each stage solution zj has significantly worse accuracy than the time step solutions yn−1, due
to the difference between the stage order and the method order in Runge–Kutta methods. As a result, the accuracy
of this predictor will generally be rather limited, but it is provided for problems in which this increased stage error is
better than the effects of extrapolation far outside of the previous time step interval [tn−2, tn−1].

36 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v6.3.0

Although this approach could be used with non-identity mass matrix, support for that mode is not currently imple-
mented, so selection of this predictor in the case of a non-identity mass matrix will result in use of the trivial predictor.

Note

This predictor has been deprecated, and will be removed from a future release.

2.15.5.6 Minimum correction predictor (ARKStep, M = I only) – deprecated

The final predictor is not interpolation based; instead it utilizes all existing stage information from the current step to
create a predictor containing all but the current stage solution. Specifically, as discussed in equations (2.4) and (2.38),
each stage solves a nonlinear equation

zi = yn−1 + hn

i−1∑
j=1

AEi,jf
E(tEn,j , zj) + hn

i∑
j=1

AIi,jf
I(tIn,j , zj),

⇔
G(zi) ≡ zi − hnAIi,if I(tIn,i, zi)− ai = 0.

This prediction method merely computes the predictor zi as

zi = yn−1 + hn

i−1∑
j=1

AEi,jf
E(tEn,j , zj) + hn

i−1∑
j=1

AIi,jf
I(tIn,j , zj),

⇔
zi = ai.

Again, although this approach could be used with non-identity mass matrix, support for that mode is not currently
implemented, so selection of this predictor in the case of a non-identity mass matrix will result in use of the trivial
predictor.

Note

This predictor has been deprecated, and will be removed from a future release.

2.15.6 Mass matrix solver (ARKStep only)

Within the ARKStep algorithms described above, there are multiple locations where a matrix-vector product

b = Mv (2.58)

or a linear solve

x = M−1b (2.59)

is required.

Of course, for problems in which M = I both of these operators are trivial. However for problems with non-identity
mass matrix, these linear solves (2.59) may be handled using any valid SUNLinearSolver module, in the same manner
as described in the section §2.15.2 for solving the linear Newton systems.

For ERK methods involving non-identity mass matrix, even though calculation of individual stages does not require an
algebraic solve, both of the above operations (matrix-vector product, and mass matrix solve) may be required within

2.15. Algebraic solvers 37

User Documentation for ARKODE, v6.3.0

each time step. Therefore, for these users we recommend reading the rest of this section as it pertains to ARK methods,
with the obvious simplification that since fE = f and f I = 0 no Newton or fixed-point nonlinear solve, and no overall
system linear solve, is involved in the solution process.

At present, for DIRK and ARK problems using a matrix-based solver for the Newton nonlinear iterations, the type of
matrix (dense, band, sparse, or custom) for the Jacobian matrix J must match the type of mass matrix M , since these
are combined to form the Newton system matrix Ã. When matrix-based methods are employed, the user must supply
a routine to compute M(t) in the appropriate form to match the structure of A, with a user-supplied routine of type
ARKLsMassFn(). This matrix structure is used internally to perform any requisite mass matrix-vector products (2.58).

When matrix-free methods are selected, a routine must be supplied to perform the mass-matrix-vector product, Mv.
As with iterative solvers for the Newton systems, preconditioning may be applied to aid in solution of the mass matrix
systems (2.59). When using an iterative mass matrix linear solver, we require that the norm of the preconditioned linear
residual satisfies

‖r‖ ≤ εLε, (2.60)

where again, ε is the nonlinear solver tolerance parameter from (2.54). When using iterative system and mass matrix
linear solvers, εL may be specified separately for both tolerances (2.56) and (2.60).

In the algorithmic descriptions above there are five locations where a linear solve of the form (2.59) is required: (a)
at each iteration of a fixed-point nonlinear solve, (b) in computing the Runge–Kutta right-hand side vectors f̂Ei and
f̂ Ii , (c) in constructing the time-evolved solution yn, (d) in estimating the local temporal truncation error, and (e) in
constructing predictors for the implicit solver iteration (see section §2.15.5.2). We note that different nonlinear solver
approaches (i.e., Newton vs fixed-point) and different types of mass matrices (i.e., time-dependent versus fixed) result
in different subsets of the above operations. We discuss each of these in the bullets below.

• When using a fixed-point nonlinear solver, at each fixed-point iteration we must solve

M(tIn,i) z
(m+1)
i = G

(
z
(m)
i

)
, m = 0, 1, . . .

for the new fixed-point iterate, z(m+1)
i .

• In the case of a time-dependent mass matrix, to construct the Runge–Kutta right-hand side vectors we must solve

M(tEn,i)f̂
E
i = fE(tEn,i, zi) and M(tIn,i)f̂

I
j = f I(tIn,i, zi)

for the vectors f̂Ei and f̂ Ii .

• For fixed mass matrices, we construct the time-evolved solution yn from equation (2.4) by solving

Myn = Myn−1 + hn

s∑
i=1

(
bEi f

E(tEn,i, zi) + bIi f
I(tIn,i, zi)

)
,

⇔

M(yn − yn−1) = hn

s∑
i=1

(
bEi f

E(tEn,i, zi) + bIi f
I(tIn,i, zi)

)
,

⇔

Mν = hn

s∑
i=1

(
bEi f

E(tEn,i, zi) + bIi f
I(tIn,i, zi)

)
,

for the update ν = yn − yn−1.

Similarly, we compute the local temporal error estimate Tn from equation (2.28) by solving systems of the form

M Tn = h

s∑
i=1

[(
bEi − b̃Ei

)
fE(tEn,i, zi) +

(
bIi − b̃Ii

)
f I(tIn,i, zi)

]
. (2.61)

38 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v6.3.0

• For problems with either form of non-identity mass matrix, in constructing dense output and implicit predictors of
degree 2 or higher (see the section §2.15.5.2 above), we compute the derivative information f̂k from the equation

M(tn)f̂n = fE(tn, yn) + f I(tn, yn).

In total, for problems with fixed mass matrix, we require only two mass-matrix linear solves (2.59) per attempted
time step, with one more upon completion of a time step that meets the solution accuracy requirements. When fixed
time-stepping is used (hn = h), the solve (2.61) is not performed at each attempted step.

Similarly, for problems with time-dependent mass matrix, we require 2smass-matrix linear solves (2.59) per attempted
step, where s is the number of stages in the ARK method (only half of these are required for purely explicit or purely
implicit problems, (2.5) or (2.6)), with one more upon completion of a time step that meets the solution accuracy
requirements.

In addition to the above totals, when using a fixed-point nonlinear solver (assumed to require m iterations), we will
need an additional ms mass-matrix linear solves (2.59) per attempted time step (but zero linear solves with the system
Jacobian).

2.16 Rootfinding

ARKODE also supports a rootfinding feature, in that while integrating the IVP (2.1), these can also find the roots of
a set of user-defined functions gi(t, y) that depend on t and the solution vector y = y(t). The number of these root
functions is arbitrary, and if more than one gi is found to have a root in any given interval, the various root locations
are found and reported in the order that they occur on the t axis, in the direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of gi(t, y(t)),
denoted gi(t) for short. If a user root function has a root of even multiplicity (no sign change), it will almost certainly
be missed due to the realities of floating-point arithmetic. If such a root is desired, the user should reformulate the root
function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any gi(t) over each time step taken, and then (when a sign change
is found) to home in on the root (or roots) with a modified secant method [58]. In addition, each time g is evaluated,
ARKODE checks to see if gi(t) = 0 exactly, and if so it reports this as a root. However, if an exact zero of any gi is
found at a point t, ARKODE computes g(t+ δ) for a small increment δ, slightly further in the direction of integration,
and if any gi(t+ δ) = 0 also, ARKODE stops and reports an error. This way, each time ARKODE takes a time step, it
is guaranteed that the values of all gi are nonzero at some past value of t, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, ARKODE
has an interval (tlo, thi] in which roots of the gi(t) are to be sought, such that thi is further ahead in the direction of
integration, and all gi(tlo) 6= 0. The endpoint thi is either tn, the end of the time step last taken, or the next requested
output time tout if this comes sooner. The endpoint tlo is either tn−1, or the last output time tout (if this occurred within
the last step), or the last root location (if a root was just located within this step), possibly adjusted slightly toward tn
if an exact zero was found. The algorithm checks g(thi) for zeros, and it checks for sign changes in (tlo, thi). If no sign
changes are found, then either a root is reported (if some gi(thi) = 0) or we proceed to the next time interval (starting at
thi). If one or more sign changes were found, then a loop is entered to locate the root to within a rather tight tolerance,
given by

τ = 100U (|tn|+ |h|) (where U = unit roundoff).

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur first
is the one with the largest value of |gi(thi)| / |gi(thi)− gi(tlo)|, corresponding to the closest to tlo of the secant method
values. At each pass through the loop, a new value tmid is set, strictly within the search interval, and the values of gi(tmid)
are checked. Then either tlo or thi is reset to tmid according to which subinterval is found to have the sign change. If

2.16. Rootfinding 39

User Documentation for ARKODE, v6.3.0

there is none in (tlo, tmid) but some gi(tmid) = 0, then that root is reported. The loop continues until |thi − tlo| < τ ,
and then the reported root location is thi. In the loop to locate the root of gi(t), the formula for tmid is

tmid = thi −
gi(thi)(thi − tlo)

gi(thi)− αgi(tlo)
,

where α is a weight parameter. On the first two passes through the loop, α is set to 1, making tmid the secant method
value. Thereafter, α is reset according to the side of the subinterval (low vs high, i.e. toward tlo vs toward thi) in which
the sign change was found in the previous two passes. If the two sides were opposite, α is set to 1. If the two sides
were the same, α is halved (if on the low side) or doubled (if on the high side). The value of tmid is closer to tlo when
α < 1 and closer to thi when α > 1. If the above value of tmid is within τ/2 of tlo or thi, it is adjusted inward, such
that its fractional distance from the endpoint (relative to the interval size) is between 0.1 and 0.5 (with 0.5 being the
midpoint), and the actual distance from the endpoint is at least τ/2.

Finally, we note that when running in parallel, ARKODE’s rootfinding module assumes that the entire set of root
defining functions gi(t, y) is replicated on every MPI rank. Since in these cases the vector y is distributed across ranks,
it is the user’s responsibility to perform any necessary communication to ensure that gi(t, y) is identical on each rank.

2.17 Inequality Constraints

The ARKStep and ERKStep modules in ARKODE permit the user to impose optional inequality constraints on individ-
ual components of the solution vector y. Any of the following four constraints can be imposed: yi > 0, yi < 0, yi ≥ 0,
or yi ≤ 0. The constraint satisfaction is tested after a successful step and before the error test. If any constraint fails, the
step size is reduced and a flag is set to update the Jacobian or preconditioner if applicable. Rather than cutting the step
size by some arbitrary factor, ARKODE estimates a new step size h′ using a linear approximation of the components
in y that failed the constraint test (including a safety factor of 0.9 to cover the strict inequality case). If a step fails to
satisfy the constraints 10 times (a value which may be modified by the user) within a step attempt, or fails with the
minimum step size, then the integration is halted and an error is returned. In this case the user may need to employ
other strategies as discussed in §5.3.2 to satisfy the inequality constraints.

2.18 Relaxation Methods

When the solution of (2.1) is conservative or dissipative with respect to a smooth convex function ξ(y(t)), it is desirable
to have the numerical method preserve these properties. That is ξ(yn) = ξ(yn−1) = . . . = ξ(y0) for conservative
systems and ξ(yn) ≤ ξ(yn−1) for dissipative systems. For examples of such problems, see the references below and
the citations there in.

For such problems, ARKODE supports relaxation methods [65, 71, 84, 85] applied to ERK, DIRK, or ARK methods
to ensure dissipation or preservation of the global function. The relaxed solution is given by

yr = yn−1 + rd = ryn + (1− r)yn−1 (2.62)

where d is the update to yn (i.e., hn
∑s
i=1(bEi f̂

E
i + bIi f̂

I
i) for ARKStep and hn

∑s
i=1 bifi for ERKStep) and r is the

relaxation factor selected to ensure conservation or dissipation. Given an ERK, DIRK, or ARK method of at least
second order with non-negative solution weights (i.e., bi ≥ 0 for ERKStep or bEi ≥ 0 and bIi ≥ 0 for ARKStep), the
factor r is computed by solving the auxiliary scalar nonlinear system

F (r) = ξ(yn−1 + rd)− ξ(yn−1)− re = 0 (2.63)

at the end of each time step. The estimated change in ξ is given by e ≡ hn
∑s
i=1〈ξ′(zi), bEi fEi + bIi f

I
i 〉 where ξ′ is the

Jacobian of ξ.

Two iterative methods are provided for solving (2.63), Newton’s method and Brent’s method. When using Newton’s
method (the default), the iteration is halted either when the residual tolerance is met, F (r(k)) < εrelax_res, or when

40 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v6.3.0

the difference between successive iterates satisfies the relative and absolute tolerances, |δ(k)r | = |r(k) − r(k−1)| <
εrelax_rtol|r(k−1)| + εrelax_atol. Brent’s method applies the same residual tolerance check and additionally halts when
the bisection update satisfies the relative and absolute tolerances, |0.5(rc−rk)| < εrelax_rtol|r(k)|+0.5εrelax_atol where
rc and r(k) bound the root.

If the nonlinear solve fails to meet the specified tolerances within the maximum allowed number of iterations, the step
size is reduced by the factor ηrf (default 0.25) and the step is repeated. Additionally, the solution of (2.63) should be
r = 1 +O(hq−1n) for a method of order q [85]. As such, limits are imposed on the range of relaxation values allowed
(i.e., limiting the maximum change in step size due to relaxation). A relaxation value greater than rmax (default 1.2) or
less than rmin (default 0.8), is considered as a failed relaxation application and the step will is repeated with the step
size reduced by ηrf.

For more information on utilizing relaxation Runge–Kutta methods, see §5.5.

2.19 Adjoint Sensitivity Analysis

Consider (2.7), but where the ODE also depends on some parameters, p, leading to the system

ẏ = f(t, y, p), y(t0) = y0(p). (2.64)

Now, suppose we have a functional g(tf , y(tf), p) for which we would like to compute the gradients

dg(tf , y(tn), p)

dy
, and optionally,

dg(tf , y(tn), p)

dp
.

This most often arises in the form of an optimization problem such as

min
y(t0),p

g(tf , y(tn), p). (2.65)

The adjoint method is one approach to obtaining the gradients that is particularly efficient when there are relatively
few functionals and a large number of parameters. While CVODES and IDAS provide continuous adjoint methods
(differentiate-then-discretize), ARKODE provides discrete adjoint methods (discretize-then-differentiate). For the dis-
crete adjoint approach, we first numerically discretize the original ODE (2.64). In the context of ARKODE, this is done
with a one-step time integration scheme ϕ so that

y0 = y(t0), yn = ϕ(yn−1). (2.66)

Reformulating the optimization problem for the discrete case, we have

min
y0,p

g(tf , yn, p). (2.67)

The gradients of (2.67) can be computed using the transposed chain rule backwards in time to obtain the discete adjoint
variables λn, λn−1, · · · , λ0 and µn, µn−1, · · · , µ0, where

λn = g∗y(tf , yn, p), λk =

(
∂ϕ

∂yk
(yk, p)

)∗
λk+1

µn = g∗p(tf , yn, p), µk =

(
∂ϕ

∂p
(yk, p)

)∗
λk+1, k = n− 1, · · · , 0.

(2.68)

Warning

The CVODES and IDAS documentation uses λ to represent the adjoint variables needed to obtain the gradient
dG/dp where G is an integral of g. Our use of λ in the following is akin to the use of µ in the CVODES and IDAS
docs.

2.19. Adjoint Sensitivity Analysis 41

https://sundials.readthedocs.io/en/v7.3.0/cvodes/Mathematics_link.html#cvodes-mathematics-asa
https://sundials.readthedocs.io/en/v7.3.0/idas/Mathematics_link.html#idas-mathematics-asa

User Documentation for ARKODE, v6.3.0

The discrete adjoint variables represent the gradients of the discrete cost function

dg

dyn
= λn,

dg

dp
= µn + λ∗n

(
∂y0
∂p

)
. (2.69)

Given an s-stage explicit Runge–Kutta method (as in (2.8), but without the embedding), the discrete adjoint to compute
λn and µn starting from λn+1 and µn+1 is given by

Λi = hnf
∗
y (tn,i, zi, p)

biλn+1 +

s∑
j=i+1

aj,iΛj

 , i = s, . . . , 1,

λn = λn+1 +

s∑
j=1

Λj ,

νi = hnf
∗
p (tn,i, zi, p)

biλn+1 +

s∑
j=i

aj,iΛj

 ,

µn = µn+1 +

s∑
j=1

νj .

(2.70)

For more information on performing discrete adjoint sensitivity analysis using ARKODE see, §5.14. For a detailed
derivation of the discrete adjoint methods see [53, 93]. See §14.1.1 for a brief discussion about the differences between
the contninuous and discrete adjoint methods, and why one would choose one over the other.

42 Chapter 2. Mathematical Considerations

Chapter 3

Code Organization

The ARKODE package is written in the ANSI C language. The following summarizes the basic structure of the package,
although knowledge of this structure is not necessary for its use.

The overall organization of the ARKODE package is shown in Fig. 3.1. The central integration modules, implemented in
the files arkode.h, arkode_impl.h, arkode_butcher.h, arkode.c, arkode_arkstep.c , arkode_erkstep.c,
arkode_mristep.c, arkode_sprkstep.c, and arkode_butcher.c, deal with the evaluation of integration stages,
the nonlinear solvers, estimation of the local truncation error, selection of step size, and interpolation to user output
points, among other issues. ARKODE supports SUNNonlinearSolver modules in either root-finding or fixed-point
form (see section §11) for any nonlinearly implicit problems that arise in computing each internal stage. When using
Newton-based nonlinear solvers, or when using a non-identity mass matrix M 6= I , ARKODE has flexibility in the
choice of method used to solve the linear sub-systems that arise. Therefore, for any user problem invoking the Newton
solvers, or any user problem withM 6= I , one (or more) of the linear system solver modules should be specified by the
user; this/these are then invoked as needed during the integration process.

Fig. 3.1: ARKODE organization: Overall structure of the ARKODE package. Modules specific to ARKODE are
the core infrastructure and timesteppers (ARKODE), linear solver interfaces (ARKLS), nonlinear solver interfaces
(ARKNLS), and preconditioners (ARKBANDPRE and ARKBBDPRE); all other items correspond to generic SUN-
DIALS vector, matrix, and solver modules.

43

User Documentation for ARKODE, v6.3.0

For solving these linear systems, ARKODE’s linear solver interface supports both direct and iterative linear solvers
adhering to the generic SUNLINSOL API (see §10). These solvers may utilize a SUNMATRIX object for storing
Jacobian information, or they may be matrix-free. Since ARKODE can operate on any valid SUNLINSOL implemen-
tation, the set of linear solver modules available to ARKODE will expand as new SUNLINSOL modules are developed.

For preconditioned iterative methods with either the system or mass matrix solves, the preconditioning must be supplied
by the user in two phases: setup and solve. While there is no default choice of preconditioner for generic problems, the
references [22] and [25], together with the example and demonstration programs included with ARKODE and CVODE,
offer considerable assistance in building simple preconditioners.

ARKODE also provides two rudimentary preconditioner modules, for use with any of the Krylov iterative linear solvers.
The first, ARKBANDPRE is intended to be used with the serial or threaded vector data structures (NVECTOR_SE-
RIAL, NVECTOR_OPENMP and NVECTOR_PTHREADS), and provides a banded difference-quotient approxima-
tion to the Jacobian as the preconditioner, with corresponding setup and solve routines. The second preconditioner
module, ARKBBDPRE, is intended to work with the parallel vector data structure, NVECTOR_PARALLEL, and gen-
erates a preconditioner that is a block-diagonal matrix with each block being a band matrix owned by a single processor.

All state information used by ARKODE to solve a given problem is saved in a single opaque memory structure, and a
pointer to that structure is returned to the user. For C, C++ and Fortran 2003 applications there is no global data in the
ARKODE package, and so in this respect it is reentrant. State information specific to the linear solver interface is saved
in a separate data structure, a pointer to which resides in the ARKODE memory structure. State information specific
to the linear solver implementation (and matrix implementation, if applicable) are stored in their own data structures,
that are returned to the user upon construction, and subsequently provided to ARKODE for use.

44 Chapter 3. Code Organization

Chapter 4

Getting Started

The packages that make up SUNDIALS are built upon shared classes for vectors, matrices, and algebraic solvers. In
addition, the packages all leverage some other common infrastructure, which we discuss in this section.

Fig. 4.1: High-level diagram of the SUNDIALS suite.

45

User Documentation for ARKODE, v6.3.0

4.1 Data Types

SUNDIALS defines several data types in the header file sundials_types.h. These types are used in the SUNDIALS
API and internally in SUNDIALS. It is not necessary to use these types in your application, but the type must be
compatible with the SUNDIALS types in the API when calling SUNDIALS functions. The types that are defined are:

• sunrealtype – the floating-point type used by the SUNDIALS packages

• sunindextype – the integer type used for vector and matrix indices

• suncountertype – the integer type used for counter variables

• sunbooleantype – the type used for logic operations within SUNDIALS

• SUNOutputFormat – an enumerated type for SUNDIALS output formats

• SUNComm – a simple typedef to an int when SUNDIALS is built without MPI, or a MPI_Comm when built with
MPI.

4.1.1 Floating point types

type sunrealtype
The type sunrealtype can be float, double, or long double, with the default being double. The user can
change the precision of the arithmetic used in the SUNDIALS solvers at the configuration stage (see SUNDIALS_-
PRECISION).

Additionally, based on the current precision, sundials_types.h defines SUN_BIG_REAL to be the largest value rep-
resentable as a sunrealtype, SUN_SMALL_REAL to be the smallest value representable as a sunrealtype, and SUN_-
UNIT_ROUNDOFF to be the difference between 1.0 and the minimum sunrealtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called SUN_RCONST. It is this macro that needs the ability
to branch on the definition of sunrealtype. In ANSI C, a floating-point constant with no suffix is stored as a double.
Placing the suffix “F” at the end of a floating point constant makes it a float, whereas using the suffix “L” makes it a
long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long double
constant equal to 1.0. The macro call SUN_RCONST(1.0) automatically expands to 1.0 if sunrealtype is double,
to 1.0F if sunrealtype is float, or to 1.0L if sunrealtype is long double. SUNDIALS uses the SUN_RCONST
macro internally to declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on the
sunrealtype. For example, the macro SUNRabs expands to the C function fabs when sunrealtype is double,
fabsf when sunrealtype is float, and fabsl when sunrealtype is long double.

A user program which uses the type sunrealtype, the SUN_RCONST macro, and the SUNR mathematical function
macros is precision-independent except for any calls to precision-specific library functions. Our example programs use
sunrealtype, SUN_RCONST, and the SUNRmacros. Users can, however, use the type double, float, or long double
in their code (assuming that this usage is consistent with the typedef for sunrealtype) and call the appropriate math
library functions directly. Thus, a previously existing piece of C or C++ code can use SUNDIALS without modifying
the code to use sunrealtype, SUN_RCONST, or the SUNR macros so long as the SUNDIALS libraries are built to use
the corresponding precision (see §16.3).

46 Chapter 4. Getting Started

User Documentation for ARKODE, v6.3.0

4.1.2 Integer types used for indexing

type sunindextype
The type sunindextype is used for indexing array entries in SUNDIALS modules as well as for storing the total
problem size (e.g., vector lengths and matrix sizes). During configuration sunindextypemay be selected to be
either a 32- or 64-bit signed integer with the default being 64-bit (see SUNDIALS_INDEX_SIZE).

When using a 32-bit integer the total problem size is limited to 231 − 1 and with 64-bit integers the limit is 263 − 1.
For users with problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype (see SUNDIALS_INDEX_TYPE).

A user program which uses sunindextype to handle indices will work with both index storage types except for any calls
to index storage-specific external libraries. Our C and C++ example programs use sunindextype. Users can, however,
use any compatible type (e.g., int, long int, int32_t, int64_t, or long long int) in their code, assuming that
this usage is consistent with the typedef for sunindextype on their architecture. Thus, a previously existing piece of
C or C++ code can use SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS
libraries use the appropriate index storage type (for details see §16.3).

4.1.3 Integer type used for counters

type suncountertype
The type suncountertype is used for counter variables in SUNDIALS (e.g., number of stpes) and is the same
as long int.

Added in version 7.3.0.

4.1.4 Boolean type

type sunbooleantype
As ANSI C89 (ISO C90) does not have a built-in boolean data type, SUNDIALS defines the type sunboolean-
type as an int.

The advantage of using the name sunbooleantype (instead of int) is an increase in code readability. It also allows the
programmer to make a distinction between int and boolean data. Variables of type sunbooleantype are intended to
have only the two values: SUNFALSE or SUNTRUE.

SUNFALSE

False (0)

SUNTRUE

True (1)

4.1.5 Output formatting type

enum SUNOutputFormat
The enumerated type SUNOutputFormat defines the enumeration constants for SUNDIALS output formats

enumerator SUN_OUTPUTFORMAT_TABLE
The output will be a table of values

4.1. Data Types 47

User Documentation for ARKODE, v6.3.0

enumerator SUN_OUTPUTFORMAT_CSV
The output will be a comma-separated list of key and value pairs e.g., key1,value1,key2,value2,...

Note

The Python module tools/suntools provides utilities to read and output the data from a SUNDIALS CSV
output file using the key and value pair format.

4.1.6 MPI types

type SUNComm
A simple typedef to an int when SUNDIALS is built without MPI, or a MPI_Comm when built with MPI. This
type exists solely to ensure SUNDIALS can support MPI and non-MPI builds.

SUN_COMM_NULL

A macro defined as 0 when SUNDIALS is built without MPI, or as MPI_COMM_NULL when built with MPI.

4.2 The SUNContext Type

Added in version 6.0.0.

All of the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a SUNDIALS
simulation, hold a reference to a common simulation context object defined by the SUNContext class.

type SUNContext
An opaque pointer used by SUNDIALS objects for error handling, logging, profiling, etc.

Users should create a SUNContext object prior to any other calls to SUNDIALS library functions by calling:

SUNErrCode SUNContext_Create(SUNComm comm, SUNContext *sunctx)
Creates a SUNContext object associated with the thread of execution. The data of the SUNContext class is
private.

Parameters

• comm – the MPI communicator or SUN_COMM_NULL if not using MPI.

• sunctx – [in,out] upon successful exit, a pointer to the newly created SUNContext object.

Returns
SUNErrCode indicating success or failure.

The created SUNContext object should be provided to the constructor routines for different SUNDIALS
classes/modules e.g.,

SUNContext sunctx;
void* package_mem;
N_Vector x;

SUNContext_Create(SUN_COMM_NULL, &sunctx);

package_mem = CVodeCreate(..., sunctx);
package_mem = IDACreate(..., sunctx);

(continues on next page)

48 Chapter 4. Getting Started

User Documentation for ARKODE, v6.3.0

(continued from previous page)

package_mem = KINCreate(..., sunctx);
package_mem = ARKStepCreate(..., sunctx);

x = N_VNew_<SomeVector>(..., sunctx);

After all other SUNDIALS code, the SUNContext object should be freed with a call to:

SUNErrCode SUNContext_Free(SUNContext *sunctx)
Frees the SUNContext object.

Parameters

• sunctx – pointer to a valid SUNContext object, NULL upon successful return.

Returns
SUNErrCode indicating success or failure.

Warning

When MPI is being used, the SUNContext_Free() must be called prior to MPI_Finalize.

The SUNContext API further consists of the following functions:

SUNErrCode SUNContext_GetLastError(SUNContext sunctx)
Gets the last error code set by a SUNDIALS function call. The function then resets the last error code to SUN_-
SUCCESS.

Parameters

• sunctx – a valid SUNContext object.

Returns
the last SUNErrCode recorded.

SUNErrCode SUNContext_PeekLastError(SUNContext sunctx)
Gets the last error code set by a SUNDIALS function call. The function does not reset the last error code to
SUN_SUCCESS.

Parameters

• sunctx – a valid SUNContext object.

Returns
the last SUNErrCode recorded.

SUNErrCode SUNContext_PushErrHandler(SUNContext sunctx, SUNErrHandlerFn err_fn, void
*err_user_data)

Pushes a new SUNErrHandlerFn onto the error handler stack so that it is called when an error occurs inside of
SUNDIALS.

Parameters

• sunctx – a valid SUNContext object.

• err_fn – a callback function of type SUNErrHandlerFn to be pushed onto the error handler
stack.

• err_user_data – a pointer that will be passed back to the callback function when it is
called.

4.2. The SUNContext Type 49

User Documentation for ARKODE, v6.3.0

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_PopErrHandler(SUNContext sunctx)
Pops the last SUNErrHandlerFn off of the error handler stack.

Parameters

• sunctx – a valid SUNContext object.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_ClearErrHandlers(SUNContext sunctx)
Clears the entire error handler stack. After doing this it is important to push an error handler onto the stack with
SUNContext_PushErrHandler otherwise errors will be ignored.

Parameters

• sunctx – a valid SUNContext object.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_GetProfiler(SUNContext sunctx, SUNProfiler *profiler)
Gets the SUNProfiler object associated with the SUNContext object.

Parameters

• sunctx – a valid SUNContext object.

• profiler – [in,out] a pointer to the SUNProfiler object associated with this context; will
be NULL if profiling is not enabled.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_SetProfiler(SUNContext sunctx, SUNProfiler profiler)
Sets the SUNProfiler object associated with the SUNContext object.

Parameters

• sunctx – a valid SUNContext object.

• profiler – a SUNProfiler object to associate with this context; this is ignored if profiling
is not enabled.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_SetLogger(SUNContext sunctx, SUNLogger logger)
Sets the SUNLogger object associated with the SUNContext object.

Parameters

• sunctx – a valid SUNContext object.

• logger – a SUNLogger object to associate with this context; this is ignored if logging is not
enabled.

Returns
SUNErrCode indicating success or failure.

Added in version 6.2.0.

50 Chapter 4. Getting Started

User Documentation for ARKODE, v6.3.0

SUNErrCode SUNContext_GetLogger(SUNContext sunctx, SUNLogger *logger)
Gets the SUNLogger object associated with the SUNContext object.

Parameters

• sunctx – a valid SUNContext object.

• logger – [in,out] a pointer to the SUNLogger object associated with this context; will be
NULL if logging is not enabled.

Returns
SUNErrCode indicating success or failure.

Added in version 6.2.0.

4.2.1 Implications for task-based programming and multi-threading

Applications that need to have concurrently initialized SUNDIALS simulations need to take care to understand the
following:

1. A SUNContext object must only be associated with one SUNDIALS simulation (a solver object and its associated
vectors etc.) at a time.

• Concurrently initialized is not the same as concurrently executing. Even if two SUNDIALS simulations
execute sequentially, if both are initialized at the same time with the same SUNContext, behavior is unde-
fined.

• It is OK to reuse a SUNContext object with another SUNDIALS simulation after the first simulation has
completed and all of the simulation’s associated objects (vectors, matrices, algebraic solvers, etc.) have
been destroyed.

2. The creation and destruction of a SUNContext object is cheap, especially in comparison to the cost of creat-
ing/destroying a SUNDIALS solver object.

The following (incomplete) code examples demonstrate these points using CVODE as the example SUNDIALS pack-
age.

SUNContext sunctxs[num_threads];
int cvode_initialized[num_threads];
void* cvode_mem[num_threads];

// Create
for (int i = 0; i < num_threads; i++) {
sunctxs[i] = SUNContext_Create(...);
cvode_mem[i] = CVodeCreate(..., sunctxs[i]);
cvode_initialized[i] = 0; // not yet initialized
// set optional cvode inputs...

}

// Solve
#pragma omp parallel for
for (int i = 0; i < num_problems; i++) {
int retval = 0;
int tid = omp_get_thread_num();
if (!cvode_initialized[tid]) {
retval = CVodeInit(cvode_mem[tid], ...);
cvode_initialized[tid] = 1;

(continues on next page)

4.2. The SUNContext Type 51

User Documentation for ARKODE, v6.3.0

(continued from previous page)

} else {
retval = CVodeReInit(cvode_mem[tid], ...);

}
CVode(cvode_mem[i], ...);

}

// Destroy
for (int i = 0; i < num_threads; i++) {
// get optional cvode outputs...
CVodeFree(&cvode_mem[i]);
SUNContext_Free(&sunctxs[i]);

}

Since each thread has its own unique CVODE and SUNContext object pair, there should be no thread-safety issues.
Users should be sure that you apply the same idea to the other SUNDIALS objects needed as well (e.g. an N_Vector).

The variation of the above code example demonstrates another possible approach:

// Create, Solve, Destroy
#pragma omp parallel for
for (int i = 0; i < num_problems; i++) {
int retval = 0;
void* cvode_mem;
SUNContext sunctx;

sunctx = SUNContext_Create(...);
cvode_mem = CVodeCreate(..., sunctx);
retval = CVodeInit(cvode_mem, ...);

// set optional cvode inputs...

CVode(cvode_mem, ...);

// get optional cvode outputs...

CVodeFree(&cvode_mem);
SUNContext_Free(&sunctx);

}

So long as the overhead of creating/destroying the CVODE object is small compared to the cost of solving the ODE,
this approach is a fine alternative to the first approach since SUNContext_Create() and SUNContext_Free() are
much cheaper than the CVODE create/free routines.

52 Chapter 4. Getting Started

User Documentation for ARKODE, v6.3.0

4.2.2 Convenience class for C++ Users

For C++ users a RAII safe class, sundials::Context, is provided:

namespace sundials {

class Context : public sundials::ConvertibleTo<SUNContext>
{
public:
explicit Context(SUNComm comm = SUN_COMM_NULL)
{
sunctx_ = std::make_unique<SUNContext>();
SUNContext_Create(comm, sunctx_.get());

}

/* disallow copy, but allow move construction */
Context(const Context&) = delete;
Context(Context&&) = default;

/* disallow copy, but allow move operators */
Context& operator=(const Context&) = delete;
Context& operator=(Context&&) = default;

SUNContext Convert() override
{
return *sunctx_.get();

}
SUNContext Convert() const override
{
return *sunctx_.get();

}
operator SUNContext() override
{
return *sunctx_.get();

}
operator SUNContext() const override
{
return *sunctx_.get();

}

~Context()
{
if (sunctx_) SUNContext_Free(sunctx_.get());

}

private:
std::unique_ptr<SUNContext> sunctx_;
};

} // namespace sundials

4.2. The SUNContext Type 53

User Documentation for ARKODE, v6.3.0

4.3 Error Checking

Added in version 7.0.0.

Until version 7.0.0, error reporting and handling was inconsistent throughout SUNDIALS. Starting with version 7.0.0
all of SUNDIALS (the core, implementations of core modules, and packages) reports error messages through the
SUNLogger API. Furthermore, functions in the SUNDIALS core API (i.e., SUN or N_V functions only) either return a
SUNErrCode, or (if they don’t return a SUNErrCode) they internally record an error code (if an error occurs) within
the SUNContext for the execution stream. This “last error” is accessible via the SUNContext_GetLastError() or
SUNContext_PeekLastError() functions.

typedef int SUNErrCode

Thus, in user code, SUNDIALS core API functions can be checked for errors in one of two ways:

SUNContext sunctx;
SUNErrCode sunerr;
N_Vector v;
int length;
sunrealtype dotprod;

// Every code that uses SUNDIALS must create a SUNContext.
sunctx = SUNContext_Create(...);

// Create a SUNDIALS serial vector.
// Some functions do not return an error code.
// We have to check for errors in these functions using SUNContext_GetLastError.
length = 2;
v = N_VNew_Serial(length, sunctx);
sunerr = SUNContext_GetLastError(sunctx);
if (sunerr) { /* an error occurred, do something */ }

// If the function returns a SUNErrCode, we can check it directly
sunerr = N_VLinearCombination(...);
if (sunerr) { /* an error occurred, do something */ }

// Another function that does not return a SUNErrCode.
dotprod = N_VDotProd(...);
SUNContext_GetLastError(sunctx);
if (sunerr) {
/* an error occurred, do something */
} else {
print("dotprod = %.2f\n", dotprod);

}

The function SUNGetErrMsg() can be used to get a message describing the error code.

const char *SUNGetErrMsg(SUNErrCode code)
Returns a message describing the error code.

Parameters

• code – the error code

Returns
a message describing the error code.

54 Chapter 4. Getting Started

User Documentation for ARKODE, v6.3.0

Note

It is recommended in most cases that users check for an error after calling SUNDIALS functions. However, users
concerned with getting the most performance might choose to exclude or limit these checks.

Warning

If a function returns a SUNErrCode then the return value is the only place the error is available i.e., these functions
do not store their error code as the “last error” so it is invalid to use SUNContext_GetLastError() to check these
functions for errors.

4.3.1 Error Handler Functions

When an error occurs in SUNDIALS, it calls error handler functions that have been pushed onto the error handler
stack in last-in first-out order. Specific error handlers can be enabled by pushing them onto the error handler stack with
the function SUNContext_PushErrHandler(). They may disabled by calling SUNContext_PopErrHandler() or
SUNContext_ClearErrHandlers(). A SUNDIALS error handler function has the type

typedef void (*SUNErrHandlerFn)(int line, const char *func, const char *file, const char *msg, SUNErrCode
err_code, void *err_user_data, SUNContext sunctx)

SUNDIALS provides a few different error handlers that can be used, or a custom one defined by the user can be
provided (useful for linking SUNDIALS errors to your application’s error handling). The default error handler is
SUNLogErrHandlerFn() which logs an error to a specified file or stderr if no file is specified.

The error handlers provided in SUNDIALS are:

void SUNLogErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode err_code,
void *err_user_data, SUNContext sunctx)

Logs the error that occurred using the SUNLogger from sunctx. This is the default error handler.

Parameters

• line – the line number at which the error occurred

• func – the function in which the error occurred

• file – the file in which the error occurred

• msg – the message to log, if this is NULL then the default error message for the error code
will be used

• err_code – the error code for the error that occurred

• err_user_data – the user pointer provided to SUNContext_PushErrHandler()

• sunctx – pointer to a valid SUNContext object

Returns
void

void SUNAbortErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode err_code,
void *err_user_data, SUNContext sunctx)

Logs the error and aborts the program if an error occurred.

Parameters

• line – the line number at which the error occurred

4.3. Error Checking 55

User Documentation for ARKODE, v6.3.0

• func – the function in which the error occurred

• file – the file in which the error occurred

• msg – this parameter is ignored

• err_code – the error code for the error that occurred

• err_user_data – the user pointer provided to SUNContext_PushErrHandler()

• sunctx – pointer to a valid SUNContext object

Returns
void

void SUNMPIAbortErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode
err_code, void *err_user_data, SUNContext sunctx)

Logs the error and calls MPI_Abort if an error occurred.

Parameters

• line – the line number at which the error occurred

• func – the function in which the error occurred

• file – the file in which the error occurred

• msg – this parameter is ignored

• err_code – the error code for the error that occurred

• err_user_data – the user pointer provided to SUNContext_PushErrHandler()

• sunctx – pointer to a valid SUNContext object

Returns
void

4.4 Status and Error Logging

Added in version 6.2.0.

SUNDIALS includes a built-in logging functionality which can be used to direct error messages, warning messages,
informational output, and debugging output to specified files. This capability requires enabling both build-time and
run-time options to ensure the best possible performance is achieved.

4.4.1 Enabling Logging

To enable logging, the CMake option SUNDIALS_LOGGING_LEVEL must be set to the maximum desired output level
when configuring SUNDIALS. See the SUNDIALS_LOGGING_LEVEL documentation for the numeric values corre-
sponding to errors, warnings, info output, and debug output where errors < warnings < info output < debug output
< extra debug output. By default only warning and error messages are logged.

Note

As of version 7.0.0, enabling MPI in SUNDIALS enables MPI-aware logging.

When SUNDIALS is built with logging enabled, then the default logger (stored in the SUNContext object) may be
configured through environment variables without any changes to user code. The available environment variables are:

56 Chapter 4. Getting Started

User Documentation for ARKODE, v6.3.0

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

These environment variables may be set to a filename string. There are two special filenames: stdout and stderr.
These two filenames will result in output going to the standard output file and standard error file. The different variables
may all be set to the same file, or to distinct files, or some combination there of. To disable output for one of the streams,
then do not set the environment variable, or set it to an empty string.

If SUNDIALS_LOGGING_LEVEL was set at build-time to a level lower than the corresponding environment variable, then
setting the environment variable will do nothing. For example, if the logging level is set to 2 (errors and warnings),
setting SUNLOGGER_INFO_FILENAME will do nothing.

Warning

A non-default logger should be created and attached to the context object prior to any other SUNDIALS calls in
order to capture all log events.

Error or warning logs are a single line output with an error or warning message

[level][rank][scope][label] message describing the error or warning

Informational or debugging logs are either a single line output with a comma-separated list of key-value pairs of the
form

[level][rank][scope][label] key1 = value, key2 = value

or multiline output with one value per line for keys corresponding to a vector or array e.g.,

[level][rank][scope][label] y(:) =
y[0]
y[1]
...

In the example log outputs above, the values in brackets have the following meaning:

• level is the log level of the message and will be ERROR, WARNING, INFO, or DEBUG

• rank is the MPI rank the message was written from (0 by default or if SUNDIALS was built without MPI
enabled)

• scope is the message scope i.e., the name of the function from which the message was written

• label provides additional context or information about the logging output e.g., begin-step,
end-linear-solve, etc.

Note

When extra debugging output is enabled, the output will include vector values (so long as the N_Vector used
supports printing). Depending on the problem size, this may result in very large logging files.

4.4. Status and Error Logging 57

User Documentation for ARKODE, v6.3.0

4.4.2 Logger API

The central piece of the Logger API is the SUNLogger type:

type SUNLogger
An opaque pointer containing logging information.

When SUNDIALS is built with logging enabled, a default logging object is stored in the SUNContext object and can
be accessed with a call to SUNContext_GetLogger().

The enumerated type SUNLogLevel is used by some of the logging functions to identify the output level or file.

enum SUNLogLevel
The SUNDIALS logging level

enumerator SUN_LOGLEVEL_ALL
Represents all output levels

enumerator SUN_LOGLEVEL_NONE
Represents none of the output levels

enumerator SUN_LOGLEVEL_ERROR
Represents error-level logging messages

enumerator SUN_LOGLEVEL_WARNING
Represents warning-level logging messages

enumerator SUN_LOGLEVEL_INFO
Represents info-level logging messages

enumerator SUN_LOGLEVEL_DEBUG
Represents deubg-level logging messages

The SUNLogger class provides the following methods.

int SUNLogger_Create(SUNComm comm, int output_rank, SUNLogger *logger)
Creates a new SUNLogger object.

Arguments:

• comm – the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.

• output_rank – the MPI rank used for output (can be -1 to print to all ranks).

• logger – [in,out] On input this is a pointer to a SUNLogger, on output it will point to a new SUNLogger
instance.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_CreateFromEnv(SUNComm comm, SUNLogger *logger)
Creates a new SUNLogger object and opens the output streams/files from the environment variables:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

Arguments:

58 Chapter 4. Getting Started

User Documentation for ARKODE, v6.3.0

• comm – the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.

• logger – [in,out] On input this is a pointer to a SUNLogger, on output it will point to a new SUNLogger
instance.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetErrorFilename(SUNLogger logger, const char *error_filename)
Sets the filename for error output.

Arguments:

• logger – a SUNLogger object.

• error_filename – the name of the file to use for error output.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetWarningFilename(SUNLogger logger, const char *warning_filename)
Sets the filename for warning output.

Arguments:

• logger – a SUNLogger object.

• warning_filename – the name of the file to use for warning output.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetInfoFilename(SUNLogger logger, const char *info_filename)
Sets the filename for info output.

Arguments:

• logger – a SUNLogger object.

• info_filename – the name of the file to use for info output.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetDebugFilename(SUNLogger logger, const char *debug_filename)
Sets the filename for debug output.

Arguments:

• logger – a SUNLogger object.

• debug_filename – the name of the file to use for debug output.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_QueueMsg(SUNLogger logger, SUNLogLevel lvl, const char *scope, const char *label, const char
*msg_txt, ...)

Queues a message to the output log level.

Arguments:

4.4. Status and Error Logging 59

User Documentation for ARKODE, v6.3.0

• logger – a SUNLogger object.

• lvl – the message log level (i.e. error, warning, info, debug).

• scope – the message scope (e.g. the function name).

• label – the message label.

• msg_txt – the message text itself.

• ... – the format string arguments

Returns:

• Returns zero if successful, or non-zero if an error occurred.

Warning

When compiling for ANSI C / C89 / C90 (and without compiler extensions), it is dangerous to pass any user
input to this function because it falls back to using sprintf with a fixed buffer size.

It is highly recommended to compile with C99 or newer if your compiler does not support snprintf through
extensions.

int SUNLogger_Flush(SUNLogger logger, SUNLogLevel lvl)
Flush the message queue(s).

Arguments:

• logger – a SUNLogger object.

• lvl – the message log level (i.e. error, warning, info, debug or all).

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_GetOutputRank(SUNLogger logger, int *output_rank)
Get the output MPI rank for the logger.

Arguments:

• logger – a SUNLogger object.

• output_rank – [in,out] On input this is a pointer to an int, on output it points to the int holding the
output rank.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_Destroy(SUNLogger *logger)
Free the memory for the SUNLogger object.

Arguments:

• logger – a pointer to the SUNLogger object.

Returns:

• Returns zero if successful, or non-zero if an error occur.

60 Chapter 4. Getting Started

User Documentation for ARKODE, v6.3.0

4.4.3 Example Usage

As noted above, enabling logging must be done when configuring SUNDIALS by setting the CMake option SUN-
DIALS_LOGGING_LEVEL to the desired logging level. When running a program with SUNDIALS logging enabled,
a default logger is created and attached to the SUNContext instance at creation. Environment variables or run-time
functions can be used to determine where the logging output is written. For example, consider the CVODE Roberts
example, where we can direct the informational output to the file sun.log as follows

SUNDIALS_INFO_FILENAME=sun.log ./examples/cvode/serial/cvRoberts_dns

Alternatively, the following examples demonstrate how to use the logging interface via the C API:

examples/arkode/CXX_serial/ark_analytic_sys.cpp
examples/cvode/serial/cvAdvDiff_bnd.c
examples/cvode/parallel/cvAdvDiff_diag_p.c
examples/kinsol/CXX_parallel/kin_em_p.cpp
examples/kinsol/CUDA_mpi/kin_em_mpicuda.cpp

To assist with extracting informational logging data from output files the tools directory contains a Python module,
suntools, that provides utilities for parsing log files. Some example scripts using the suntools module are included
in the tools directory. For example, we can plot the step size history from the CVODE Roberts problem with

./log_example.py sun.log

4.5 Performance Profiling

Added in version 6.0.0.

SUNDIALS includes a lightweight performance profiling layer that can be enabled at compile-time. Optionally, this
profiling layer can leverage Caliper [18] for more advanced instrumentation and profiling. By default, only SUNDIALS
library code is profiled. However, a public profiling API can be utilized to leverage the SUNDIALS profiler to time
user code regions as well (see §4.5.2).

4.5.1 Enabling Profiling

To enable profiling, SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_PROFILING set to
ON. To utilize Caliper support, the CMake option ENABLE_CALIPER must also be set to ON. More details in regards to
configuring SUNDIALS with CMake can be found in §16.

When SUNDIALS is built with profiling enabled and without Caliper, then the environment variable SUNPROFILER_-
PRINT can be utilized to enable/disable the printing of profiler information. Setting SUNPROFILER_PRINT=1will cause
the profiling information to be printed to stdout when the SUNDIALS simulation context is freed. Setting SUNPRO-
FILER_PRINT=0 will result in no profiling information being printed unless the SUNProfiler_Print() function is
called explicitly. By default, SUNPROFILER_PRINT is assumed to be 0. SUNPROFILER_PRINT can also be set to a file
path where the output should be printed.

If Caliper is enabled, then users should refer to the Caliper documentation for information on getting profiler output.
In most cases, this involves setting the CALI_CONFIG environment variable.

Note

The SUNDIALS profiler requires POSIX timers or the Windows profileapi.h timers.

4.5. Performance Profiling 61

https://software.llnl.gov/Caliper/

User Documentation for ARKODE, v6.3.0

Warning

While the SUNDIALS profiling scheme is relatively lightweight, enabling profiling can still negatively impact
performance. As such, it is recommended that profiling is enabled judiciously.

4.5.2 Profiler API

The primary way of interacting with the SUNDIALS profiler is through the following macros:

SUNDIALS_MARK_FUNCTION_BEGIN(profobj)
SUNDIALS_MARK_FUNCTION_END(profobj)
SUNDIALS_WRAP_STATEMENT(profobj, name, stmt)
SUNDIALS_MARK_BEGIN(profobj, name)
SUNDIALS_MARK_END(profobj, name)

Additionally, in C++ applications, the follow macro is available:

SUNDIALS_CXX_MARK_FUNCTION(profobj)

These macros can be used to time specific functions or code regions. When using the *_BEGIN macros, it is important
that a matching *_ENDmacro is placed at all exit points for the scope/function. The SUNDIALS_CXX_MARK_FUNCTION
macro only needs to be placed at the beginning of a function, and leverages RAII to implicitly end the region.

The profobj argument to the macro should be a SUNProfiler object, i.e.

type SUNProfiler
An opaque pointer containing profiling information.

When SUNDIALS is built with profiling, a default profiling object is stored in the SUNContext object and can be
accessed with a call to SUNContext_GetProfiler().

The name argument should be a unique string indicating the name of the region/function. It is important that the name
given to the *_BEGIN macros matches the name given to the *_END macros.

In addition to the macros, the following methods of the SUNProfiler class are available.

int SUNProfiler_Create(SUNComm comm, const char *title, SUNProfiler *p)
Creates a new SUNProfiler object.

Arguments:

• comm – the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.

• title – a title or description of the profiler

• p – [in,out] On input this is a pointer to a SUNProfiler, on output it will point to a new SUNProfiler
instance

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Free(SUNProfiler *p)
Frees a SUNProfiler object.

Arguments:

• p – [in,out] On input this is a pointer to a SUNProfiler, on output it will be NULL

Returns:

62 Chapter 4. Getting Started

User Documentation for ARKODE, v6.3.0

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Begin(SUNProfiler p, const char *name)
Starts timing the region indicated by the name.

Arguments:

• p – a SUNProfiler object

• name – a name for the profiling region

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_End(SUNProfiler p, const char *name)
Ends the timing of a region indicated by the name.

Arguments:

• p – a SUNProfiler object

• name – a name for the profiling region

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetElapsedTime(SUNProfiler p, const char *name, double *time)
Get the elapsed time for the timer “name” in seconds.

Arguments:

• p – a SUNProfiler object

• name – the name for the profiling region of interest

• time – upon return, the elapsed time for the timer

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetTimerResolution(SUNProfiler p, double *resolution)
Get the timer resolution in seconds.

Arguments:

• p – a SUNProfiler object

• resolution – upon return, the resolution for the timer

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Print(SUNProfiler p, FILE *fp)
Prints out a profiling summary. When constructed with an MPI comm the summary will include the average and
maximum time per rank (in seconds) spent in each marked up region.

Arguments:

• p – a SUNProfiler object

• fp – the file handler to print to

Returns:

4.5. Performance Profiling 63

User Documentation for ARKODE, v6.3.0

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Reset(SUNProfiler p)
Resets the region timings and counters to zero.

Arguments:

• p – a SUNProfiler object

Returns:

• Returns zero if successful, or non-zero if an error occurred

4.5.3 Example Usage

The following is an excerpt from the CVODE example code examples/cvode/serial/cvAdvDiff_bnd.c. It is
applicable to any of the SUNDIALS solver packages.

SUNContext ctx;
SUNProfiler profobj;

/* Create the SUNDIALS context */
retval = SUNContext_Create(SUN_COMM_NULL, &ctx);

/* Get a reference to the profiler */
retval = SUNContext_GetProfiler(ctx, &profobj);

/* ... */

SUNDIALS_MARK_BEGIN(profobj, "Integration loop");
umax = N_VMaxNorm(u);
PrintHeader(reltol, abstol, umax);
for(iout=1, tout=T1; iout <= NOUT; iout++, tout += DTOUT) {
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
umax = N_VMaxNorm(u);
retval = CVodeGetNumSteps(cvode_mem, &nst);
PrintOutput(t, umax, nst);

}
SUNDIALS_MARK_END(profobj, "Integration loop");
PrintFinalStats(cvode_mem); /* Print some final statistics */

4.6 Getting Version Information

SUNDIALS provides additional utilities to all packages, that may be used to retrieve SUNDIALS version information
at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:

• version – character array to hold the SUNDIALS version information.

• len – allocated length of the version character array.

Return value:

64 Chapter 4. Getting Started

User Documentation for ARKODE, v6.3.0

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS version

Notes:
An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber(int *major, int *minor, int *patch, char *label, int len)
This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:

• major – SUNDIALS release major version number.

• minor – SUNDIALS release minor version number.

• patch – SUNDIALS release patch version number.

• label – string to hold the SUNDIALS release label.

• len – allocated length of the label character array.

Return value:

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS label

Notes:
An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

4.7 Fortran Interface

SUNDIALS provides modern, Fortran 2003 based, interfaces as Fortran modules to most of the C API including:

• The SUNDIALS core types, utilities, and data structures via the fsundials_core_mod module.

• All of the time-stepping modules in ARKODE:

– The farkode_arkstep_mod, farkode_erkstep_mod, farkode_mristep_mod, and farkode_sprk-
step_mod modules provide interfaces to the ARKStep, ERKStep, MRIStep, and SPRKStep integrators
respectively.

– The farkode_mod module interfaces to the components of ARKODE which are shared by the time-
stepping modules.

• CVODE via the fcvode_mod module.

• CVODES via the fcvodes_mod module.

• IDA via the fida_mod module.

• IDAS via the fidas_mod module.

• KINSOL via the fkinsol_mod module.

Additionally, all of the SUNDIALS base classes (N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinear-
Solver) include Fortran interface modules. A complete list of class implementations with Fortran 2003 interface
modules is given in Table 4.1.

An interface module can be accessed with the use statement, e.g.

4.7. Fortran Interface 65

User Documentation for ARKODE, v6.3.0

use fsundials_core_mod ! this is needed to access core SUNDIALS types, utilities, and data structures
use fcvode_mod ! this is needed to access CVODE functions and types
use fnvector_openmp_mod ! this is needed to access the OpenMP implementation of the N_Vector class

and by linking to the Fortran 2003 library in addition to the C library, e.g. libsundials_fcore_mod.<so|a>, lib-
sundials_core.<so|a>, libsundials_fnvecpenmp_mod.<so|a>, libsundials_nvecopenmp.<so|a>, lib-
sundials_fcvode_mod.<so|a> and libsundials_cvode.<so|a>. The use statements mirror the #include
statements needed when using the C API.

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to closely follow the
SUNDIALS C API (modulo language differences). The SUNDIALS classes, e.g. N_Vector, are interfaced as Fortran
derived types, and function signatures are matched but with an F prepending the name, e.g. FN_VConst instead of
N_VConst() or FCVodeCreate instead of CVodeCreate. Constants are named exactly as they are in the C API.
Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using it in C. Some caveats stemming
from the language differences are discussed in §4.7.2. A discussion on the topic of equivalent data types in C and
Fortran 2003 is presented in §4.7.1.

Further information on the Fortran 2003 interfaces specific to the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver classes is given alongside the C documentation. For details on where the Fortran 2003 module
(.mod) files and libraries are installed see §16.

The Fortran 2003 interface modules were generated with SWIG Fortran [64], a fork of SWIG. Users who are interested
in the SWIG code used in the generation process should contact the SUNDIALS development team.

Table 4.1: List of SUNDIALS Fortran 2003 interface modules

Class/Module Fortran 2003 Module Name
SUNDIALS core fsundials_core_mode
ARKODE farkode_mod
ARKODE::ARKSTEP farkode_arkstep_mod
ARKODE::ERKSTEP farkode_erkstep_mod
ARKODE::MRISTEP farkode_mristep_mod
ARKODE::SPRKSTEP farkode_sprkstep_mod
CVODE fcvode_mod
CVODES fcvodes_mod
IDA fida_mod
IDAS fidas_mod
KINSOL fkinsol_mod
NVECTOR_SERIAL fnvector_serial_mod
NVECTOR_OPENMP fnvector_openmp_mod
NVECTOR_PTHREADS fnvector_pthreads_mod
NVECTOR_PARALLEL fnvector_parallel_mod
NVECTOR_PARHYP Not interfaced
NVECTOR_PETSC Not interfaced
NVECTOR_CUDA Not interfaced
NVECTOR_RAJA Not interfaced
NVECTOR_SYCL Not interfaced
NVECTOR_MANVECTOR fnvector_manyvector_mod
NVECTOR_MPIMANVECTOR fnvector_mpimanyvector_mod
NVECTOR_MPIPLUSX fnvector_mpiplusx_mod
SUNMATRIX_BAND fsunmatrix_band_mod
SUNMATRIX_DENSE fsunmatrix_dense_mod
SUNMATRIX_MAGMADENSE Not interfaced
SUNMATRIX_ONEMKLDENSE Not interfaced

continues on next page

66 Chapter 4. Getting Started

User Documentation for ARKODE, v6.3.0

Table 4.1 – continued from previous page
Class/Module Fortran 2003 Module Name
SUNMATRIX_SPARSE fsunmatrix_sparse_mod
SUNLINSOL_BAND fsunlinsol_band_mod
SUNLINSOL_DENSE fsunlinsol_dense_mod
SUNLINSOL_LAPACKBAND Not interfaced
SUNLINSOL_LAPACKDENSE Not interfaced
SUNLINSOL_MAGMADENSE Not interfaced
SUNLINSOL_ONEMKLDENSE Not interfaced
SUNLINSOL_KLU fsunlinsol_klu_mod
SUNLINSOL_SLUMT Not interfaced
SUNLINSOL_SLUDIST Not interfaced
SUNLINSOL_SPGMR fsunlinsol_spgmr_mod
SUNLINSOL_SPFGMR fsunlinsol_spfgmr_mod
SUNLINSOL_SPBCGS fsunlinsol_spbcgs_mod
SUNLINSOL_SPTFQMR fsunlinsol_sptfqmr_mod
SUNLINSOL_PCG fsunlinsol_pcg_mof
SUNNONLINSOL_NEWTON fsunnonlinsol_newton_mod
SUNNONLINSOL_FIXEDPOINT fsunnonlinsol_fixedpoint_mod
SUNNONLINSOL_PETSCSNES Not interfaced

4.7.1 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive types map to
the iso_c_binding type equivalent. SUNDIALS classes map to a Fortran derived type. However, the handling of
pointer types is not always clear as they can depend on the parameter direction. Table 4.2 presents a summary of the
type equivalencies with the parameter direction in mind.

Warning

Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the sunrealtype is
double-precision.

Changed in version 7.1.0: The Fortran interfaces can now be built with 32-bit sunindextype in addition to 64-bit
sunindextype.

Table 4.2: C/Fortran-2003 Equivalent Types

C Type Parameter Direction Fortran 2003 type
SUNComm in, inout, out, return integer(c_int)
SUNErrCode in, inout, out, return integer(c_int)
double in, inout, out, return real(c_double)
int in, inout, out, return integer(c_int)
long in, inout, out, return integer(c_long)
sunbooleantype in, inout, out, return integer(c_int)
sunrealtype in, inout, out, return real(c_double)
sunindextype in, inout, out, return integer(c_long)
double* in, inout, out real(c_double), dimension(*)
double* return real(c_double), pointer, dimension(:)
int* in, inout, out real(c_int), dimension(*)

continues on next page

4.7. Fortran Interface 67

User Documentation for ARKODE, v6.3.0

Table 4.2 – continued from previous page
C Type Parameter Direction Fortran 2003 type
int* return real(c_int), pointer, dimension(:)
long* in, inout, out real(c_long), dimension(*)
long* return real(c_long), pointer, dimension(:)
sunrealtype* in, inout, out real(c_double), dimension(*)
sunrealtype* return real(c_double), pointer, dimension(:)
sunindextype* in, inout, out real(c_long), dimension(*)
sunindextype* return real(c_long), pointer, dimension(:)
sunrealtype[] in, inout, out real(c_double), dimension(*)
sunindextype[] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type(N_Vector)
N_Vector return type(N_Vector), pointer
SUNMatrix in, inout, out type(SUNMatrix)
SUNMatrix return type(SUNMatrix), pointer
SUNLinearSolver in, inout, out type(SUNLinearSolver)
SUNLinearSolver return type(SUNLinearSolver), pointer
SUNNonlinearSolver in, inout, out type(SUNNonlinearSolver)
SUNNonlinearSolver return type(SUNNonlinearSolver), pointer
FILE* in, inout, out, return type(c_ptr)
void* in, inout, out, return type(c_ptr)
T** in, inout, out, return type(c_ptr)
T*** in, inout, out, return type(c_ptr)
T**** in, inout, out, return type(c_ptr)

4.7.2 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable due to the
differences between Fortran and C. In this section, we note the most critical differences. Additionally, §4.7.1 discusses
equivalencies of data types in the two languages.

4.7.2.1 Creating generic SUNDIALS objects

In the C API a SUNDIALS class, such as an N_Vector, is actually a pointer to an underlying C struct. However,
in the Fortran 2003 interface, the derived type is bound to the C struct, not the pointer to the struct. For example,
type(N_Vector) is bound to the C struct _generic_N_Vector not the N_Vector type. The consequence of this is
that creating and declaring SUNDIALS objects in Fortran is nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;
x = N_VNew_Serial(N, sunctx);

Fortran code:

type(N_Vector), pointer :: x
x => FN_VNew_Serial(N, sunctx)

Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the pointer assignment
operator is then used.

68 Chapter 4. Getting Started

User Documentation for ARKODE, v6.3.0

4.7.2.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when they are return values
versus arguments to a function. Additionally, pointers which are meant to be out parameters, not arrays, in the C API
must still be declared as a rank-1 array in Fortran. The reason for this is partially due to the Fortran 2003 standard for
C bindings, and partially due to the tool used to generate the interfaces. Regardless, the code snippets below illustrate
the differences.

C code:

N_Vector x;
sunrealtype* xdata;
long int leniw, lenrw;

/* create a new serial vector */
x = N_VNew_Serial(N, sunctx);

/* capturing a returned array/pointer */
xdata = N_VGetArrayPointer(x)

/* passing array/pointer to a function */
N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:

type(N_Vector), pointer :: x
real(c_double), pointer :: xdataptr(:)
real(c_double) :: xdata(N)
integer(c_long) :: leniw(1), lenrw(1)

! create a new serial vector
x => FN_VNew_Serial(x, sunctx)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer(x)

! passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)

4.7. Fortran Interface 69

User Documentation for ARKODE, v6.3.0

4.7.2.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran procedure must
have the attribute bind(C). Additionally, when providing them as arguments to a Fortran 2003 interface routine, it is
required to convert a procedure’s Fortran address to C with the Fortran intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom data structure as a
void*. When using the Fortran 2003 interfaces, the same thing can be achieved. Note, the custom data structure does
not have to be bind(C) since it is never accessed on the C side.

C code:

MyUserData *udata;
void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

type(MyUserData) :: udata
type(c_ptr) :: arkode_mem

ierr = FARKStepSetUserData(arkode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem parameters, within
modules, and thus do not need the SUNDIALS-provided user_data pointers to pass such data back to user-supplied
functions. These users should supply the c_null_ptr input for user_data arguments to the relevant SUNDIALS
functions.

4.7.2.4 Passing NULL to optional parameters

In the SUNDIALS C API some functions have optional parameters that a caller can pass as NULL. If the optional
parameter is of a type that is equivalent to a Fortran type(c_ptr) (see §4.7.1), then a Fortran user can pass the
intrinsic c_null_ptr. However, if the optional parameter is of a type that is not equivalent to type(c_ptr), then a
caller must provide a Fortran pointer that is dissociated. This is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

/* SUNLinSolSolve expects a SUNMatrix or NULL as the second parameter. */
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type(SUNLinearSolver), pointer :: LS
type(SUNMatrix), pointer :: A
type(N_Vector), pointer :: x, b

! Disassociate A
A => null()

! SUNLinSolSolve expects a type(SUNMatrix), pointer as the second parameter.
(continues on next page)

70 Chapter 4. Getting Started

User Documentation for ARKODE, v6.3.0

(continued from previous page)

! Therefore, we cannot pass a c_null_ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

4.7.2.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as an opaque type(c_ptr). As such, it is not possible to
directly index an array of N_Vector objects returned by the N_Vector “VectorArray” operations, or packages with sen-
sitivity capabilities (CVODES and IDAS). Instead, SUNDIALS provides a utility function FN_VGetVecAtIndexVec-
torArray wrapping N_VGetVecAtIndexVectorArray(). The example below demonstrates accessing a vector in a
vector array.

C code:

N_Vector x;
N_Vector* vecs;

/* Create an array of N_Vectors */
vecs = N_VCloneVectorArray(count, x);

/* Fill each array with ones */
for (int i = 0; i < count; ++i)
N_VConst(vecs[i], 1.0);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) :: vecs

! Create an array of N_Vectors
vecs = FN_VCloneVectorArray(count, x)

! Fill each array with ones
do index = 0,count-1
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst(xi, 1.d0)

enddo

SUNDIALS also provides the functions N_VSetVecAtIndexVectorArray() and N_VNewVectorArray() for work-
ing with N_Vector arrays, that have corresponding Fortran interfaces FN_VSetVecAtIndexVectorArray and FN_-
VNewVectorArray, respectively. These functions are particularly useful for users of the Fortran interface to the NVEC-
TOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector array. Both of these functions
along with N_VGetVecAtIndexVectorArray() (wrapped as FN_VGetVecAtIndexVectorArray) are further de-
scribed in §8.1.1.

4.7. Fortran Interface 71

User Documentation for ARKODE, v6.3.0

4.7.2.6 Providing file pointers

There are a few functions in the SUNDIALS C API which take a FILE* argument. Since there is no portable way to
convert between a Fortran file descriptor and a C file pointer, SUNDIALS provides two utility functions for creating a
FILE* and destroying it. These functions are defined in the module fsundials_core_mod.

SUNErrCode SUNDIALSFileOpen(const char *filename, const char *mode, FILE **fp)
The function allocates a FILE* by calling the C function fopen with the provided filename and I/O mode.

Parameters

• filename – the path to the file, that should have Fortran type character(kind=C_CHAR,
len=*). There are two special filenames: stdout and stderr – these two filenames will
result in output going to the standard output file and standard error file, respectively.

• mode – the I/O mode to use for the file. This should have the Fortran type charac-
ter(kind=C_CHAR, len=*). The string begins with one of the following characters:

– r to open a text file for reading

– r+ to open a text file for reading/writing

– w to truncate a text file to zero length or create it for writing

– w+ to open a text file for reading/writing or create it if it does
not exist

– a to open a text file for appending, see documentation of fopen for
your system/compiler

– a+ to open a text file for reading/appending, see documentation for
fopen for your system/compiler

• fp – The FILE* that will be open when the function returns. This should be a type(c_ptr) in
the Fortran.

Returns
A SUNErrCode

Usage example:

type(c_ptr) :: fp

! Open up the file output.log for writing
ierr = FSUNDIALSFileOpen("output.log", "w+", fp)

! The C function ARKStepPrintMem takes void* arkode_mem and FILE* fp as arguments
call FARKStepPrintMem(arkode_mem, fp)

! Close the file
ierr = FSUNDIALSFileClose(fp)

Changed in version 7.0.0: The function signature was updated to return a SUNErrCode and take a FILE** as
the last input parameter rather then return a FILE*.

SUNErrCode SUNDIALSFileClose(FILE **fp)
The function deallocates a C FILE* by calling the C function fclose with the provided pointer.

Parameters

72 Chapter 4. Getting Started

User Documentation for ARKODE, v6.3.0

• fp – the C FILE* that was previously obtained from fopen. This should have the Fortran
type type(c_ptr). Note that if either stdout or stderr were opened using SUNDIALS-
FileOpen()

Returns
A SUNErrCode

Changed in version 7.0.0: The function signature was updated to return a SUNErrCode and the fp parameter was
changed from FILE* to FILE**.

4.7.3 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran 2003 ISO
standard.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003 interface. These
files are highly compiler specific, and thus it is almost always necessary to compile a consuming application with the
same compiler that was used to generate the modules.

4.7.4 Common Issues

In this subsection, we list some common issues users run into when using the Fortran interfaces.

Strange Segmentation Fault in User-Supplied Functions

One common issue we have seen trip up users (and even ourselves) has the symptom of segmentation fault in a user-
supplied function (such as the RHS) when trying to use one of the callback arguments. For example, in the following
RHS function, we will get a segfault on line 21:

1 integer(c_int) function ff(t, yvec, ydotvec, user_data) &
2 result(ierr) bind(C)
3

4 use, intrinsic :: iso_c_binding
5 use fsundials_nvector_mod
6 implicit none
7

8 real(c_double) :: t ! <===== Missing value attribute
9 type(N_Vector) :: yvec

10 type(N_Vector) :: ydotvec
11 type(c_ptr) :: user_data
12

13 real(c_double) :: e
14 real(c_double) :: u, v
15 real(c_double) :: tmp1, tmp2
16 real(c_double), pointer :: yarr(:)
17 real(c_double), pointer :: ydotarr(:)
18

19 ! get N_Vector data arrays
20 yarr => FN_VGetArrayPointer(yvec)
21 ydotarr => FN_VGetArrayPointer(ydotvec) ! <===== SEGFAULTS HERE
22

23 ! extract variables
24 u = yarr(1)
25 v = yarr(2)

(continues on next page)

4.7. Fortran Interface 73

User Documentation for ARKODE, v6.3.0

(continued from previous page)

26

27 ! fill in the RHS function:
28 ! [0 0]*[(-1+u^2-r(t))/(2*u)] + [0]
29 ! [e -1] [(-2+v^2-s(t))/(2*v)] [sdot(t)/(2*vtrue(t))]
30 tmp1 = (-ONE+u*u-r(t))/(TWO*u)
31 tmp2 = (-TWO+v*v-s(t))/(TWO*v)
32 ydotarr(1) = ZERO
33 ydotarr(2) = e*tmp1 - tmp2 + sdot(t)/(TWO*vtrue(t))
34

35 ! return success
36 ierr = 0
37 return
38

39 end function

The subtle bug in the code causing the segfault is on line 8. It should read real(c_double), value :: t instead
of real(c_double) :: t (notice the value attribute). Fundamental types that are passed by value in C need the
value attribute.

4.8 Features for GPU Accelerated Computing

In this section, we introduce the SUNDIALS GPU programming model and highlight SUNDIALS GPU features. The
model leverages the fact that all of the SUNDIALS packages interact with simulation data either through the shared
vector, matrix, and solver APIs or through user-supplied callback functions. Thus, under the model, the overall structure
of the user’s calling program, and the way users interact with the SUNDIALS packages is similar to using SUNDIALS
in CPU-only environments.

4.8.1 SUNDIALS GPU Programming Model

As described in [14], within the SUNDIALS GPU programming model, all control logic executes on the CPU, and
all simulation data resides wherever the vector or matrix object dictates as long as SUNDIALS is in control of the
program. That is, SUNDIALS will not migrate data (explicitly) from one memory space to another. Except in the most
advanced use cases, it is safe to assume that data is kept resident in the GPU-device memory space. The consequence
of this is that, when control is passed from the user’s calling program to SUNDIALS, simulation data in vector or
matrix objects must be up-to-date in the device memory space. Similarly, when control is passed from SUNDIALS to
the user’s calling program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program to manage data
coherency between the CPU and GPU-device memory spaces unless unified virtual memory (UVM), also known as
managed memory, is being utilized. Typically, the GPU-enabled SUNDIALS modules provide functions to copy data
from the host to the device and vice-versa as well as support for unmanaged memory or UVM. In practical terms, the
way SUNDIALS handles distinct host and device memory spaces means that users need to ensure that the user-supplied
functions, e.g. the right-hand side function, only operate on simulation data in the device memory space otherwise extra
memory transfers will be required and performance will suffer. The exception to this rule is if some form of hybrid
data partitioning (achievable with the NVECTOR_MANYVECTOR, see §8.17) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently, these include the
NVIDIA CUDA platform [5], AMD ROCm/HIP [2], and Intel oneAPI [3]. Table 4.3–Table 4.6 summarize the shared
SUNDIALS modules that are GPU-enabled, what GPU programming environments they support, and what class of
memory they support (unmanaged or UVM). Users may also supply their own GPU-enabled N_Vector, SUNMatrix,
SUNLinearSolver, or SUNNonlinearSolver implementation, and the capabilities will be leveraged since SUNDI-
ALS operates on data through these APIs.

74 Chapter 4. Getting Started

User Documentation for ARKODE, v6.3.0

In addition, SUNDIALS provides a memory management helper module (see §15) to support applications which im-
plement their own memory management or memory pooling.

Table 4.3: List of SUNDIALS GPU-enabled N_VectorModules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
NVECTOR_CUDA X X X
NVECTOR_HIP X X X X
NVECTOR_SYCL X3 X3 X X X
NVECTOR_RAJA X X X X X
NVECTOR_KOKKOS X X X X X
NVECTOR_OPENMPDEV X X2 X2 X

Table 4.4: List of SUNDIALS GPU-enabled SUNMatrixModules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNMATRIX_CUSPARSE X X X
SUNMATRIX_ONEMKLDENSE X3 X3 X X X
SUNMATRIX_MAGMADENSE X X X X
SUNMATRIX_GINKGO X X X X
SUNMATRIX_KOKKOSDENSE X X X X

Table 4.5: List of SUNDIALS GPU-enabled SUNLinearSolver Mod-
ules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNLINSOL_CUSOLVERSP X X X
SUNLINSOL_ONEMKLDENSE X3 X3 X X X
SUNLINSOL_MAGMADENSE X X X
SUNLINSOL_GINKGO X X X X
SUNLINSOL_KOKKOSDENSE X X X X
SUNLINSOL_SPGMR X1 X1 X1 X1 X1

SUNLINSOL_SPFGMR X1 X1 X1 X1 X1

SUNLINSOL_SPTFQMR X1 X1 X1 X1 X1

SUNLINSOL_SPBCGS X1 X1 X1 X1 X1

SUNLINSOL_PCG X1 X1 X1 X1 X1

Table 4.6: List of SUNDIALS GPU-enabled SUNNonlinearSolver
Modules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNNONLINSOL_NEWTON X1 X1 X1 X1 X1

SUNNONLINSOL_FIXEDPOINT X1 X1 X1 X1 X1

Notes regarding the above tables:

1. This module inherits support from the NVECTOR module used

2. Support for ROCm/HIP and oneAPI are currently untested.

4.8. Features for GPU Accelerated Computing 75

User Documentation for ARKODE, v6.3.0

3. Support for CUDA and ROCm/HIP are currently untested.

In addition, note that implicit UVM (i.e. malloc returning UVM) is not accounted for.

4.8.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS are:

1. Utilize a GPU-enabled N_Vector implementation. Initial data can be loaded on the host, but must be in the
device memory space prior to handing control to SUNDIALS.

2. Utilize a GPU-enabled SUNLinearSolver linear solver (if applicable).

3. Utilize a GPU-enabled SUNMatrix implementation (if using a matrix-based linear solver).

4. Utilize a GPU-enabled SUNNonlinearSolver nonlinear solver (if applicable).

5. Write user-supplied functions so that they use data only in the device memory space (again, unless an atypical
data partitioning is used). A few examples of these functions are the right-hand side evaluation function, the
Jacobian evaluation function, or the preconditioner evaluation function. In the context of CUDA and the right-
hand side function, one way a user might ensure data is accessed on the device is, for example, calling a CUDA
kernel, which does all of the computation, from a CPU function which simply extracts the underlying device data
array from the N_Vector object that is passed from SUNDIALS to the user-supplied function.

Users should refer to the above tables for a complete list of GPU-enabled native SUNDIALS modules.

76 Chapter 4. Getting Started

Chapter 5

Using ARKODE

This chapter discusses usage of ARKODE for the solution of initial value problems (IVPs) in C, C++ and Fortran
applications. The chapter builds upon §4. Unlike other packages in SUNDIALS, ARKODE provides an infrastructure
for one-step methods. However, ARKODE’s individual time-stepping methods, including definition of the IVP itself,
are handled by time-stepping modules that sit on top of ARKODE. While most of the routines to use ARKODE generally
apply to all of its time-stepping modules, some of these apply to only a subset of these “steppers,” while others are
specific to a given stepper.

Thus, we organize this chapter as follows. We first discuss commonalities to each of ARKODE’s time-stepping mod-
ules. These commonalities include the locations and naming conventions for the library and header files, data types
in SUNDIALS, the layout of the user’s main program, and a variety of user-callable and user-supplied functions. For
these user-callable routines, we distinguish those that apply for only a subset of ARKODE’s time-stepping modules.
We then describe shared utilities that are supported by some of ARKODE’s time stepping modules, including “relax-
ation” methods and preconitioners. Following our discussion of these commonalities, we separately discuss the usage
details that that are specific to each of ARKODE’s time stepping modules: ARKStep, ERKStep, ForcingStep, LSRKStep,
MRIStep, SplittingStep, and SPRKStep.

ARKODE also uses various input and output constants; these are defined as needed throughout this chapter, but for
convenience the full list is provided separately in §17.

The example programs for ARKODE are located in the source code examples/arkode folder. We note that these may
be helpful as templates for new codes. Users with applications written in Fortran should see the chapter §4.7, which
describes the Fortran interfaces for SUNDIALS, and we additionally include multiple Fortran example programs in the
ARKODE examples directory.

When solving problems with an implicit component, we note that not all SUNLINSOL, SUNMATRIX, and precon-
ditioning modules are compatible with all NVECTOR implementations. Details on compatibility are given in the
documentation for each SUNMATRIX (see §9) and each SUNLINSOL module (see §10). For example, NVECTOR_-
PARALLEL is not compatible with the dense, banded, or sparse SUNMATRIX types, or with the corresponding dense,
banded, or sparse SUNLINSOL modules. Please check §9 and §10 to verify compatibility between these modules. In
addition to that documentation, we note that the ARKBANDPRE preconditioning module is only compatible with the
NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS vector implementations, and the precon-
ditioner module ARKBBDPRE can only be used with NVECTOR_PARALLEL.

77

User Documentation for ARKODE, v6.3.0

5.1 Access to library and header files

At this point, it is assumed that the installation of ARKODE, following the procedure described in §16, has been
completed successfully. In the proceeding text, the directories libdir and incdir are the installation library and in-
clude directories, respectively. For a default installation, these are instdir/lib and instdir/include, respectively,
where instdir is the directory where SUNDIALS was installed.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by ARKODE. ARKODE symbols are
found in libdir/libsundials_arkode.lib. Thus, in addition to linking to libdir/libsundials_core.lib,
ARKODE users need to link to the ARKODE library. Symbols for additional SUNDIALS modules, vectors and alge-
braic solvers, are found in

<libdir>/libsundials_nvec*.lib
<libdir>/libsundials_sunmat*.lib
<libdir>/libsundials_sunlinsol*.lib
<libdir>/libsundials_sunnonlinsol*.lib
<libdir>/libsundials_sunmem*.lib

The file extension .lib is typically .so for shared libraries and .a for static libraries.

The relevant header files for ARKODE are located in the subdirectories incdir/include/arkode. To use ARKODE
the application needs to include the header file(s) for the ARKODE time-stepper(s) of choice in addition to the SUN-
DIALS core header file.

#include <sundials/sundials_core.h> // Provides core SUNDIALS types
#include <arkode/arkode_arkstep.h> // ARKStep provides explicit, implicit, IMEX additive RK methods.
#include <arkode/arkode_erkstep.h> // ERKStep provides explicit RK methods.
#include <arkode/arkode_forcingstep.h> // ForcingStep provides a forcing method.
#include <arkode/arkode_lsrkstep.h> // LSRKStep provides low-storage RK methods.
#include <arkode/arkode_mristep.h> // MRIStep provides multirate RK methods.
#include <arkode/arkode_splittingstep.h> // SplittingStep provides operator splitting methods.
#include <arkode/arkode_sprkstep.h> // SPRKStep provides symplectic partitioned RK methods.

Each of these define several types and various constants, include function prototypes, and include the shared arkode/
arkode.h and arkode/arkode_ls.h header files. No other header files are required to be included, but there are
optional ones that can be included as necessary. Information on optional headers is given in the relevant documentation
section.

The calling program must also include an N_Vector implementation header file, of the form nvector/nvector_*.h.
See §8 for the appropriate name.

If the user includes a non-trivial implicit component to their ODE system in ARKStep, or if the slow time scale for
MRIStep should be treated implicitly, then each implicit stage will require a nonlinear solver for the resulting sys-
tem of algebraic equations – the default for this is a modified or inexact Newton iteration, depending on the user’s
choice of linear solver. If choosing to set which nonlinear solver module, or when interacting with a SUNNonlin-
earSolver module directly, the calling program must also include a SUNNonlinearSolver header file, of the form
sunnonlinsol/sunnonlinsol_***.h where *** is the name of the nonlinear solver module (see §11 for more in-
formation).

If using a nonlinear solver that requires the solution of a linear system of the form Ax = b (e.g., the default Newton
iteration), then a linear solver module header file will also be required. Similarly, if the ODE system in ARKStep
involves a non-identity mass matrix M 6= I , then each time step will require a linear solver for systems of the form
Mx = b. In this case it will be necessary to include the header file for a SUNLinearSolver solver, which is of the
form sunlinsol/sunlinsol_***.h (see §10 for more information).

78 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

If the linear solver is matrix-based, the linear solver header will also include a header file of the from sunmatrix/
sunmatrix_*.h where * is the name of the matrix implementation compatible with the linear solver (see §9 for more
information).

Other headers may be needed, according to the choice of preconditioner, etc. For example, if preconditioning for an
iterative linear solver were performed using the ARKBBDPRE module, the header arkode/arkode_bbdpre.h is
needed to access the preconditioner initialization routines.

5.2 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
ARKODE. Most of the steps are independent of the NVECTOR, SUNMATRIX, SUNLINSOL and SUNNONLINSOL
implementations used. For the steps that are not, refer to §8, §9, §10, and §11 for the specific name of the function to
be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use within
the threaded vector functions, if used.

2. Create the SUNDIALS simulation context object.

Call SUNContext_Create() to allocate the SUNContext object.

3. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length Nlocal.

Note

The variables N and Nlocal should be of type sunindextype.

4. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the form

y0 = N_VMake_***(..., ydata);

if the sunrealtype array ydata containing the initial values of y already exists. Otherwise, create a new vector
by making a call of the form

y0 = N_VNew_***(...);

and then set its elements by accessing the underlying data where it is located with a call of the form

ydata = N_VGetArrayPointer_***(y0);

For details on each of SUNDIALS’ provided vector implementations, see the corresponding sections in §8 for
details.

5. Create ARKODE object

Call a stepper-specific constructor, arkode_mem = *StepCreate(...), to create the ARKODE memory
block. These routines return a void* pointer to this memory structure. See §5.7.1.1, §5.8.1.1, §5.11.2.1, or
§5.13.1.1 for details.

5.2. A skeleton of the user’s main program 79

User Documentation for ARKODE, v6.3.0

6. Specify integration tolerances

Call ARKodeSStolerances() or ARKodeSVtolerances() to specify either a scalar relative tolerance and
scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respectively. Alter-
natively, call ARKodeWFtolerances() to specify a function which sets directly the weights used in evaluating
WRMS vector norms. See §5.3.2 for details.

If a problem with non-identity mass matrix is used, and the solution units differ considerably from the equation
units, absolute tolerances for the equation residuals (nonlinear and linear) may be specified separately through
calls to ARKodeResStolerance(), ARKodeResVtolerance(), or ARKodeResFtolerance().

7. Create matrix object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration) and the linear solver will be
a matrix-based linear solver, then a template Jacobian matrix must be created by using the appropriate functions
defined by the particular SUNMATRIX implementation.

For the SUNDIALS-supplied SUNMATRIX implementations, the matrix object may be created using a call of
the form

SUNMatrix A = SUNBandMatrix(..., sunctx);

or similar for the other matrix modules (see §9 for further information).

Similarly, if the problem involves a non-identity mass matrix, and the mass-matrix linear systems will be solved
using a direct linear solver, then a template mass matrix must be created by using the appropriate functions
defined by the particular SUNMATRIX implementation.

8. Create linear solver object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration), or if the problem involves
a non-identity mass matrix, then the desired linear solver object(s) must be created by using the appropriate
functions defined by the particular SUNLINSOL implementation.

For any of the SUNDIALS-supplied SUNLINSOL implementations, the linear solver object may be created
using a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §10.

9. Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to that linear
solver. See the documentation for each SUNLINSOL module in §10 for details.

10. Attach linear solver module

If a linear solver was created above for implicit stage solves, initialize the ARKLS linear solver interface by
attaching the linear solver object (and Jacobian matrix object, if applicable) with the call (for details see §5.3.3):

ier = ARKodeSetLinearSolver(...);

Similarly, if the problem involves a non-identity mass matrix, initialize the ARKLS mass matrix linear solver
interface by attaching the mass linear solver object (and mass matrix object, if applicable) with the call (for details
see §5.3.3):

ier = ARKodeSetMassLinearSolver(...);

11. Create nonlinear solver object

80 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

If the problem involves an implicit component, and if a non-default nonlinear solver object will be used for
implicit stage solves (see §5.3.5), then the desired nonlinear solver object must be created by using the appropriate
functions defined by the particular SUNNONLINSOL implementation (e.g., NLS = SUNNonlinSol_***(...
); where *** is the name of the nonlinear solver (see §11 for details).

For the SUNDIALS-supplied SUNNONLINSOL implementations, the nonlinear solver object may be created
using a call of the form

SUNNonlinearSolver NLS = SUNNonlinSol_*(...);

where * can be replaced with “Newton”, “FixedPoint”, or other options, as discussed in §11.

12. Attach nonlinear solver module

If a nonlinear solver object was created above, then it must be attached to ARKODE using the call (for details
see §5.3.5):

ier = ARKodeSetNonlinearSolver(...);

13. Set nonlinear solver optional inputs

Call the appropriate set functions for the selected nonlinear solver module to change optional inputs specific
to that nonlinear solver. These must be called after attaching the nonlinear solver to ARKODE, otherwise the
optional inputs will be overridden by ARKODE defaults. See §11 for more information on optional inputs.

14. Set optional inputs

Call ARKodeSet* functions to change any optional inputs that control the behavior of ARKODE from their
default values. See §5.3.8 for details.

Additionally, call *StepSet* routines to change any stepper-specific optional inputs from their default values.
See §5.7.1.8, §5.8.1.5, §5.11.2.7, or §5.13.1.4 for details.

15. Specify rootfinding problem

Optionally, call ARKodeRootInit() to initialize a rootfinding problem to be solved during the integration of the
ODE system. See §5.3.6 for general details, and §5.3.8 for relevant optional input calls.

16. Advance solution in time

For each point at which output is desired, call

ier = ARKodeEvolve(arkode_mem, tout, yout, &tret, itask);

Here, itask specifies the return mode. The vector yout (which can be the same as the vector y0 above) will
contain y(tout). See §5.3.7 for details.

17. Get optional outputs

Call ARKodeGet* functions to obtain optional output. See §5.3.10 for details.

Additionally, call *StepGet* routines to retrieve any stepper-specific optional outputs. See §5.7.1.10, §5.8.1.7,
§5.11.2.9, or §5.13.1.6 for details.

18. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the destructor
function:

N_VDestroy(y);

19. Free solver memory

Call ARKodeFree() to free the memory allocated for the ARKODE module (and any nonlinear solver module).

5.2. A skeleton of the user’s main program 81

User Documentation for ARKODE, v6.3.0

20. Free linear solver and matrix memory

Call SUNLinSolFree() and (possibly) SUNMatDestroy() to free any memory allocated for the linear solver
and matrix objects created above.

21. Free nonlinear solver memory

If a user-supplied SUNNonlinearSolver was provided to ARKODE, then call SUNNonlinSolFree() to free
any memory allocated for the nonlinear solver object created above.

22. Free the SUNContext object

Call SUNContext_Free() to free the memory allocated for the SUNContext object.

23. Finalize MPI, if used

Call MPI_Finalize to terminate MPI.

5.3 ARKODE User-callable functions

This section describes the shared ARKODE functions that are called by the user to setup and then solve an IVP. Some
of these are required; however, starting with §5.3.8, the functions listed involve optional inputs/outputs or restarting,
and those paragraphs may be skipped for a casual use of ARKODE. In any case, refer to the preceding section, §5.2,
for the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler, which prints the message to stderr by default. However, the user can set a file
as error output or can provide their own error handler (see §4.3 for details).

We note that depending on the choice of time-stepping module, only a subset of ARKODE’s user-callable functions
will be applicable/supported. We thus categorize the functions below into five groups:

A. functions that apply for all time-stepping modules,

B. functions that apply for time-stepping modules that allow temporal adaptivity,

C. functions that apply for time-stepping modules that utilize implicit solvers (nonlinear or linear),

D. functions that apply for time-stepping modules that support non-identity mass matrices, and

E. functions that apply for time-stepping modules that support relaxation Runge–Kutta methods.

In the function descriptions below, we identify those that have any of the restrictions B-E above. Then in the introduction
for each of the stepper-specific documentation sections (§5.7.1, §5.8.1, §5.9.1, §5.10.1, §5.11.2, §5.12.2, and §5.13.1)
we clarify the categories of these functions that are supported.

5.3.1 ARKODE initialization and deallocation functions

For functions to create an ARKODE stepper instance see ARKStepCreate(), ERKStepCreate(), ForcingStepCre-
ate(), LSRKStepCreateSTS(), LSRKStepCreateSSP(), MRIStepCreate(), SplittingStepCreate(), or
SPRKStepCreate().

void ARKodeFree(void **arkode_mem)
This function frees the problem memory created a stepper constructor.

Parameters

• arkode_mem – pointer to the ARKODE stepper memory block.

Returns
none

82 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Added in version 6.1.0: This function replaces stepper specific versions in ARKStep, ERKStep, MRIStep, and
SPRKStep.

5.3.2 ARKODE tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to ARKodeE-
volve(); otherwise default values of reltol = 1e-4 and abstol = 1e-9 will be used, which may be entirely
incorrect for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of ARKodeSStoler-
ances(), this vector has components

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol);

whereas in the case of ARKodeSVtolerances() the vector components are given by

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol[i]);

This vector is used in all error and convergence tests, which use a weighted RMS norm on all error-like vectors v:

‖v‖WRMS =

(
1

N

N∑
i=1

(vi ewti)
2

)1/2

,

where N is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to ARKodeWFtoler-
ances().

int ARKodeSStolerances(void *arkode_mem, sunrealtype reltol, sunrealtype abstol)
This function specifies scalar relative and absolute tolerances.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• reltol – scalar relative tolerance.

• abstol – scalar absolute tolerance.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_NO_MALLOC – arkode_mem was not allocated.

• ARK_ILL_INPUT – an argument had an illegal value (e.g. a negative tolerance).

Added in version 6.1.0.

int ARKodeSVtolerances(void *arkode_mem, sunrealtype reltol, N_Vector abstol)
This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• reltol – scalar relative tolerance.

• abstol – vector containing the absolute tolerances for each solution component.

5.3. ARKODE User-callable functions 83

User Documentation for ARKODE, v6.3.0

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_NO_MALLOC – arkode_mem was not allocated.

• ARK_ILL_INPUT – an argument had an illegal value (e.g. a negative tolerance).

Added in version 6.1.0.

int ARKodeWFtolerances(void *arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• efun – the name of the function (of type ARKEwtFn()) that implements the error weight
vector computation.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_NO_MALLOC – arkode_mem was not allocated.

Added in version 6.1.0.

Moreover, for problems involving a non-identity mass matrixM 6= I , the units of the solution vector y may differ from
the units of the IVP, posed for the vector My. When this occurs, iterative solvers for the Newton linear systems and
the mass matrix linear systems may require a different set of tolerances. Since the relative tolerance is dimensionless,
but the absolute tolerance encodes a measure of what is “small” in the units of the respective quantity, a user may
optionally define absolute tolerances in the equation units. In this case, ARKODE defines a vector of residual weights,
rwt for measuring convergence of these iterative solvers. In the case of ARKodeResStolerance(), this vector has
components

rwt[i] = 1.0/(reltol*abs(My[i]) + rabstol);

whereas in the case of ARKodeResVtolerance() the vector components are given by

rwt[i] = 1.0/(reltol*abs(My[i]) + rabstol[i]);

This residual weight vector is used in all iterative solver convergence tests, which similarly use a weighted RMS norm
on all residual-like vectors v:

‖v‖WRMS =

(
1

N

N∑
i=1

(vi rwti)
2

)1/2

,

where N is the problem dimension.

As with the error weight vector, the user may supply a custom function to supply the rwt vector, through a call to
ARKodeResFtolerance(). Further information on all three of these functions is provided below.

int ARKodeResStolerance(void *arkode_mem, sunrealtype rabstol)
This function specifies a scalar absolute residual tolerance.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

84 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• rabstol – scalar absolute residual tolerance.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_NO_MALLOC – arkode_mem was not allocated.

• ARK_ILL_INPUT – an argument had an illegal value (e.g. a negative tolerance).

Added in version 6.1.0.

int ARKodeResVtolerance(void *arkode_mem, N_Vector rabstol)
This function specifies a vector of absolute residual tolerances.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• rabstol – vector containing the absolute residual tolerances for each solution component.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_NO_MALLOC – arkode_mem was not allocated.

• ARK_ILL_INPUT – an argument had an illegal value (e.g. a negative tolerance).

Added in version 6.1.0.

int ARKodeResFtolerance(void *arkode_mem, ARKRwtFn rfun)
This function specifies a user-supplied function rfun to compute the residual weight vector rwt.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• rfun – the name of the function (of type ARKRwtFn()) that implements the residual weight
vector computation.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_NO_MALLOC – arkode_mem was not allocated.

Added in version 6.1.0.

5.3.2.1 General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol, abstol, and rabstol are a concern. The
following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10−4 means that errors
are controlled to .01%. We do not recommend using reltol larger than 10−3. On the other hand, reltol
should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around
10−15 for double-precision).

5.3. ARKODE User-callable functions 85

User Documentation for ARKODE, v6.3.0

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector y may be so small that pure relative error control is meaningless. For example,
if yi starts at some nonzero value, but in time decays to zero, then pure relative error control on yi makes no sense
(and is overly costly) after yi is below some noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs
to be set to that noise level. If the different components have different noise levels, then abstol should be a vector.
For example, see the example problem ark_robertson.c, and the discussion of it in the ARKODE Examples
Documentation [86]. In that problem, the three components vary between 0 and 1, and have different noise
levels; hence the atols vector therein. It is impossible to give any general advice on abstol values, because
the appropriate noise levels are completely problem-dependent. The user or modeler hopefully has some idea as
to what those noise levels are.

(3) The residual absolute tolerances rabstol (whether scalar or vector) follow a similar explanation as for abstol,
except that these should be set to the noise level of the equation components, i.e. the noise level of My. For
problems in which M = I , it is recommended that rabstol be left unset, which will default to the already-
supplied abstol values.

(4) Finally, it is important to pick all the tolerance values conservatively, because they control the error committed
on each individual step. The final (global) errors are an accumulation of those per-step errors, where that accu-
mulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of 10 from
the actual desired limits on errors. So if you want .01% relative accuracy (globally), a good choice for reltol is
10−5. In any case, it is a good idea to do a few experiments with the tolerances to see how the computed solution
values vary as tolerances are reduced.

5.3.2.2 Advice on controlling nonphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (nonphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.

(1) The best way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again
this requires some knowledge of the noise level of these components, which may or may not be different for
different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context
of the output medium. Then the internal values carried by the solver are unaffected. Remember that a small
negative value in y returned by ARKODE, with magnitude comparable to abstol or less, is equivalent to zero
as far as the computation is concerned.

(3) The user’s right-hand side routines fE and f I should never change a negative value in the solution vector y to a
non-negative value in attempt to “fix” this problem, since this can lead to numerical instability. If the fE or f I
routines cannot tolerate a zero or negative value (e.g. because there is a square root or log), then the offending
value should be changed to zero or a tiny positive number in a temporary variable (not in the input y vector) for
the purposes of computing fE(t, y) or f I(t, y).

(4) Some of ARKODE’s time stepping modules support component-wise constraints on solution components, yi <
0, yi ≤ 0, yi > 0, or yi ≥ 0, through the user-callable function ARKodeSetConstraints(). At each internal
time step, if any constraint is violated then ARKODE will attempt a smaller time step that should not violate this
constraint. This reduced step size is chosen such that the step size is the largest possible but where the solution
component satisfies the constraint.

(5) For time-stepping modules that support temporal adaptivity, positivity and non-negativity constraints on com-
ponents can also be enforced by use of the recoverable error return feature in the user-supplied right-hand side
function(s). When a recoverable error is encountered, ARKODE will retry the step with a smaller step size,
which typically alleviates the problem. However, since this reduced step size is chosen without knowledge of the

86 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

solution constraint, it may be overly conservative. Thus this option involves some additional overhead cost, and
should only be exercised if the above recommendations are unsuccessful.

5.3.3 Linear solver interface functions

As previously explained, the Newton iterations used in solving implicit systems within ARKODE require the solution
of linear systems of the form

A
(
z
(m)
i

)
δ(m+1) = −G

(
z
(m)
i

)
where

A ≈M − γJ, J =
∂f I

∂y
.

ARKODE’s ARKLS linear solver interface supports all valid SUNLinearSolver modules for this task.

Matrix-based SUNLinearSolver modules utilize SUNMatrix objects to store the approximate Jacobian matrix J , the
Newton matrix A, the mass matrix M , and, when using direct solvers, the factorizations used throughout the solution
process.

Matrix-free SUNLinearSolver modules instead use iterative methods to solve the Newton systems of equations, and
only require the action of the matrix on a vector, Av. With most of these methods, preconditioning can be done on
the left only, on the right only, on both the left and the right, or not at all. The exceptions to this rule are SPFGMR
that supports right preconditioning only and PCG that performs symmetric preconditioning. For the specification of a
preconditioner, see the iterative linear solver portions of §5.3.8 and §5.4.

If preconditioning is done, user-supplied functions should be used to define left and right preconditioner matrices P1

and P2 (either of which could be the identity matrix), such that the product P1P2 approximates the Newton matrix
A = M − γJ .

To specify a generic linear solver for ARKODE to use for the Newton systems, after the call to *StepCreate but before
any calls to ARKodeEvolve(), the user’s program must create the appropriate SUNLinearSolver object and call the
function ARKodeSetLinearSolver(), as documented below. To create the SUNLinearSolver object, the user may
call one of the SUNDIALS-packaged SUNLinSol module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

The current list of SUNDIALS-packaged SUNLinSol modules, and their constructor routines, may be found in chapter
§10. Alternately, a user-supplied SUNLinearSolver module may be created and used. Specific information on how
to create such user-provided modules may be found in §10.1.8.

Once this solver object has been constructed, the user should attach it to ARKODE via a call to ARKodeSetLinear-
Solver(). The first argument passed to this function is the ARKODE memory pointer returned by *StepCreate;
the second argument is the SUNLinearSolver object created above. The third argument is an optional SUNMatrix
object to accompany matrix-based SUNLinearSolver inputs (for matrix-free linear solvers, the third argument should
be NULL). A call to this function initializes the ARKLS linear solver interface, linking it to the ARKODE integrator,
and allows the user to specify additional parameters and routines pertinent to their choice of linear solver.

int ARKodeSetLinearSolver(void *arkode_mem, SUNLinearSolver LS, SUNMatrix J)
This function specifies the SUNLinearSolver object that ARKODE should use, as well as a template Jacobian
SUNMatrix object (if applicable).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• LS – the SUNLinearSolver object to use.

5.3. ARKODE User-callable functions 87

User Documentation for ARKODE, v6.3.0

• J – the template Jacobian SUNMatrix object to use (or NULL if not applicable).

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_MEM_FAIL – there was a memory allocation failure.

• ARKLS_ILL_INPUT – ARKLS is incompatible with the provided LS or J input objects, or
the current N_Vector module.

• ARK_STEPPER_UNSUPPORTED – linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

If LS is a matrix-free linear solver, then the J argument should be NULL.

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process, so if
additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size (see the documentation of the particular SUNMATRIX
type in the §9 for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full
sparsity pattern of the Newton system matrices A = M − γJ , even if J itself has zeros in nonzero locations
of M . The reasoning for this is that A is constructed in-place, on top of the user-specified values of J, so if
the sparsity pattern in J is insufficient to store A then it will need to be resized internally by ARKODE.

Added in version 6.1.0.

5.3.4 Mass matrix solver specification functions

As discussed in §2.15.6, if the ODE system involves a non-identity mass matrix M 6= I , then ARKODE must solve
linear systems of the form

Mx = b.

ARKODE’s ARKLS mass-matrix linear solver interface supports all valid SUNLinearSolver modules for this task.
For iterative linear solvers, user-supplied preconditioning can be applied. For the specification of a preconditioner, see
the iterative linear solver portions of §5.3.8 and §5.4. If preconditioning is to be performed, user-supplied functions
should be used to define left and right preconditioner matrices P1 and P2 (either of which could be the identity matrix),
such that the product P1P2 approximates the mass matrix M .

To specify a generic linear solver for ARKODE to use for mass matrix systems, after the call to *StepCreate but
before any calls to ARKodeEvolve(), the user’s program must create the appropriate SUNLinearSolver object and
call the function ARKodeSetMassLinearSolver(), as documented below. The first argument passed to this function
is the ARKODE memory pointer returned by *StepCreate; the second argument is the desired SUNLinearSolver
object to use for solving mass matrix systems. The third object is a template SUNMatrix to use with the provided
SUNLinearSolver (if applicable). The fourth input is a flag to indicate whether the mass matrix is time-dependent,
i.e. M = M(t), or not. A call to this function initializes the ARKLS mass matrix linear solver interface, linking this
to the main ARKODE integrator, and allows the user to specify additional parameters and routines pertinent to their
choice of linear solver.

88 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Note: if the user program includes linear solvers for both the Newton and mass matrix systems, these must have the
same type:

• If both are matrix-based, then they must utilize the same SUNMatrix type, since these will be added when forming
the Newton system matrix A. In this case, both the Newton and mass matrix linear solver interfaces can use the
same SUNLinearSolver object, although different solver objects (e.g. with different solver parameters) are also
allowed.

• If both are matrix-free, then the Newton and mass matrix SUNLinearSolver objects must be different. These
may even use different solver algorithms (SPGMR, SPBCGS, etc.), if desired. For example, if the mass matrix
is symmetric but the Jacobian is not, then PCG may be used for the mass matrix systems and SPGMR for the
Newton systems.

int ARKodeSetMassLinearSolver(void *arkode_mem, SUNLinearSolver LS, SUNMatrix M, sunbooleantype
time_dep)

This function specifies the SUNLinearSolver object that ARKODE should use for mass matrix systems, as well
as a template SUNMatrix object.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• LS – the SUNLinearSolver object to use.

• M – the template mass SUNMatrix object to use.

• time_dep – flag denoting whether the mass matrix depends on the independent variable
(M = M(t)) or not (M 6= M(t)). SUNTRUE indicates time-dependence of the mass matrix.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_MEM_FAIL – there was a memory allocation failure.

• ARKLS_ILL_INPUT – ARKLS is incompatible with the provided LS or M input objects, or
the current N_Vector module.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

If LS is a matrix-free linear solver, then the M argument should be NULL.

If LS is a matrix-based linear solver, then the template mass matrix M will be used in the solve process, so if
additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size.

If called with time_dep set to SUNFALSE, then the mass matrix is only computed and factored once (or when
either *StepReInit or ARKodeResize() are called), with the results reused throughout the entire ARKODE
simulation.

Unlike the system Jacobian, the system mass matrix is not approximated using finite-differences of any func-
tions provided to ARKODE. Hence, use of the a matrix-based LS requires the user to provide a mass-matrix
constructor routine (see ARKLsMassFn and ARKodeSetMassFn()).

5.3. ARKODE User-callable functions 89

User Documentation for ARKODE, v6.3.0

Similarly, the system mass matrix-vector-product is not approximated using finite-differences of any functions
provided to ARKODE. Hence, use of a matrix-free LS requires the user to provide a mass-matrix-times-vector
product routine (see ARKLsMassTimesVecFn and ARKodeSetMassTimes()).

Added in version 6.1.0.

5.3.5 Nonlinear solver interface functions

When changing the nonlinear solver in ARKODE, after the call to *StepCreate but before any calls to ARKodeE-
volve(), the user’s program must create the appropriate SUNNonlinearSolver object and call ARKodeSetNonlin-
earSolver(), as documented below. If any calls to ARKodeEvolve() have been made, then ARKODE will need to be
reinitialized by calling *StepReInit to ensure that the nonlinear solver is initialized correctly before any subsequent
calls to ARKodeEvolve().

The first argument passed to the routine ARKodeSetNonlinearSolver() is the ARKODE memory pointer returned
by *StepCreate; the second argument passed to this function is the desired SUNNonlinearSolver object to use for
solving the nonlinear system for each implicit stage. A call to this function attaches the nonlinear solver to the main
ARKODE integrator.

int ARKodeSetNonlinearSolver(void *arkode_mem, SUNNonlinearSolver NLS)
This function specifies the SUNNonlinearSolver object that ARKODE should use for implicit stage solves.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• NLS – the SUNNonlinearSolver object to use.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_MEM_FAIL – there was a memory allocation failure.

• ARK_ILL_INPUT – ARKODE is incompatible with the provided NLS input object.

• ARK_STEPPER_UNSUPPORTED – nonlinear solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

ARKODE will use the Newton SUNNonlinearSolvermodule by default; a call to this routine replaces that
module with the supplied NLS object.

Added in version 6.1.0.

90 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.3.6 Rootfinding initialization function

As described in §2.16, while solving the IVP, ARKODE’s time-stepping modules have the capability to find the roots
of a set of user-defined functions. To activate the root-finding algorithm, call the following function. This is normally
called only once, prior to the first call to ARKodeEvolve(), but if the rootfinding problem is to be changed during the
solution, ARKodeRootInit() can also be called prior to a continuation call to ARKodeEvolve().

Note

The solution is interpolated to the times at which roots are found.

int ARKodeRootInit(void *arkode_mem, int nrtfn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
*StepCreate, and before ARKodeEvolve().

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nrtfn – number of functions gi, an integer ≥ 0.

• g – name of user-supplied function, of type ARKRootFn(), defining the functions gi whose
roots are sought.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_MEM_FAIL – there was a memory allocation failure.

• ARK_ILL_INPUT – nrtfn is greater than zero but g is NULL.

Note

To disable the rootfinding feature after it has already been initialized, or to free memory associated with
ARKODE’s rootfinding module, call ARKodeRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to *StepReInit, where the new IVP has no rootfinding
problem but the prior one did, then call ARKodeRootInit with nrtfn = 0.

Added in version 6.1.0.

5.3.7 ARKODE solver function

This is the central step in the solution process – the call to perform the integration of the IVP. The input argument itask
specifies one of two modes as to where ARKODE is to return a solution. These modes are modified if the user has set
a stop time (with a call to the optional input function ARKodeSetStopTime()) or has requested rootfinding.

int ARKodeEvolve(void *arkode_mem, sunrealtype tout, N_Vector yout, sunrealtype *tret, int itask)
Integrates the ODE over an interval in t.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• tout – the next time at which a computed solution is desired.

5.3. ARKODE User-callable functions 91

User Documentation for ARKODE, v6.3.0

• yout – the computed solution vector.

• tret – the time corresponding to yout (output).

• itask – a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken
a user-specified output time, tout, in the direction of integration, i.e. tn−1 < tout ≤ tn for
forward integration, or tn ≤ tout< tn−1 for backward integration. If interpolation is enabled
(on by default), it will then compute an approximation to the solution y(tout) by interpolation
(as described in §2.2). Otherwise, the solution at the time reached by the solver is returned,
y(tret).

The ARK_ONE_STEP option tells the solver to only take a single internal step, yn−1 → yn,
and return the solution at that point, yn, in the vector yout.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_ROOT_RETURN – ARKodeEvolve() succeeded, and found one or more roots. If the
number of root functions, nrtfn, is greater than 1, call ARKodeGetRootInfo() to see which
gi were found to have a root at (*tret).

• ARK_TSTOP_RETURN – ARKodeEvolve() succeeded and returned at tstop.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_NO_MALLOC – arkode_mem was not allocated.

• ARK_ILL_INPUT – one of the inputs to ARKodeEvolve() is illegal, or some other input to
the solver was either illegal or missing. Details will be provided in the error message. Typical
causes of this failure:

(a) A component of the error weight vector became zero during internal time-stepping.

(b) The linear solver initialization function (called by the user after calling *StepCreate)
failed to set the linear solver-specific lsolve field in arkode_mem.

(c) A root of one of the root functions was found both at a point t and also very near t.

(d) The initial condition violates the inequality constraints.

• ARK_TOO_MUCH_WORK – the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

• ARK_TOO_MUCH_ACC – the solver could not satisfy the accuracy demanded by the user for
some internal step.

• ARK_ERR_FAILURE – error test failures occurred either too many times (ark_maxnef) during
one internal time step or occurred with |h| = hmin.

• ARK_CONV_FAILURE – either convergence test failures occurred too many times (ark_-
maxncf) during one internal time step or occurred with |h| = hmin.

• ARK_LINIT_FAIL – the linear solver’s initialization function failed.

• ARK_LSETUP_FAIL – the linear solver’s setup routine failed in an unrecoverable manner.

• ARK_LSOLVE_FAIL – the linear solver’s solve routine failed in an unrecoverable manner.

• ARK_MASSINIT_FAIL – the mass matrix solver’s initialization function failed.

• ARK_MASSSETUP_FAIL – the mass matrix solver’s setup routine failed.

• ARK_MASSSOLVE_FAIL – the mass matrix solver’s solve routine failed.

92 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_VECTOROP_ERR – a vector operation error occurred.

• ARK_DOMEIG_FAIL – the dominant eigenvalue function failed. It is either not provided or
returns an illegal value.

• ARK_MAX_STAGE_LIMIT_FAIL – stepper failed to achieve stable results. Either reduce the
step size or increase the stage_max_limit

Note

The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
*StepCreate.

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale
of the independent variable.

All failure return values are negative and so testing the return argument for negative values will trap all
ARKodeEvolve() failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to ARKodeSetStopTime() before the call to ARKodeEvolve() to specify a fixed
stop time to end the time step and return to the user. Upon return from ARKodeEvolve(), a copy of the
internal solution yn will be returned in the vector yout. Once the integrator returns at a tstop time, any future
testing for tstop is disabled (and can be re-enabled only though a new call to ARKodeSetStopTime()).

On any error return in which one or more internal steps were taken by ARKodeEvolve(), the returned values
of tret and yout correspond to the farthest point reached in the integration. On all other error returns, tret and
yout are left unchanged from those provided to the routine.

Added in version 6.1.0.

5.3.8 Optional input functions

There are numerous optional input parameters that control the behavior of ARKODE, each of which may be modified
from its default value through calling an appropriate input function. The following tables list all optional input functions,
grouped by which aspect of ARKODE they control. Detailed information on the calling syntax and arguments for each
function are then provided following each table.

The optional inputs are grouped into the following categories:

• General ARKODE options (Optional inputs for ARKODE),

• Step adaptivity solver options (Optional inputs for time step adaptivity),

• Implicit stage solver options (Optional inputs for implicit stage solves),

• Linear solver interface options (Linear solver interface optional input functions), and

• Rootfinding options (Rootfinding optional input functions).

For the most casual use of ARKODE, relying on the default set of solver parameters, the reader can skip to section on
user-supplied functions, §5.4.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so a test on the return arguments for negative values will catch all errors. Finally, a
call to an ARKodeSet*** function can generally be made from the user’s calling program at any time after creation of
the ARKODE solver via *StepCreate, and, the function exited successfully, takes effect immediately. ARKodeSet***
functions that cannot be called at any time note this in the “notes” section of the function documentation.

5.3. ARKODE User-callable functions 93

User Documentation for ARKODE, v6.3.0

5.3.8.1 Optional inputs for ARKODE

Optional input Function name Default
Return ARKODE parameters to their defaults ARKodeSetDefaults() internal
Set integrator method order ARKodeSetOrder() 4
Set dense output interpolation type ARKodeSetInterpolantType() stepper-specific
Set dense output polynomial degree ARKodeSetInterpolantDegree() method-

dependent
Disable time step adaptivity (fixed-step mode) ARKodeSetFixedStep() disabled
Set forward or backward integration direction ARKodeSetStepDirection() 0.0
Supply an initial step size to attempt ARKodeSetInitStep() estimated
Maximum no. of warnings for tn + h = tn ARKodeSetMaxHnilWarns() 10
Maximum no. of internal steps before tout ARKodeSetMaxNumSteps() 500
Maximum absolute step size ARKodeSetMaxStep() ∞
Minimum absolute step size ARKodeSetMinStep() 0.0
Set a value for tstop ARKodeSetStopTime() undefined
Interpolate at tstop ARKodeSetInterpolateStopTime() SUNFALSE
Disable the stop time ARKodeClearStopTime() N/A
Supply a pointer for user data ARKodeSetUserData() NULL
Maximum no. of ARKODE error test failures ARKodeSetMaxErrTestFails() 7
Set inequality constraints on solution ARKodeSetConstraints() NULL
Set max number of constraint failures ARKodeSetMaxNumConstrFails() 10
Set the checkpointing scheme to use (for ad-
joint)

ARKodeSetAdjointCheck-
pointScheme()

NULL

Set the checkpointing step index (for adjoint) ARKodeSetAdjointCheckpointIn-
dex()

0

int ARKodeSetDefaults(void *arkode_mem)
Resets all optional input parameters to ARKODE’s original default values.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

Note

Does not change the user_data pointer or any parameters within the specified time-stepping module.

Also leaves alone any data structures or options related to root-finding (those can be reset using ARKodeRoo-
tInit()).

Added in version 6.1.0.

int ARKodeSetOrder(void *arkode_mem, int ord)
Specifies the order of accuracy for the IVP integration method.

Parameters

94 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• arkode_mem – pointer to the ARKODE memory block.

• ord – requested order of accuracy.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – this option is not supported by the time-stepping module.

Note

For explicit methods, the allowed values are 2 ≤ ord ≤ 8. For implicit methods, the allowed values are 2 ≤
ord ≤ 5, and for ImEx methods the allowed values are 2 ≤ ord ≤ 5. Any illegal input will result in the
default value of 4.

Since ord affects the memory requirements for the internal ARKODE memory block, it cannot be changed
after the first call to ARKodeEvolve(), unless *StepReInit is called.

Added in version 6.1.0.

int ARKodeSetInterpolantType(void *arkode_mem, int itype)
Specifies the interpolation type used for dense output (interpolation of solution output values) and implicit
method predictors. By default, Hermite interpolation is used except with SPRK methods where Lagrange inter-
polation is the default.

This routine must be called after the calling a stepper constructor. After the first call to ARKodeEvolve() the
interpolation type may not be changed without first calling a stepper ReInit function.

The Hermite interpolation module (ARK_INTERP_HERMITE) is described in §2.2.1, and the Lagrange interpola-
tion module (ARK_INTERP_LAGRANGE) is described in §2.2.2. ARK_INTERP_NONE will disable interpolation.

When interpolation is disabled, using rootfinding is not supported, implicit methods must use the trivial predictor
(the default option), and interpolation at stop times cannot be used (interpolating at stop times is disabled by
default). With interpolation disabled, calling ARKodeEvolve() in ARK_NORMAL mode will return at or past the
requested output time (setting a stop time may still be used to halt the integrator at a specific time).

Disabling interpolation will reduce the memory footprint of an integrator by two or more state vectors (depending
on the interpolant type and degree) which can be beneficial when interpolation is not needed e.g., when integrat-
ing to a final time without output in between or using a solver from ARKODE as a fast time scale integrator with
MRI methods.

This routine frees any previously-allocated interpolation module, and re-creates one according to the specified
argument.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• itype – requested interpolant type: ARK_INTERP_HERMITE, ARK_INTERP_LAGRANGE, or
ARK_INTERP_NONE

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_MEM_FAIL – the interpolation module could not be allocated.

5.3. ARKODE User-callable functions 95

User Documentation for ARKODE, v6.3.0

• ARK_ILL_INPUT – the itype argument is not recognized or the interpolation module has
already been initialized.

Changed in version 6.1.0: This function replaces stepper specific versions in ARKStep, ERKStep, MRIStep, and
SPRKStep.

Added the ARK_INTERP_NONE option to disable interpolation.

Values set by a previous call to ARKStepSetInterpolantDegree() are no longer nullified by a call to ARK-
StepSetInterpolantType().

int ARKodeSetInterpolantDegree(void *arkode_mem, int degree)
Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• degree – requested polynomial degree.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem or the interpolation module are NULL.

• ARK_INTERP_FAIL – this was called after ARKodeEvolve().

• ARK_ILL_INPUT – an argument had an illegal value or the interpolation module has already
been initialized.

Note

Allowed values are between 0 and 5.

This routine should be called before ARKodeEvolve(). After the first call to ARKodeEvolve() the interpo-
lation degree may not be changed without first calling *StepReInit.

If a user calls both this routine and ARKodeSetInterpolantType(), then ARKodeSetInterpolant-
Type() must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on
which it is based, the actual polynomial degree that is used by ARKODE will be the minimum of q − 1 and
the input degree, for q > 1 where q is the order of accuracy for the time integration method.

When q = 1, a linear interpolant is the default to ensure values obtained by the integrator are returned at the
ends of the time interval.

Added in version 6.1.0.

int ARKodeSetFixedStep(void *arkode_mem, sunrealtype hfixed)
Disables time step adaptivity within ARKODE, and specifies the fixed time step size to use for the following
internal step(s).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• hfixed – value of the fixed step size to use.

Return values

• ARK_SUCCESS – the function exited successfully.

96 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

Note

Pass 0.0 to return ARKODE to the default (adaptive-step) mode – this is only allowed when using a time-
stepping module that supports temporal adaptivity.

Use of this function is not generally recommended, since it gives no assurance of the validity of the computed
solutions. It is primarily provided for code-to-code verification testing purposes.

When using ARKodeSetFixedStep(), any values provided to the functions ARKodeSetInitStep(),
ARKodeSetMaxErrTestFails(), ARKodeSetCFLFraction(), ARKodeSetErrorBias(), ARKodeSet-
FixedStepBounds(), ARKodeSetMaxCFailGrowth(), ARKodeSetMaxEFailGrowth(), ARKodeSet-
MaxFirstGrowth(), ARKodeSetMaxGrowth(), ARKodeSetMinReduction(), ARKodeSetSafetyFac-
tor(), ARKodeSetSmallNumEFails(), ARKodeSetStabilityFn(), ARKodeSetAdaptController(),
and ARKodeSetAdaptControllerByName() will be ignored, since temporal adaptivity is disabled.

If both ARKodeSetFixedStep() and ARKodeSetStopTime() are used, then the fixed step size will be
used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ARKodeSetFixedStep() must be made prior to calling
ARKodeEvolve() to resume integration.

It is not recommended that ARKodeSetFixedStep() be used in concert with ARKodeSetMaxStep() or
ARKodeSetMinStep(), since at best those latter two routines will provide no useful information to the solver,
and at worst they may interfere with the desired fixed step size.

Added in version 6.1.0.

int ARKodeSetStepDirection(void *arkode_mem, sunrealtype stepdir)
Specifies the direction of integration (forward or backward).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• stepdir – value whose sign determines the direction. A positive value selects forward inte-
gration, a negative value selects backward integration, and zero leaves the current direction
unchanged.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

Note

The step direction can only be set after a call to either *Create, *StepReInit, or ARKodeReset() but
before a call to ARKodeEvolve().

When the direction changes for an adaptive method, the adaptivity controller and next step size are reset. A
new initial step size will be estimated at the next call to ARKodeEvolve() or can be specified with ARKode-
SetInitStep().

Added in version 6.2.0.

5.3. ARKODE User-callable functions 97

User Documentation for ARKODE, v6.3.0

int ARKodeSetInitStep(void *arkode_mem, sunrealtype hin)
Specifies the initial time step size ARKODE should use after initialization, re-initialization, or resetting.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• hin – value of the initial step to be attempted (6= 0).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

Note

Pass 0.0 to use the default value – this is only allowed when using a time-stepping module that supports
temporal adaptivity.

By default, ARKODE estimates the initial step size to be h =

√
2

‖ÿ‖
, where ÿ is estimate of the second

derivative of the solution at t0.

This routine will also reset the step size and error history.

Added in version 6.1.0.

int ARKodeSetMaxHnilWarns(void *arkode_mem, int mxhnil)
Specifies the maximum number of messages issued by the solver to warn that t+h = t on the next internal step,
before ARKODE will instead return with an error.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• mxhnil – maximum allowed number of warning messages (> 0).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

Added in version 6.1.0.

98 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ARKodeSetMaxNumSteps(void *arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ARKODE will return with an error.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• mxsteps – maximum allowed number of internal steps.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

Note

Passing mxsteps = 0 results in ARKODE using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

Added in version 6.1.0.

int ARKodeSetMaxStep(void *arkode_mem, sunrealtype hmax)
Specifies the upper bound on the magnitude of the time step size.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• hmax – maximum absolute value of the time step size (≥ 0).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Pass hmax ≤ 0.0 to set the default value of∞.

Added in version 6.1.0.

int ARKodeSetMinStep(void *arkode_mem, sunrealtype hmin)
Specifies the lower bound on the magnitude of the time step size.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• hmin – minimum absolute value of the time step size (≥ 0).

5.3. ARKODE User-callable functions 99

User Documentation for ARKODE, v6.3.0

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Pass hmin ≤ 0.0 to set the default value of 0.

Added in version 6.1.0.

int ARKodeSetStopTime(void *arkode_mem, sunrealtype tstop)
Specifies the value of the independent variable t past which the solution is not to proceed.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• tstop – stopping time for the integrator.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

Note

The default is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be re-enabled
only though a new call to ARKodeSetStopTime()).

A stop time not reached before a call to *StepReInit or ARKodeReset() will remain active but can be
disabled by calling ARKodeClearStopTime().

Added in version 6.1.0.

int ARKodeSetInterpolateStopTime(void *arkode_mem, sunbooleantype interp)
Specifies that the output solution should be interpolated when the current t equals the specified tstop (instead
of merely copying the internal solution yn).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• interp – flag indicating to use interpolation (1) or copy (0).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

100 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Added in version 6.1.0.

int ARKodeClearStopTime(void *arkode_mem)
Disables the stop time set with ARKodeSetStopTime().

Parameters

• arkode_mem – pointer to the ARKODE memory block.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Note

The stop time can be re-enabled though a new call to ARKodeSetStopTime().

Added in version 6.1.0.

int ARKodeSetUserData(void *arkode_mem, void *user_data)
Specifies the user data block user_data and attaches it to the main ARKODE memory block.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• user_data – pointer to the user data.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

Note

If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;
otherwise NULL is passed.

If user_data is needed in user preconditioner functions, the call to this function must be made before any
calls to ARKodeSetLinearSolver() and/or ARKodeSetMassLinearSolver().

Added in version 6.1.0.

int ARKodeSetMaxErrTestFails(void *arkode_mem, int maxnef)
Specifies the maximum number of error test failures permitted in attempting one step, before returning with an
error.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• maxnef – maximum allowed number of error test failures (> 0).

Return values

• ARK_SUCCESS – the function exited successfully.

5.3. ARKODE User-callable functions 101

User Documentation for ARKODE, v6.3.0

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

The default value is 7; set maxnef ≤ 0 to specify this default.

Added in version 6.1.0.

int ARKodeSetConstraints(void *arkode_mem, N_Vector constraints)
Specifies a vector defining inequality constraints for each component of the solution vector y.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• constraints – vector of constraint flags. Each component specifies the type of solution
constraint:

constraints[i] =


0.0 ⇒ no constraint is imposed on yi,
1.0 ⇒ yi ≥ 0,
−1.0 ⇒ yi ≤ 0,

2.0 ⇒ yi > 0,
−2.0 ⇒ yi < 0.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – the constraints vector contains illegal values.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint checking
to be performed. However, a call with 0.0 in all components of constraints will result in an illegal input
return. A NULL constraints vector will disable constraint checking.

After a call to ARKodeResize() inequality constraint checking will be disabled and a call to ARKodeSet-
Constraints() is required to re-enable constraint checking.

Since constraint-handling is performed through cutting time steps that would violate the constraints, it is
possible that this feature will cause some problems to fail due to an inability to enforce constraints even at
the minimum time step size. Additionally, the features ARKodeSetConstraints() and ARKodeSetFixed-
Step() are incompatible, and should not be used simultaneously.

Added in version 6.1.0.

102 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ARKodeSetMaxNumConstrFails(void *arkode_mem, int maxfails)
Specifies the maximum number of constraint failures in a step before ARKODE will return with an error.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• maxfails – maximum allowed number of constrain failures.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Passing maxfails <= 0 results in ARKODE using the default value (10).

Added in version 6.1.0.

int ARKodeSetAdjointCheckpointScheme(void *arkode_mem, SUNAdjointCheckpointScheme
checkpoint_scheme)

Specifies the SUNAdjointCheckpointScheme to use for saving states during the forward integration, and load-
ing states during backward integration of an adjoint system.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• checkpoint_scheme – the checkpoint scheme to use, or NULL to disable checkpointing.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Added in version 6.3.0.

int ARKodeSetAdjointCheckpointIndex(void *arkode_mem, suncountertype step_index)
Specifies the step index (that is step number) to insert the next checkpoint at.

This is incremented along with the step count, but it is useful to be able to reset this index during recomputations
of missing states during the backward adjoint integration.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• step_idx – the step to insert the next checkpoint at.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Added in version 6.3.0.

5.3. ARKODE User-callable functions 103

User Documentation for ARKODE, v6.3.0

5.3.8.2 Optional inputs for time step adaptivity

The mathematical explanation of ARKODE’s time step adaptivity algorithm, including how each of the parameters
below is used within the code, is provided in §2.11.

Optional input Function name Default
Provide a SUNAdaptController for ARKODE to use ARKodeSetAdaptController() I
Specify a SUNAdaptController for ARKODE to use ARKodeSetAdaptControllerByName() I
Adjust the method order used in the controller ARKodeSetAdaptivityAdjustment() 0
Explicit stability safety factor ARKodeSetCFLFraction() 0.5
Time step error bias factor ARKodeSetErrorBias() 1.0
Bounds determining no change in step size ARKodeSetFixedStepBounds() 1.0 1.0
Maximum step growth factor on convergence fail ARKodeSetMaxCFailGrowth() 0.25
Maximum step growth factor on error test fail ARKodeSetMaxEFailGrowth() 0.3
Maximum first step growth factor ARKodeSetMaxFirstGrowth() 10000.0
Maximum allowed general step growth factor ARKodeSetMaxGrowth() 20.0
Minimum allowed step reduction factor on error test fail ARKodeSetMinReduction() 0.1
Time step safety factor ARKodeSetSafetyFactor() 0.9
Error fails before MaxEFailGrowth takes effect ARKodeSetSmallNumEFails() 2
Explicit stability function ARKodeSetStabilityFn() none
Set accumulated error estimation type ARKodeSetAccumulatedErrorType() none
Reset accumulated error ARKodeResetAccumulatedError()

int ARKodeSetAdaptController(void *arkode_mem, SUNAdaptController C)
Sets a user-supplied time-step controller object.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• C – user-supplied time adaptivity controller.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_MEM_FAIL – C was NULL and the I controller could not be allocated.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

If C is NULL then the I controller will be created (see §12.2).

This is only compatible with time-stepping modules that support temporal adaptivity.

Not all time-stepping modules are compatible with all types of SUNAdaptController objects. While all
steppers that support temporal adaptivity support controllers with SUNAdaptController_Type type SUN_-
ADAPTCONTROLLER_H, only MRIStep supports inputs with type SUN_ADAPTCONTROLLER_MRI_H_TOL.

Added in version 6.1.0.

Changed in version 6.3.0: The default controller was changed from PID to I.

104 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ARKodeSetAdaptControllerByName(void *arkode_mem, const char *cname)
Sets a user-supplied time step controller object by name.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• cname – name of the time adaptivity controller to use. Allowable values currently include
"Soderlind", "PID", "PI", "I", "ExpGus", "ImpGus", "ImExGus", "H0211", "H0321",
"H211", and "H312". For information on these options, see §12.2 and §12.3.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_ILL_INPUT – cname did not match an allowed value.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

It is not possible to adjust the internal controller parameters when using this function. Users who wish to
adjust these parameters should create and configure the SUNAdaptController object manually, and then
call ARKodeSetAdaptController().

Added in version 6.3.0.

int ARKodeSetAdaptivityAdjustment(void *arkode_mem, int adjust)
Called by a user to adjust the method order supplied to the temporal adaptivity controller. For example, if the
user expects order reduction due to problem stiffness, they may request that the controller assume a reduced order
of accuracy for the method by specifying a value adjust < 0.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• adjust – adjustment factor (default is 0).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

This should be called prior to calling ARKodeEvolve(), and can only be reset following a call to
*StepReInit.

5.3. ARKODE User-callable functions 105

User Documentation for ARKODE, v6.3.0

Added in version 6.1.0.

Changed in version 6.3.0: The default value was changed from -1 to 0

int ARKodeSetCFLFraction(void *arkode_mem, sunrealtype cfl_frac)
Specifies the fraction of the estimated explicitly stable step to use.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• cfl_frac – maximum allowed fraction of explicitly stable step (default is 0.5).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any non-positive parameter will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetErrorBias(void *arkode_mem, sunrealtype bias)
Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• bias – bias applied to error in accuracy-based time step estimation (default is 1.0).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value below 1.0 will imply a reset to the default value.

If both this and one of the stepper SetAdaptivityMethod functions or ARKodeSetAdaptController()
will be called, then this routine must be called second.

Added in version 6.1.0.

106 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Changed in version 6.3.0: The default value was changed from 1.5 to 1.0

int ARKodeSetFixedStepBounds(void *arkode_mem, sunrealtype lb, sunrealtype ub)
Specifies the step growth interval in which the step size will remain unchanged.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• lb – lower bound on window to leave step size fixed (default is 1.0).

• ub – upper bound on window to leave step size fixed (default is 1.0).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any interval not containing 1.0 will imply a reset to the default values.

Added in version 6.1.0.

Changed in version 6.3.0: The default upper bound was changed from 1.5 to 1.0

int ARKodeSetMaxCFailGrowth(void *arkode_mem, sunrealtype etacf)
Specifies the maximum step size growth factor upon an algebraic solver convergence failure on a stage solve
within a step, ηcf from §2.15.3.1.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• etacf – time step reduction factor on a nonlinear solver convergence failure (default is 0.25).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value outside the interval (0, 1] will imply a reset to the default value.

Added in version 6.1.0.

5.3. ARKODE User-callable functions 107

User Documentation for ARKODE, v6.3.0

int ARKodeSetMaxEFailGrowth(void *arkode_mem, sunrealtype etamxf)
Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• etamxf – time step reduction factor on multiple error fails (default is 0.3).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value outside the interval (0, 1] will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetMaxFirstGrowth(void *arkode_mem, sunrealtype etamx1)
Specifies the maximum allowed growth factor in step size following the very first integration step.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• etamx1 – maximum allowed growth factor after the first time step (default is 10000.0).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value ≤ 1.0 will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetMaxGrowth(void *arkode_mem, sunrealtype mx_growth)
Specifies the maximum allowed growth factor in step size between consecutive steps in the integration process.

Parameters

108 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• arkode_mem – pointer to the ARKODE memory block.

• mx_growth – maximum allowed growth factor between consecutive time steps (default is
20.0).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value ≤ 1.0 will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetMinReduction(void *arkode_mem, sunrealtype eta_min)
Specifies the minimum allowed reduction factor in step size between step attempts, resulting from a temporal
error failure in the integration process.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• eta_min – minimum allowed reduction factor in time step after an error test failure (default
is 0.1).

Return values

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value outside the interval (0, 1) will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetSafetyFactor(void *arkode_mem, sunrealtype safety)
Specifies the safety factor to be applied to the accuracy-based estimated step.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• safety – safety factor applied to accuracy-based time step (default is 0.9).

5.3. ARKODE User-callable functions 109

User Documentation for ARKODE, v6.3.0

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value ≤ 0 will imply a reset to the default value.

Added in version 6.1.0.

Changed in version 6.3.0: The default default was changed from 0.96 to 0.9. The maximum value is now exactly
1.0 rather than strictly less than 1.0.

int ARKodeSetSmallNumEFails(void *arkode_mem, int small_nef)
Specifies the threshold for “multiple” successive error failures before the etamxf parameter from ARKodeSet-
MaxEFailGrowth() is applied.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• small_nef – bound to determine ‘multiple’ for etamxf (default is 2).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value ≤ 0 will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetStabilityFn(void *arkode_mem, ARKExpStabFn EStab, void *estab_data)
Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE system.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• EStab – name of user-supplied stability function.

• estab_data – pointer to user data passed to EStab every time it is called.

110 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

This function should return an estimate of the absolute value of the maximum stable time step for the explicit
portion of the ODE system. It is not required, since accuracy-based adaptivity may be sufficient for retaining
stability, but this can be quite useful for problems where the explicit right-hand side function fE(t, y) contains
stiff terms.

Added in version 6.1.0.

The following routines are used to control algorithms that ARKODE can use to estimate the accumulated temporal
error over multiple time steps. While these may be informational for users on their applications, this functionality is
required when using multirate temporal adaptivity in MRIStep via the SUNAdaptController_MRIHTol module. For
time-stepping modules that compute both a solution and embedding, yn and ỹn, these may be combined to create a
vector-valued local temporal error estimate for the current internal step, yn − ỹn. These local errors may be accu-
mulated by ARKODE in a variety of ways, as determined by the enumerated type ARKAccumError. In each of the
cases below, the accumulation is taken over all steps since the most recent call to either ARKodeSetAccumulatedEr-
rorType() or ARKodeResetAccumulatedError(). Below the set S contains the indices of the steps since the last
call to either of the aforementioned functions. The norm is taken using the tolerance-informed error-weight vector (see
ARKodeGetErrWeights()), and reltol is the user-specified relative solution tolerance.

enum ARKAccumError
The type of error accumulation that ARKODE should use.

Added in version 6.2.0.

enumerator ARK_ACCUMERROR_NONE
No accumulation should be performed

enumerator ARK_ACCUMERROR_MAX
Computes reltol max

i∈S
‖yi − ỹi‖WRMS

enumerator ARK_ACCUMERROR_SUM
Computes reltol

∑
i∈S
‖yi − ỹi‖WRMS

enumerator ARK_ACCUMERROR_AVG
Computes reltol

ΔtS

∑
i∈S

hi‖yi− ỹi‖WRMS , where hi is the step size used when computing yi, and ∆tS denotes

the elapsed time over which S is taken.

int ARKodeSetAccumulatedErrorType(void *arkode_mem, ARKAccumError accum_type)
Sets the strategy to use for accumulating a temporal error estimate over multiple time steps. By default, ARKODE
will not accumulate any local error estimates (i.e., the default accum_type is ARK_ACCUMERROR_NONE).

A non-default error accumulation strategy can be disabled by calling ARKodeSetAccumulatedErrorType()
with the argument ARK_ACCUMERROR_NONE.

5.3. ARKODE User-callable functions 111

User Documentation for ARKODE, v6.3.0

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• accum_type – accumulation strategy.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_STEPPER_UNSUPPORTED – temporal error estimation is not supported by the current
time-stepping module.

Added in version 6.2.0.

int ARKodeResetAccumulatedError(void *arkode_mem)
Resets the accumulated temporal error estimate, that was triggered by a previous call to ARKodeSetAccumu-
latedErrorType().

Parameters

• arkode_mem – pointer to the ARKODE memory block.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_STEPPER_UNSUPPORTED – temporal error estimation is not supported by the current
time-stepping module.

Added in version 6.2.0.

5.3.8.3 Optional inputs for implicit stage solves

The mathematical explanation for the nonlinear solver strategies used by ARKODE, including how each of the param-
eters below is used within the code, is provided in §2.15.1.

Optional input Function name Default
Specify that the implicit RHS is linear ARKodeSetLinear() SUN-

FALSE
Specify that the implicit RHS nonlinear ARKodeSetNonlinear() SUNTRUE
Specify that the implicit RHS is autonomous ARKodeSetAutonomous() SUN-

FALSE
Implicit predictor method ARKodeSetPredictorMethod() 0
User-provided implicit stage predictor ARKodeSetStagePredictFn() NULL
RHS function for nonlinear system evaluations ARKodeSetNlsRhsFn() NULL
Maximum number of nonlinear iterations ARKodeSetMaxNonlinIters() 3
Coefficient in the nonlinear convergence test ARKodeSetNonlinConvCoef() 0.1
Nonlinear convergence rate constant ARKodeSetNonlinCRDown() 0.3
Nonlinear residual divergence ratio ARKodeSetNonlinRDiv() 2.3
Maximum number of convergence failures ARKodeSetMaxConvFails() 10
Specify if the implicit RHS is deduced after a nonlinear solve ARKodeSetDeduceImplic-

itRhs()
SUN-
FALSE

112 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ARKodeSetLinear(void *arkode_mem, int timedepend)
Specifies that the implicit portion of the problem is linear.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• timedepend – flag denoting whether the Jacobian of f I(t, y) is time-dependent (1) or not
(0).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Tightens the linear solver tolerances and takes only a single Newton iteration. Calls ARKodeSetDeltaGam-
maMax() to enforce Jacobian recomputation when the step size ratio changes by more than 100 times the
unit roundoff (since nonlinear convergence is not tested). Only applicable when used in combination with
the modified or inexact Newton iteration (not the fixed-point solver).

When f I(t, y) is time-dependent, all linear solver structures (Jacobian, preconditioner) will be updated pre-
ceding each implicit stage. Thus one must balance the relative costs of such recomputation against the benefits
of requiring only a single Newton linear solve.

Added in version 6.1.0.

int ARKodeSetNonlinear(void *arkode_mem)
Specifies that the implicit portion of the problem is nonlinear.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is the default behavior of ARKODE, so the function is primarily useful to undo a previous call to
ARKodeSetLinear(). Calls ARKodeSetDeltaGammaMax() to reset the step size ratio threshold to the de-
fault value.

5.3. ARKODE User-callable functions 113

User Documentation for ARKODE, v6.3.0

Added in version 6.1.0.

int ARKodeSetAutonomous(void *arkode_mem, sunbooleantype autonomous)
Specifies that the implicit portion of the problem is autonomous i.e., does not explicitly depend on time.

When using an implicit or ImEx method with the trivial predictor, this option enables reusing the implicit right-
hand side evaluation at the predicted state across stage solves within a step. This reuse reduces the total number
of implicit RHS function evaluations.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• autonomous – flag denoting if the implicit RHS function, f I(t, y), is autonomous
(SUNTRUE) or non-autonomous (SUNFALSE).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Warning

Results may differ when enabling both ARKodeSetAutonomous() and ARKodeSetDeduceImplicitRhs()
with a stiffly accurate implicit method and using the trivial predictor. The differences are due to reusing the
deduced implicit right-hand side (RHS) value in the initial nonlinear residual computation rather than eval-
uating the implicit RHS function. The significance of the difference will depend on how well the deduced
RHS approximates the RHS evaluated at the trivial predictor. This behavior can be observed in examples/
arkode/C_serial/ark_brusselator.c by comparing the outputs with ARKodeSetAutonomous() en-
abled/disabled.

Similarly programs that assume the nonlinear residual will always call the implicit RHS function will need
to be updated to account for the RHS value reuse when using ARKodeSetAutonomous(). For exam-
ple, examples/arkode/C_serial/ark_KrylovDemo_prec.c assumes that the nonlinear residual will be
called and will evaluate the implicit RHS function before calling the preconditioner setup function. Based on
this assumption, this example code saves some computations in the RHS evaluation for reuse in the precondi-
tioner setup. However, when ARKodeSetAutonomous() is enabled, the call to the nonlinear residual before
the preconditioner setup reuses a saved RHS evaluation and the saved data is actually from an earlier RHS
evaluation that is not consistent with the state and RHS values passed to the preconditioner setup function.
For this example, the code should not save data in the RHS evaluation but instead evaluate the necessary
quantities within the preconditioner setup function using the input values.

Added in version 6.1.0.

int ARKodeSetPredictorMethod(void *arkode_mem, int method)
Specifies the method from §2.15.5 to use for predicting implicit solutions.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• method – method choice (0 ≤ method ≤ 4):

– 0 is the trivial predictor,

114 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

– 1 is the maximum order (dense output) predictor,

– 2 is the variable order predictor, that decreases the polynomial degree for more distant RK
stages,

– 3 is the cutoff order predictor, that uses the maximum order for early RK stages, and a
first-order predictor for distant RK stages,

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The default value is 0. If method is set to an undefined value, this default predictor will be used.

Added in version 6.1.0.

int ARKodeSetStagePredictFn(void *arkode_mem, ARKStagePredictFn PredictStage)
Sets the user-supplied function to update the implicit stage predictor prior to execution of the nonlinear or linear
solver algorithms that compute the implicit stage solution.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• PredictStage – name of user-supplied predictor function. If NULL, then any previously-
provided stage prediction function will be disabled.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

See §5.4.6 for more information on this user-supplied routine.

Added in version 6.1.0.

int ARKodeSetNlsRhsFn(void *arkode_mem, ARKRhsFn nls_fi)
Specifies an alternative implicit right-hand side function for evaluating f I(t, y) within nonlinear system function
evaluations (2.39) - (2.41).

Parameters

5.3. ARKODE User-callable functions 115

User Documentation for ARKODE, v6.3.0

• arkode_mem – pointer to the ARKODE memory block.

• nls_fi – the alternative C function for computing the right-hand side function f I(t, y) in
the ODE.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The default is to use the implicit right-hand side function provided to the stepper constructor in nonlinear
system functions. If the input implicit right-hand side function is NULL, the default is used.

When using a non-default nonlinear solver, this function must be called after ARKodeSetNonlinear-
Solver().

Added in version 6.1.0.

int ARKodeSetMaxNonlinIters(void *arkode_mem, int maxcor)
Specifies the maximum number of nonlinear solver iterations permitted per implicit stage solve within each time
step.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• maxcor – maximum allowed solver iterations per stage (> 0).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value or if the SUNNONLINSOL module is
NULL.

• ARK_NLS_OP_ERR – the SUNNONLINSOL object returned a failure flag.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The default value is 3; set maxcor ≤ 0 to specify this default.

Added in version 6.1.0.

int ARKodeSetNonlinConvCoef(void *arkode_mem, sunrealtype nlscoef)
Specifies the safety factor ε used within the nonlinear solver convergence test (2.54).

Parameters

116 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• arkode_mem – pointer to the ARKODE memory block.

• nlscoef – coefficient in nonlinear solver convergence test (> 0.0).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The default value is 0.1; set nlscoef ≤ 0 to specify this default.

Added in version 6.1.0.

int ARKodeSetNonlinCRDown(void *arkode_mem, sunrealtype crdown)
Specifies the constant cr used in estimating the nonlinear solver convergence rate (2.53).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• crdown – nonlinear convergence rate estimation constant (default is 0.3).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Any non-positive parameter will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetNonlinRDiv(void *arkode_mem, sunrealtype rdiv)
Specifies the nonlinear correction threshold rdiv from (2.55), beyond which the iteration will be declared diver-
gent.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• rdiv – tolerance on nonlinear correction size ratio to declare divergence (default is 2.3).

Return values

5.3. ARKODE User-callable functions 117

User Documentation for ARKODE, v6.3.0

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Any non-positive parameter will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetMaxConvFails(void *arkode_mem, int maxncf)
Specifies the maximum number of nonlinear solver convergence failures permitted during one step, maxncf
from §2.15.3.1, before ARKODE will return with an error.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• maxncf – maximum allowed nonlinear solver convergence failures per step (> 0).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The default value is 10; set maxncf ≤ 0 to specify this default.

Upon each convergence failure, ARKODE will first call the Jacobian setup routine and try again (if a Newton
method is used). If a convergence failure still occurs, the time step size is reduced by the factor etacf (set
within ARKodeSetMaxCFailGrowth()).

Added in version 6.1.0.

int ARKodeSetDeduceImplicitRhs(void *arkode_mem, sunbooleantype deduce)
Specifies if implicit stage derivatives are deduced without evaluating f I . See §2.15.1 for more details.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• deduce – if SUNFALSE (default), the stage derivative is obtained by evaluating f I with the
stage solution returned from the nonlinear solver. If SUNTRUE, the stage derivative is deduced
without an additional evaluation of f I .

118 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Added in version 6.1.0.

5.3.8.4 Linear solver interface optional input functions

The mathematical explanation of the linear solver methods available to ARKODE is provided in §2.15.2. We group
the user-callable routines into four categories: general routines concerning the update frequency for matrices and/or
preconditioners, optional inputs for matrix-based linear solvers, optional inputs for matrix-free linear solvers, and op-
tional inputs for iterative linear solvers. We note that the matrix-based and matrix-free groups are mutually exclusive,
whereas the “iterative” tag can apply to either case.

Optional inputs for the ARKLS linear solver interface

As discussed in §2.15.2.3, ARKODE strives to reuse matrix and preconditioner data for as many solves as possible
to amortize the high costs of matrix construction and factorization. To that end, ARKODE provides user-callable
routines to modify this behavior. Recall that the Newton system matrices that arise within an implicit stage solve are
A(t, z) ≈M(t)− γJ(t, z), where the implicit right-hand side function has Jacobian matrix J(t, z) = ∂fI(t,z)

∂z .

The matrix or preconditioner forA can only be updated within a call to the linear solver “setup” routine. In general, the
frequency with which the linear solver setup routine is called may be controlled with the msbp argument to ARKode-
SetLSetupFrequency(). When this occurs, the validity ofA for successive time steps intimately depends on whether
the corresponding γ and J inputs remain valid.

At each call to the linear solver setup routine the decision to updateA with a new value of γ, and to reuse or reevaluate
Jacobian information, depends on several factors including:

• the success or failure of previous solve attempts,

• the success or failure of the previous time step attempts,

• the change in γ from the value used when constructing A, and

• the number of steps since Jacobian information was last evaluated.

Jacobian information is considered out-of-date when msbj or more steps have been completed since the last update,
in which case it will be recomputed during the next linear solver setup call. The value of msbj is controlled with the
msbj argument to ARKodeSetJacEvalFrequency().

For linear-solvers with user-supplied preconditioning the above factors are used to determine whether to recommend
updating the Jacobian information in the preconditioner (i.e., whether to set jok to SUNFALSE in calling the user-supplied
ARKLsPrecSetupFn). For matrix-based linear solvers these factors determine whether the matrix J(t, y) = ∂fI(t,y)

∂y
should be updated (either with an internal finite difference approximation or a call to the user-supplied ARKLsJacFn);
if not then the previous value is reused and the system matrix A(t, y) ≈ M(t) − γJ(t, y) is recomputed using the
current γ value.

5.3. ARKODE User-callable functions 119

User Documentation for ARKODE, v6.3.0

Table 5.1: Optional inputs for the ARKLS linear solver interface

Optional input Function name Default
Max change in step signaling new J ARKodeSetDeltaGammaMax() 0.2
Linear solver setup frequency ARKodeSetLSetupFrequency() 20
Jacobian / preconditioner update frequency ARKodeSetJacEvalFrequency() 51

int ARKodeSetDeltaGammaMax(void *arkode_mem, sunrealtype dgmax)
Specifies a scaled step size ratio tolerance, ∆γmax from §2.15.2.3, beyond which the linear solver setup routine
will be signaled.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• dgmax – tolerance on step size ratio change before calling linear solver setup routine (default
is 0.2).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Any non-positive parameter will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetLSetupFrequency(void *arkode_mem, int msbp)
Specifies the frequency of calls to the linear solver setup routine, msbp from §2.15.2.3.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• msbp – the linear solver setup frequency.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

120 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Positive values of msbp specify the linear solver setup frequency. For example, an input of 1 means the setup
function will be called every time step while an input of 2 means it will be called called every other time step.
If msbp is 0, the default value of 20 will be used. A negative value forces a linear solver step at each implicit
stage.

Added in version 6.1.0.

int ARKodeSetJacEvalFrequency(void *arkode_mem, long int msbj)
Specifies the number of steps after which the Jacobian information is considered out-of-date, msbj from
§2.15.2.3.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• msbj – the Jacobian re-computation or preconditioner update frequency.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

If nstlj is the step number at which the Jacobian information was lasted updated and nst is the current step
number, nst - nstlj >= msbj indicates that the Jacobian information will be updated during the next
linear solver setup call.

As the Jacobian update frequency is only checked within calls to the linear solver setup routine, Jacobian
information may be more than msbj steps old when updated depending on when a linear solver setup call
occurs. See §2.15.2.3 for more information on when linear solver setups are performed.

Passing a value msbj ≤ 0 indicates to use the default value of 51.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKodeSetLinearSolver().

Added in version 6.1.0.

Optional inputs for matrix-based SUNLinearSolver modules

Optional input Function name Default
Jacobian function ARKodeSetJacFn() DQ
Linear system function ARKodeSetLinSysFn() internal
Mass matrix function ARKodeSetMassFn() none
Enable or disable linear solution scaling ARKodeSetLinearSolutionScaling() on

5.3. ARKODE User-callable functions 121

User Documentation for ARKODE, v6.3.0

When using matrix-based linear solver modules, the ARKLS solver interface needs a function to compute an approxi-
mation to the Jacobian matrix J(t, y) or the linear system A(t, y) = M(t)− γJ(t, y).

For J(t, y), the ARKLS interface is packaged with a routine that can approximate J if the user has selected either the
SUNMATRIX_DENSE or SUNMATRIX_BAND objects. Alternatively, the user can supply a custom Jacobian function
of type ARKLsJacFn() – this is required when the user selects other matrix formats. To specify a user-supplied Jacobian
function, ARKODE provides the function ARKodeSetJacFn().

Alternatively, a function of type ARKLsLinSysFn() can be provided to evaluate the matrixA(t, y). By default, ARKLS
uses an internal linear system function leveraging the SUNMATRIX API to form the matrixA(t, y) by combining the
matrices M(t) and J(t, y). To specify a user-supplied linear system function instead, ARKODE provides the function
ARKodeSetLinSysFn().

If the ODE system involves a non-identity mass matrix, M 6= I , matrix-based linear solver modules require a function
to compute an approximation to the mass matrix M(t). There is no default difference quotient approximation (for any
matrix type), so this routine must be supplied by the user. This function must be of type ARKLsMassFn(), and should
be set using the function ARKodeSetMassFn().

In either case (J(t, y) versus A(t, y) is supplied) the matrix information will be updated infrequently to reduce matrix
construction and, with direct solvers, factorization costs. As a result the value of γ may not be current and a scaling
factor is applied to the solution of the linear system to account for the lagged value of γ. See §10.2.1 for more details.
The function ARKodeSetLinearSolutionScaling() can be used to disable this scaling when necessary, e.g., when
providing a custom linear solver that updates the matrix using the current γ as part of the solve.

The ARKLS interface passes the user data pointer to the Jacobian, linear system, and mass matrix functions. This
allows the user to create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied Jacobian, linear system or mass matrix functions, without using global data in the program. The user
data pointer may be specified through ARKodeSetUserData().

int ARKodeSetJacFn(void *arkode_mem, ARKLsJacFn jac)
Specifies the Jacobian approximation routine to be used for the matrix-based solver with the ARKLS interface.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• jac – name of user-supplied Jacobian approximation function.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This routine must be called after the ARKLS linear solver interface has been initialized through a call to
ARKodeSetLinearSolver().

By default, ARKLS uses an internal difference quotient function for the SUNMATRIX_DENSE and SUN-
MATRIX_BAND modules. If NULL is passed in for jac, this default is used. An error will occur if no jac is
supplied when using other matrix types.

The function type ARKLsJacFn() is described in §5.4.

122 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Added in version 6.1.0.

int ARKodeSetLinSysFn(void *arkode_mem, ARKLsLinSysFn linsys)
Specifies the linear system approximation routine to be used for the matrix-based solver with the ARKLS inter-
face.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• linsys – name of user-supplied linear system approximation function.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This routine must be called after the ARKLS linear solver interface has been initialized through a call to
ARKodeSetLinearSolver().

By default, ARKLS uses an internal linear system function that leverages the SUNMATRIX API to form the
system M − γJ . If NULL is passed in for linsys, this default is used.

The function type ARKLsLinSysFn() is described in §5.4.

Added in version 6.1.0.

int ARKodeSetMassFn(void *arkode_mem, ARKLsMassFn mass)
Specifies the mass matrix approximation routine to be used for the matrix-based solver with the ARKLS interface.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• mass – name of user-supplied mass matrix approximation function.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_MASSMEM_NULL – the mass matrix solver memory was NULL.

• ARKLS_ILL_INPUT – an argument had an illegal value.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

5.3. ARKODE User-callable functions 123

User Documentation for ARKODE, v6.3.0

This routine must be called after the ARKLS mass matrix solver interface has been initialized through a call
to ARKodeSetMassLinearSolver().

Since there is no default difference quotient function for mass matrices, mass must be non-NULL.

The function type ARKLsMassFn() is described in §5.4.

Added in version 6.1.0.

int ARKodeSetLinearSolutionScaling(void *arkode_mem, sunbooleantype onoff)
Enables or disables scaling the linear system solution to account for a change in γ in the linear system. For more
details see §10.2.1.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• onoff – flag to enable (SUNTRUE) or disable (SUNFALSE) scaling.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_ILL_INPUT – the attached linear solver is not matrix-based.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Linear solution scaling is enabled by default when a matrix-based linear solver is attached.

Added in version 6.1.0.

Optional inputs for matrix-free SUNLinearSolver modules

Optional input Function name Default
Jv functions (jtimes and jtsetup) ARKodeSetJacTimes() DQ, none
Jv DQ rhs function (jtimesRhsFn) ARKodeSetJacTimesRhsFn() fi
Mv functions (mtimes and mtsetup) ARKodeSetMassTimes() none, none

As described in §2.15.2, when solving the Newton linear systems with matrix-free methods, the ARKLS interface
requires a jtimes function to compute an approximation to the product between the Jacobian matrix J(t, y) and a vector
v. The user can supply a custom Jacobian-times-vector approximation function, or use the default internal difference
quotient function that comes with the ARKLS interface.

A user-defined Jacobian-vector function must be of type ARKLsJacTimesVecFn and can be specified through a call to
ARKodeSetJacTimes() (see §5.4 for specification details). As with the user-supplied preconditioner functions, the
evaluation and processing of any Jacobian-related data needed by the user’s Jacobian-times-vector function is done in
the optional user-supplied function of type ARKLsJacTimesSetupFn (see §5.4 for specification details). As with the

124 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

preconditioner functions, a pointer to the user-defined data structure, user_data, specified through ARKodeSetUser-
Data() (or a NULL pointer otherwise) is passed to the Jacobian-times-vector setup and product functions each time
they are called.

int ARKodeSetJacTimes(void *arkode_mem, ARKLsJacTimesSetupFn jtsetup, ARKLsJacTimesVecFn jtimes)
Specifies the Jacobian-times-vector setup and product functions.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• jtsetup – user-defined Jacobian-vector setup function. Pass NULL if no setup is necessary.

• jtimes – user-defined Jacobian-vector product function.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARKLS_ILL_INPUT – an input had an illegal value.

• ARKLS_SUNLS_FAIL – an error occurred when setting up the Jacobian-vector product in the
SUNLinearSolver object used by the ARKLS interface.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The default is to use an internal finite difference quotient for jtimes and to leave out jtsetup. If NULL is passed
to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup inputs.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKodeSetLinearSolver().

The function types ARKLsJacTimesSetupFn and ARKLsJacTimesVecFn are described in §5.4.

Added in version 6.1.0.

When using the internal difference quotient the user may optionally supply an alternative implicit right-hand side func-
tion for use in the Jacobian-vector product approximation by calling ARKodeSetJacTimesRhsFn(). The alternative
implicit right-hand side function should compute a suitable (and differentiable) approximation to the f I function pro-
vided to *StepCreate. For example, as done in [37], the alternative function may use lagged values when evaluating
a nonlinearity in f I to avoid differencing a potentially non-differentiable factor. We note that in many instances this
same f I routine would also have been desirable for the nonlinear solver, in which case the user should specify this
through calls to both ARKodeSetJacTimesRhsFn() and ARKodeSetNlsRhsFn().

int ARKodeSetJacTimesRhsFn(void *arkode_mem, ARKRhsFn jtimesRhsFn)
Specifies an alternative implicit right-hand side function for use in the internal Jacobian-vector product difference
quotient approximation.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

5.3. ARKODE User-callable functions 125

User Documentation for ARKODE, v6.3.0

• jtimesRhsFn – the name of the C function (of type ARKRhsFn()) defining the alternative
right-hand side function.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARKLS_ILL_INPUT – an input had an illegal value.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The default is to use the implicit right-hand side function provided to *StepCreate in the internal difference
quotient. If the input implicit right-hand side function is NULL, the default is used.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKodeSetLinearSolver().

Added in version 6.1.0.

Similarly, if a problem involves a non-identity mass matrix,M 6= I , then matrix-free solvers require a mtimes function
to compute an approximation to the product between the mass matrixM(t) and a vector v. This function must be user-
supplied since there is no default value, it must be of type ARKLsMassTimesVecFn(), and can be specified through a
call to the ARKodeSetMassTimes() routine. Similarly to the user-supplied preconditioner functions, any evaluation
and processing of any mass matrix-related data needed by the user’s mass-matrix-times-vector function may be done
in an optional user-supplied function of type ARKLsMassTimesSetupFn (see §5.4 for specification details).

int ARKodeSetMassTimes(void *arkode_mem, ARKLsMassTimesSetupFn mtsetup, ARKLsMassTimesVecFn
mtimes, void *mtimes_data)

Specifies the mass matrix-times-vector setup and product functions.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• mtsetup – user-defined mass matrix-vector setup function. Pass NULL if no setup is neces-
sary.

• mtimes – user-defined mass matrix-vector product function.

• mtimes_data – a pointer to user data, that will be supplied to both the mtsetup and mtimes
functions.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_MASSMEM_NULL – the mass matrix solver memory was NULL.

• ARKLS_ILL_INPUT – an input had an illegal value.

• ARKLS_SUNLS_FAIL – an error occurred when setting up the mass-matrix-vector product in
the SUNLinearSolver object used by the ARKLS interface.

126 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

There is no default finite difference quotient for mtimes, so if using the ARKLS mass matrix solver interface
with NULL-valued SUNMATRIX input M , and this routine is called with NULL-valued mtimes, an error
will occur. A user may specify NULL for mtsetup.

This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKodeSetMassLinearSolver().

The function types ARKLsMassTimesSetupFn and ARKLsMassTimesVecFn are described in §5.4.

Added in version 6.1.0.

Optional inputs for iterative SUNLinearSolver modules

Optional input Function name Default
Newton preconditioning functions ARKodeSetPreconditioner() NULL, NULL
Mass matrix preconditioning functions ARKodeSetMassPreconditioner() NULL, NULL
Newton linear and nonlinear tolerance ratio ARKodeSetEpsLin() 0.05
Mass matrix linear and nonlinear tolerance ratio ARKodeSetMassEpsLin() 0.05
Newton linear solve tolerance conversion factor ARKodeSetLSNormFactor() vector length
Mass matrix linear solve tolerance conversion factor ARKodeSetMassLSNormFactor() vector length

As described in §2.15.2, when using an iterative linear solver the user may supply a preconditioning operator to aid
in solution of the system. This operator consists of two user-supplied functions, psetup and psolve, that are supplied
to ARKODE using either the function ARKodeSetPreconditioner() (for preconditioning the Newton system), or
the function ARKodeSetMassPreconditioner() (for preconditioning the mass matrix system). The psetup function
supplied to these routines should handle evaluation and preprocessing of any Jacobian or mass-matrix data needed by
the user’s preconditioner solve function, psolve. The user data pointer received through ARKodeSetUserData() (or a
pointer to NULL if user data was not specified) is passed to the psetup and psolve functions. This allows the user to create
an arbitrary structure with relevant problem data and access it during the execution of the user-supplied preconditioner
functions without using global data in the program. If preconditioning is supplied for both the Newton and mass matrix
linear systems, it is expected that the user will supply different psetup and psolve function for each.

Also, as described in §2.15.3.2, the ARKLS interface requires that iterative linear solvers stop when the norm of the
preconditioned residual satisfies

‖r‖ ≤ εLε

10

where the default εL = 0.05 may be modified by the user through the ARKodeSetEpsLin() function.

int ARKodeSetPreconditioner(void *arkode_mem, ARKLsPrecSetupFn psetup, ARKLsPrecSolveFn psolve)
Specifies the user-supplied preconditioner setup and solve functions.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• psetup – user defined preconditioner setup function. Pass NULL if no setup is needed.

5.3. ARKODE User-callable functions 127

User Documentation for ARKODE, v6.3.0

• psolve – user-defined preconditioner solve function.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARKLS_ILL_INPUT – an input had an illegal value.

• ARKLS_SUNLS_FAIL – an error occurred when setting up preconditioning in the SUNLin-
earSolver object used by the ARKLS interface.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKodeSetLinearSolver().

Both of the function types ARKLsPrecSetupFn() and ARKLsPrecSolveFn() are described in §5.4.

Added in version 6.1.0.

int ARKodeSetMassPreconditioner(void *arkode_mem, ARKLsMassPrecSetupFn psetup,
ARKLsMassPrecSolveFn psolve)

Specifies the mass matrix preconditioner setup and solve functions.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• psetup – user defined preconditioner setup function. Pass NULL if no setup is to be done.

• psolve – user-defined preconditioner solve function.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARKLS_ILL_INPUT – an input had an illegal value.

• ARKLS_SUNLS_FAIL – an error occurred when setting up preconditioning in the SUNLin-
earSolver object used by the ARKLS interface.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

128 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKodeSetMassLinearSolver().

The default is NULL for both arguments (i.e. no preconditioning).

Both of the function types ARKLsMassPrecSetupFn() and ARKLsMassPrecSolveFn() are described in
§5.4.

Added in version 6.1.0.

int ARKodeSetEpsLin(void *arkode_mem, sunrealtype eplifac)
Specifies the factor εL by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the
linear iteration.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• eplifac – linear convergence safety factor.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARKLS_ILL_INPUT – an input had an illegal value.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Passing a value eplifac ≤ 0 indicates to use the default value of 0.05.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKodeSetLinearSolver().

Added in version 6.1.0.

int ARKodeSetMassEpsLin(void *arkode_mem, sunrealtype eplifac)
Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the mass
matrix linear iteration.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• eplifac – linear convergence safety factor.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_MASSMEM_NULL – the mass matrix solver memory was NULL.

• ARKLS_ILL_INPUT – an input had an illegal value.

5.3. ARKODE User-callable functions 129

User Documentation for ARKODE, v6.3.0

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKodeSetMassLinearSolver().

Passing a value eplifac ≤ 0 indicates to use the default value of 0.05.

Added in version 6.1.0.

Since iterative linear solver libraries typically consider linear residual tolerances using theL2 norm, whereas ARKODE
focuses on errors measured in the WRMS norm (2.24), the ARKLS interface internally converts between these quan-
tities when interfacing with linear solvers,

tolL2 = nrmfac tolWRMS . (5.1)

Prior to the introduction of N_VGetLength() in SUNDIALS v5.0.0 the value of nrmfac was computed using the
vector dot product. Now, the functions ARKodeSetLSNormFactor() and ARKodeSetMassLSNormFactor() allow
for additional user control over these conversion factors.

int ARKodeSetLSNormFactor(void *arkode_mem, sunrealtype nrmfac)
Specifies the factor to use when converting from the integrator tolerance (WRMS norm) to the linear solver
tolerance (L2 norm) for Newton linear system solves.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nrmfac – the norm conversion factor. If nrmfac is:

> 0 then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac =
sqrt(N_VGetLength(y)) (default).

< 0 then the conversion factor is computed using the vector dot product i.e., nrmfac =
sqrt(N_VDotProd(v,v)) where all the entries of v are one.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKodeSetLinearSolver().

Added in version 6.1.0.

130 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ARKodeSetMassLSNormFactor(void *arkode_mem, sunrealtype nrmfac)
Specifies the factor to use when converting from the integrator tolerance (WRMS norm) to the linear solver
tolerance (L2 norm) for mass matrix linear system solves.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nrmfac – the norm conversion factor. If nrmfac is:

> 0 then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac =
sqrt(N_VGetLength(y)) (default).

< 0 then the conversion factor is computed using the vector dot product i.e., nrmfac =
sqrt(N_VDotProd(v,v)) where all the entries of v are one.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKodeSetMassLinearSolver().

Added in version 6.1.0.

5.3.8.5 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in §2.16.

Optional input Function name Default
Direction of zero-crossings to monitor ARKodeSetRootDirection() both
Disable inactive root warnings ARKodeSetNoInactiveRootWarn() enabled

int ARKodeSetRootDirection(void *arkode_mem, int *rootdir)
Specifies the direction of zero-crossings to be located and returned.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• rootdir – state array of length nrtfn, the number of root functions gi (the value of nrtfn was
supplied in the call to ARKodeRootInit()). If rootdir[i] == 0 then crossing in either
direction for gi should be reported. A value of +1 or -1 indicates that the solver should report
only zero-crossings where gi is increasing or decreasing, respectively.

5.3. ARKODE User-callable functions 131

User Documentation for ARKODE, v6.3.0

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an argument had an illegal value.

Note

The default behavior is to monitor for both zero-crossing directions.

Added in version 6.1.0.

int ARKodeSetNoInactiveRootWarn(void *arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Note

ARKODE will not report the initial conditions as a possible zero-crossing (assuming that one or more com-
ponents gi are zero at the initial time). However, if it appears that some gi is identically zero at the initial
time (i.e., gi is zero at the initial time and after the first step), ARKODE will issue a warning which can be
disabled with this optional input function.

Added in version 6.1.0.

5.3.9 Interpolated output function

An optional function ARKodeGetDky() is available to obtain additional values of solution-related quantities. This
function should only be called after a successful return from ARKodeEvolve(), as it provides interpolated values
either of y or of its derivatives (up to the 5th derivative) interpolated to any value of t in the last internal step taken
by ARKodeEvolve(). Internally, this “dense output” or “continuous extension” algorithm is identical to the algorithm
used for the maximum order implicit predictors, described in §2.15.5.2, except that derivatives of the polynomial model
may be evaluated upon request.

int ARKodeGetDky(void *arkode_mem, sunrealtype t, int k, N_Vector dky)
Computes the k-th derivative of the function y at the time t, i.e. y(k)(t), for values of the independent variable
satisfying tn − hn ≤ t ≤ tn, with tn as current internal time reached, and hn is the last internal step size
successfully used by the solver. This routine uses an interpolating polynomial of degree min(degree, 5), where
degree is the argument provided to ARKodeSetInterpolantDegree(). The user may request k in the range
{0,. . . , min(degree, kmax)} where kmax depends on the choice of interpolation module. For Hermite interpolants
kmax = 5 and for Lagrange interpolants kmax = 3.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

132 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• t – the value of the independent variable at which the derivative is to be evaluated.

• k – the derivative order requested.

• dky – output vector (must be allocated by the user).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_BAD_K – k is not in the range {0,. . . , min(degree, kmax)}.

• ARK_BAD_T – t is not in the interval [tn − hn, tn].

• ARK_BAD_DKY – the dky vector was NULL.

• ARK_MEM_NULL – arkode_mem was NULL.

Note

It is only legal to call this function after a successful return from ARKodeEvolve().

A user may access the values tn and hn via the functions ARKodeGetCurrentTime() and ARKodeGet-
LastStep(), respectively.

Added in version 6.1.0.

5.3.10 Optional output functions

ARKODE provides an extensive set of functions that can be used to obtain solver performance information. We organize
these into groups:

1. General ARKODE output routines are in §5.3.10.1,

2. ARKODE implicit solver output routines are in §5.3.10.2,

3. Output routines regarding root-finding results are in §5.3.10.3,

4. Linear solver output routines are in §5.3.10.4 and

5. General usability routines (e.g. to print the current ARKODE parameters, or output the current Butcher table(s))
are in §5.3.10.5.

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of various
methods inside ARKODE. For example:

• The counters nsteps, nfe_evals and nfi_evals provide a rough measure of the overall cost of a given run, and can
be compared between runs with different solver options to suggest which set of options is the most efficient.

• The ratio nniters/nsteps measures the performance of the nonlinear iteration in solving the nonlinear systems at
each stage, providing a measure of the degree of nonlinearity in the problem. Typical values of this for a Newton
solver on a general problem range from 1.1 to 1.8.

• When using a Newton nonlinear solver, the ratio njevals/nniters (when using a direct linear solver), and the ratio
nliters/nniters (when using an iterative linear solver) can indicate the quality of the approximate Jacobian or pre-
conditioner being used. For example, if this ratio is larger for a user-supplied Jacobian or Jacobian-vector product
routine than for the difference-quotient routine, it can indicate that the user-supplied Jacobian is inaccurate.

• The ratio expsteps/accsteps can measure the quality of the ImEx splitting used, since a higher-quality splitting
will be dominated by accuracy-limited steps, and hence a lower ratio.

5.3. ARKODE User-callable functions 133

User Documentation for ARKODE, v6.3.0

• The ratio nsteps/step_attempts can measure the quality of the time step adaptivity algorithm, since a poor algo-
rithm will result in more failed steps, and hence a lower ratio.

It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.

5.3.10.1 Main solver optional output functions

Optional output Function name
Size of ARKODE real and integer workspaces ARKodeGetWorkSpace()
Cumulative number of internal steps ARKodeGetNumSteps()
Actual initial time step size used ARKodeGetActualInitStep()
Step size used for the last successful step ARKodeGetLastStep()
Step size to be attempted on the next step ARKodeGetCurrentStep()
Integration direction, e.g., forward or backward ARKodeGetStepDirection()
Current internal time reached by the solver ARKodeGetCurrentTime()
Current internal solution reached by the solver ARKodeGetCurrentState()
Current γ value used by the solver ARKodeGetCurrentGamma()
Suggested factor for tolerance scaling ARKodeGetTolScaleFactor()
Error weight vector for state variables ARKodeGetErrWeights()
Residual weight vector ARKodeGetResWeights()
Single accessor to many statistics at once ARKodeGetStepStats()
Print all statistics ARKodePrintAllStats()
Name of constant associated with a return flag ARKodeGetReturnFlagName()
No. of explicit stability-limited steps ARKodeGetNumExpSteps()
No. of accuracy-limited steps ARKodeGetNumAccSteps()
No. of attempted steps ARKodeGetNumStepAttempts()
No. of RHS evaluations ARKodeGetNumRhsEvals()
No. of local error test failures that have occurred ARKodeGetNumErrTestFails()
No. of failed steps due to a nonlinear solver failure ARKodeGetNumStepSolveFails()
Estimated local truncation error vector ARKodeGetEstLocalErrors()
Number of constraint test failures ARKodeGetNumConstrFails()
Retrieve a pointer for user data ARKodeGetUserData()
Retrieve the accumulated temporal error estimate ARKodeGetAccumulatedError()

int ARKodeGetWorkSpace(void *arkode_mem, long int *lenrw, long int *leniw)
Returns the ARKODE real and integer workspace sizes.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• lenrw – the number of sunrealtype values in the ARKODE workspace.

• leniw – the number of integer values in the ARKODE workspace.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Added in version 6.1.0.

Deprecated since version 6.3.0: Work space functions will be removed in version 8.0.0.

134 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ARKodeGetNumSteps(void *arkode_mem, long int *nsteps)
Returns the cumulative number of internal steps taken by the solver (so far).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nsteps – number of steps taken in the solver.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Added in version 6.1.0.

int ARKodeGetActualInitStep(void *arkode_mem, sunrealtype *hinused)
Returns the value of the integration step size used on the first step.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• hinused – actual value of initial step size.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Note

Even if the value of the initial integration step was specified by the user through a call to ARKodeSetInit-
Step(), this value may have been changed by ARKODE to ensure that the step size fell within the prescribed
bounds (hmin ≤ h0 ≤ hmax), or to satisfy the local error test condition, or to ensure convergence of the
nonlinear solver.

Added in version 6.1.0.

int ARKodeGetLastStep(void *arkode_mem, sunrealtype *hlast)
Returns the integration step size taken on the last successful internal step.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• hlast – step size taken on the last internal step.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Added in version 6.1.0.

int ARKodeGetCurrentStep(void *arkode_mem, sunrealtype *hcur)
Returns the integration step size to be attempted on the next internal step.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

5.3. ARKODE User-callable functions 135

User Documentation for ARKODE, v6.3.0

• hcur – step size to be attempted on the next internal step.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Added in version 6.1.0.

int ARKodeGetStepDirection(void *arkode_mem, sunrealtype *stepdir)
Returns the direction of integration that will be used on the next internal step.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• stepdir – a positive number if integrating forward, a negative number if integrating back-
ward, or zero if the direction has not been set.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Added in version 6.2.0.

int ARKodeGetCurrentTime(void *arkode_mem, sunrealtype *tcur)
Returns the current internal time reached by the solver.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• tcur – current internal time reached.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Added in version 6.1.0.

int ARKodeGetCurrentState(void *arkode_mem, N_Vector *ycur)
Returns the current internal solution reached by the solver.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• ycur – current internal solution.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Note

Users should exercise extreme caution when using this function, as altering values of ycur may lead to un-
desirable behavior, depending on the particular use case and on when this routine is called.

Added in version 6.1.0.

136 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ARKodeGetCurrentGamma(void *arkode_mem, sunrealtype *gamma)
Returns the current internal value of γ used in the implicit solver Newton matrix (see equation (2.47)).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• gamma – current step size scaling factor in the Newton system.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Added in version 6.1.0.

int ARKodeGetTolScaleFactor(void *arkode_mem, sunrealtype *tolsfac)
Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• tolsfac – suggested scaling factor for user-supplied tolerances.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Added in version 6.1.0.

int ARKodeGetErrWeights(void *arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• eweight – solution error weights at the current time.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Note

The user must allocate space for eweight, that will be filled in by this function.

Added in version 6.1.0.

5.3. ARKODE User-callable functions 137

User Documentation for ARKODE, v6.3.0

int ARKodeGetResWeights(void *arkode_mem, N_Vector rweight)
Returns the current residual weight vector.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• rweight – residual error weights at the current time.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

The user must allocate space for rweight, that will be filled in by this function.

Added in version 6.1.0.

int ARKodeGetStepStats(void *arkode_mem, long int *nsteps, sunrealtype *hinused, sunrealtype *hlast,
sunrealtype *hcur, sunrealtype *tcur)

Returns many of the most useful optional outputs in a single call.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nsteps – number of steps taken in the solver.

• hinused – actual value of initial step size.

• hlast – step size taken on the last internal step.

• hcur – step size to be attempted on the next internal step.

• tcur – current internal time reached.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Added in version 6.1.0.

int ARKodePrintAllStats(void *arkode_mem, FILE *outfile, SUNOutputFormat fmt)
Outputs all of the integrator, nonlinear solver, linear solver, and other statistics.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• outfile – pointer to output file.

• fmt – the output format:

– SUN_OUTPUTFORMAT_TABLE – prints a table of values

138 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

– SUN_OUTPUTFORMAT_CSV – prints a comma-separated list of key and value pairs e.g.,
key1,value1,key2,value2,...

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_ILL_INPUT – an invalid formatting option was provided.

Note

The Python module tools/suntools provides utilities to read and output the data from a SUNDIALS CSV
output file using the key and value pair format.

Added in version 6.1.0.

char *ARKodeGetReturnFlagName(long int flag)
Returns the name of the ARKODE constant corresponding to flag. See ARKODE Constants.

Parameters

• flag – a return flag from an ARKODE function.

Returns
The return value is a string containing the name of the corresponding constant.

Added in version 6.1.0.

int ARKodeGetNumExpSteps(void *arkode_mem, long int *expsteps)
Returns the cumulative number of stability-limited steps taken by the solver (so far). If the combination of the
maximum number of stages and the current time step size in the LSRKStep module will not allow for a stable
step, the counter also accounts for such returns.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• expsteps – number of stability-limited steps taken in the solver.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Added in version 6.1.0.

int ARKodeGetNumAccSteps(void *arkode_mem, long int *accsteps)
Returns the cumulative number of accuracy-limited steps taken by the solver (so far).

Parameters

5.3. ARKODE User-callable functions 139

User Documentation for ARKODE, v6.3.0

• arkode_mem – pointer to the ARKODE memory block.

• accsteps – number of accuracy-limited steps taken in the solver.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Added in version 6.1.0.

int ARKodeGetNumStepAttempts(void *arkode_mem, long int *step_attempts)
Returns the cumulative number of steps attempted by the solver (so far).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• step_attempts – number of steps attempted by solver.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Added in version 6.1.0.

int ARKodeGetNumRhsEvals(void *arkode_mem, int partition_index, long int *num_rhs_evals)
Returns the number of calls to the user’s right-hand side function (so far). For implicit methods or methods with
an implicit partition, the count does not include calls made by a linear solver or preconditioner.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• num_partition – the right-hand side partition index:

– For ERKStep, 0 corresponds to f(t, y)

– For ARKStep, 0 corresponds to fE(t, y) and 1 to f I(t, y)

– For MRIStep, 0 corresponds to fE(t, y) and 1 to f I(t, y)

– For SPRKStep, 0 corresponds to f1(t, p) and 1 to f2(t, q)

A negative index will return the sum of the evaluations for each partition.

• num_rhs_evals – the number of right-hand side evaluations.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – if arkode_mem was NULL.

• ARK_ILL_INPUT – if num_partiton was invalid for the stepper or num_rhs_evals was
NULL

140 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Added in version 6.2.0.

int ARKodeGetNumErrTestFails(void *arkode_mem, long int *netfails)
Returns the number of local error test failures that have occurred (so far).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• netfails – number of error test failures.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Added in version 6.1.0.

int ARKodeGetNumStepSolveFails(void *arkode_mem, long int *ncnf)
Returns the number of failed steps due to a nonlinear solver failure (so far).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• ncnf – number of step failures.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Added in version 6.1.0.

int ARKodeGetEstLocalErrors(void *arkode_mem, N_Vector ele)
Returns the vector of estimated local truncation errors for the current step.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• ele – vector of estimated local truncation errors.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

5.3. ARKODE User-callable functions 141

User Documentation for ARKODE, v6.3.0

Note

The user must allocate space for ele, that will be filled in by this function.

The values returned in ele are valid only after a successful call to ARKodeEvolve() (i.e., it returned a non-
negative value).

The ele vector, together with the eweight vector from ARKodeGetErrWeights(), can be used to determine
how the various components of the system contributed to the estimated local error test. Specifically, that
error test uses the WRMS norm of a vector whose components are the products of the components of these
two vectors. Thus, for example, if there were recent error test failures, the components causing the failures
are those with largest values for the products, denoted loosely as eweight[i]*ele[i].

Added in version 6.1.0.

int ARKodeGetNumConstrFails(void *arkode_mem, long int *nconstrfails)
Returns the cumulative number of constraint test failures (so far).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nconstrfails – number of constraint test failures.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Added in version 6.1.0.

int ARKodeGetUserData(void *arkode_mem, void **user_data)
Returns the user data pointer previously set with ARKodeSetUserData().

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• user_data – memory reference to a user data pointer.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Added in version 6.1.0.

int ARKodeGetAccumulatedError(void *arkode_mem, sunrealtype *accum_error)
Returns the accumulated temporal error estimate.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

142 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• accum_error – pointer to accumulated error estimate.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_WARNING – accumulated error estimation is currently disabled.

• ARK_STEPPER_UNSUPPORTED – temporal error estimation is not supported by the current
time-stepping module.

Added in version 6.2.0.

5.3.10.2 Implicit solver optional output functions

Optional output Function name
Computes state given a correction ARKodeComputeState()
Access data to compute the nonlin. sys. function ARKodeGetNonlinearSystemData()
No. of calls to linear solver setup function ARKodeGetNumLinSolvSetups()
No. of nonlinear solver iterations ARKodeGetNumNonlinSolvIters()
No. of nonlinear solver iterations ARKodeGetNumNonlinSolvIters()
No. of nonlinear solver convergence failures ARKodeGetNumNonlinSolvConvFails()
Single accessor to all nonlinear solver statistics ARKodeGetNonlinSolvStats()

int ARKodeGetNumLinSolvSetups(void *arkode_mem, long int *nlinsetups)
Returns the number of calls made to the linear solver’s setup routine (so far).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nlinsetups – number of linear solver setup calls made.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumNonlinSolvIters(void *arkode_mem, long int *nniters)
Returns the number of nonlinear solver iterations performed (so far).

Parameters

5.3. ARKODE User-callable functions 143

User Documentation for ARKODE, v6.3.0

• arkode_mem – pointer to the ARKODE memory block.

• nniters – number of nonlinear iterations performed.

Return values

• ARK_STEPPER_UNSUPPORTED – nonlinear solvers are not supported by the current time-
stepping module.

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_NLS_OP_ERR – the SUNNONLINSOL object returned a failure flag.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumNonlinSolvConvFails(void *arkode_mem, long int *nncfails)
Returns the number of nonlinear solver convergence failures that have occurred (so far).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nncfails – number of nonlinear convergence failures.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_STEPPER_UNSUPPORTED – nonlinear solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNonlinSolvStats(void *arkode_mem, long int *nniters, long int *nncfails)
Returns all of the nonlinear solver statistics in a single call.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nniters – number of nonlinear iterations performed.

• nncfails – number of nonlinear convergence failures.

Return values

144 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_NLS_OP_ERR – the SUNNONLINSOL object returned a failure flag.

• ARK_STEPPER_UNSUPPORTED – nonlinear solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the nonlinear solver object; the counters are reset whenever a new
nonlinear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

5.3.10.3 Rootfinding optional output functions

Optional output Function name
Array showing roots found ARKodeGetRootInfo()
No. of calls to user root function ARKodeGetNumGEvals()

int ARKodeGetRootInfo(void *arkode_mem, int *rootsfound)
Returns an array showing which functions were found to have a root.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• rootsfound – array of length nrtfn with the indices of the user functions gi found to have
a root (the value of nrtfn was supplied in the call to ARKodeRootInit()). For i = 0 . . .
nrtfn-1, rootsfound[i] is nonzero if gi has a root, and 0 if not.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Note

The user must allocate space for rootsfound prior to calling this function.

For the components of gi for which a root was found, the sign of rootsfound[i] indicates the direction of
zero-crossing. A value of +1 indicates that gi is increasing, while a value of -1 indicates a decreasing gi.

Added in version 6.1.0.

int ARKodeGetNumGEvals(void *arkode_mem, long int *ngevals)
Returns the cumulative number of calls made to the user’s root function g.

Parameters

5.3. ARKODE User-callable functions 145

User Documentation for ARKODE, v6.3.0

• arkode_mem – pointer to the ARKODE memory block.

• ngevals – number of calls made to g so far.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Added in version 6.1.0.

5.3.10.4 Linear solver interface optional output functions

A variety of optional outputs are available from the ARKLS interface, as listed in the following table and elaborated
below. We note that where the name of an output would otherwise conflict with the name of an optional output from
the main solver, a suffix LS (for Linear Solver) or MLS (for Mass Linear Solver) has been added here (e.g. lenrwLS).

Optional output Function name
Stored Jacobian of the ODE RHS function ARKodeGetJac()
Time at which the Jacobian was evaluated ARKodeGetJacTime()
Step number at which the Jacobian was evaluated ARKodeGetJacNumSteps()
Size of real and integer workspaces ARKodeGetLinWorkSpace()
No. of Jacobian evaluations ARKodeGetNumJacEvals()
No. of preconditioner evaluations ARKodeGetNumPrecEvals()
No. of preconditioner solves ARKodeGetNumPrecSolves()
No. of linear iterations ARKodeGetNumLinIters()
No. of linear convergence failures ARKodeGetNumLinConvFails()
No. of Jacobian-vector setup evaluations ARKodeGetNumJTSetupEvals()
No. of Jacobian-vector product evaluations ARKodeGetNumJtimesEvals()
No. of fi calls for finite diff. J or Jv evals. ARKodeGetNumLinRhsEvals()
Last return from a linear solver function ARKodeGetLastLinFlag()
Name of constant associated with a return flag ARKodeGetLinReturnFlagName()
Size of real and integer mass matrix solver workspaces ARKodeGetMassWorkSpace()
No. of mass matrix solver setups (incl. M evals.) ARKodeGetNumMassSetups()
No. of mass matrix multiply setups ARKodeGetNumMassMultSetups()
No. of mass matrix multiplies ARKodeGetNumMassMult()
No. of mass matrix solves ARKodeGetNumMassSolves()
No. of mass matrix preconditioner evaluations ARKodeGetNumMassPrecEvals()
No. of mass matrix preconditioner solves ARKodeGetNumMassPrecSolves()
No. of mass matrix linear iterations ARKodeGetNumMassIters()
No. of mass matrix solver convergence failures ARKodeGetNumMassConvFails()
No. of mass-matrix-vector setup evaluations ARKodeGetNumMTSetups()
Last return from a mass matrix solver function ARKodeGetLastMassFlag()

int ARKodeGetJac(void *arkode_mem, SUNMatrix *J)
Returns the internally stored copy of the Jacobian matrix of the ODE implicit right-hand side function.

Parameters

• arkode_mem – the ARKODE memory structure.

• J – the Jacobian matrix.

Return values

146 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARKLS_SUCCESS – the output value has been successfully set.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver interface has not been initialized.

• ARK_STEPPER_UNSUPPORTED – linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Warning

This function is provided for debugging purposes and the values in the returned matrix should not be altered.

Added in version 6.1.0.

int ARKodeGetJacTime(void *arkode_mem, sunrealtype *t_J)
Returns the time at which the internally stored copy of the Jacobian matrix of the ODE implicit right-hand side
function was evaluated.

Parameters

• arkode_mem – the ARKODE memory structure.

• t_J – the time at which the Jacobian was evaluated.

Return values

• ARKLS_SUCCESS – the output value has been successfully set.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver interface has not been initialized.

• ARK_STEPPER_UNSUPPORTED – linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

int ARKodeGetJacNumSteps(void *arkode_mem, long int *nst_J)
Returns the value of the internal step counter at which the internally stored copy of the Jacobian matrix of the
ODE implicit right-hand side function was evaluated.

Parameters

• arkode_mem – the ARKODE memory structure.

• nst_J – the value of the internal step counter at which the Jacobian was evaluated.

Return values

• ARKLS_SUCCESS – the output value has been successfully set.

• ARKLS_MEM_NULL – arkode_mem was NULL.

5.3. ARKODE User-callable functions 147

User Documentation for ARKODE, v6.3.0

• ARKLS_LMEM_NULL – the linear solver interface has not been initialized.

• ARK_STEPPER_UNSUPPORTED – linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Added in version 6.1.0.

int ARKodeGetLinWorkSpace(void *arkode_mem, long int *lenrwLS, long int *leniwLS)
Returns the real and integer workspace used by the ARKLS linear solver interface.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• lenrwLS – the number of sunrealtype values in the ARKLS workspace.

• leniwLS – the number of integer values in the ARKLS workspace.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The workspace requirements reported by this routine correspond only to memory allocated within this inter-
face and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian matrix
allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).

Added in version 6.1.0.

Deprecated since version 6.3.0: Work space functions will be removed in version 8.0.0.

int ARKodeGetNumJacEvals(void *arkode_mem, long int *njevals)
Returns the number of Jacobian evaluations.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• njevals – number of Jacobian evaluations.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

148 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumPrecEvals(void *arkode_mem, long int *npevals)
Returns the total number of preconditioner evaluations, i.e. the number of calls made to psetup with jok =
SUNFALSE and that returned *jcurPtr = SUNTRUE.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• npevals – the current number of calls to psetup.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumPrecSolves(void *arkode_mem, long int *npsolves)
Returns the number of calls made to the preconditioner solve function, psolve.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• npsolves – the number of calls to psolve.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

5.3. ARKODE User-callable functions 149

User Documentation for ARKODE, v6.3.0

• ARK_STEPPER_UNSUPPORTED – linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumLinIters(void *arkode_mem, long int *nliters)
Returns the cumulative number of linear iterations.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nliters – the current number of linear iterations.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumLinConvFails(void *arkode_mem, long int *nlcfails)
Returns the cumulative number of linear convergence failures.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nlcfails – the current number of linear convergence failures.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – linear solvers are not supported by the current time-stepping
module.

150 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumJTSetupEvals(void *arkode_mem, long int *njtsetup)
Returns the cumulative number of calls made to the user-supplied Jacobian-vector setup function, jtsetup.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• njtsetup – the current number of calls to jtsetup.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumJtimesEvals(void *arkode_mem, long int *njvevals)
Returns the cumulative number of calls made to the Jacobian-vector product function, jtimes.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• njvevals – the current number of calls to jtimes.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – linear solvers are not supported by the current time-stepping
module.

5.3. ARKODE User-callable functions 151

User Documentation for ARKODE, v6.3.0

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumLinRhsEvals(void *arkode_mem, long int *nfevalsLS)
Returns the number of calls to the user-supplied implicit right-hand side function f I for finite difference Jacobian
or Jacobian-vector product approximation.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nfevalsLS – the number of calls to the user implicit right-hand side function.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The value nfevalsLS is incremented only if the default internal difference quotient function is used.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetLastLinFlag(void *arkode_mem, long int *lsflag)
Returns the last return value from an ARKLS routine.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• lsflag – the value of the last return flag from an ARKLS function.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – linear solvers are not supported by the current time-stepping
module.

152 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

If the ARKLS setup function failed when using the SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then
the value of lsflag is equal to the column index (numbered from one) at which a zero diagonal element was
encountered during the LU factorization of the (dense or banded) Jacobian matrix. For all other failures,
lsflag is negative.

Otherwise, if the ARKLS setup function failed (ARKodeEvolve() returned ARK_LSETUP_FAIL), then ls-
flag will be SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC or SUN_ERR_EXT_FAIL.

If the ARKLS solve function failed (ARKodeEvolve() returned ARK_LSOLVE_FAIL), then lsflag contains
the error return flag from the SUNLinearSolver object, which will be one of: SUN_ERR_ARG_CORRUP-
TRRUPT, indicating that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_NULL, indicating that
a matrix-free iterative solver was provided, but is missing a routine for the matrix-vector product approxi-
mation, SUNLS_ATIMES_FAIL_UNREC, indicating an unrecoverable failure in the Jv function; SUNLS_-
PSOLVE_NULL, indicating that an iterative linear solver was configured to use preconditioning, but no pre-
conditioner solve routine was provided, SUNLS_PSOLVE_FAIL_UNREC, indicating that the preconditioner
solve function failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt procedure
(SPGMR and SPFGMR only); SUNLS_QRSOL_FAIL, indicating that the matrix R was found to be singular
during the QR solve phase (SPGMR and SPFGMR only); or SUN_ERR_EXT_FAIL, indicating an unrecov-
erable failure in an external iterative linear solver package.

Added in version 6.1.0.

char *ARKodeGetLinReturnFlagName(long int lsflag)
Returns the name of the ARKLS constant corresponding to lsflag.

Parameters

• lsflag – a return flag from an ARKLS function.

Returns
The return value is a string containing the name of the corresponding constant. If using the
SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then if 1 ≤ lsflag ≤ n (LU factorization
failed), this routine returns “NONE”.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Added in version 6.1.0.

int ARKodeGetMassWorkSpace(void *arkode_mem, long int *lenrwMLS, long int *leniwMLS)
Returns the real and integer workspace used by the ARKLS mass matrix linear solver interface.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• lenrwMLS – the number of sunrealtype values in the ARKLS mass solver workspace.

• leniwMLS – the number of integer values in the ARKLS mass solver workspace.

Return values

• ARKLS_SUCCESS – the function exited successfully.

5.3. ARKODE User-callable functions 153

User Documentation for ARKODE, v6.3.0

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

The workspace requirements reported by this routine correspond only to memory allocated within this in-
terface and to memory allocated by the SUNLinearSolver object attached to it. The template mass matrix
allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).

Added in version 6.1.0.

Deprecated since version 6.3.0: Work space functions will be removed in version 8.0.0.

int ARKodeGetNumMassSetups(void *arkode_mem, long int *nmsetups)
Returns the number of calls made to the ARKLS mass matrix solver ‘setup’ routine; these include all calls to the
user-supplied mass-matrix constructor function.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nmsetups – number of calls to the mass matrix solver setup routine.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMassMultSetups(void *arkode_mem, long int *nmvsetups)
Returns the number of calls made to the ARKLS mass matrix ‘matvec setup’ (matrix-based solvers) routine.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nmvsetups – number of calls to the mass matrix matrix-times-vector setup routine.

Return values

154 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMassMult(void *arkode_mem, long int *nmmults)
Returns the number of calls made to the ARKLS mass matrix ‘matvec’ routine (matrix-based solvers) or the
user-supplied mtimes routine (matris-free solvers).

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nmmults – number of calls to the mass matrix solver matrix-times-vector routine.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMassSolves(void *arkode_mem, long int *nmsolves)
Returns the number of calls made to the ARKLS mass matrix solver ‘solve’ routine.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nmsolves – number of calls to the mass matrix solver solve routine.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

5.3. ARKODE User-callable functions 155

User Documentation for ARKODE, v6.3.0

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMassPrecEvals(void *arkode_mem, long int *nmpevals)
Returns the total number of mass matrix preconditioner evaluations, i.e. the number of calls made to psetup.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nmpevals – the current number of calls to psetup.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMassPrecSolves(void *arkode_mem, long int *nmpsolves)
Returns the number of calls made to the mass matrix preconditioner solve function, psolve.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nmpsolves – the number of calls to psolve.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

156 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMassIters(void *arkode_mem, long int *nmiters)
Returns the cumulative number of mass matrix solver iterations.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nmiters – the current number of mass matrix solver linear iterations.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMassConvFails(void *arkode_mem, long int *nmcfails)
Returns the cumulative number of mass matrix solver convergence failures.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nmcfails – the current number of mass matrix solver convergence failures.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

5.3. ARKODE User-callable functions 157

User Documentation for ARKODE, v6.3.0

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMTSetups(void *arkode_mem, long int *nmtsetup)
Returns the cumulative number of calls made to the user-supplied mass-matrix-vector product setup function,
mtsetup.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nmtsetup – the current number of calls to mtsetup.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetLastMassFlag(void *arkode_mem, long int *mlsflag)
Returns the last return value from an ARKLS mass matrix interface routine.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• mlsflag – the value of the last return flag from an ARKLS mass matrix solver interface
function.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARK_STEPPER_UNSUPPORTED – non-identity mass matrices are not supported by the current
time-stepping module.

158 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

The values of msflag for each of the various solvers will match those described above for the function
ARKodeGetLastLinFlag().

Added in version 6.1.0.

5.3.10.5 General usability functions

The following optional routine may be called by a user to inquire about existing solver parameters. While this would
not typically be called during the course of solving an initial value problem, it may be useful for users wishing to better
understand ARKODE.

Optional routine Function name
Output all ARKODE solver parameters ARKodeWriteParameters()

int ARKodeWriteParameters(void *arkode_mem, FILE *fp)
Outputs all ARKODE solver parameters to the provided file pointer.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• fp – pointer to use for printing the solver parameters.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

Note

The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for
all processes would be identical.

Added in version 6.1.0.

5.3.11 ARKODE reset function

To reset the ARKODE module to a particular state (tR, y(tR)) for the continued solution of a problem, where a prior
call to *StepCreate has been made, the user must call the function ARKodeReset(). Like the stepper-specific
*StepReInit functions, this routine retains the current settings for all solver options and performs no memory al-
locations but, unlike *StepReInit, this routine performs only a subset of the input checking and initializations that
are done in *StepCreate. In particular this routine retains all internal counter values and the step size/error history
and does not reinitialize the linear and/or nonlinear solver but it does indicate that a linear solver setup is necessary
in the next step. Like *StepReInit, a call to ARKodeReset() will delete any previously-set tstop value specified
via a call to ARKodeSetStopTime(). Following a successful call to ARKodeReset(), call ARKodeEvolve() again

5.3. ARKODE User-callable functions 159

User Documentation for ARKODE, v6.3.0

to continue solving the problem. By default the next call to ARKodeEvolve() will use the step size computed by
ARKODE prior to calling ARKodeReset(). To set a different step size or have ARKODE estimate a new step size use
ARKodeSetInitStep().

One important use of the ARKodeReset() function is in the treating of jump discontinuities in the RHS functions.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted ODE model, using a call to ARKodeReset(). To stop when the location of the discontinuity
is known, simply make that location a value of tout. To stop when the location of the discontinuity is determined by the
solution, use the rootfinding feature. In either case, it is critical that the RHS functions not incorporate the discontinuity,
but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent rootfinding, if used)
can be done efficiently. Then use a switch within the RHS functions (communicated through user_data) that can be
flipped between the stopping of the integration and the restart, so that the restarted problem uses the new values (which
have jumped). Similar comments apply if there is to be a jump in the dependent variable vector.

int ARKodeReset(void *arkode_mem, sunrealtype tR, N_Vector yR)
Resets the current ARKODE time-stepper module state to the provided independent variable value and dependent
variable vector.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• tR – the value of the independent variable t.

• yR – the value of the dependent variable vector y(tR).

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_MEM_FAIL – a memory allocation failed.

• ARK_ILL_INPUT – an argument had an illegal value.

Note

By default the next call to ARKodeEvolve() will use the step size computed by ARKODE prior to calling
ARKodeReset(). To set a different step size or have ARKODE estimate a new step size use ARKodeSe-
tInitStep().

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ARKodeReset() also sends an error message to the error handler function.

Warning

Calling ARKodeReset() during forward integration of an IVP with checkpointing for adjoint sensitivity
analysis is not supported.

Added in version 6.1.0.

160 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.3.12 ARKODE system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the ARKODE integrator may be “resized”
between integration steps, through calls to the ARKodeResize() function. This function modifies ARKODE’s internal
memory structures to use the new problem size, without destruction of the temporal adaptivity heuristics. It is assumed
that the dynamical time scales before and after the vector resize will be comparable, so that all time-stepping heuristics
prior to calling ARKodeResize() remain valid after the call. If instead the dynamics should be recomputed from
scratch, the ARKODE memory structure should be deleted with a call to ARKodeFree(), and recreated with a calls to
*StepCreate.

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of
type ARKVecResizeFn()) is not supplied (i.e., is set to NULL), then all existing vectors internal to ARKODE will
be destroyed and re-cloned from the new input vector.

In the case that the dynamical time scale should be modified slightly from the previous time scale, an input hscale is
allowed, that will rescale the upcoming time step by the specified factor. If a value hscale ≤ 0 is specified, the default
of 1.0 will be used.

int ARKodeResize(void *arkode_mem, N_Vector yR, sunrealtype hscale, sunrealtype tR, ARKVecResizeFn resize,
void *resize_data)

Re-sizes ARKODE with a different state vector but with comparable dynamical time scale.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• yR – the newly-sized state vector, holding the current dependent variable values y(tR).

• hscale – the desired time step scaling factor (i.e. the next step will be of size h*hscale).

• tR – the current value of the independent variable tR (this must be consistent with yR).

• resize – the user-supplied vector resize function (of type ARKVecResizeFn().

• resize_data – the user-supplied data structure to be passed to resize when modifying in-
ternal ARKODE vectors.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_NULL – arkode_mem was NULL.

• ARK_NO_MALLOC – arkode_mem was not allocated.

• ARK_ILL_INPUT – an argument had an illegal value.

Note

If an error occurred, ARKodeResize() also sends an error message to the error handler function.

If inequality constraint checking is enabled a call to ARKodeResize() will disable constraint checking. A
call to ARKodeSetConstraints() is required to re-enable constraint checking.

Resizing the linear solver:

When using any of the SUNDIALS-provided linear solver modules, the linear solver memory structures
must also be resized. At present, none of these include a solver-specific “resize” function, so the linear solver
memory must be destroyed and re-allocated following each call to ARKodeResize(). Moreover, the exist-
ing ARKLS interface should then be deleted and recreated by attaching the updated SUNLinearSolver (and

5.3. ARKODE User-callable functions 161

User Documentation for ARKODE, v6.3.0

possibly SUNMatrix) object(s) through calls to ARKodeSetLinearSolver(), and ARKodeSetMassLin-
earSolver().

If any user-supplied routines are provided to aid the linear solver (e.g. Jacobian construction, Jacobian-vector
product, mass-matrix-vector product, preconditioning), then the corresponding “set” routines must be called
again following the solver re-specification.

Resizing the absolute tolerance array:

If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the call to
ARKodeResize(), so the new absolute tolerance vector should be re-set following each call to ARKodeRe-
size() through a new call to ARKodeSVtolerances() and possibly ARKodeResVtolerance() if appli-
cable.

If scalar-valued tolerances or a tolerance function was specified through either ARKodeSStolerances() or
ARKodeWFtolerances(), then these will remain valid and no further action is necessary.

Example codes:

• examples/arkode/C_serial/ark_heat1D_adapt.c

Added in version 6.1.0.

5.3.13 Using an ARKODE solver as an MRIStep “inner” solver

When using an integrator from ARKODE as the inner (fast) integrator with MRIStep, the utility function ARKodeCre-
ateMRIStepInnerStepper() should be used to wrap the ARKODE memory block as an MRIStepInnerStepper.

int ARKodeCreateMRIStepInnerStepper(void *inner_arkode_mem, MRIStepInnerStepper *stepper)
Wraps an ARKODE integrator as an MRIStepInnerStepper for use with MRIStep.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• stepper – the MRIStepInnerStepper object to create.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_FAIL – a memory allocation failed.

• ARK_STEPPER_UNSUPPORTED – the time-stepping module does not currently support use as
an inner stepper.

Note

Currently, ARKODE integrators based on ARKStep, ERKStep, and MRIStep support use as an MRIStep
inner stepper.

Example usage:

/* fast (inner) and slow (outer) ARKODE objects */
void *inner_arkode_mem = NULL;
void *outer_arkode_mem = NULL;

(continues on next page)

162 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

(continued from previous page)

/* MRIStepInnerStepper to wrap the inner (fast) object */
MRIStepInnerStepper stepper = NULL;

/* create an ARKODE object, setting fast (inner) right-hand side
functions and the initial condition */

inner_arkode_mem = *StepCreate(...);

/* configure the inner integrator */
retval = ARKodeSet*(inner_arkode_mem, ...);

/* create MRIStepInnerStepper wrapper for the ARKODE integrator */
flag = ARKodeCreateMRIStepInnerStepper(inner_arkode_mem, &stepper);

/* create an MRIStep object, setting the slow (outer) right-hand side
functions and the initial condition */

outer_arkode_mem = MRIStepCreate(fse, fsi, t0, y0, stepper, sunctx)

5.3.14 Using an ARKODE solver as a SUNStepper

The utility function ARKodeCreateSUNStepper() wraps an ARKODE memory block as a SUNStepper.

int ARKodeCreateSUNStepper(void *inner_arkode_mem, SUNStepper *stepper)
Wraps an ARKODE integrator as a SUNStepper.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• stepper – the SUNStepper object.

Return values

• ARK_SUCCESS – the function exited successfully.

• ARK_MEM_FAIL – a memory allocation failed.

• ARK_SUNSTEPPER_ERR – the SUNStepper initialization failed.

Warning

Currently, stepperwill be equipped with an implementation for the SUNStepper_SetForcing() function
only if inner_arkode_mem is an ARKStep, ERKStep, or MRIStep integrator.

Added in version 6.2.0.

5.3. ARKODE User-callable functions 163

User Documentation for ARKODE, v6.3.0

5.4 User-supplied functions

The user-supplied functions for ARKODE consist of:

• at least one function defining the ODE (required),

• a function that provides the error weight vector (optional),

• a function that provides the residual weight vector (optional),

• a function that handles explicit time step stability (optional),

• a function that updates the implicit stage prediction (optional),

• a function that defines auxiliary temporal root-finding problem(s) to solve (optional),

• one or two functions that provide Jacobian-related information for the linear solver, if a component is treated
implicitly and a Newton-based nonlinear iteration is chosen (optional),

• one or two functions that define the preconditioner for use in any of the Krylov iterative algorithms, if linear
systems of equations are to be solved using an iterative method (optional),

• if the problem involves a non-identity mass matrix M 6= I with ARKStep:

– one or two functions that provide mass-matrix-related information for the linear and mass matrix solvers
(required),

– one or two functions that define the mass matrix preconditioner for use if an iterative mass matrix solver is
chosen (optional), and

• a function that handles vector resizing operations, if the underlying vector structure supports resizing (as opposed
to deletion/recreation), and if the user plans to call ARKodeResize() (optional).

• MRIStep only: functions to be called before and after each inner integration to perform any communication or
memory transfers of forcing data supplied by the outer integrator to the inner integrator, or state data supplied by
the inner integrator to the outer integrator.

• if relaxation is enabled (optional), a function that evaluates the conservative or dissipative function ξ(y(t)) (re-
quired) and a function to evaluate its Jacobian ξ′(y(t)) (required).

5.4.1 ODE right-hand side

The user must supply at least one function of type ARKRhsFn to specify the IVP-defininig right-hand side function(s)
when creating the ARKODE time-stepping module:

typedef int (*ARKRhsFn)(sunrealtype t, N_Vector y, N_Vector ydot, void *user_data)
These functions compute the ODE right-hand side for a given value of the independent variable t and state vector
y.

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector.

Param ydot
the output vector that forms [a portion of] the ODE RHS f(t, y).

Param user_data
the user_data pointer that was passed to ARKodeSetUserData().

164 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Return
An ARKRhsFn should return 0 if successful, a positive value if a recoverable error occurred (in
which case ARKODE will attempt to correct), or a negative value if it failed unrecoverably (in
which case the integration is halted and ARK_RHSFUNC_FAIL is returned).

Note

Allocation of memory for ydot is handled within ARKODE.

The vector ydot may be uninitialized on input; it is the user’s responsibility to fill this entire vector with
meaningful values.

A recoverable failure error return from the ARKRhsFn is typically used to flag a value of the dependent vari-
able y that is “illegal” in some way (e.g., negative where only a non-negative value is physically meaningful).
If such a return is made, ARKODE will attempt to recover (possibly repeating the nonlinear iteration, or
reducing the step size in ARKodeEvolve) in order to avoid this recoverable error return. There are some
situations in which recovery is not possible even if the right-hand side function returns a recoverable er-
ror flag. One is when this occurs at the very first call to the ARKRhsFn (in which case ARKODE returns
ARK_FIRST_RHSFUNC_ERR). Another is when a recoverable error is reported by ARKRhsFn after the
time-stepping module completes a successful stage, in which case ARKodeEvolve returns ARK_UNREC_-
RHSFUNC_ERR). Finally, when ARKODE is run in fixed-step mode, it may halt on a recoverable error flag
that would normally have resulted in a stepsize reduction.

5.4.2 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of type ARKEwtFn

to compute a vector ewt containing the weights in the WRMS norm ‖v‖WRMS =

(
1

n

n∑
i=1

(ewti vi)
2

)1/2

. These

weights will be used in place of those defined in §2.10.

typedef int (*ARKEwtFn)(N_Vector y, N_Vector ewt, void *user_data)
This function computes the WRMS error weights for the vector y.

Param y
the dependent variable vector at which the weight vector is to be computed.

Param ewt
the output vector containing the error weights.

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data() function

Return
An ARKEwtFn function must return 0 if it successfully set the error weights, and -1 otherwise.

Note

Allocation of memory for ewt is handled within ARKODE.

The error weight vector must have all components positive. It is the user’s responsibility to perform this test
and return -1 if it is not satisfied.

5.4. User-supplied functions 165

User Documentation for ARKODE, v6.3.0

5.4.3 Residual weight function

Warning

The functions in this section are specific to time-stepping modules that support non-identity mass matrices.

As an alternative to providing the scalar or vector absolute residual tolerances (when the IVP units differ from the
solution units), the user may provide a function of type ARKRwtFn to compute a vector rwt containing the weights

in the WRMS norm ‖v‖WRMS =

(
1

n

n∑
i=1

(rwti vi)
2

)1/2

. These weights will be used in place of those defined in

§2.10.

typedef int (*ARKRwtFn)(N_Vector y, N_Vector rwt, void *user_data)
This function computes the WRMS residual weights for the vector y.

Param y
the dependent variable vector at which the weight vector is to be computed.

Param rwt
the output vector containing the residual weights.

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Return
An ARKRwtFn function must return 0 if it successfully set the residual weights, and -1 otherwise.

Note

Allocation of memory for rwt is handled within ARKODE.

The residual weight vector must have all components positive. It is the user’s responsibility to perform this
test and return -1 if it is not satisfied.

5.4.4 Time step adaptivity function

Warning

The function in this section is only used in now-deprecated functions in ARKStep and ERKStep, and will be
removed in a future release.

As an alternative to using one of the built-in time step adaptivity methods for controlling solution error, the user may
provide a function of type ARKAdaptFn to compute a target step size h for the next integration step. These steps should
be chosen such that the error estimate for the next time step remains below 1.

typedef int (*ARKAdaptFn)(N_Vector y, sunrealtype t, sunrealtype h1, sunrealtype h2, sunrealtype h3, sunrealtype
e1, sunrealtype e2, sunrealtype e3, int q, int p, sunrealtype *hnew, void *user_data)

This function implements a time step adaptivity algorithm that chooses h to satisfy the error tolerances.

Param y
the current value of the dependent variable vector.

166 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Param t
the current value of the independent variable.

Param h1
the current step size, tn − tn−1.

Param h2
the previous step size, tn−1 − tn−2.

Param h3
the step size tn−2 − tn−3.

Param e1
the error estimate from the current step, n.

Param e2
the error estimate from the previous step, n− 1.

Param e3
the error estimate from the step n− 2.

Param q
the global order of accuracy for the method.

Param p
the global order of accuracy for the embedded method.

Param hnew
the output value of the next step size.

Param user_data
a pointer to user data, the same as the h_data parameter that was passed to ARKStepSetAdap-
tivityFn() or ERKStepSetAdaptivityFn().

Return
An ARKAdaptFn function should return 0 if it successfully set the next step size, and a non-zero
value otherwise.

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

5.4.5 Explicit stability function

Warning

The functions in this section are specific to time-stepping modules that support temporal adaptivity.

A user may supply a function to predict the maximum stable step size for an explicit portion of their IVP. While the
accuracy-based time step adaptivity algorithms may be sufficient for retaining a stable solution to the ODE system,
these may be inefficient if the explicit right-hand side function contains moderately stiff terms. In this scenario, a user
may provide a function of type ARKExpStabFn to provide this stability information to ARKODE. This function must
set the scalar step size satisfying the stability restriction for the upcoming time step. This value will subsequently be
bounded by the user-supplied values for the minimum and maximum allowed time step, and the accuracy-based time
step.

typedef int (*ARKExpStabFn)(N_Vector y, sunrealtype t, sunrealtype *hstab, void *user_data)
This function predicts the maximum stable step size for the explicit portion of the ODE system.

5.4. User-supplied functions 167

User Documentation for ARKODE, v6.3.0

Param y
the current value of the dependent variable vector.

Param t
the current value of the independent variable.

Param hstab
the output value with the absolute value of the maximum stable step size.

Param user_data
a pointer to user data, the same as the estab_data parameter that was passed to ARKodeSetSta-
bilityFn().

Return
An ARKExpStabFn function should return 0 if it successfully set the upcoming stable step size,
and a non-zero value otherwise.

Note

If this function is not supplied, or if it returns hstab≤ 0.0, then ARKODE will assume that there is no explicit
stability restriction on the time step size.

5.4.6 Implicit stage prediction function

A user may supply a function to update the prediction for each implicit stage solution. If supplied, this routine will be
called after any existing ARKODE predictor algorithm completes, so that the predictor may be modified by the user as
desired. In this scenario, a user may provide a function of type ARKStagePredictFn to provide this implicit predictor
to ARKODE. This function takes as input the already-predicted implicit stage solution and the corresponding “time”
for that prediction; it then updates the prediction vector as desired. If the user-supplied routine will construct a full
prediction (and thus the ARKODE prediction is irrelevant), it is recommended that the user not call ARKodeSetPre-
dictorMethod(), thereby leaving the default trivial predictor in place.

typedef int (*ARKStagePredictFn)(sunrealtype t, N_Vector zpred, void *user_data)
This function updates the prediction for the implicit stage solution.

Param t
the current value of the independent variable containing the “time” corresponding to the predicted
solution.

Param zpred
the ARKODE-predicted stage solution on input, and the user-modified predicted stage solution
on output.

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Return
An ARKStagePredictFn function should return 0 if it successfully set the upcoming stable step
size, and a non-zero value otherwise.

Note

This may be useful if there are bound constraints on the solution, and these should be enforced prior to
beginning the nonlinear or linear implicit solver algorithm.

168 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

This routine is incompatible with the “minimum correction predictor” – option 5 to the routine ARKode-
SetPredictorMethod(). If both are selected, then ARKODE will override its built-in implicit predictor
routine to instead use option 0 (trivial predictor).

5.4.7 Rootfinding function

If a rootfinding problem is to be solved during integration of the ODE system, the user must supply a function of type
ARKRootFn.

typedef int (*ARKRootFn)(sunrealtype t, N_Vector y, sunrealtype *gout, void *user_data)
This function implements a vector-valued function g(t, y) such that roots are sought for the components gi(t, y),
i = 0, . . . , nrtfn-1.

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector.

Param gout
the output array, of length nrtfn, with components gi(t, y).

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to the SetUserData
function

Return
An ARKRootFn function should return 0 if successful or a non-zero value if an error occurred
(in which case the integration is halted and ARKODE returns ARK_RTFUNC_FAIL).

Note

Allocation of memory for gout is handled within ARKODE.

5.4.8 Jacobian construction

If a matrix-based linear solver module is used (i.e., a non-NULL SUNMatrix object was supplied to ARKodeSet-
LinearSolver(), the user may provide a function of type ARKLsJacFn to provide the Jacobian approximation or
ARKLsLinSysFn to provide an approximation of the linear system A(t, y) = M(t)− γJ(t, y).

typedef int (*ARKLsJacFn)(sunrealtype t, N_Vector y, N_Vector fy, SUNMatrix Jac, void *user_data, N_Vector tmp1,
N_Vector tmp2, N_Vector tmp3)

This function computes the Jacobian matrix J(t, y) =
∂f I

∂y
(t, y) (or an approximation to it).

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector, namely the predicted value of y(t).

Param fy
the current value of the vector f I(t, y).

5.4. User-supplied functions 169

User Documentation for ARKODE, v6.3.0

Param Jac
the output Jacobian matrix.

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Param tmp*
pointers to memory allocated to variables of type N_Vector which can be used by an ARKLs-
JacFn as temporary storage or work space.

Return
An ARKLsJacFn function should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case ARKODE will attempt to correct, while ARKLS sets last_flag to ARKLS_-
JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case the integration
is halted, ARKodeEvolve() returns ARK_LSETUP_FAIL and ARKLS sets last_flag to ARKLS_-
JACFUNC_UNRECVR).

Note

Information regarding the specific SUNMatrix structure (e.g.~number of rows, upper/lower bandwidth, spar-
sity type) may be obtained through using the implementation-specific SUNMatrix interface functions (see
§9 for details).

When using a linear solver of type SUNLINEARSOLVER_DIRECT, prior to calling the user-supplied Jacobian
function, the Jacobian matrix J(t, y) is zeroed out, so only nonzero elements need to be loaded into Jac.

With the default Newton nonlinear solver, each call to the user’s ARKLsJacFn() function is preceded by a
call to the implicit ARKRhsFn() user function with the same (t, y) arguments. Thus, the Jacobian function
can use any auxiliary data that is computed and saved during the evaluation of f I(t, y). In the case of a
user-supplied or external nonlinear solver, this is also true if the nonlinear system function is evaluated prior
to calling the linear solver setup function (see §11.1.4 for more information).

If the user’s ARKLsJacFn function uses difference quotient approximations, then it may need to access quan-
tities not in the argument list, including the current step size, the error weights, etc. To obtain these, the
user will need to add a pointer to the ark_mem structure to their user_data, and then use the ARKSodeGet*
functions listed in §5.3.10. The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF, which is defined in
the header file sundials_types.h.

dense J(t, y): A user-supplied dense Jacobian function must load the N by N dense matrix Jac with an
approximation to the Jacobian matrix J(t, y) at the point (t, y). Utility routines and accessor macros for the
SUNMATRIX_DENSE module are documented in §9.3.

banded J(t, y): A user-supplied banded Jacobian function must load the band matrix Jac with the elements
of the Jacobian J(t, y) at the point (t, y). Utility routines and accessor macros for the SUNMATRIX_BAND
module are documented in §9.6.

sparse J(t, y): A user-supplied sparse Jacobian function must load the compressed-sparse-column (CSC)
or compressed-sparse-row (CSR) matrix Jac with an approximation to the Jacobian matrix J(t, y) at the
point (t, y). Storage for Jac already exists on entry to this function, although the user should ensure that
sufficient space is allocated in Jac to hold the nonzero values to be set; if the existing space is insufficient
the user may reallocate the data and index arrays as needed. Utility routines and accessor macros for the
SUNMATRIX_SPARSE type are documented in §9.8.

typedef int (*ARKLsLinSysFn)(sunrealtype t, N_Vector y, N_Vector fy, SUNMatrix A, SUNMatrix M,
sunbooleantype jok, sunbooleantype *jcur, sunrealtype gamma, void *user_data, N_Vector tmp1, N_Vector tmp2,
N_Vector tmp3)

170 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

This function computes the linear system matrix A(t, y) = M(t)− γJ(t, y) (or an approximation to it).

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector, namely the predicted value of y(t).

Param fy
the current value of the vector f I(t, y).

Param A
the output linear system matrix.

Param M
the current mass matrix (this input is NULL if M = I).

Param jok
is an input flag indicating whether the Jacobian-related data needs to be updated. The jok argu-
ment provides for the reuse of Jacobian data. When jok = SUNFALSE, the Jacobian-related data
should be recomputed from scratch. When jok = SUNTRUE the Jacobian data, if saved from the
previous call to this function, can be reused (with the current value of gamma). A call with jok
= SUNTRUE can only occur after a call with jok = SUNFALSE.

Param jcur
is a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or set to
SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

Param gamma
the scalar γ appearing in the Newton system matrix A = M(t)− γJ(t, y).

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Param tmp*
pointers to memory allocated to variables of type N_Vector which can be used by an ARKL-
sLinSysFn as temporary storage or work space.

Return
An ARKLsLinSysFn function should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case ARKODE will attempt to correct, while ARKLS sets last_flag to
ARKLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case the
integration is halted, ARKodeEvolve() returns ARK_LSETUP_FAIL and ARKLS sets last_flag
to ARKLS_JACFUNC_UNRECVR).

5.4.9 Jacobian-vector product

When using a matrix-free linear solver module for the implicit stage solves (i.e., a NULL-valued SUNMATRIX argu-
ment was supplied to ARKodeSetLinearSolver(), the user may provide a function of type ARKLsJacTimesVecFn in
the following form, to compute matrix-vector products Jv. If such a function is not supplied, the default is a difference
quotient approximation to these products.

typedef int (*ARKLsJacTimesVecFn)(N_Vector v, N_Vector Jv, sunrealtype t, N_Vector y, N_Vector fy, void
*user_data, N_Vector tmp)

This function computes the product Jv where J(t, y) ≈ ∂f I

∂y
(t, y) (or an approximation to it).

5.4. User-supplied functions 171

User Documentation for ARKODE, v6.3.0

Param v
the vector to multiply.

Param Jv
the output vector computed.

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector.

Param fy
the current value of the vector f I(t, y).

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Param tmp
pointer to memory allocated to a variable of type N_Vector which can be used as temporary
storage or work space.

Return
The value to be returned by the Jacobian-vector product function should be 0 if successful. Any
other return value will result in an unrecoverable error of the generic Krylov solver, in which case
the integration is halted.

Note

If the user’s ARKLsJacTimesVecFn function uses difference quotient approximations, it may need to access
quantities not in the argument list. These include the current step size, the error weights, etc. To obtain
these, the user will need to add a pointer to the ark_mem structure to their user_data, and then use the
ARKodeGet* functions listed in §5.3.10. The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF, which
is defined in the header file sundials_types.h.

5.4.10 Jacobian-vector product setup

If the user’s Jacobian-times-vector routine requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type ARKLsJacTimesSetupFn, defined as follows:

typedef int (*ARKLsJacTimesSetupFn)(sunrealtype t, N_Vector y, N_Vector fy, void *user_data)
This function preprocesses and/or evaluates any Jacobian-related data needed by the Jacobian-times-vector rou-
tine.

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector.

Param fy
the current value of the vector f I(t, y).

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

172 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Return
The value to be returned by the Jacobian-vector setup function should be 0 if successful, positive
for a recoverable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Note

Each call to the Jacobian-vector setup function is preceded by a call to the implicit ARKRhsFn user function
with the same (t, y) arguments. Thus, the setup function can use any auxiliary data that is computed and
saved during the evaluation of the implicit ODE right-hand side.

If the user’s ARKLsJacTimesSetupFn function uses difference quotient approximations, it may need to
access quantities not in the argument list. These include the current step size, the error weights, etc. To
obtain these, the user will need to add a pointer to the ark_mem structure to their user_data, and then use
the ARKodeGet* functions listed in §5.3.10. The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF,
which is defined in the header file sundials_types.h.

5.4.11 Preconditioner solve

If a user-supplied preconditioner is to be used with a SUNLinSol solver module, then the user must provide a function
of type ARKLsPrecSolveFn to solve the linear system Pz = r, where P corresponds to either a left or right precon-
ditioning matrix. Here P should approximate (at least crudely) the Newton matrix A(t, y) = M(t)− γJ(t, y), where

M(t) is the mass matrix and J(t, y) =
∂f I

∂y
(t, y) If preconditioning is done on both sides, the product of the two

preconditioner matrices should approximate A.

typedef int (*ARKLsPrecSolveFn)(sunrealtype t, N_Vector y, N_Vector fy, N_Vector r, N_Vector z, sunrealtype
gamma, sunrealtype delta, int lr, void *user_data)

This function solves the preconditioner system Pz = r.

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector.

Param fy
the current value of the vector f I(t, y).

Param r
the right-hand side vector of the linear system.

Param z
the computed output solution vector.

Param gamma
the scalar γ appearing in the Newton matrix given by A = M(t)− γJ(t, y).

Param delta
an input tolerance to be used if an iterative method is employed in the solution. In that case, the
residual vectorRes = r−Pz of the system should be made to be less than delta in the weighted

l2 norm, i.e.

(
n∑
i=1

(Resi ∗ ewti)2
)1/2

< δ, where δ = delta. To obtain the N_Vector ewt, call

ARKodeGetErrWeights().

5.4. User-supplied functions 173

User Documentation for ARKODE, v6.3.0

Param lr
an input flag indicating whether the preconditioner solve is to use the left preconditioner (lr = 1)
or the right preconditioner (lr = 2).

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Return
The value to be returned by the preconditioner solve function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case
the step will be retried), or negative for an unrecoverable error (in which case the integration is
halted).

5.4.12 Preconditioner setup

If the user’s preconditioner routine above requires that any data be preprocessed or evaluated, then these actions need
to occur within a user-supplied function of type ARKLsPrecSetupFn.

typedef int (*ARKLsPrecSetupFn)(sunrealtype t, N_Vector y, N_Vector fy, sunbooleantype jok, sunbooleantype
*jcurPtr, sunrealtype gamma, void *user_data)

This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner.

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector.

Param fy
the current value of the vector f I(t, y).

Param jok
is an input flag indicating whether the Jacobian-related data needs to be updated. The jok argu-
ment provides for the reuse of Jacobian data in the preconditioner solve function. When jok =
SUNFALSE, the Jacobian-related data should be recomputed from scratch. When jok = SUNTRUE
the Jacobian data, if saved from the previous call to this function, can be reused (with the current
value of gamma). A call with jok = SUNTRUE can only occur after a call with jok = SUNFALSE.

Param jcurPtr
is a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or set to
SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

Param gamma
the scalar γ appearing in the Newton matrix given by A = M(t)− γJ(t, y).

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Return
The value to be returned by the preconditioner setup function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case
the step will be retried), or negative for an unrecoverable error (in which case the integration is
halted).

174 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Note

The operations performed by this function might include forming a crude approximate Jacobian, and per-
forming an LU factorization of the resulting approximation to A = M(t)− γJ(t, y).

With the default nonlinear solver (the native SUNDIALS Newton method), each call to the preconditioner
setup function is preceded by a call to the implicit ARKRhsFn user function with the same (t, y) arguments.
Thus, the preconditioner setup function can use any auxiliary data that is computed and saved during the
evaluation of the implicit ODE right-hand side. In the case of a user-supplied or external nonlinear solver,
this is also true if the nonlinear system function is evaluated prior to calling the linear solver setup function
(see §11.1.4 for more information).

This function is not called in advance of every call to the preconditioner solve function, but rather is called
only as often as needed to achieve convergence in the Newton iteration.

If the user’s ARKLsPrecSetupFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These include the current step size, the error weights, etc. To obtain these, the
user will need to add a pointer to the ark_mem structure to their user_data, and then use the ARKodeGet*
functions listed in §5.3.10. The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF, which is defined in
the header file sundials_types.h.

5.4.13 Mass matrix construction

For problems involving a non-identity mass matrix, if a matrix-based mass-matrix linear solver is used (i.e., a non-
NULL SUNMATRIX was supplied to ARKodeSetMassLinearSolver(), the user must provide a function of type
ARKLsMassFn to provide the mass matrix approximation.

typedef int (*ARKLsMassFn)(sunrealtype t, SUNMatrix M, void *user_data, N_Vector tmp1, N_Vector tmp2,
N_Vector tmp3)

This function computes the mass matrix M(t) (or an approximation to it).

Param t
the current value of the independent variable.

Param M
the output mass matrix.

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Param tmp1*
pointers to memory allocated to variables of type N_Vector which can be used by an ARKLs-
MassFn as temporary storage or work space.

Return
An ARKLsMassFn function should return 0 if successful, or a negative value if it failed unrecover-
ably (in which case the integration is halted, ARKodeEvolve() returns ARK_MASSSETUP_FAIL
and ARKLS sets last_flag to ARKLS_MASSFUNC_UNRECVR).

Note

Information regarding the structure of the specific SUNMatrix structure (e.g.~number of rows, upper/lower
bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMatrix interface
functions (see §9 for details).

5.4. User-supplied functions 175

User Documentation for ARKODE, v6.3.0

Prior to calling the user-supplied mass matrix function, the mass matrixM(t) is zeroed out, so only nonzero
elements need to be loaded into M.

dense M(t): A user-supplied dense mass matrix function must load the N by N dense matrix M with an
approximation to the mass matrixM(t). Utility routines and accessor macros for the SUNMATRIX_DENSE
module are documented in §9.3.

bandedM(t): A user-supplied banded mass matrix function must load the band matrix M with the elements
of the mass matrix M(t). Utility routines and accessor macros for the SUNMATRIX_BAND module are
documented in §9.6.

sparse M(t): A user-supplied sparse mass matrix function must load the compressed-sparse-column (CSR)
or compressed-sparse-row (CSR) matrix M with an approximation to the mass matrix M(t). Storage for M
already exists on entry to this function, although the user should ensure that sufficient space is allocated in
M to hold the nonzero values to be set; if the existing space is insufficient the user may reallocate the data
and row index arrays as needed. Utility routines and accessor macros for the SUNMATRIX_SPARSE type
are documented in §9.8.

5.4.14 Mass matrix-vector product

For problems involving a non-identity mass matrix, if a matrix-free linear solver is to be used for mass-matrix linear
systems (i.e., a NULL-valued SUNMATRIX argument was supplied to ARKodeSetMassLinearSolver() in §5.2),
the user must provide a function of type ARKLsMassTimesVecFn in the following form, to compute matrix-vector
products M(t) v.

typedef int (*ARKLsMassTimesVecFn)(N_Vector v, N_Vector Mv, sunrealtype t, void *mtimes_data)
This function computes the product M(t) v (or an approximation to it).

Param v
the vector to multiply.

Param Mv
the output vector computed.

Param t
the current value of the independent variable.

Param mtimes_data
a pointer to user data, the same as the mtimes_data parameter that was passed to ARKodeSet-
MassTimes().

Return
The value to be returned by the mass-matrix-vector product function should be 0 if successful.
Any other return value will result in an unrecoverable error of the generic Krylov solver, in which
case the integration is halted.

176 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.4.15 Mass matrix-vector product setup

For problems involving a non-identity mass matrix and a matrix-free linear solver, if the user’s mass-matrix-times-
vector routine requires that any mass matrix-related data be preprocessed or evaluated, then this needs to be done in a
user-supplied function of type ARKLsMassTimesSetupFn, defined as follows:

typedef int (*ARKLsMassTimesSetupFn)(sunrealtype t, void *mtimes_data)
This function preprocesses and/or evaluates any mass-matrix-related data needed by the mass-matrix-times-
vector routine.

Param t
the current value of the independent variable.

Param mtimes_data
a pointer to user data, the same as the mtimes_data parameter that was passed to ARKodeSet-
MassTimes().

Return
The value to be returned by the mass-matrix-vector setup function should be 0 if successful.
Any other return value will result in an unrecoverable error of the ARKLS mass matrix solver
interface, in which case the integration is halted.

5.4.16 Mass matrix preconditioner solve

For problems involving a non-identity mass matrix and an iterative linear solver, if a user-supplied preconditioner is to
be used with a SUNLINEAR solver module for mass matrix linear systems, then the user must provide a function of
type ARKLsMassPrecSolveFn to solve the linear systemPz = r, whereP may be either a left or right preconditioning
matrix. Here P should approximate (at least crudely) the mass matrix M(t). If preconditioning is done on both sides,
the product of the two preconditioner matrices should approximate M(t).

typedef int (*ARKLsMassPrecSolveFn)(sunrealtype t, N_Vector r, N_Vector z, sunrealtype delta, int lr, void
*user_data)

This function solves the preconditioner system Pz = r.

Param t
the current value of the independent variable.

Param r
the right-hand side vector of the linear system.

Param z
the computed output solution vector.

Param delta
an input tolerance to be used if an iterative method is employed in the solution. In that case, the
residual vectorRes = r−Pz of the system should be made to be less than delta in the weighted

l2 norm, i.e.

(
n∑
i=1

(Resi ∗ ewti)2
)1/2

< δ, where δ = delta. To obtain the N_Vector ewt, call

ARKodeGetErrWeights().

Param lr
an input flag indicating whether the preconditioner solve is to use the left preconditioner (lr = 1)
or the right preconditioner (lr = 2).

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

5.4. User-supplied functions 177

User Documentation for ARKODE, v6.3.0

Return
The value to be returned by the preconditioner solve function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case
the step will be retried), or negative for an unrecoverable error (in which case the integration is
halted).

5.4.17 Mass matrix preconditioner setup

For problems involving a non-identity mass matrix and an iterative linear solver, if the user’s mass matrix preconditioner
above requires that any problem data be preprocessed or evaluated, then these actions need to occur within a user-
supplied function of type ARKLsMassPrecSetupFn.

typedef int (*ARKLsMassPrecSetupFn)(sunrealtype t, void *user_data)
This function preprocesses and/or evaluates mass-matrix-related data needed by the preconditioner.

Param t
the current value of the independent variable.

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Return
The value to be returned by the mass matrix preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recoverable error
(in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Note

The operations performed by this function might include forming a mass matrix and performing an incom-
plete factorization of the result. Although such operations would typically be performed only once at the
beginning of a simulation, these may be required if the mass matrix can change as a function of time.

If both this function and a ARKLsMassTimesSetupFn are supplied, all calls to this function will be preceded
by a call to the ARKLsMassTimesSetupFn, so any setup performed there may be reused.

5.4.18 Vector resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatial adaptivity in a PDE simulation), the ARKODE integrator may be “resized” between integration steps, through
calls to the ARKodeResize() function. Typically, when performing adaptive simulations the solution is stored in a
customized user-supplied data structure, to enable adaptivity without repeated allocation/deallocation of memory. In
these scenarios, it is recommended that the user supply a customized vector kernel to interface between SUNDIALS
and their problem-specific data structure. If this vector kernel includes a function of type ARKVecResizeFn to resize
a given vector implementation, then this function may be supplied to ARKodeResize() so that all internal ARKODE
vectors may be resized, instead of deleting and re-creating them at each call. This resize function should have the
following form:

typedef int (*ARKVecResizeFn)(N_Vector y, N_Vector ytemplate, void *user_data)
This function resizes the vector y to match the dimensions of the supplied vector, ytemplate.

Param y
the vector to resize.

178 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Param ytemplate
a vector of the desired size.

Param user_data
a pointer to user data, the same as the resize_data parameter that was passed to ARKodeResize().

Return
An ARKVecResizeFn function should return 0 if it successfully resizes the vector y, and a non-
zero value otherwise.

Note

If this function is not supplied, then ARKODE will instead destroy the vector y and clone a new vector y off
of ytemplate.

5.4.19 Pre inner integrator communication function (MRIStep only)

The user may supply a function of type MRIStepPreInnerFn that will be called before each inner integration to
perform any communication or memory transfers of forcing data supplied by the outer integrator to the inner integrator
for the inner integration.

typedef int (*MRIStepPreInnerFn)(sunrealtype t, N_Vector *f, int num_vecs, void *user_data)

Param t
the current value of the independent variable.

Param f
an N_Vector array of outer forcing vectors.

Param num_vecs
the number of vectors in the N_Vector array.

Param user_data
the user_data pointer that was passed to MRIStepSetUserData().

Return
An MRIStepPreInnerFn function should return 0 if successful, a positive value if a recoverable
error occurred, or a negative value if an unrecoverable error occurred. As the MRIStep module
only supports fixed step sizes at this time any non-zero return value will halt the integration.

Note

In a heterogeneous computing environment if any data copies between the host and device vector data are
necessary, this is where that should occur.

5.4. User-supplied functions 179

User Documentation for ARKODE, v6.3.0

5.4.20 Post inner integrator communication function (MRIStep only)

The user may supply a function of type MRIStepPostInnerFn that will be called after each inner integration to
perform any communication or memory transfers of state data supplied by the inner integrator to the outer integrator
for the outer integration.

typedef int (*MRIStepPostInnerFn)(sunrealtype t, N_Vector y, void *user_data)

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector.

Param user_data
the user_data pointer that was passed to MRIStepSetUserData().

Return
An MRIStepPostInnerFn() function should return 0 if successful, a positive value if a recov-
erable error occurred, or a negative value if an unrecoverable error occurred. As the MRIStep
module only supports fixed step sizes at this time any non-zero return value will halt the integra-
tion.

Note

In a heterogeneous computing environment if any data copies between the host and device vector data are
necessary, this is where that should occur.

5.4.21 Relaxation function

typedef int (*ARKRelaxFn)(N_Vector y, sunrealtype *r, void *user_data)
When applying relaxation, an ARKRelaxFn() function is required to compute the conservative or dissipative
function ξ(y).

Param y
the current value of the dependent variable vector.

Param r
the value of ξ(y).

Param user_data
the user_data pointer that was passed to ARKodeSetUserData().

Return
An ARKRelaxFn() function should return 0 if successful, a positive value if a recoverable error
occurred, or a negative value if an unrecoverable error occurred. If a recoverable error occurs,
the step size will be reduced and the step repeated.

180 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.4.22 Relaxation Jacobian function

typedef int (*ARKRelaxJacFn)(N_Vector y, N_Vector J, void *user_data);
When applying relaxation, an ARKRelaxJacFn() function is required to compute the Jacobian ξ′(y) of the
ARKRelaxFn() ξ(y).

Param y
the current value of the dependent variable vector.

Param J
the Jacobian vector ξ′(y).

Param user_data
the user_data pointer that was passed to ARKodeSetUserData().

Return
An ARKRelaxJacFn() function should return 0 if successful, a positive value if a recoverable
error occurred, or a negative value if an unrecoverable error occurred. If a recoverable error
occurs, the step size will be reduced and the step repeated.

5.5 Relaxation Methods

This section describes user-callable functions for applying relaxation methods with ARKODE. For more information
on relaxation Runge–Kutta methods see §2.18.

Warning

Relaxation support as not been evaluated with non-identity mass matrices. While this usage mode is supported,
feedback from users who explore this combination would be appreciated.

5.5.1 Enabling or Disabling Relaxation

int ARKodeSetRelaxFn(void *arkode_mem, ARKRelaxFn rfn, ARKRelaxJacFn rjac)
Attaches the user supplied functions for evaluating the relaxation function (rfn) and its Jacobian (rjac).

Both rfn and rjac are required and an error will be returned if only one of the functions is NULL. If both rfn
and rjac are NULL, relaxation is disabled.

With DIRK and IMEX-ARK methods or when a fixed mass matrix is present, applying relaxation requires allo-
cating s additional state vectors (where s is the number of stages in the method).

Parameters

• arkode_mem – the ARKODE memory structure

• rfn – the user-defined function to compute the relaxation function ξ(y)

• rjac – the user-defined function to compute the relaxation Jacobian ξ′(y)

Return values

• ARK_SUCCESS – the function exited successfully

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_ILL_INPUT – an invalid input combination was provided (see the output error message
for more details)

5.5. Relaxation Methods 181

User Documentation for ARKODE, v6.3.0

• ARK_MEM_FAIL – a memory allocation failed

Warning

Applying relaxation requires using a method of at least second order with bEi ≥ 0 and bIi ≥ 0. If these
conditions are not satisfied, ARKodeEvolve() will return with an error during initialization.

Note

When combined with fixed time step sizes, ARKODE will attempt each step using the specified step size. If
the step is successful, relaxation will be applied, effectively modifying the step size for the current step. If
the step fails or applying relaxation fails, ARKodeEvolve() will return with an error.

Added in version 6.1.0.

5.5.2 Optional Input Functions

This section describes optional input functions used to control applying relaxation.

int ARKodeSetRelaxEtaFail(void *arkode_mem, sunrealtype eta_rf)
Sets the step size reduction factor applied after a failed relaxation application.

The default value is 0.25. Input values ≤ 0 or ≥ 1 will result in the default value being used.

Parameters

• arkode_mem – the ARKODE memory structure

• eta_rf – the step size reduction factor

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 6.1.0.

int ARKodeSetRelaxLowerBound(void *arkode_mem, sunrealtype lower)
Sets the smallest acceptable value for the relaxation parameter.

Values smaller than the lower bound will result in a failed relaxation application and the step will be repeated
with a smaller step size (determined by ARKodeSetRelaxEtaFail()).

The default value is 0.8. Input values ≤ 0 or ≥ 1 will result in the default value being used.

Parameters

• arkode_mem – the ARKODE memory structure

• lower – the relaxation parameter lower bound

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

182 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 6.1.0.

int ARKodeSetRelaxUpperBound(void *arkode_mem, sunrealtype upper)
Sets the largest acceptable value for the relaxation parameter.

Values larger than the upper bound will result in a failed relaxation application and the step will be repeated with
a smaller step size (determined by ARKodeSetRelaxEtaFail()).

The default value is 1.2. Input values ≤ 1 will result in the default value being used.

Parameters

• arkode_mem – the ARKODE memory structure

• upper – the relaxation parameter upper bound

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 6.1.0.

int ARKodeSetRelaxMaxFails(void *arkode_mem, int max_fails)
Sets the maximum number of times applying relaxation can fail within a step attempt before the integration is
halted with an error.

The default value is 10. Input values ≤ 0 will result in the default value being used.

Parameters

• arkode_mem – the ARKODE memory structure

• max_fails – the maximum number of failed relaxation applications allowed in a step

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 6.1.0.

int ARKodeSetRelaxMaxIters(void *arkode_mem, int max_iters)
Sets the maximum number of nonlinear iterations allowed when solving for the relaxation parameter.

If the maximum number of iterations is reached before meeting the solve tolerance (determined by ARKodeSe-
tRelaxResTol() and ARKodeSetRelaxTol()), the step will be repeated with a smaller step size (determined
by ARKodeSetRelaxEtaFail()).

The default value is 10. Input values ≤ 0 will result in the default value being used.

Parameters

• arkode_mem – the ARKODE memory structure

• max_iters – the maximum number of solver iterations allowed

Return values

• ARK_SUCCESS – the value was successfully set

5.5. Relaxation Methods 183

User Documentation for ARKODE, v6.3.0

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 6.1.0.

int ARKodeSetRelaxSolver(void *arkode_mem, ARKRelaxSolver solver)
Sets the nonlinear solver method used to compute the relaxation parameter.

The default value is ARK_RELAX_NEWTON.

Parameters

• arkode_mem – the ARKODE memory structure

• solver – the nonlinear solver to use: ARK_RELAX_BRENT or ARK_RELAX_NEWTON

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

• ARK_ILL_INPUT – an invalid solver option was provided

Added in version 6.1.0.

int ARKodeSetRelaxResTol(void *arkode_mem, sunrealtype res_tol)
Sets the nonlinear solver residual tolerance to use when solving (2.63).

If the residual or iteration update tolerance (see ARKodeSetRelaxMaxIters()) is not reached within the max-
imum number of iterations (determined by ARKodeSetRelaxMaxIters()), the step will be repeated with a
smaller step size (determined by ARKodeSetRelaxEtaFail()).

The default value is 4ε where ε is floating-point precision. Input values≤ 0 will result in the default value being
used.

Parameters

• arkode_mem – the ARKODE memory structure

• res_tol – the nonlinear solver residual tolerance to use

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 6.1.0.

int ARKodeSetRelaxTol(void *arkode_mem, sunrealtype rel_tol, sunrealtype abs_tol)
Sets the nonlinear solver relative and absolute tolerance on changes in r iterates when solving (2.63).

If the residual (see ARKodeSetRelaxResTol()) or iterate update tolerance is not reached within the maximum
number of iterations (determined by ARKodeSetRelaxMaxIters()), the step will be repeated with a smaller
step size (determined by ARKodeSetRelaxEtaFail()).

The default relative and absolute tolerances are 4ε and 10−14, respectively, where ε is floating-point precision.
Input values ≤ 0 will result in the default value being used.

Parameters

• arkode_mem – the ARKODE memory structure

184 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• rel_tol – the nonlinear solver relative solution tolerance to use

• abs_tol – the nonlinear solver absolute solution tolerance to use

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 6.1.0.

5.5.3 Optional Output Functions

This section describes optional output functions used to retrieve information about the performance of the relaxation
method.

int ARKodeGetNumRelaxFnEvals(void *arkode_mem, long int *r_evals)
Get the number of times the user’s relaxation function was evaluated.

Parameters

• arkode_mem – the ARKODE memory structure

• r_evals – the number of relaxation function evaluations

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 6.1.0.

int ARKodeGetNumRelaxJacEvals(void *arkode_mem, long int *J_evals)
Get the number of times the user’s relaxation Jacobian was evaluated.

Parameters

• arkode_mem – the ARKODE memory structure

• J_evals – the number of relaxation Jacobian evaluations

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 6.1.0.

int ARKodeGetNumRelaxFails(void *arkode_mem, long int *fails)
Get the total number of times applying relaxation failed.

The counter includes the sum of the number of nonlinear solver failures (see ARKodeGetNumRelaxSolve-
Fails()) and the number of failures due an unacceptable relaxation value (see ARKodeSetRelaxLower-
Bound() and ARKodeSetRelaxUpperBound()).

Parameters

5.5. Relaxation Methods 185

User Documentation for ARKODE, v6.3.0

• arkode_mem – the ARKODE memory structure

• fails – the total number of failed relaxation attempts

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 6.1.0.

int ARKodeGetNumRelaxBoundFails(void *arkode_mem, long int *fails)
Get the number of times the relaxation parameter was deemed unacceptable.

Parameters

• arkode_mem – the ARKODE memory structure

• fails – the number of failures due to an unacceptable relaxation parameter value

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 6.1.0.

int ARKodeGetNumRelaxSolveFails(void *arkode_mem, long int *fails)
Get the number of times the relaxation parameter nonlinear solver failed.

Parameters

• arkode_mem – the ARKODE memory structure

• fails – the number of relaxation nonlinear solver failures

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 6.1.0.

int ARKodeGetNumRelaxSolveIters(void *arkode_mem, long int *iters)
Get the number of relaxation parameter nonlinear solver iterations.

Parameters

• arkode_mem – the ARKODE memory structure

• iters – the number of relaxation nonlinear solver iterations

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 6.1.0.

186 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.6 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced through precon-
ditioning. For problems in which the user cannot define a more effective, problem-specific preconditioner, ARKODE
provides two internal preconditioner modules: a banded preconditioner for serial and threaded problems (ARKBAND-
PRE) and a band-block-diagonal preconditioner for parallel problems (ARKBBDPRE).

5.6.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with iterative SUNLINSOL modules in a serial or
threaded setting. It requires that the problem be set up using either the NVECTOR_SERIAL, NVECTOR_OPENMP
or NVECTOR_PTHREADS module, due to data access patterns. It also currently requires that the problem involve an
identity mass matrix, i.e., M = I .

This module uses difference quotients of the ODE right-hand side function f I to generate a band matrix of bandwidth
ml + mu + 1, where the number of super-diagonals (mu, the upper half-bandwidth) and sub-diagonals (ml, the lower
half-bandwidth) are specified by the user. This band matrix is used to to form a preconditioner the Krylov linear solver.

Although this matrix is intended to approximate the Jacobian J =
∂f I

∂y
, it may be a very crude approximation, since

the true Jacobian may not be banded, or its true bandwidth may be larger than ml + mu + 1. However, as long as the
banded approximation generated for the preconditioner is sufficiently accurate, it may speed convergence of the Krylov
iteration.

5.6.1.1 ARKBANDPRE usage

In order to use the ARKBANDPRE module, the user need not define any additional functions. In addition to the header
files required for the integration of the ODE problem (see §5.1), to use the ARKBANDPRE module, the user’s program
must include the header file arkode_bandpre.h which declares the needed function prototypes. The following is a
summary of the usage of this module. Steps that are unchanged from the skeleton program presented in §5.2 are
italicized.

1. Initialize multi-threaded environment (if appropriate)

2. Create the SUNDIALS simulation context object.

3. Set problem dimensions

4. Set vector of initial values

5. Create ARKODE object

6. Specify integration tolerances

7. Create iterative linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (SUN_PREC_LEFT or SUN_-
PREC_RIGHT) to use.

8. Set linear solver optional inputs

9. Attach linear solver module

10. Initialize the ARKBANDPRE preconditioner module

Specify the upper and lower half-bandwidths (mu and ml, respectively) and call

ier = ARKBandPrecInit(arkode_mem, N, mu, ml);

to allocate memory and initialize the internal preconditioner data.

5.6. Preconditioner modules 187

User Documentation for ARKODE, v6.3.0

11. Create nonlinear solver object

12. Attach nonlinear solver module

13. Set nonlinear solver optional inputs

14. Set optional inputs

Note that the user should not call ARKodeSetPreconditioner() as it will overwrite the preconditioner setup
and solve functions.

15. Specify rootfinding problem

16. Advance solution in time

17. Get optional outputs

Additional optional outputs associated with ARKBANDPRE are available by way of the two routines described
below, ARKBandPrecGetWorkSpace() and ARKBandPrecGetNumRhsEvals().

18. Deallocate memory for solution vector

19. Free solver memory

20. Free linear solver memory

21. Free nonlinear solver memory

5.6.1.2 ARKBANDPRE user-callable functions

The ARKBANDPRE preconditioner module is initialized and attached by calling the following function:

int ARKBandPrecInit(void *arkode_mem, sunindextype N, sunindextype mu, sunindextype ml)
Initializes the ARKBANDPRE preconditioner and allocates required (internal) memory for it.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• N – problem dimension (size of ODE system).

• mu – upper half-bandwidth of the Jacobian approximation.

• ml – lower half-bandwidth of the Jacobian approximation.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARKLS_ILL_INPUT – an input had an illegal value.

• ARKLS_MEM_FAIL – a memory allocation request failed.

Note

The banded approximate Jacobian will have nonzero elements only in locations (i, j) with ml ≤ j− i ≤ mu.

The following two optional output functions are available for use with the ARKBANDPRE module:

188 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ARKBandPrecGetWorkSpace(void *arkode_mem, long int *lenrwLS, long int *leniwLS)
Returns the sizes of the ARKBANDPRE real and integer workspaces.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• lenrwLS – the number of sunrealtype values in the ARKBANDPRE workspace.

• leniwLS – the number of integer values in the ARKBANDPRE workspace.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARKLS_PMEM_NULL – the preconditioner memory was NULL.

Note

The workspace requirements reported by this routine correspond only to memory allocated within the ARK-
BANDPRE module (the banded matrix approximation, banded SUNLinearSolver object, and temporary
vectors).

The workspaces referred to here exist in addition to those given by the corresponding function
ARKodeGetLinWorkSpace().

Deprecated since version 6.3.0: Work space functions will be removed in version 8.0.0.

int ARKBandPrecGetNumRhsEvals(void *arkode_mem, long int *nfevalsBP)
Returns the number of calls made to the user-supplied right-hand side function f I for constructing the finite-
difference banded Jacobian approximation used within the preconditioner setup function.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• nfevalsBP – number of calls to f I .

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARKLS_PMEM_NULL – the preconditioner memory was NULL.

Note

The counter nfevalsBP is distinct from the counter nfevalsLS returned by the corresponding function
ARKodeGetNumLinRhsEvals() and also from the number of evaluations returned by the time-stepping mod-
ule (e.g., nfi_evals returned by ARKStepGetNumRhsEvals()). The total number of right-hand side function
evaluations is the sum of all three of these counters.

5.6. Preconditioner modules 189

User Documentation for ARKODE, v6.3.0

5.6.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver (such as ARKODE) lies in the solution of partial differential equations
(PDEs). Moreover, Krylov iterative methods are used on many such problems due to the nature of the underlying linear
system of equations that needs to solved at each time step. For many PDEs, the linear algebraic system is large, sparse
and structured. However, if a Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner
is required. Otherwise, the rate of convergence of the Krylov iterative method is usually slow, and degrades as the PDE
mesh is refined. Typically, an effective preconditioner must be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-based problems. It has
been successfully used with CVODE for several realistic, large-scale problems [60], and is included in a software mod-
ule within the ARKODE package. This preconditioning module works with the parallel vector module NVECTOR_-
PARALLEL and is usable with any of the Krylov iterative linear solvers through the ARKLS interface. It generates
a preconditioner that is a block-diagonal matrix with each block being a band matrix. The blocks need not have the
same number of super- and sub-diagonals and these numbers may vary from block to block. This Band-Block-Diagonal
Preconditioner module is called ARKBBDPRE.

One way to envision these preconditioners is to think of the computational PDE domain as being subdivided intoQ non-
overlapping subdomains, where each subdomain is assigned to one of the Q MPI tasks used to solve the ODE system.
The basic idea is to isolate the preconditioning so that it is local to each process, and also to use a (possibly cheaper)
approximate right-hand side function for construction of this preconditioning matrix. This requires the definition of a
new function g(t, y) ≈ f I(t, y) that will be used to construct the BBD preconditioner matrix. At present, we assume
that the ODE be written in explicit form as

ẏ = fE(t, y) + f I(t, y),

where f I corresponds to the ODE components to be treated implicitly, i.e. this preconditioning module does not
support problems with non-identity mass matrices. The user may set g = f I , if no less expensive approximation is
desired.

Corresponding to the domain decomposition, there is a decomposition of the solution vector y into Q disjoint blocks
yq , and a decomposition of g into blocks gq . The block gq depends both on yp and on components of blocks yq′
associated with neighboring subdomains (so-called ghost-cell data). If we let ȳq denote yq augmented with those other
components on which gq depends, then we have

g(t, y) = [g1(t, ȳ1), g2(t, ȳ2), . . . , gQ(t, ȳQ)]
T
,

and each of the blocks gq(t, ȳq) is decoupled from one another.

The preconditioner associated with this decomposition has the form

P =


P1

P2

. . .
PQ


where

Pq ≈ I − γJq

and where Jq is a difference quotient approximation to
∂gq
∂ȳq

. This matrix is taken to be banded, with upper and lower

half-bandwidths mudq and mldq defined as the number of non-zero diagonals above and below the main diagonal,
respectively. The difference quotient approximation is computed using mudq + mldq + 2 evaluations of gm, but only
a matrix of bandwidth mukeep + mlkeep + 1 is retained. Neither pair of parameters need be the true half-bandwidths
of the Jacobian of the local block of g, if smaller values provide a more efficient preconditioner. The solution of the
complete linear system

Px = b

190 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

reduces to solving each of the distinct equations

Pqxq = bq, q = 1, . . . , Q,

and this is done by banded LU factorization of Pq followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatments of the blocks Pq . For example,
incomplete LU factorization or an iterative method could be used instead of banded LU factorization.

5.6.2.1 ARKBBDPRE user-supplied functions

The ARKBBDPRE module calls two user-provided functions to construct P : a required function gloc (of type ARK-
LocalFn()) which approximates the right-hand side function g(t, y) ≈ f I(t, y) and which is computed locally, and
an optional function cfn (of type ARKCommFn()) which performs all inter-process communication necessary to eval-
uate the approximate right-hand side g. These are in addition to the user-supplied right-hand side function f I . Both
functions take as input the same pointer user_data that is passed by the user to ARKodeSetUserData() and that was
passed to the user’s function f I . The user is responsible for providing space (presumably within user_data) for com-
ponents of y that are communicated between processes by cfn, and that are then used by gloc, which should not do any
communication.

typedef int (*ARKLocalFn)(sunindextype Nlocal, sunrealtype t, N_Vector y, N_Vector glocal, void *user_data)
This gloc function computes g(t, y). It fills the vector glocal as a function of t and y.

Param Nlocal
the local vector length.

Param t
the value of the independent variable.

Param y
the value of the dependent variable vector on this process.

Param glocal
the output vector of g(t, y) on this process.

Param user_data
a pointer to user data, the same as the user_data parameter passed to ARKodeSetUserData().

Return
An ARKLocalFn should return 0 if successful, a positive value if a recoverable error occurred (in
which case ARKODE will attempt to correct), or a negative value if it failed unrecoverably (in
which case the integration is halted and ARKodeEvolve() will return ARK_LSETUP_FAIL).

Note

This function should assume that all inter-process communication of data needed to calculate glocal has
already been done, and that this data is accessible within user data.

The case where g is mathematically identical to f I is allowed.

typedef int (*ARKCommFn)(sunindextype Nlocal, sunrealtype t, N_Vector y, void *user_data)
This cfn function performs all inter-process communication necessary for the execution of the gloc function
above, using the input vector y.

Param Nlocal
the local vector length.

5.6. Preconditioner modules 191

User Documentation for ARKODE, v6.3.0

Param t
the value of the independent variable.

Param y
the value of the dependent variable vector on this process.

Param user_data
a pointer to user data, the same as the user_data parameter passed to ARKodeSetUserData().

Return
An ARKCommFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case ARKODE will attempt to correct), or a negative value if it failed unrecoverably
(in which case the integration is halted and ARKodeEvolve() will return ARK_LSETUP_FAIL).

Note

The cfn function is expected to save communicated data in space defined within the data structure user_data.

Each call to the cfn function is preceded by a call to the right-hand side function f I with the same (t, y)
arguments. Thus, cfn can omit any communication done by f I if relevant to the evaluation of glocal. If all
necessary communication was done in f I , then cfn = NULL can be passed in the call to ARKBBDPrecInit()
(see below).

5.6.2.2 ARKBBDPRE usage

In addition to the header files required for the integration of the ODE problem (see §5.1), to use the ARKBBDPRE
module, the user’s program must include the header file arkode_bbdpre.h which declares the needed function pro-
totypes.

The following is a summary of the proper usage of this module. Steps that are unchanged from the skeleton program
presented in §5.2 are italicized.

1. Initialize MPI

2. Create the SUNDIALS simulation context object

3. Set problem dimensions

4. Set vector of initial values

5. Create ARKODE object

6. Specify integration tolerances

7. Create iterative linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (SUN_PREC_LEFT or SUN_-
PREC_RIGHT) to use.

8. Set linear solver optional inputs

9. Attach linear solver module

10. Initialize the ARKBBDPRE preconditioner module

Specify the upper and lower half-bandwidths for computation mudq and mldq, the upper and lower half-
bandwidths for storage mukeep and mlkeep, and call

ier = ARKBBDPrecInit(arkode_mem, Nlocal, mudq, mldq, mukeep, mlkeep, dqrely, gloc,
cfn);

192 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

to allocate memory and initialize the internal preconditioner data. The last two arguments of ARKBBD-
PrecInit() are the two user-supplied functions of type ARKLocalFn() and ARKCommFn() described above,
respectively.

11. Create nonlinear solver object

12. Attach nonlinear solver module

13. Set nonlinear solver optional inputs

14. Set optional inputs

Note that the user should not call ARKodeSetPreconditioner() as it will overwrite the preconditioner setup
and solve functions.

15. Specify rootfinding problem

16. Advance solution in time

17. Get optional outputs

Additional optional outputs associated with ARKBBDPRE are available through the routines ARKBBDPrecGet-
WorkSpace() and ARKBBDPrecGetNumGfnEvals().

18. Deallocate memory for solution vector

19. Free solver memory

20. Free linear solver memory

21. Free nonlinear solver memory

22. Finalize MPI

5.6.2.3 ARKBBDPRE user-callable functions

The ARKBBDPRE preconditioner module is initialized (or re-initialized) and attached to the integrator by calling the
following functions:

int ARKBBDPrecInit(void *arkode_mem, sunindextype Nlocal, sunindextype mudq, sunindextype mldq,
sunindextype mukeep, sunindextype mlkeep, sunrealtype dqrely, ARKLocalFn gloc,
ARKCommFn cfn)

Initializes and allocates (internal) memory for the ARKBBDPRE preconditioner.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• Nlocal – local vector length.

• mudq – upper half-bandwidth to be used in the difference quotient Jacobian approximation.

• mldq – lower half-bandwidth to be used in the difference quotient Jacobian approximation.

• mukeep – upper half-bandwidth of the retained banded approximate Jacobian block.

• mlkeep – lower half-bandwidth of the retained banded approximate Jacobian block.

• dqrely – the relative increment in components of y used in the difference quotient approx-
imations. The default is dqrely =

√
unit roundoff, which can be specified by passing dqrely

= 0.0.

• gloc – the name of the C function (of type ARKLocalFn()) which computes the approxi-
mation g(t, y) ≈ f I(t, y).

5.6. Preconditioner modules 193

User Documentation for ARKODE, v6.3.0

• cfn – the name of the C function (of type ARKCommFn()) which performs all inter-process
communication required for the computation of g(t, y).

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARKLS_ILL_INPUT – an input had an illegal value.

• ARKLS_MEM_FAIL – a memory allocation request failed.

Note

If one of the half-bandwidths mudq or mldq to be used in the difference quotient calculation of the approximate
Jacobian is negative or exceeds the value Nlocal-1, it is replaced by 0 or Nlocal-1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jacobian of the local block
of g when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian block may be
even smaller than mudq and mldq, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The ARKBBDPRE module also provides a re-initialization function to allow solving a sequence of problems of the
same size, with the same linear solver choice, provided there is no change in Nlocal, mukeep, or mlkeep. After solving
one problem, and after calling *StepReInit to re-initialize ARKODE for a subsequent problem, a call to ARKBBD-
PrecReInit() can be made to change any of the following: the half-bandwidths mudq and mldq used in the difference-
quotient Jacobian approximations, the relative increment dqrely, or one of the user-supplied functions gloc and cfn. If
there is a change in any of the linear solver inputs, an additional call to the “Set” routines provided by the SUNLINSOL
module, and/or one or more of the corresponding ARKodeSet*** functions, must also be made (in the proper order).

int ARKBBDPrecReInit(void *arkode_mem, sunindextype mudq, sunindextype mldq, sunrealtype dqrely)
Re-initializes the ARKBBDPRE preconditioner module.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• mudq – upper half-bandwidth to be used in the difference quotient Jacobian approximation.

• mldq – lower half-bandwidth to be used in the difference quotient Jacobian approximation.

• dqrely – the relative increment in components of y used in the difference quotient approx-
imations. The default is dqrely =

√
unit roundoff, which can be specified by passing dqrely

= 0.0.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARKLS_PMEM_NULL – the preconditioner memory was NULL.

194 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Note

If one of the half-bandwidths mudq or mldq is negative or exceeds the value Nlocal-1, it is replaced by 0 or
Nlocal-1 accordingly.

The following two optional output functions are available for use with the ARKBBDPRE module:

int ARKBBDPrecGetWorkSpace(void *arkode_mem, long int *lenrwBBDP, long int *leniwBBDP)
Returns the processor-local ARKBBDPRE real and integer workspace sizes.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• lenrwBBDP – the number of sunrealtype values in the ARKBBDPRE workspace.

• leniwBBDP – the number of integer values in the ARKBBDPRE workspace.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARKLS_PMEM_NULL – the preconditioner memory was NULL.

Note

The workspace requirements reported by this routine correspond only to memory allocated within the
ARKBBDPRE module (the banded matrix approximation, banded SUNLinearSolver object, temporary
vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding function
ARKodeGetLinWorkSpace().

Deprecated since version 6.3.0: Work space functions will be removed in version 8.0.0.

int ARKBBDPrecGetNumGfnEvals(void *arkode_mem, long int *ngevalsBBDP)
Returns the number of calls made to the user-supplied gloc function (of type ARKLocalFn()) due to the finite
difference approximation of the Jacobian blocks used within the preconditioner setup function.

Parameters

• arkode_mem – pointer to the ARKODE memory block.

• ngevalsBBDP – the number of calls made to the user-supplied gloc function.

Return values

• ARKLS_SUCCESS – the function exited successfully.

• ARKLS_MEM_NULL – arkode_mem was NULL.

• ARKLS_LMEM_NULL – the linear solver memory was NULL.

• ARKLS_PMEM_NULL – the preconditioner memory was NULL.

In addition to the ngevalsBBDP gloc evaluations, the costs associated with ARKBBDPRE also include nlinsetups
LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and nfevalsLS right-hand side function

5.6. Preconditioner modules 195

User Documentation for ARKODE, v6.3.0

evaluations, where nlinsetups is an optional ARKODE output and npsolves and nfevalsLS are linear solver optional
outputs (see the table §5.3.10.4).

5.7 Using the ARKStep time-stepping module

This section is concerned with the use of the ARKStep time-stepping module for the solution of initial value problems
(IVPs) in a C or C++ language setting. Usage of ARKStep follows that of the rest of ARKODE, and so in this section
we primarily focus on those usage aspects that are specific to ARKStep.

5.7.1 ARKStep User-callable functions

This section describes the ARKStep-specific functions that may be called by the user to setup and then solve an IVP
using the ARKStep time-stepping module. The large majority of these routines merely wrap underlying ARKODE
functions, and are now deprecated – each of these are clearly marked. However, some of these user-callable functions
are specific to ARKStep, as explained below.

As discussed in the main ARKODE user-callable function introduction, each of ARKODE’s time-stepping modules
clarifies the categories of user-callable functions that it supports. ARKStep supports all categories:

• temporal adaptivity

• implicit nonlinear and/or linear solvers

• non-identity mass matrices

• relaxation Runge–Kutta methods

ARKStep also has forcing function support when converted to a SUNStepper or MRIStepInnerStepper. See
ARKodeCreateSUNStepper() and ARKStepCreateMRIStepInnerStepper() for additional details.

5.7.1.1 ARKStep initialization and deallocation functions

void *ARKStepCreate(ARKRhsFn fe, ARKRhsFn fi, sunrealtype t0, N_Vector y0, SUNContext sunctx)
This function creates an internal memory block for a problem to be solved using the ARKStep time-stepping
module in ARKODE.

Arguments:

• fe – the name of the C function (of type ARKRhsFn()) defining the explicit portion of the right-hand
side function in M(t) y′(t) = fE(t, y) + f I(t, y).

• fi – the name of the C function (of type ARKRhsFn()) defining the implicit portion of the right-hand
side function in M(t) y′(t) = fE(t, y) + f I(t, y).

• t0 – the initial value of t.

• y0 – the initial condition vector y(t0).

• sunctx – the SUNContext object (see §4.2)

Return value: If successful, a pointer to initialized problem memory of type void*, to be passed to all user-
facing ARKStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message
will be printed to stderr.

196 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

void ARKStepFree(void **arkode_mem)
This function frees the problem memory arkode_mem created by ARKStepCreate().

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value: None

Deprecated since version 6.1.0: Use ARKodeFree() instead.

5.7.1.2 ARKStep tolerance specification functions

int ARKStepSStolerances(void *arkode_mem, sunrealtype reltol, sunrealtype abstol)
This function specifies scalar relative and absolute tolerances.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• reltol – scalar relative tolerance.

• abstol – scalar absolute tolerance.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument had an illegal value (e.g. a negative tolerance).

Deprecated since version 6.1.0: Use ARKodeSStolerances() instead.

int ARKStepSVtolerances(void *arkode_mem, sunrealtype reltol, N_Vector abstol)
This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• reltol – scalar relative tolerance.

• abstol – vector containing the absolute tolerances for each solution component.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument had an illegal value (e.g. a negative tolerance).

Deprecated since version 6.1.0: Use ARKodeSVtolerances() instead.

int ARKStepWFtolerances(void *arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

5.7. Using the ARKStep time-stepping module 197

User Documentation for ARKODE, v6.3.0

• efun – the name of the function (of type ARKEwtFn()) that implements the error weight vector com-
putation.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

Deprecated since version 6.1.0: Use ARKodeWFtolerances() instead.

int ARKStepResStolerance(void *arkode_mem, sunrealtype rabstol)
This function specifies a scalar absolute residual tolerance.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rabstol – scalar absolute residual tolerance.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument had an illegal value (e.g. a negative tolerance).

Deprecated since version 6.1.0: Use ARKodeResStolerance() instead.

int ARKStepResVtolerance(void *arkode_mem, N_Vector rabstol)
This function specifies a vector of absolute residual tolerances.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rabstol – vector containing the absolute residual tolerances for each solution component.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument had an illegal value (e.g. a negative tolerance).

Deprecated since version 6.1.0: Use ARKodeResVtolerance() instead.

int ARKStepResFtolerance(void *arkode_mem, ARKRwtFn rfun)
This function specifies a user-supplied function rfun to compute the residual weight vector rwt.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rfun – the name of the function (of type ARKRwtFn()) that implements the residual weight vector
computation.

Return value:

• ARK_SUCCESS if successful

198 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

Deprecated since version 6.1.0: Use ARKodeResFtolerance() instead.

5.7.1.3 Linear solver interface functions

int ARKStepSetLinearSolver(void *arkode_mem, SUNLinearSolver LS, SUNMatrix J)
This function specifies the SUNLinearSolver object that ARKStep should use, as well as a template Jacobian
SUNMatrix object (if applicable).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• LS – the SUNLinearSolver object to use.

• J – the template Jacobian SUNMatrix object to use (or NULL if not applicable).

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_MEM_FAIL if there was a memory allocation failure

• ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or J input objects, or the current
N_Vector module.

Notes:
If LS is a matrix-free linear solver, then the J argument should be NULL.

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process,
so if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded ma-
trix), ensure that the input object is allocated with sufficient size (see the documentation of the particular
SUNMATRIX type in the §9 for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full
sparsity pattern of the Newton system matricesA = M−γJ , even if J itself has zeros in nonzero locations
ofM . The reasoning for this is thatA is constructed in-place, on top of the user-specified values of J, so if
the sparsity pattern in J is insufficient to store A then it will need to be resized internally by ARKStep.

Deprecated since version 6.1.0: Use ARKodeSetLinearSolver() instead.

5.7.1.4 Mass matrix solver specification functions

int ARKStepSetMassLinearSolver(void *arkode_mem, SUNLinearSolver LS, SUNMatrix M, sunbooleantype
time_dep)

This function specifies the SUNLinearSolver object that ARKStep should use for mass matrix systems, as well
as a template SUNMatrix object.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• LS – the SUNLinearSolver object to use.

• M – the template mass SUNMatrix object to use.

5.7. Using the ARKStep time-stepping module 199

User Documentation for ARKODE, v6.3.0

• time_dep – flag denoting whether the mass matrix depends on the independent variable (M = M(t))
or not (M 6= M(t)). SUNTRUE indicates time-dependence of the mass matrix.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_MEM_FAIL if there was a memory allocation failure

• ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or M input objects, or the current
N_Vector module.

Notes:
If LS is a matrix-free linear solver, then the M argument should be NULL.

If LS is a matrix-based linear solver, then the template mass matrix M will be used in the solve process, so
if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix),
ensure that the input object is allocated with sufficient size.

If called with time_dep set to SUNFALSE, then the mass matrix is only computed and factored once (or when
either ARKStepReInit() or ARKStepResize() are called), with the results reused throughout the entire
ARKStep simulation.

Unlike the system Jacobian, the system mass matrix is not approximated using finite-differences of any
functions provided to ARKStep. Hence, use of the a matrix-based LS requires the user to provide a mass-
matrix constructor routine (see ARKLsMassFn and ARKStepSetMassFn()).

Similarly, the system mass matrix-vector-product is not approximated using finite-differences of any func-
tions provided to ARKStep. Hence, use of a matrix-free LS requires the user to provide a mass-matrix-
times-vector product routine (see ARKLsMassTimesVecFn and ARKStepSetMassTimes()).

Deprecated since version 6.1.0: Use ARKodeSetMassLinearSolver() instead.

5.7.1.5 Nonlinear solver interface functions

int ARKStepSetNonlinearSolver(void *arkode_mem, SUNNonlinearSolver NLS)
This function specifies the SUNNonlinearSolver object that ARKStep should use for implicit stage solves.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• NLS – the SUNNonlinearSolver object to use.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_MEM_FAIL if there was a memory allocation failure

• ARK_ILL_INPUT if ARKStep is incompatible with the provided NLS input object.

Notes:
ARKStep will use the Newton SUNNonlinearSolver module by default; a call to this routine replaces
that module with the supplied NLS object.

Deprecated since version 6.1.0: Use ARKodeSetNonlinearSolver() instead.

200 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.7.1.6 Rootfinding initialization function

int ARKStepRootInit(void *arkode_mem, int nrtfn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ARKStepCreate(), and before ARKStepEvolve().

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nrtfn – number of functions gi, an integer ≥ 0.

• g – name of user-supplied function, of type ARKRootFn(), defining the functions gi whose roots are
sought.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_MEM_FAIL if there was a memory allocation failure

• ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes:
To disable the rootfinding feature after it has already been initialized, or to free memory associated with
ARKStep’s rootfinding module, call ARKStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to ARKStepReInit(), where the new IVP has no rootfind-
ing problem but the prior one did, then call ARKStepRootInit with nrtfn = 0.

Deprecated since version 6.1.0: Use ARKodeRootInit() instead.

5.7.1.7 ARKStep solver function

int ARKStepEvolve(void *arkode_mem, sunrealtype tout, N_Vector yout, sunrealtype *tret, int itask)
Integrates the ODE over an interval in t.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• tout – the next time at which a computed solution is desired.

• yout – the computed solution vector.

• tret – the time corresponding to yout (output).

• itask – a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, tout, in the direction of integration, i.e. tn−1 < tout≤ tn for forward integration,
or tn ≤ tout < tn−1 for backward integration. It will then compute an approximation to the solution
y(tout) by interpolation (as described in §2.2).

The ARK_ONE_STEP option tells the solver to only take a single internal step, yn−1 → yn, and return
the solution at that point, yn, in the vector yout.

Return value:

• ARK_SUCCESS if successful.

5.7. Using the ARKStep time-stepping module 201

User Documentation for ARKODE, v6.3.0

• ARK_ROOT_RETURN if ARKStepEvolve() succeeded, and found one or more roots. If the number
of root functions, nrtfn, is greater than 1, call ARKStepGetRootInfo() to see which gi were found to
have a root at (*tret).

• ARK_TSTOP_RETURN if ARKStepEvolve() succeeded and returned at tstop.

• ARK_MEM_NULL if the arkode_mem argument was NULL.

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if one of the inputs to ARKStepEvolve() is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

(a) A component of the error weight vector became zero during internal time-stepping.

(b) The linear solver initialization function (called by the user after calling ARKStepCreate()) failed
to set the linear solver-specific lsolve field in arkode_mem.

(c) A root of one of the root functions was found both at a point t and also very near t.

(d) The initial condition violates the inequality constraints.

• ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

• ARK_TOO_MUCH_ACC if the solver could not satisfy the accuracy demanded by the user for some
internal step.

• ARK_ERR_FAILURE if error test failures occurred either too many times (ark_maxnef) during one
internal time step or occurred with |h| = hmin.

• ARK_CONV_FAILURE if either convergence test failures occurred too many times (ark_maxncf) dur-
ing one internal time step or occurred with |h| = hmin.

• ARK_LINIT_FAIL if the linear solver’s initialization function failed.

• ARK_LSETUP_FAIL if the linear solver’s setup routine failed in an unrecoverable manner.

• ARK_LSOLVE_FAIL if the linear solver’s solve routine failed in an unrecoverable manner.

• ARK_MASSINIT_FAIL if the mass matrix solver’s initialization function failed.

• ARK_MASSSETUP_FAIL if the mass matrix solver’s setup routine failed.

• ARK_MASSSOLVE_FAIL if the mass matrix solver’s solve routine failed.

• ARK_VECTOROP_ERR a vector operation error occurred.

Notes:
The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ARKStepCreate().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale
of the independent variable.

All failure return values are negative and so testing the return argument for negative values will trap all
ARKStepEvolve() failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to ARKStepSetStopTime() before the call to ARKStepEvolve() to specify a fixed
stop time to end the time step and return to the user. Upon return from ARKStepEvolve(), a copy of the
internal solution yn will be returned in the vector yout. Once the integrator returns at a tstop time, any future
testing for tstop is disabled (and can be re-enabled only though a new call to ARKStepSetStopTime()).

202 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

On any error return in which one or more internal steps were taken by ARKStepEvolve(), the returned
values of tret and yout correspond to the farthest point reached in the integration. On all other error returns,
tret and yout are left unchanged from those provided to the routine.

Deprecated since version 6.1.0: Use ARKodeEvolve() instead.

5.7.1.8 Optional input functions

Optional inputs for ARKStep

int ARKStepSetDefaults(void *arkode_mem)
Resets all optional input parameters to ARKStep’s original default values.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Does not change the user_data pointer or any parameters within the specified time-stepping module.

Also leaves alone any data structures or options related to root-finding (those can be reset using ARKStep-
RootInit()).

Deprecated since version 6.1.0: Use ARKodeSetDefaults() instead.

int ARKStepSetInterpolantType(void *arkode_mem, int itype)
Deprecated since version 6.1.0: This function is now a wrapper to ARKodeSetInterpolantType(), see the
documentation for that function instead.

int ARKStepSetInterpolantDegree(void *arkode_mem, int degree)
Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• degree – requested polynomial degree.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory or interpolation module are NULL

• ARK_INTERP_FAIL if this is called after ARKStepEvolve()

• ARK_ILL_INPUT if an argument had an illegal value or the interpolation module has already been
initialized

Notes:
Allowed values are between 0 and 5.

This routine should be called after ARKStepCreate() and before ARKStepEvolve(). After the first call to
ARKStepEvolve() the interpolation degree may not be changed without first calling ARKStepReInit().

5.7. Using the ARKStep time-stepping module 203

User Documentation for ARKODE, v6.3.0

If a user calls both this routine and ARKStepSetInterpolantType(), then ARKStepSetInterpolant-
Type() must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on
which it is based, the actual polynomial degree that is used by ARKStep will be the minimum of q− 1 and
the input degree, for q > 1 where q is the order of accuracy for the time integration method.

Changed in version 5.5.1: When q = 1, a linear interpolant is the default to ensure values obtained by the
integrator are returned at the ends of the time interval.

Deprecated since version 6.1.0: Use ARKodeSetInterpolantDegree() instead.

int ARKStepSetDenseOrder(void *arkode_mem, int dord)
Deprecated since version 5.2.0: Use ARKodeSetInterpolantDegree() instead.

int ARKStepSetDiagnostics(void *arkode_mem, FILE *diagfp)
Specifies the file pointer for a diagnostics file where all ARKStep step adaptivity and solver information is written.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• diagfp – pointer to the diagnostics output file.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to a
unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer,
all diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from
all processes would be identical.

Deprecated since version 5.2.0: Use SUNLogger_SetInfoFilename() instead.

int ARKStepSetFixedStep(void *arkode_mem, sunrealtype hfixed)
Disables time step adaptivity within ARKStep, and specifies the fixed time step size to use for the following
internal step(s).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hfixed – value of the fixed step size to use.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass 0.0 to return ARKStep to the default (adaptive-step) mode.

Use of this function is not generally recommended, since it gives no assurance of the validity of the com-
puted solutions. It is primarily provided for code-to-code verification testing purposes.

204 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

When using ARKStepSetFixedStep(), any values provided to the functions ARKStepSetInit-
Step(), ARKStepSetAdaptivityFn(), ARKStepSetMaxErrTestFails(), ARKStepSetAdaptiv-
ityMethod(), ARKStepSetCFLFraction(), ARKStepSetErrorBias(), ARKStepSetFixedStep-
Bounds(), ARKStepSetMaxCFailGrowth(), ARKStepSetMaxEFailGrowth(), ARKStepSetMax-
FirstGrowth(), ARKStepSetMaxGrowth(), ARKStepSetMinReduction(), ARKStepSetSafetyFac-
tor(), ARKStepSetSmallNumEFails(), ARKStepSetStabilityFn(), and ARKStepSetAdaptCon-
troller() will be ignored, since temporal adaptivity is disabled.

If both ARKStepSetFixedStep() and ARKStepSetStopTime() are used, then the fixed step size will be
used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ARKStepSetFixedStep()must be made prior to calling
ARKStepEvolve() to resume integration.

It is not recommended that ARKStepSetFixedStep() be used in concert with ARKStepSetMaxStep()
or ARKStepSetMinStep(), since at best those latter two routines will provide no useful information to the
solver, and at worst they may interfere with the desired fixed step size.

Deprecated since version 6.1.0: Use ARKodeSetFixedStep() instead.

int ARKStepSetInitStep(void *arkode_mem, sunrealtype hin)
Specifies the initial time step size ARKStep should use after initialization, re-initialization, or resetting.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hin – value of the initial step to be attempted (6= 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass 0.0 to use the default value.

By default, ARKStep estimates the initial step size to be h =

√
2

‖ÿ‖
, where ÿ is estimate of the second

derivative of the solution at t0.

This routine will also reset the step size and error history.

Deprecated since version 6.1.0: Use ARKodeSetInitStep() instead.

int ARKStepSetMaxHnilWarns(void *arkode_mem, int mxhnil)
Specifies the maximum number of messages issued by the solver to warn that t+h = t on the next internal step,
before ARKStep will instead return with an error.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mxhnil – maximum allowed number of warning messages (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

5.7. Using the ARKStep time-stepping module 205

User Documentation for ARKODE, v6.3.0

Notes:
The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

Deprecated since version 6.1.0: Use ARKodeSetMaxHnilWarns() instead.

int ARKStepSetMaxNumSteps(void *arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ARKStep will return with an error.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mxsteps – maximum allowed number of internal steps.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Passing mxsteps = 0 results in ARKStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

Deprecated since version 6.1.0: Use ARKodeSetMaxNumSteps() instead.

int ARKStepSetMaxStep(void *arkode_mem, sunrealtype hmax)
Specifies the upper bound on the magnitude of the time step size.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hmax – maximum absolute value of the time step size (≥ 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass hmax ≤ 0.0 to set the default value of∞.

Deprecated since version 6.1.0: Use ARKodeSetMaxStep() instead.

int ARKStepSetMinStep(void *arkode_mem, sunrealtype hmin)
Specifies the lower bound on the magnitude of the time step size.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hmin – minimum absolute value of the time step size (≥ 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

206 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass hmin ≤ 0.0 to set the default value of 0.

Deprecated since version 6.1.0: Use ARKodeSetMinStep() instead.

int ARKStepSetStopTime(void *arkode_mem, sunrealtype tstop)
Specifies the value of the independent variable t past which the solution is not to proceed.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• tstop – stopping time for the integrator.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be re-enabled
only though a new call to ARKStepSetStopTime()).

A stop time not reached before a call to ARKStepReInit() or ARKStepReset() will remain active but
can be disabled by calling ARKStepClearStopTime().

Deprecated since version 6.1.0: Use ARKodeSetStopTime() instead.

int ARKStepSetInterpolateStopTime(void *arkode_mem, sunbooleantype interp)
Specifies that the output solution should be interpolated when the current t equals the specified tstop (instead
of merely copying the internal solution yn).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• interp – flag indicating to use interpolation (1) or copy (0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetInterpolateStopTime() instead.

int ARKStepClearStopTime(void *arkode_mem)
Disables the stop time set with ARKStepSetStopTime().

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

5.7. Using the ARKStep time-stepping module 207

User Documentation for ARKODE, v6.3.0

Notes:
The stop time can be re-enabled though a new call to ARKStepSetStopTime().

Added in version 5.5.1.

Deprecated since version 6.1.0: Use ARKodeClearStopTime() instead.

int ARKStepSetUserData(void *arkode_mem, void *user_data)
Specifies the user data block user_data and attaches it to the main ARKStep memory block.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• user_data – pointer to the user data.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;
otherwise NULL is passed.

If user_data is needed in user preconditioner functions, the call to this function must be made before any
calls to ARKStepSetLinearSolver() and/or ARKStepSetMassLinearSolver().

Deprecated since version 6.1.0: Use ARKodeSetUserData() instead.

int ARKStepSetMaxErrTestFails(void *arkode_mem, int maxnef)
Specifies the maximum number of error test failures permitted in attempting one step, before returning with an
error.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• maxnef – maximum allowed number of error test failures (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default value is 7; set maxnef ≤ 0 to specify this default.

Deprecated since version 6.1.0: Use ARKodeSetMaxErrTestFails() instead.

int ARKStepSetOptimalParams(void *arkode_mem)
Sets all adaptivity and solver parameters to our “best guess” values for a given integration method type (ERK,
DIRK, ARK) and a given method order.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

208 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Should only be called after the method order and integration method have been set. The “optimal” val-
ues resulted from repeated testing of ARKStep’s solvers on a variety of training problems. However, all
problems are different, so these values may not be optimal for all users.

Deprecated since version 6.1.0: Adjust solver parameters individually instead. For reference, this routine sets
the following non-default parameters:

• Explicit methods:

– SUNAdaptController_PI() with SUNAdaptController_SetErrorBias() of 1.2 and
SUNAdaptController_SetParams_PI() of k1 = 0.8 and k2 = −0.31

– ARKodeSetSafetyFactor() of 0.99

– ARKodeSetMaxGrowth() of 25.0

– ARKodeSetMaxEFailGrowth() of 0.3

• Implicit methods:

– Order 3:

∗ SUNAdaptController_I() with SUNAdaptController_SetErrorBias() of 1.9

∗ ARKodeSetSafetyFactor() of 0.957

∗ ARKodeSetMaxGrowth() of 17.6

∗ ARKodeSetMaxEFailGrowth() of 0.45

∗ ARKodeSetNonlinConvCoef() of 0.22

∗ ARKodeSetNonlinCRDown() of 0.17

∗ ARKodeSetNonlinRDiv() of 2.3

∗ ARKodeSetDeltaGammaMax() of 0.19

– Order 4:

∗ SUNAdaptController_PID() with SUNAdaptController_SetErrorBias() of 1.2 and
SUNAdaptController_SetParams_PID() of k1 = 0.535, k2 = −0.209, and k3 = 0.148

∗ ARKodeSetSafetyFactor() of 0.988

∗ ARKodeSetMaxGrowth() of 31.5

∗ ARKodeSetMaxEFailGrowth() of 0.33

∗ ARKodeSetNonlinConvCoef() of 0.24

∗ ARKodeSetNonlinCRDown() of 0.26

∗ ARKodeSetNonlinRDiv() of 2.3

∗ ARKodeSetDeltaGammaMax() of 0.16

∗ ARKodeSetLSetupFrequency() of 31

– Order 5:

∗ SUNAdaptController_PID() with SUNAdaptController_SetErrorBias() of 3.3 and
SUNAdaptController_SetParams_PID() of k1 = 0.56, k2 = −0.338, and k3 = 0.14

5.7. Using the ARKStep time-stepping module 209

User Documentation for ARKODE, v6.3.0

∗ ARKodeSetSafetyFactor() of 0.937

∗ ARKodeSetMaxGrowth() of 22.0

∗ ARKodeSetMaxEFailGrowth() of 0.44

∗ ARKodeSetNonlinConvCoef() of 0.25

∗ ARKodeSetNonlinCRDown() of 0.4

∗ ARKodeSetNonlinRDiv() of 2.3

∗ ARKodeSetDeltaGammaMax() of 0.32

∗ ARKodeSetLSetupFrequency() of 31

• ImEx methods:

– Order 2:

∗ ARKodeSetNonlinConvCoef() of 0.001

∗ ARKodeSetMaxNonlinIters() of 5

– Order 3:

∗ SUNAdaptController_PID() with SUNAdaptController_SetErrorBias() of 1.42 and
SUNAdaptController_SetParams_PID() of k1 = 0.54, k2 = −0.36, and k3 = 0.14

∗ ARKodeSetSafetyFactor() of 0.965

∗ ARKodeSetMaxGrowth() of 28.7

∗ ARKodeSetMaxEFailGrowth() of 0.46

∗ ARKodeSetNonlinConvCoef() of 0.22

∗ ARKodeSetNonlinCRDown() of 0.17

∗ ARKodeSetNonlinRDiv() of 2.3

∗ ARKodeSetDeltaGammaMax() of 0.19

∗ ARKodeSetLSetupFrequency() of 60

– Order 4:

∗ SUNAdaptController_PID() with SUNAdaptController_SetErrorBias() of 1.35 and
SUNAdaptController_SetParams_PID() of k1 = 0.543, k2 = −0.297, and k3 = 0.14

∗ ARKodeSetSafetyFactor() of 0.97

∗ ARKodeSetMaxGrowth() of 25.0

∗ ARKodeSetMaxEFailGrowth() of 0.47

∗ ARKodeSetNonlinConvCoef() of 0.24

∗ ARKodeSetNonlinCRDown() of 0.26

∗ ARKodeSetNonlinRDiv() of 2.3

∗ ARKodeSetDeltaGammaMax() of 0.16

∗ ARKodeSetLSetupFrequency() of 31

– Order 5:

∗ SUNAdaptController_PI() with SUNAdaptController_SetErrorBias() of 1.15 and
SUNAdaptController_SetParams_PI() of k1 = 0.8 and k2 = −0.35

210 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

∗ ARKodeSetSafetyFactor() of 0.993

∗ ARKodeSetMaxGrowth() of 28.5

∗ ARKodeSetMaxEFailGrowth() of 0.3

∗ ARKodeSetNonlinConvCoef() of 0.25

∗ ARKodeSetNonlinCRDown() of 0.4

∗ ARKodeSetNonlinRDiv() of 2.3

∗ ARKodeSetDeltaGammaMax() of 0.32

∗ ARKodeSetLSetupFrequency() of 31

int ARKStepSetConstraints(void *arkode_mem, N_Vector constraints)
Specifies a vector defining inequality constraints for each component of the solution vector y.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• constraints – vector of constraint flags. Each component specifies the type of solution constraint:

constraints[i] =


0.0 ⇒ no constraint is imposed on yi,
1.0 ⇒ yi ≥ 0,
−1.0 ⇒ yi ≤ 0,

2.0 ⇒ yi > 0,
−2.0 ⇒ yi < 0.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if the constraints vector contains illegal values

Notes:
The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint check-
ing to be performed. However, a call with 0.0 in all components of constraints will result in an illegal
input return. A NULL constraints vector will disable constraint checking.

After a call to ARKStepResize() inequality constraint checking will be disabled and a call to ARK-
StepSetConstraints() is required to re-enable constraint checking.

Since constraint-handling is performed through cutting time steps that would violate the constraints, it is
possible that this feature will cause some problems to fail due to an inability to enforce constraints even at
the minimum time step size. Additionally, the features ARKStepSetConstraints() and ARKStepSet-
FixedStep() are incompatible, and should not be used simultaneously.

Deprecated since version 6.1.0: Use ARKodeSetConstraints() instead.

int ARKStepSetMaxNumConstrFails(void *arkode_mem, int maxfails)
Specifies the maximum number of constraint failures in a step before ARKStep will return with an error.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• maxfails – maximum allowed number of constrain failures.

Return value:

5.7. Using the ARKStep time-stepping module 211

User Documentation for ARKODE, v6.3.0

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
Passing maxfails <= 0 results in ARKStep using the default value (10).

Deprecated since version 6.1.0: Use ARKodeSetMaxNumConstrFails() instead.

Optional inputs for IVP method selection

Optional input Function name Default
Set integrator method order ARKStepSetOrder() 4
Specify implicit/explicit problem ARKStepSetImEx() SUNTRUE
Specify explicit problem ARKStepSetExplicit() SUNFALSE
Specify implicit problem ARKStepSetImplicit() SUNFALSE
Set additive RK tables ARKStepSetTables() internal
Set additive RK tables via their numbers ARKStepSetTableNum() internal
Set additive RK tables via their names ARKStepSetTableName() internal

int ARKStepSetOrder(void *arkode_mem, int ord)
Specifies the order of accuracy for the ARK/DIRK/ERK integration method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ord – requested order of accuracy.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
For explicit methods, the allowed values are 2 ≤ ord ≤ 8. For implicit methods, the allowed values are
2 ≤ ord ≤ 5, and for ImEx methods the allowed values are 2 ≤ ord ≤ 5. Any illegal input will result in
the default value of 4.

Since ord affects the memory requirements for the internal ARKStep memory block, it cannot be changed
after the first call to ARKStepEvolve(), unless ARKStepReInit() is called.

Deprecated since version 6.1.0: Use ARKodeSetOrder() instead.

int ARKStepSetImEx(void *arkode_mem)
Specifies that both the implicit and explicit portions of problem are enabled, and to use an additive Runge–Kutta
method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

212 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
This is automatically deduced when neither of the function pointers fe or fi passed to ARKStepCreate()
are NULL, but may be set directly by the user if desired.

int ARKStepSetExplicit(void *arkode_mem)
Specifies that the implicit portion of problem is disabled, and to use an explicit RK method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
This is automatically deduced when the function pointer fi passed to ARKStepCreate() is NULL, but may
be set directly by the user if desired.

If the problem is posed in explicit form, i.e. ẏ = f(t, y), then we recommend that the ERKStep time-stepper
module be used instead.

int ARKStepSetImplicit(void *arkode_mem)
Specifies that the explicit portion of problem is disabled, and to use a diagonally implicit RK method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
This is automatically deduced when the function pointer fe passed to ARKStepCreate() is NULL, but may
be set directly by the user if desired.

int ARKStepSetTables(void *arkode_mem, int q, int p, ARKodeButcherTable Bi, ARKodeButcherTable Be)
Specifies a customized Butcher table (or pair) for the ERK, DIRK, or ARK method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• q – global order of accuracy for the ARK method.

• p – global order of accuracy for the embedded ARK method.

• Bi – the Butcher table for the implicit RK method.

• Be – the Butcher table for the explicit RK method.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

5.7. Using the ARKStep time-stepping module 213

User Documentation for ARKODE, v6.3.0

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
For a description of the ARKodeButcherTable type and related functions for creating Butcher tables, see
§6.

To set an explicit table, Bi must be NULL. This automatically calls ARKStepSetExplicit(). However, if
the problem is posed in explicit form, i.e. ẏ = f(t, y), then we recommend that the ERKStep time-stepper
module be used instead of ARKStep.

To set an implicit table, Be must be NULL. This automatically calls ARKStepSetImplicit().

If both Bi and Be are provided, this routine automatically calls ARKStepSetImEx().

When only one table is provided (i.e., Bi or Be is NULL) then the input values of q and p are ignored and the
global order of the method and embedding (if applicable) are obtained from the Butcher table structures. If
both Bi and Be are non-NULL (e.g, an ImEx method is provided) then the input values of q and p are used
as the order of the ARK method may be less than the orders of the individual tables. No error checking is
performed to ensure that either p or q correctly describe the coefficients that were input.

Error checking is subsequently performed at ARKStep initialization to ensure that Bi and Be (if non-NULL)
specify DIRK and ERK methods, respectively. Specifically, the A member of Bi must be lower triangular
with at least one nonzero value on the diagonal, and the A member of Be must be strictly lower triangular.
When both Bi and Be are non-NULL, they must agree on the number of internal stages, i.e., the stages
members of both structures must match.

If the inputs Bi or Be do not contain an embedding (when the corresponding explicit or implicit table is
non-NULL), the user must call ARKStepSetFixedStep() to enable fixed-step mode and set the desired
time step size.

Warning:
This should not be used with ARKodeSetOrder().

int ARKStepSetTableNum(void *arkode_mem, ARKODE_DIRKTableID itable, ARKODE_ERKTableID etable)
Indicates to use specific built-in Butcher tables for the ERK, DIRK or ARK method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• itable – index of the DIRK Butcher table.

• etable – index of the ERK Butcher table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
The allowable values for both the itable and etable arguments corresponding to built-in tables may be found
in §18.

To choose an explicit table, set itable to a negative value. This automatically calls ARKStepSetEx-
plicit(). However, if the problem is posed in explicit form, i.e. ẏ = f(t, y), then we recommend
that the ERKStep time-stepper module be used instead of ARKStep.

To select an implicit table, set etable to a negative value. This automatically calls ARKStepSetIm-
plicit().

214 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

If both itable and etable are non-negative, then these should match an existing implicit/explicit pair, listed
in §18.3. This automatically calls ARKStepSetImEx().

In all cases, error-checking is performed to ensure that the tables exist.

Warning:
This should not be used with ARKodeSetOrder().

int ARKStepSetTableName(void *arkode_mem, const char *itable, const char *etable)
Indicates to use specific built-in Butcher tables for the ERK, DIRK or ARK method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• itable – name of the DIRK Butcher table.

• etable – name of the ERK Butcher table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
The allowable values for both the itable and etable arguments corresponding to built-in tables may be found
in §18. This function is case sensitive.

To choose an explicit table, set itable to "ARKODE_DIRK_NONE". This automatically calls ARKStepSet-
Explicit(). However, if the problem is posed in explicit form, i.e. ẏ = f(t, y), then we recommend that
the ERKStep time-stepper module be used instead of ARKStep.

To select an implicit table, set etable to "ARKODE_ERK_NONE". This automatically calls ARKStepSetIm-
plicit().

If both itable and etable are not none, then these should match an existing implicit/explicit pair, listed in
§18.3. This automatically calls ARKStepSetImEx().

In all cases, error-checking is performed to ensure that the tables exist.

Warning:
This should not be used with ARKodeSetOrder().

Optional inputs for time step adaptivity

int ARKStepSetAdaptController(void *arkode_mem, SUNAdaptController C)
Sets a user-supplied time-step controller object.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• C – user-supplied time adaptivity controller. If NULL then the I controller will be created (see §12.2).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_MEM_FAIL if C was NULL and the I controller could not be allocated.

5.7. Using the ARKStep time-stepping module 215

User Documentation for ARKODE, v6.3.0

Added in version 5.7.0.

Deprecated since version 6.1.0: Use ARKodeSetAdaptController() instead.

Changed in version 6.3.0: The default controller was changed from PID to I.

int ARKStepSetAdaptivityFn(void *arkode_mem, ARKAdaptFn hfun, void *h_data)
Sets a user-supplied time-step adaptivity function.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hfun – name of user-supplied adaptivity function.

• h_data – pointer to user data passed to hfun every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
This function should focus on accuracy-based time step estimation; for stability based time steps the func-
tion ARKStepSetStabilityFn() should be used instead.

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

int ARKStepSetAdaptivityMethod(void *arkode_mem, int imethod, int idefault, int pq, sunrealtype
*adapt_params)

Specifies the method (and associated parameters) used for time step adaptivity.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• imethod – accuracy-based adaptivity method choice (0 ≤ imethod ≤ 5): 0 is PID, 1 is PI, 2 is I, 3 is
explicit Gustafsson, 4 is implicit Gustafsson, and 5 is the ImEx Gustafsson.

• idefault – flag denoting whether to use default adaptivity parameters (1), or that they will be supplied
in the adapt_params argument (0).

• pq – flag denoting whether to use the embedding order of accuracy p (0), the method order of accuracy
q (1), or the minimum of the two (any input not equal to 0 or 1) within the adaptivity algorithm. p is
the default.

• adapt_params[0] – k1 parameter within accuracy-based adaptivity algorithms.

• adapt_params[1] – k2 parameter within accuracy-based adaptivity algorithms.

• adapt_params[2] – k3 parameter within accuracy-based adaptivity algorithms.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
If custom parameters are supplied, they will be checked for validity against published stability intervals. If
other parameter values are desired, it is recommended to instead provide a custom function through a call
to ARKStepSetAdaptivityFn().

216 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Changed in version 5.7.0: Prior to version 5.7.0, any nonzero value for pq would result in use of the em-
bedding order of accuracy.

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

int ARKStepSetAdaptivityAdjustment(void *arkode_mem, int adjust)
Called by a user to adjust the method order supplied to the temporal adaptivity controller. For example, if the
user expects order reduction due to problem stiffness, they may request that the controller assume a reduced order
of accuracy for the method by specifying a value adjust < 0.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• adjust – adjustment factor (default is 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
This should be called prior to calling ARKStepEvolve(), and can only be reset following a call to ARK-
StepReInit().

Added in version 5.7.0.

Deprecated since version 6.1.0: Use ARKodeSetAdaptivityAdjustment() instead.

Changed in version 6.3.0: The default value was changed from -1 to 0

int ARKStepSetCFLFraction(void *arkode_mem, sunrealtype cfl_frac)
Specifies the fraction of the estimated explicitly stable step to use.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• cfl_frac – maximum allowed fraction of explicitly stable step (default is 0.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetCFLFraction() instead.

int ARKStepSetErrorBias(void *arkode_mem, sunrealtype bias)
Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• bias – bias applied to error in accuracy-based time step estimation (default is 1.0).

Return value:

• ARK_SUCCESS if successful

5.7. Using the ARKStep time-stepping module 217

User Documentation for ARKODE, v6.3.0

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value below 1.0 will imply a reset to the default value.

If both this and one of ARKStepSetAdaptivityMethod() or ARKStepSetAdaptController() will be
called, then this routine must be called second.

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

Changed in version 6.3.0: The default value was changed from 1.5 to 1.0

int ARKStepSetFixedStepBounds(void *arkode_mem, sunrealtype lb, sunrealtype ub)
Specifies the step growth interval in which the step size will remain unchanged.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lb – lower bound on window to leave step size fixed (default is 1.0).

• ub – upper bound on window to leave step size fixed (default is 1.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any interval not containing 1.0 will imply a reset to the default values.

Deprecated since version 6.1.0: Use ARKodeSetFixedStepBounds() instead.

Changed in version 6.3.0: The default upper bound was changed from 1.5 to 1.0

int ARKStepSetMaxCFailGrowth(void *arkode_mem, sunrealtype etacf)
Specifies the maximum step size growth factor upon an algebraic solver convergence failure on a stage solve
within a step, ηcf from §2.15.3.1.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• etacf – time step reduction factor on a nonlinear solver convergence failure (default is 0.25).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value outside the interval (0, 1] will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMaxCFailGrowth() instead.

int ARKStepSetMaxEFailGrowth(void *arkode_mem, sunrealtype etamxf)
Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Arguments:

218 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• arkode_mem – pointer to the ARKStep memory block.

• etamxf – time step reduction factor on multiple error fails (default is 0.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value outside the interval (0, 1] will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMaxEFailGrowth() instead.

int ARKStepSetMaxFirstGrowth(void *arkode_mem, sunrealtype etamx1)
Specifies the maximum allowed growth factor in step size following the very first integration step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• etamx1 – maximum allowed growth factor after the first time step (default is 10000.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value ≤ 1.0 will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMaxFirstGrowth() instead.

int ARKStepSetMaxGrowth(void *arkode_mem, sunrealtype mx_growth)
Specifies the maximum allowed growth factor in step size between consecutive steps in the integration process.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mx_growth – maximum allowed growth factor between consecutive time steps (default is 20.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value ≤ 1.0 will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMaxGrowth() instead.

int ARKStepSetMinReduction(void *arkode_mem, sunrealtype eta_min)
Specifies the minimum allowed reduction factor in step size between step attempts, resulting from a temporal
error failure in the integration process.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

5.7. Using the ARKStep time-stepping module 219

User Documentation for ARKODE, v6.3.0

• eta_min – minimum allowed reduction factor in time step after an error test failure (default is 0.1).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value outside the interval (0, 1) will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMinReduction() instead.

int ARKStepSetSafetyFactor(void *arkode_mem, sunrealtype safety)
Specifies the safety factor to be applied to the accuracy-based estimated step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• safety – safety factor applied to accuracy-based time step (default is 0.9).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value ≤ 0 will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetSafetyFactor() instead.

Changed in version 6.3.0: The default default was changed from 0.96 to 0.9. The maximum value is now exactly
1.0 rather than strictly less than 1.0.

int ARKStepSetSmallNumEFails(void *arkode_mem, int small_nef)
Specifies the threshold for “multiple” successive error failures before the etamxf parameter from ARKStepSet-
MaxEFailGrowth() is applied.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• small_nef – bound to determine ‘multiple’ for etamxf (default is 2).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value ≤ 0 will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetSmallNumEFails() instead.

int ARKStepSetStabilityFn(void *arkode_mem, ARKExpStabFn EStab, void *estab_data)
Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE system.

Arguments:

220 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• arkode_mem – pointer to the ARKStep memory block.

• EStab – name of user-supplied stability function.

• estab_data – pointer to user data passed to EStab every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
This function should return an estimate of the absolute value of the maximum stable time step for the
explicit portion of the ODE system. It is not required, since accuracy-based adaptivity may be sufficient
for retaining stability, but this can be quite useful for problems where the explicit right-hand side function
fE(t, y) contains stiff terms.

Deprecated since version 6.1.0: Use ARKodeSetStabilityFn() instead.

Optional inputs for implicit stage solves

int ARKStepSetLinear(void *arkode_mem, int timedepend)
Specifies that the implicit portion of the problem is linear.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• timedepend – flag denoting whether the Jacobian of f I(t, y) is time-dependent (1) or not (0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Tightens the linear solver tolerances and takes only a single Newton iteration. Calls ARKStepSetDelt-
aGammaMax() to enforce Jacobian recomputation when the step size ratio changes by more than 100 times
the unit roundoff (since nonlinear convergence is not tested). Only applicable when used in combination
with the modified or inexact Newton iteration (not the fixed-point solver).

When f I(t, y) is time-dependent, all linear solver structures (Jacobian, preconditioner) will be updated
preceding each implicit stage. Thus one must balance the relative costs of such recomputation against the
benefits of requiring only a single Newton linear solve.

Deprecated since version 6.1.0: Use ARKodeSetLinear() instead.

int ARKStepSetNonlinear(void *arkode_mem)
Specifies that the implicit portion of the problem is nonlinear.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

5.7. Using the ARKStep time-stepping module 221

User Documentation for ARKODE, v6.3.0

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
This is the default behavior of ARKStep, so the function is primarily useful to undo a previous call to
ARKStepSetLinear(). Calls ARKStepSetDeltaGammaMax() to reset the step size ratio threshold to the
default value.

Deprecated since version 6.1.0: Use ARKodeSetNonlinear() instead.

int ARKStepSetPredictorMethod(void *arkode_mem, int method)
Specifies the method from §2.15.5 to use for predicting implicit solutions.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• method – method choice (0 ≤ method ≤ 4):

– 0 is the trivial predictor,

– 1 is the maximum order (dense output) predictor,

– 2 is the variable order predictor, that decreases the polynomial degree for more distant RK stages,

– 3 is the cutoff order predictor, that uses the maximum order for early RK stages, and a first-order
predictor for distant RK stages,

– 4 is the bootstrap predictor, that uses a second-order predictor based on only information within
the current step. deprecated

– 5 is the minimum correction predictor, that uses all preceding stage information within the current
step for prediction. deprecated

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default value is 0. If method is set to an undefined value, this default predictor will be used.

Options 4 and 5 are currently not supported when solving a problem involving a non-identity mass matrix.
In that case, selection of method as 4 or 5 will instead default to the trivial predictor (method 0). Both of
these options have been deprecated, and will be removed from a future release.

Deprecated since version 6.1.0: Use ARKodeSetPredictorMethod() instead.

int ARKStepSetStagePredictFn(void *arkode_mem, ARKStagePredictFn PredictStage)
Sets the user-supplied function to update the implicit stage predictor prior to execution of the nonlinear or linear
solver algorithms that compute the implicit stage solution.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• PredictStage – name of user-supplied predictor function. If NULL, then any previously-provided stage
prediction function will be disabled.

Return value:

• ARK_SUCCESS if successful

222 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
See §5.4.6 for more information on this user-supplied routine.

Deprecated since version 6.1.0: Use ARKodeSetStagePredictFn() instead.

int ARKStepSetNlsRhsFn(void *arkode_mem, ARKRhsFn nls_fi)
Specifies an alternative implicit right-hand side function for evaluating f I(t, y) within nonlinear system function
evaluations (2.39) - (2.41).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nls_fi – the alternative C function for computing the right-hand side function f I(t, y) in the ODE.

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the ARKStep memory was NULL.

Notes:
The default is to use the implicit right-hand side function provided to ARKStepCreate() in nonlinear
system functions. If the input implicit right-hand side function is NULL, the default is used.

When using a non-default nonlinear solver, this function must be called after ARKStepSetNonlinear-
Solver().

Deprecated since version 6.1.0: Use ARKodeSetNlsRhsFn() instead.

int ARKStepSetMaxNonlinIters(void *arkode_mem, int maxcor)
Specifies the maximum number of nonlinear solver iterations permitted per implicit stage solve within each time
step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• maxcor – maximum allowed solver iterations per stage (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value or if the SUNNONLINSOL module is NULL

• ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes:
The default value is 3; set maxcor ≤ 0 to specify this default.

Deprecated since version 6.1.0: Use ARKodeSetMaxNonlinIters() instead.

int ARKStepSetNonlinConvCoef(void *arkode_mem, sunrealtype nlscoef)
Specifies the safety factor ε used within the nonlinear solver convergence test (2.54).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nlscoef – coefficient in nonlinear solver convergence test (> 0.0).

Return value:

5.7. Using the ARKStep time-stepping module 223

User Documentation for ARKODE, v6.3.0

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default value is 0.1; set nlscoef ≤ 0 to specify this default.

Deprecated since version 6.1.0: Use ARKodeSetNonlinConvCoef() instead.

int ARKStepSetNonlinCRDown(void *arkode_mem, sunrealtype crdown)
Specifies the constant cr used in estimating the nonlinear solver convergence rate (2.53).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• crdown – nonlinear convergence rate estimation constant (default is 0.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetNonlinCRDown() instead.

int ARKStepSetNonlinRDiv(void *arkode_mem, sunrealtype rdiv)
Specifies the nonlinear correction threshold rdiv from (2.55), beyond which the iteration will be declared diver-
gent.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rdiv – tolerance on nonlinear correction size ratio to declare divergence (default is 2.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetNonlinRDiv() instead.

int ARKStepSetMaxConvFails(void *arkode_mem, int maxncf)
Specifies the maximum number of nonlinear solver convergence failures permitted during one step, maxncf
from §2.15.3.1, before ARKStep will return with an error.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• maxncf – maximum allowed nonlinear solver convergence failures per step (> 0).

Return value:

224 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default value is 10; set maxncf ≤ 0 to specify this default.

Upon each convergence failure, ARKStep will first call the Jacobian setup routine and try again (if a Newton
method is used). If a convergence failure still occurs, the time step size is reduced by the factor etacf (set
within ARKStepSetMaxCFailGrowth()).

Deprecated since version 6.1.0: Use ARKodeSetMaxConvFails() instead.

int ARKStepSetDeduceImplicitRhs(void *arkode_mem, sunbooleantype deduce)
Specifies if implicit stage derivatives are deduced without evaluating f I . See §2.15.1 for more details.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• deduce – If SUNFALSE (default), the stage derivative is obtained by evaluating f I with the stage solution
returned from the nonlinear solver. If SUNTRUE, the stage derivative is deduced without an additional
evaluation of f I .

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

Added in version 5.2.0.

Deprecated since version 6.1.0: Use ARKodeSetDeduceImplicitRhs() instead.

Linear solver interface optional input functions

Optional inputs for the ARKLS linear solver interface

int ARKStepSetDeltaGammaMax(void *arkode_mem, sunrealtype dgmax)
Specifies a scaled step size ratio tolerance, ∆γmax from §2.15.2.3, beyond which the linear solver setup routine
will be signaled.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• dgmax – tolerance on step size ratio change before calling linear solver setup routine (default is 0.2).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetDeltaGammaMax() instead.

5.7. Using the ARKStep time-stepping module 225

User Documentation for ARKODE, v6.3.0

int ARKStepSetLSetupFrequency(void *arkode_mem, int msbp)
Specifies the frequency of calls to the linear solver setup routine, msbp from §2.15.2.3.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• msbp – the linear solver setup frequency.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
Positive values of msbp specify the linear solver setup frequency. For example, an input of 1 means the
setup function will be called every time step while an input of 2 means it will be called called every other
time step. If msbp is 0, the default value of 20 will be used. A negative value forces a linear solver step at
each implicit stage.

Deprecated since version 6.1.0: Use ARKodeSetLSetupFrequency() instead.

int ARKStepSetJacEvalFrequency(void *arkode_mem, long int msbj)
Specifies the number of steps after which the Jacobian information is considered out-of-date, msbj from
§2.15.2.3.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• msbj – the Jacobian re-computation or preconditioner update frequency.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

Notes:
If nstlj is the step number at which the Jacobian information was lasted updated and nst is the current
step number, nst - nstlj >= msbj indicates that the Jacobian information will be updated during the
next linear solver setup call.

As the Jacobian update frequency is only checked within calls to the linear solver setup routine, Jacobian
information may be more than msbj steps old when updated depending on when a linear solver setup call
occurs. See §2.15.2.3 for more information on when linear solver setups are performed.

Passing a value msbj ≤ 0 indicates to use the default value of 51.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Deprecated since version 6.1.0: Use ARKodeSetJacEvalFrequency() instead.

226 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Optional inputs for matrix-based SUNLinearSolver modules

int ARKStepSetJacFn(void *arkode_mem, ARKLsJacFn jac)
Specifies the Jacobian approximation routine to be used for the matrix-based solver with the ARKLS interface.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• jac – name of user-supplied Jacobian approximation function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
This routine must be called after the ARKLS linear solver interface has been initialized through a call to
ARKStepSetLinearSolver().

By default, ARKLS uses an internal difference quotient function for the SUNMATRIX_DENSE and SUN-
MATRIX_BAND modules. If NULL is passed in for jac, this default is used. An error will occur if no jac is
supplied when using other matrix types.

The function type ARKLsJacFn() is described in §5.4.

Deprecated since version 6.1.0: Use ARKodeSetJacFn() instead.

int ARKStepSetLinSysFn(void *arkode_mem, ARKLsLinSysFn linsys)
Specifies the linear system approximation routine to be used for the matrix-based solver with the ARKLS inter-
face.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• linsys – name of user-supplied linear system approximation function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
This routine must be called after the ARKLS linear solver interface has been initialized through a call to
ARKStepSetLinearSolver().

By default, ARKLS uses an internal linear system function that leverages the SUNMATRIX API to form
the system M − γJ . If NULL is passed in for linsys, this default is used.

The function type ARKLsLinSysFn() is described in §5.4.

Deprecated since version 6.1.0: Use ARKodeSetLinSysFn() instead.

int ARKStepSetMassFn(void *arkode_mem, ARKLsMassFn mass)
Specifies the mass matrix approximation routine to be used for the matrix-based solver with the ARKLS interface.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

5.7. Using the ARKStep time-stepping module 227

User Documentation for ARKODE, v6.3.0

• mass – name of user-supplied mass matrix approximation function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL

• ARKLS_ILL_INPUT if an argument had an illegal value

Notes:
This routine must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

Since there is no default difference quotient function for mass matrices, mass must be non-NULL.

The function type ARKLsMassFn() is described in §5.4.

Deprecated since version 6.1.0: Use ARKodeSetMassFn() instead.

int ARKStepSetLinearSolutionScaling(void *arkode_mem, sunbooleantype onoff)
Enables or disables scaling the linear system solution to account for a change in γ in the linear system. For more
details see §10.2.1.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• onoff – flag to enable (SUNTRUE) or disable (SUNFALSE) scaling

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_ILL_INPUT if the attached linear solver is not matrix-based

Notes:
Linear solution scaling is enabled by default when a matrix-based linear solver is attached.

Deprecated since version 6.1.0: Use ARKodeSetLinearSolutionScaling() instead.

Optional inputs for matrix-free SUNLinearSolver modules

int ARKStepSetJacTimes(void *arkode_mem, ARKLsJacTimesSetupFn jtsetup, ARKLsJacTimesVecFn jtimes)
Specifies the Jacobian-times-vector setup and product functions.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• jtsetup – user-defined Jacobian-vector setup function. Pass NULL if no setup is necessary.

• jtimes – user-defined Jacobian-vector product function.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

228 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARKLS_ILL_INPUT if an input has an illegal value.

• ARKLS_SUNLS_FAIL if an error occurred when setting up the Jacobian-vector product in the SUN-
LinearSolver object used by the ARKLS interface.

Notes:
The default is to use an internal finite difference quotient for jtimes and to leave out jtsetup. If NULL is
passed to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup inputs.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

The function types ARKLsJacTimesSetupFn and ARKLsJacTimesVecFn are described in §5.4.

Deprecated since version 6.1.0: Use ARKodeSetJacTimes() instead.

int ARKStepSetJacTimesRhsFn(void *arkode_mem, ARKRhsFn jtimesRhsFn)
Specifies an alternative implicit right-hand side function for use in the internal Jacobian-vector product difference
quotient approximation.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• jtimesRhsFn – the name of the C function (of type ARKRhsFn()) defining the alternative right-hand
side function.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

Notes:
The default is to use the implicit right-hand side function provided to ARKStepCreate() in the internal
difference quotient. If the input implicit right-hand side function is NULL, the default is used.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Deprecated since version 6.1.0: Use ARKodeSetJacTimesRhsFn() instead.

int ARKStepSetMassTimes(void *arkode_mem, ARKLsMassTimesSetupFn mtsetup, ARKLsMassTimesVecFn
mtimes, void *mtimes_data)

Specifies the mass matrix-times-vector setup and product functions.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mtsetup – user-defined mass matrix-vector setup function. Pass NULL if no setup is necessary.

• mtimes – user-defined mass matrix-vector product function.

• mtimes_data – a pointer to user data, that will be supplied to both the mtsetup and mtimes functions.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL.

5.7. Using the ARKStep time-stepping module 229

User Documentation for ARKODE, v6.3.0

• ARKLS_ILL_INPUT if an input has an illegal value.

• ARKLS_SUNLS_FAIL if an error occurred when setting up the mass-matrix-vector product in the
SUNLinearSolver object used by the ARKLS interface.

Notes:
There is no default finite difference quotient for mtimes, so if using the ARKLS mass matrix solver interface
with NULL-valued SUNMATRIX input M , and this routine is called with NULL-valued mtimes, an error
will occur. A user may specify NULL for mtsetup.

This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

The function types ARKLsMassTimesSetupFn and ARKLsMassTimesVecFn are described in §5.4.

Deprecated since version 6.1.0: Use ARKodeSetMassTimes() instead.

Optional inputs for iterative SUNLinearSolver modules

int ARKStepSetPreconditioner(void *arkode_mem, ARKLsPrecSetupFn psetup, ARKLsPrecSolveFn psolve)
Specifies the user-supplied preconditioner setup and solve functions.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• psetup – user defined preconditioner setup function. Pass NULL if no setup is needed.

• psolve – user-defined preconditioner solve function.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

• ARKLS_SUNLS_FAIL if an error occurred when setting up preconditioning in the SUNLinearSolver
object used by the ARKLS interface.

Notes:
The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Both of the function types ARKLsPrecSetupFn() and ARKLsPrecSolveFn() are described in §5.4.

Deprecated since version 6.1.0: Use ARKodeSetPreconditioner() instead.

int ARKStepSetMassPreconditioner(void *arkode_mem, ARKLsMassPrecSetupFn psetup,
ARKLsMassPrecSolveFn psolve)

Specifies the mass matrix preconditioner setup and solve functions.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• psetup – user defined preconditioner setup function. Pass NULL if no setup is to be done.

• psolve – user-defined preconditioner solve function.

230 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

• ARKLS_SUNLS_FAIL if an error occurred when setting up preconditioning in the SUNLinearSolver
object used by the ARKLS interface.

Notes:
This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

The default is NULL for both arguments (i.e. no preconditioning).

Both of the function types ARKLsMassPrecSetupFn() and ARKLsMassPrecSolveFn() are described in
§5.4.

Deprecated since version 6.1.0: Use ARKodeSetMassPreconditioner() instead.

int ARKStepSetEpsLin(void *arkode_mem, sunrealtype eplifac)
Specifies the factor εL by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the
linear iteration.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• eplifac – linear convergence safety factor.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

Notes:
Passing a value eplifac ≤ 0 indicates to use the default value of 0.05.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Deprecated since version 6.1.0: Use ARKodeSetEpsLin() instead.

int ARKStepSetMassEpsLin(void *arkode_mem, sunrealtype eplifac)
Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the mass
matrix linear iteration.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• eplifac – linear convergence safety factor.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

5.7. Using the ARKStep time-stepping module 231

User Documentation for ARKODE, v6.3.0

• ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

Notes:
This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

Passing a value eplifac ≤ 0 indicates to use the default value of 0.05.

Deprecated since version 6.1.0: Use ARKodeSetMassEpsLin() instead.

int ARKStepSetLSNormFactor(void *arkode_mem, sunrealtype nrmfac)
Specifies the factor to use when converting from the integrator tolerance (WRMS norm) to the linear solver
tolerance (L2 norm) for Newton linear system solves.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nrmfac – the norm conversion factor. If nrmfac is:

> 0 then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac = sqrt(N_-
VGetLength(y)) (default).

< 0 then the conversion factor is computed using the vector dot product i.e., nrmfac = sqrt(N_-
VDotProd(v,v)) where all the entries of v are one.

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the ARKStep memory was NULL.

Notes:
This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Deprecated since version 6.1.0: Use ARKodeSetLSNormFactor() instead.

int ARKStepSetMassLSNormFactor(void *arkode_mem, sunrealtype nrmfac)
Specifies the factor to use when converting from the integrator tolerance (WRMS norm) to the linear solver
tolerance (L2 norm) for mass matrix linear system solves.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nrmfac – the norm conversion factor. If nrmfac is:

> 0 then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac = sqrt(N_-
VGetLength(y)) (default).

< 0 then the conversion factor is computed using the vector dot product i.e., nrmfac = sqrt(N_-
VDotProd(v,v)) where all the entries of v are one.

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the ARKStep memory was NULL.

232 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Notes:
This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

Deprecated since version 6.1.0: Use ARKodeSetMassLSNormFactor() instead.

Rootfinding optional input functions

int ARKStepSetRootDirection(void *arkode_mem, int *rootdir)
Specifies the direction of zero-crossings to be located and returned.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rootdir – state array of length nrtfn, the number of root functions gi (the value of nrtfn was supplied
in the call to ARKStepRootInit()). If rootdir[i] == 0 then crossing in either direction for gi
should be reported. A value of +1 or -1 indicates that the solver should report only zero-crossings
where gi is increasing or decreasing, respectively.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default behavior is to monitor for both zero-crossing directions.

Deprecated since version 6.1.0: Use ARKodeSetRootDirection() instead.

int ARKStepSetNoInactiveRootWarn(void *arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
ARKStep will not report the initial conditions as a possible zero-crossing (assuming that one or more
components gi are zero at the initial time). However, if it appears that some gi is identically zero at the
initial time (i.e., gi is zero at the initial time and after the first step), ARKStep will issue a warning which
can be disabled with this optional input function.

Deprecated since version 6.1.0: Use ARKodeSetNoInactiveRootWarn() instead.

5.7. Using the ARKStep time-stepping module 233

User Documentation for ARKODE, v6.3.0

5.7.1.9 Interpolated output function

int ARKStepGetDky(void *arkode_mem, sunrealtype t, int k, N_Vector dky)
Computes the k-th derivative of the function y at the time t, i.e. y(k)(t), for values of the independent variable
satisfying tn − hn ≤ t ≤ tn, with tn as current internal time reached, and hn is the last internal step size
successfully used by the solver. This routine uses an interpolating polynomial of degree min(degree, 5), where
degree is the argument provided to ARKStepSetInterpolantDegree(). The user may request k in the range
{0,. . . , min(degree, kmax)} where kmax depends on the choice of interpolation module. For Hermite interpolants
kmax = 5 and for Lagrange interpolants kmax = 3.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• t – the value of the independent variable at which the derivative is to be evaluated.

• k – the derivative order requested.

• dky – output vector (must be allocated by the user).

Return value:

• ARK_SUCCESS if successful

• ARK_BAD_K if k is not in the range {0,. . . , min(degree, kmax)}.

• ARK_BAD_T if t is not in the interval [tn − hn, tn]

• ARK_BAD_DKY if the dky vector was NULL

• ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
It is only legal to call this function after a successful return from ARKStepEvolve().

A user may access the values tn and hn via the functions ARKStepGetCurrentTime() and ARKStepGet-
LastStep(), respectively.

Deprecated since version 6.1.0: Use ARKodeGetDky() instead.

5.7.1.10 Optional output functions

Main solver optional output functions

int ARKStepGetWorkSpace(void *arkode_mem, long int *lenrw, long int *leniw)
Returns the ARKStep real and integer workspace sizes.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lenrw – the number of sunrealtype values in the ARKStep workspace.

• leniw – the number of integer values in the ARKStep workspace.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetWorkSpace() instead.

234 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ARKStepGetNumSteps(void *arkode_mem, long int *nsteps)
Returns the cumulative number of internal steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nsteps – number of steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumSteps() instead.

int ARKStepGetActualInitStep(void *arkode_mem, sunrealtype *hinused)
Returns the value of the integration step size used on the first step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hinused – actual value of initial step size.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
Even if the value of the initial integration step was specified by the user through a call to ARKStepSetInit-
Step(), this value may have been changed by ARKStep to ensure that the step size fell within the prescribed
bounds (hmin ≤ h0 ≤ hmax), or to satisfy the local error test condition, or to ensure convergence of the
nonlinear solver.

Deprecated since version 6.1.0: Use ARKodeGetActualInitStep() instead.

int ARKStepGetLastStep(void *arkode_mem, sunrealtype *hlast)
Returns the integration step size taken on the last successful internal step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hlast – step size taken on the last internal step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetLastStep() instead.

int ARKStepGetCurrentStep(void *arkode_mem, sunrealtype *hcur)
Returns the integration step size to be attempted on the next internal step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hcur – step size to be attempted on the next internal step.

Return value:

5.7. Using the ARKStep time-stepping module 235

User Documentation for ARKODE, v6.3.0

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetCurrentStep() instead.

int ARKStepGetCurrentTime(void *arkode_mem, sunrealtype *tcur)
Returns the current internal time reached by the solver.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• tcur – current internal time reached.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetCurrentTime() instead.

int ARKStepGetCurrentState(void *arkode_mem, N_Vector *ycur)
Returns the current internal solution reached by the solver.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ycur – current internal solution.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
Users should exercise extreme caution when using this function, as altering values of ycur may lead to
undesirable behavior, depending on the particular use case and on when this routine is called.

Deprecated since version 6.1.0: Use ARKodeGetCurrentState() instead.

int ARKStepGetCurrentGamma(void *arkode_mem, sunrealtype *gamma)
Returns the current internal value of γ used in the implicit solver Newton matrix (see equation (2.47)).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• gamma – current step size scaling factor in the Newton system.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetCurrentGamma() instead.

int ARKStepGetTolScaleFactor(void *arkode_mem, sunrealtype *tolsfac)
Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

236 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• tolsfac – suggested scaling factor for user-supplied tolerances.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetTolScaleFactor() instead.

int ARKStepGetErrWeights(void *arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• eweight – solution error weights at the current time.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The user must allocate space for eweight, that will be filled in by this function.

Deprecated since version 6.1.0: Use ARKodeGetErrWeights() instead.

int ARKStepGetResWeights(void *arkode_mem, N_Vector rweight)
Returns the current residual weight vector.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rweight – residual error weights at the current time.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The user must allocate space for rweight, that will be filled in by this function.

Deprecated since version 6.1.0: Use ARKodeGetResWeights() instead.

int ARKStepGetStepStats(void *arkode_mem, long int *nsteps, sunrealtype *hinused, sunrealtype *hlast,
sunrealtype *hcur, sunrealtype *tcur)

Returns many of the most useful optional outputs in a single call.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nsteps – number of steps taken in the solver.

• hinused – actual value of initial step size.

• hlast – step size taken on the last internal step.

• hcur – step size to be attempted on the next internal step.

• tcur – current internal time reached.

Return value:

5.7. Using the ARKStep time-stepping module 237

User Documentation for ARKODE, v6.3.0

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetStepStats() instead.

int ARKStepPrintAllStats(void *arkode_mem, FILE *outfile, SUNOutputFormat fmt)
Outputs all of the integrator, nonlinear solver, linear solver, and other statistics.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• outfile – pointer to output file.

• fmt – the output format:

– SUN_OUTPUTFORMAT_TABLE – prints a table of values

– SUN_OUTPUTFORMAT_CSV – prints a comma-separated list of key and value pairs e.g., key1,
value1,key2,value2,...

Return value:

• ARK_SUCCESS – if the output was successfully.

• ARK_MEM_NULL – if the ARKStep memory was NULL.

• ARK_ILL_INPUT – if an invalid formatting option was provided.

Note

The Python module tools/suntools provides utilities to read and output the data from a SUNDIALS CSV
output file using the key and value pair format.

Added in version 5.2.0.

Deprecated since version 6.1.0: Use ARKodePrintAllStats() instead.

char *ARKStepGetReturnFlagName(long int flag)
Returns the name of the ARKStep constant corresponding to flag. See ARKODE Constants.

Arguments:

• flag – a return flag from an ARKStep function.

Return value: The return value is a string containing the name of the corresponding constant.

Deprecated since version 6.1.0: Use ARKodeGetReturnFlagName() instead.

int ARKStepGetNumExpSteps(void *arkode_mem, long int *expsteps)
Returns the cumulative number of stability-limited steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• expsteps – number of stability-limited steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumExpSteps() instead.

238 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ARKStepGetNumAccSteps(void *arkode_mem, long int *accsteps)
Returns the cumulative number of accuracy-limited steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• accsteps – number of accuracy-limited steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumAccSteps() instead.

int ARKStepGetNumStepAttempts(void *arkode_mem, long int *step_attempts)
Returns the cumulative number of steps attempted by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• step_attempts – number of steps attempted by solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumStepAttempts() instead.

int ARKStepGetNumRhsEvals(void *arkode_mem, long int *nfe_evals, long int *nfi_evals)
Returns the number of calls to the user’s right-hand side functions, fE and f I (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nfe_evals – number of calls to the user’s fE(t, y) function.

• nfi_evals – number of calls to the user’s f I(t, y) function.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The nfi_evals value does not account for calls made to f I by a linear solver or preconditioner module.

Deprecated since version 6.2.0: Use ARKodeGetNumRhsEvals() instead.

int ARKStepGetNumErrTestFails(void *arkode_mem, long int *netfails)
Returns the number of local error test failures that have occurred (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• netfails – number of error test failures.

Return value:

• ARK_SUCCESS if successful

5.7. Using the ARKStep time-stepping module 239

User Documentation for ARKODE, v6.3.0

• ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumErrTestFails() instead.

int ARKStepGetNumStepSolveFails(void *arkode_mem, long int *ncnf)
Returns the number of failed steps due to a nonlinear solver failure (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ncnf – number of step failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumStepSolveFails() instead.

int ARKStepGetCurrentButcherTables(void *arkode_mem, ARKodeButcherTable *Bi, ARKodeButcherTable
*Be)

Returns the explicit and implicit Butcher tables currently in use by the solver.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• Bi – pointer to the implicit Butcher table structure.

• Be – pointer to the explicit Butcher table structure.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Note: The ARKodeButcherTable data structure is defined as a pointer to the following C structure:

typedef struct ARKStepButcherTableMem {

int q; /* method order of accuracy */
int p; /* embedding order of accuracy */
int stages; /* number of stages */
sunrealtype **A; /* Butcher table coefficients */
sunrealtype *c; /* canopy node coefficients */
sunrealtype *b; /* root node coefficients */
sunrealtype *d; /* embedding coefficients */

} *ARKStepButcherTable;

For more details see §6.

int ARKStepGetEstLocalErrors(void *arkode_mem, N_Vector ele)
Returns the vector of estimated local truncation errors for the current step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ele – vector of estimated local truncation errors.

Return value:

240 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The user must allocate space for ele, that will be filled in by this function.

The values returned in ele are valid only after a successful call to ARKStepEvolve() (i.e., it returned a
non-negative value).

The ele vector, together with the eweight vector from ARKStepGetErrWeights(), can be used to deter-
mine how the various components of the system contributed to the estimated local error test. Specifically,
that error test uses the WRMS norm of a vector whose components are the products of the components of
these two vectors. Thus, for example, if there were recent error test failures, the components causing the
failures are those with largest values for the products, denoted loosely as eweight[i]*ele[i].

Deprecated since version 6.1.0: Use ARKodeGetEstLocalErrors() instead.

int ARKStepGetTimestepperStats(void *arkode_mem, long int *expsteps, long int *accsteps, long int
*step_attempts, long int *nfe_evals, long int *nfi_evals, long int *nlinsetups,
long int *netfails)

Returns many of the most useful time-stepper statistics in a single call.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• expsteps – number of stability-limited steps taken in the solver.

• accsteps – number of accuracy-limited steps taken in the solver.

• step_attempts – number of steps attempted by the solver.

• nfe_evals – number of calls to the user’s fE(t, y) function.

• nfi_evals – number of calls to the user’s f I(t, y) function.

• nlinsetups – number of linear solver setup calls made.

• netfails – number of error test failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumConstrFails(void *arkode_mem, long int *nconstrfails)
Returns the cumulative number of constraint test failures (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nconstrfails – number of constraint test failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumConstrFails() instead.

5.7. Using the ARKStep time-stepping module 241

User Documentation for ARKODE, v6.3.0

int ARKStepGetUserData(void *arkode_mem, void **user_data)
Returns the user data pointer previously set with ARKStepSetUserData().

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• user_data – memory reference to a user data pointer

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Added in version 5.3.0.

Deprecated since version 6.1.0: Use ARKodeGetUserData() instead.

Implicit solver optional output functions

int ARKStepGetNumLinSolvSetups(void *arkode_mem, long int *nlinsetups)
Returns the number of calls made to the linear solver’s setup routine (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nlinsetups – number of linear solver setup calls made.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Note: This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumLinSolvSetups() instead.

int ARKStepGetNumNonlinSolvIters(void *arkode_mem, long int *nniters)
Returns the number of nonlinear solver iterations performed (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nniters – number of nonlinear iterations performed.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Note: This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumNonlinSolvIters() instead.

242 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ARKStepGetNumNonlinSolvConvFails(void *arkode_mem, long int *nncfails)
Returns the number of nonlinear solver convergence failures that have occurred (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nncfails – number of nonlinear convergence failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Note: This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumNonlinSolvConvFails() instead.

int ARKStepGetNonlinSolvStats(void *arkode_mem, long int *nniters, long int *nncfails)
Returns all of the nonlinear solver statistics in a single call.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nniters – number of nonlinear iterations performed.

• nncfails – number of nonlinear convergence failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Note: This is only accumulated for the “life” of the nonlinear solver object; the counters are reset whenever a
new nonlinear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNonlinSolvStats() instead.

Rootfinding optional output functions

int ARKStepGetRootInfo(void *arkode_mem, int *rootsfound)
Returns an array showing which functions were found to have a root.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rootsfound – array of length nrtfn with the indices of the user functions gi found to have a root (the value
of nrtfn was supplied in the call to ARKStepRootInit()). For i = 0 . . . nrtfn-1, rootsfound[i] is
nonzero if gi has a root, and 0 if not.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

5.7. Using the ARKStep time-stepping module 243

User Documentation for ARKODE, v6.3.0

Notes:
The user must allocate space for rootsfound prior to calling this function.

For the components of gi for which a root was found, the sign of rootsfound[i] indicates the direction
of zero-crossing. A value of +1 indicates that gi is increasing, while a value of -1 indicates a decreasing gi.

Deprecated since version 6.1.0: Use ARKodeGetRootInfo() instead.

int ARKStepGetNumGEvals(void *arkode_mem, long int *ngevals)
Returns the cumulative number of calls made to the user’s root function g.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ngevals – number of calls made to g so far.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumGEvals() instead.

Linear solver interface optional output functions

int ARKStepGetJac(void *arkode_mem, SUNMatrix *J)
Returns the internally stored copy of the Jacobian matrix of the ODE implicit right-hand side function.

Parameters

• arkode_mem – the ARKStep memory structure

• J – the Jacobian matrix

Return values

• ARKLS_SUCCESS – the output value has been successfully set

• ARKLS_MEM_NULL – arkode_mem was NULL

• ARKLS_LMEM_NULL – the linear solver interface has not been initialized

Warning

This function is provided for debugging purposes and the values in the returned matrix should not be altered.

Deprecated since version 6.1.0: Use ARKodeGetJac() instead.

int ARKStepGetJacTime(void *arkode_mem, sunrealtype *t_J)
Returns the time at which the internally stored copy of the Jacobian matrix of the ODE implicit right-hand side
function was evaluated.

Parameters

• arkode_mem – the ARKStep memory structure

• t_J – the time at which the Jacobian was evaluated

Return values

• ARKLS_SUCCESS – the output value has been successfully set

244 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARKLS_MEM_NULL – arkode_mem was NULL

• ARKLS_LMEM_NULL – the linear solver interface has not been initialized

Deprecated since version 6.1.0: Use ARKodeGetJacTime() instead.

int ARKStepGetJacNumSteps(void *arkode_mem, long int *nst_J)
Returns the value of the internal step counter at which the internally stored copy of the Jacobian matrix of the
ODE implicit right-hand side function was evaluated.

Parameters

• arkode_mem – the ARKStep memory structure

• nst_J – the value of the internal step counter at which the Jacobian was evaluated

Return values

• ARKLS_SUCCESS – the output value has been successfully set

• ARKLS_MEM_NULL – arkode_mem was NULL

• ARKLS_LMEM_NULL – the linear solver interface has not been initialized

Deprecated since version 6.1.0: Use ARKodeGetJacNumSteps() instead.

int ARKStepGetLinWorkSpace(void *arkode_mem, long int *lenrwLS, long int *leniwLS)
Returns the real and integer workspace used by the ARKLS linear solver interface.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lenrwLS – the number of sunrealtype values in the ARKLS workspace.

• leniwLS – the number of integer values in the ARKLS workspace.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian
matrix allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).

Deprecated since version 6.1.0: Use ARKodeGetLinWorkSpace() instead.

int ARKStepGetNumJacEvals(void *arkode_mem, long int *njevals)
Returns the number of Jacobian evaluations.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• njevals – number of Jacobian evaluations.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

5.7. Using the ARKStep time-stepping module 245

User Documentation for ARKODE, v6.3.0

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumJacEvals() instead.

int ARKStepGetNumPrecEvals(void *arkode_mem, long int *npevals)
Returns the total number of preconditioner evaluations, i.e. the number of calls made to psetup with jok =
SUNFALSE and that returned *jcurPtr = SUNTRUE.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• npevals – the current number of calls to psetup.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumPrecEvals() instead.

int ARKStepGetNumPrecSolves(void *arkode_mem, long int *npsolves)
Returns the number of calls made to the preconditioner solve function, psolve.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• npsolves – the number of calls to psolve.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumPrecSolves() instead.

int ARKStepGetNumLinIters(void *arkode_mem, long int *nliters)
Returns the cumulative number of linear iterations.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nliters – the current number of linear iterations.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

246 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumLinIters() instead.

int ARKStepGetNumLinConvFails(void *arkode_mem, long int *nlcfails)
Returns the cumulative number of linear convergence failures.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nlcfails – the current number of linear convergence failures.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumLinConvFails() instead.

int ARKStepGetNumJTSetupEvals(void *arkode_mem, long int *njtsetup)
Returns the cumulative number of calls made to the user-supplied Jacobian-vector setup function, jtsetup.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• njtsetup – the current number of calls to jtsetup.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumJTSetupEvals() instead.

int ARKStepGetNumJtimesEvals(void *arkode_mem, long int *njvevals)
Returns the cumulative number of calls made to the Jacobian-vector product function, jtimes.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• njvevals – the current number of calls to jtimes.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

5.7. Using the ARKStep time-stepping module 247

User Documentation for ARKODE, v6.3.0

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumJtimesEvals() instead.

int ARKStepGetNumLinRhsEvals(void *arkode_mem, long int *nfevalsLS)
Returns the number of calls to the user-supplied implicit right-hand side function f I for finite difference Jacobian
or Jacobian-vector product approximation.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nfevalsLS – the number of calls to the user implicit right-hand side function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
The value nfevalsLS is incremented only if the default internal difference quotient function is used.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumLinRhsEvals() instead.

int ARKStepGetLastLinFlag(void *arkode_mem, long int *lsflag)
Returns the last return value from an ARKLS routine.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lsflag – the value of the last return flag from an ARKLS function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
If the ARKLS setup function failed when using the SUNLINSOL_DENSE or SUNLINSOL_BANDmodules, then
the value of lsflag is equal to the column index (numbered from one) at which a zero diagonal element was
encountered during the LU factorization of the (dense or banded) Jacobian matrix. For all other failures,
lsflag is negative.

Otherwise, if the ARKLS setup function failed (ARKStepEvolve() returned ARK_LSETUP_FAIL), then
lsflag will be SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC or SUN_ERR_EXT_FAIL.

If the ARKLS solve function failed (ARKStepEvolve() returned ARK_LSOLVE_FAIL), then lsflag con-
tains the error return flag from the SUNLinearSolver object, which will be one of: SUN_ERR_ARG_COR-
RUPTRRUPT, indicating that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_NULL, indicat-
ing that a matrix-free iterative solver was provided, but is missing a routine for the matrix-vector product
approximation, SUNLS_ATIMES_FAIL_UNREC, indicating an unrecoverable failure in the Jv function;
SUNLS_PSOLVE_NULL, indicating that an iterative linear solver was configured to use preconditioning,
but no preconditioner solve routine was provided, SUNLS_PSOLVE_FAIL_UNREC, indicating that the

248 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

preconditioner solve function failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-
Schmidt procedure (SPGMR and SPFGMR only); SUNLS_QRSOL_FAIL, indicating that the matrixRwas
found to be singular during the QR solve phase (SPGMR and SPFGMR only); or SUN_ERR_EXT_FAIL,
indicating an unrecoverable failure in an external iterative linear solver package.

Deprecated since version 6.1.0: Use ARKodeGetLastLinFlag() instead.

char *ARKStepGetLinReturnFlagName(long int lsflag)
Returns the name of the ARKLS constant corresponding to lsflag.

Arguments:

• lsflag – a return flag from an ARKLS function.

Return value: The return value is a string containing the name of the corresponding constant. If using the
SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then if 1 ≤ lsflag ≤ n (LU factorization failed), this routine
returns “NONE”.

Deprecated since version 6.1.0: Use ARKodeGetLinReturnFlagName() instead.

int ARKStepGetMassWorkSpace(void *arkode_mem, long int *lenrwMLS, long int *leniwMLS)
Returns the real and integer workspace used by the ARKLS mass matrix linear solver interface.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lenrwMLS – the number of sunrealtype values in the ARKLS mass solver workspace.

• leniwMLS – the number of integer values in the ARKLS mass solver workspace.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template mass
matrix allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).

Deprecated since version 6.1.0: Use ARKodeGetMassWorkSpace() instead.

int ARKStepGetNumMassSetups(void *arkode_mem, long int *nmsetups)
Returns the number of calls made to the ARKLS mass matrix solver ‘setup’ routine; these include all calls to the
user-supplied mass-matrix constructor function.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmsetups – number of calls to the mass matrix solver setup routine.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

5.7. Using the ARKStep time-stepping module 249

User Documentation for ARKODE, v6.3.0

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassSetups() instead.

int ARKStepGetNumMassMultSetups(void *arkode_mem, long int *nmvsetups)
Returns the number of calls made to the ARKLS mass matrix ‘matvec setup’ (matrix-based solvers) routine.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmvsetups – number of calls to the mass matrix matrix-times-vector setup routine.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassMultSetups() instead.

int ARKStepGetNumMassMult(void *arkode_mem, long int *nmmults)
Returns the number of calls made to the ARKLS mass matrix ‘matvec’ routine (matrix-based solvers) or the
user-supplied mtimes routine (matris-free solvers).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmmults – number of calls to the mass matrix solver matrix-times-vector routine.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassMult() instead.

int ARKStepGetNumMassSolves(void *arkode_mem, long int *nmsolves)
Returns the number of calls made to the ARKLS mass matrix solver ‘solve’ routine.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmsolves – number of calls to the mass matrix solver solve routine.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

250 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassSolves() instead.

int ARKStepGetNumMassPrecEvals(void *arkode_mem, long int *nmpevals)
Returns the total number of mass matrix preconditioner evaluations, i.e. the number of calls made to psetup.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmpevals – the current number of calls to psetup.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassPrecEvals() instead.

int ARKStepGetNumMassPrecSolves(void *arkode_mem, long int *nmpsolves)
Returns the number of calls made to the mass matrix preconditioner solve function, psolve.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmpsolves – the number of calls to psolve.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassPrecSolves() instead.

int ARKStepGetNumMassIters(void *arkode_mem, long int *nmiters)
Returns the cumulative number of mass matrix solver iterations.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmiters – the current number of mass matrix solver linear iterations.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

5.7. Using the ARKStep time-stepping module 251

User Documentation for ARKODE, v6.3.0

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassIters() instead.

int ARKStepGetNumMassConvFails(void *arkode_mem, long int *nmcfails)
Returns the cumulative number of mass matrix solver convergence failures.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmcfails – the current number of mass matrix solver convergence failures.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassConvFails() instead.

int ARKStepGetNumMTSetups(void *arkode_mem, long int *nmtsetup)
Returns the cumulative number of calls made to the user-supplied mass-matrix-vector product setup function,
mtsetup.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmtsetup – the current number of calls to mtsetup.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMTSetups() instead.

int ARKStepGetLastMassFlag(void *arkode_mem, long int *mlsflag)
Returns the last return value from an ARKLS mass matrix interface routine.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mlsflag – the value of the last return flag from an ARKLS mass matrix solver interface function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

252 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Notes:
The values of msflag for each of the various solvers will match those described above for the function
ARKStepGetLastLinFlag().

Deprecated since version 6.1.0: Use ARKodeGetLastMassFlag() instead.

General usability functions

int ARKStepWriteParameters(void *arkode_mem, FILE *fp)
Outputs all ARKStep solver parameters to the provided file pointer.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• fp – pointer to use for printing the solver parameters.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for
all processes would be identical.

Deprecated since version 6.1.0: Use ARKodeWriteParameters() instead.

int ARKStepWriteButcher(void *arkode_mem, FILE *fp)
Outputs the current Butcher table(s) to the provided file pointer.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• fp – pointer to use for printing the Butcher table(s).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

If ARKStep is currently configured to run in purely explicit or purely implicit mode, this will output a single
Butcher table; if configured to run an ImEx method then both tables will be output.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all
processes would be identical.

Deprecated since version 6.1.0: Use ARKStepGetCurrentButcherTables() and ARKodeButcherTable_-
Write() instead.

5.7. Using the ARKStep time-stepping module 253

User Documentation for ARKODE, v6.3.0

5.7.1.11 ARKStep re-initialization function

To reinitialize the ARKStep module for the solution of a new problem, where a prior call to ARKStepCreate() has been
made, the user must call the function ARKStepReInit(). The new problem must have the same size as the previous
one. This routine retains the current settings for all ARKstep module options and performs the same input checking
and initializations that are done in ARKStepCreate(), but it performs no memory allocation as it assumes that the
existing internal memory is sufficient for the new problem. A call to this re-initialization routine deletes the solution
history that was stored internally during the previous integration, and deletes any previously-set tstop value specified
via a call to ARKStepSetStopTime(). Following a successful call to ARKStepReInit(), call ARKStepEvolve()
again for the solution of the new problem.

The use of ARKStepReInit() requires that the number of Runge–Kutta stages, denoted by s, be no larger for the new
problem than for the previous problem. This condition is automatically fulfilled if the method order q and the problem
type (explicit, implicit, ImEx) are left unchanged.

When using the ARKStep time-stepping module, if there are changes to the linear solver specifications, the user should
make the appropriate calls to either the linear solver objects themselves, or to the ARKLS interface routines, as described
in §5.7.1.3. Otherwise, all solver inputs set previously remain in effect.

One important use of the ARKStepReInit() function is in the treating of jump discontinuities in the RHS functions.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart
the integrator with a readjusted ODE model, using a call to ARKStepReInit(). To stop when the location of the
discontinuity is known, simply make that location a value of tout. To stop when the location of the discontinuity
is determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS functions not
incorporate the discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and
subsequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS functions (communicated
through user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted
problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent
variable vector.

int ARKStepReInit(void *arkode_mem, ARKRhsFn fe, ARKRhsFn fi, sunrealtype t0, N_Vector y0)
Provides required problem specifications and re-initializes the ARKStep time-stepper module.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• fe – the name of the C function (of type ARKRhsFn()) defining the explicit portion of the right-hand
side function in M ẏ = fE(t, y) + f I(t, y).

• fi – the name of the C function (of type ARKRhsFn()) defining the implicit portion of the right-hand
side function in M ẏ = fE(t, y) + f I(t, y).

• t0 – the initial value of t.

• y0 – the initial condition vector y(t0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument had an illegal value.

Notes:
All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ARKStepReInit() also sends an error message to the error handler function.

254 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.7.1.12 ARKStep reset function

int ARKStepReset(void *arkode_mem, sunrealtype tR, N_Vector yR)
Resets the current ARKStep time-stepper module state to the provided independent variable value and dependent
variable vector.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• tR – the value of the independent variable t.

• yR – the value of the dependent variable vector y(tR).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument had an illegal value.

Notes:
By default the next call to ARKStepEvolve() will use the step size computed by ARKStep prior to calling
ARKStepReset(). To set a different step size or have ARKStep estimate a new step size use ARKStepSe-
tInitStep().

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ARKStepReset() also sends an error message to the error handler function.

Deprecated since version 6.1.0: Use ARKodeReset() instead.

5.7.1.13 ARKStep system resize function

int ARKStepResize(void *arkode_mem, N_Vector yR, sunrealtype hscale, sunrealtype tR, ARKVecResizeFn resize,
void *resize_data)

Re-sizes ARKStep with a different state vector but with comparable dynamical time scale.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• yR – the newly-sized state vector, holding the current dependent variable values y(tR).

• hscale – the desired time step scaling factor (i.e. the next step will be of size h*hscale).

• tR – the current value of the independent variable tR (this must be consistent with yR).

• resize – the user-supplied vector resize function (of type ARKVecResizeFn().

• resize_data – the user-supplied data structure to be passed to resize when modifying internal ARKStep
vectors.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if an argument had an illegal value.

5.7. Using the ARKStep time-stepping module 255

User Documentation for ARKODE, v6.3.0

Notes:
If an error occurred, ARKStepResize() also sends an error message to the error handler function.

If inequality constraint checking is enabled a call to ARKStepResize() will disable constraint checking.
A call to ARKStepSetConstraints() is required to re-enable constraint checking.

Resizing the linear solver:
When using any of the SUNDIALS-provided linear solver modules, the linear solver memory structures
must also be resized. At present, none of these include a solver-specific “resize” function, so the linear solver
memory must be destroyed and re-allocated following each call to ARKStepResize(). Moreover, the ex-
isting ARKLS interface should then be deleted and recreated by attaching the updated SUNLinearSolver
(and possibly SUNMatrix) object(s) through calls to ARKStepSetLinearSolver(), and ARKStepSet-
MassLinearSolver().

If any user-supplied routines are provided to aid the linear solver (e.g. Jacobian construction, Jacobian-
vector product, mass-matrix-vector product, preconditioning), then the corresponding “set” routines must
be called again following the solver re-specification.

Resizing the absolute tolerance array:
If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the call to ARK-
StepResize(), so the new absolute tolerance vector should be re-set following each call to ARKStepRe-
size() through a new call to ARKStepSVtolerances() and possibly ARKStepResVtolerance() if ap-
plicable.

If scalar-valued tolerances or a tolerance function was specified through either ARKStepSStolerances()
or ARKStepWFtolerances(), then these will remain valid and no further action is necessary.

Example codes:

• examples/arkode/C_serial/ark_heat1D_adapt.c

Deprecated since version 6.1.0: Use ARKodeResize() instead.

5.7.1.14 Interfacing with MRIStep

When using ARKStep as the inner (fast) integrator with MRIStep, the utility function ARKStepCreateMRIStepIn-
nerStepper() should be used to wrap an ARKStep memory block as an MRIStepInnerStepper.

int ARKStepCreateMRIStepInnerStepper(void *inner_arkode_mem, MRIStepInnerStepper *stepper)
Wraps an ARKStep memory block as an MRIStepInnerStepper for use with MRIStep.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• stepper – the MRIStepInnerStepper object.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument had an illegal value.

Example usage:

/* fast (inner) and slow (outer) ARKODE objects */
void *inner_arkode_mem = NULL;
void *outer_arkode_mem = NULL;

(continues on next page)

256 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

(continued from previous page)

/* MRIStepInnerStepper to wrap the inner (fast) ARKStep object */
MRIStepInnerStepper stepper = NULL;

/* create an ARKStep object, setting fast (inner) right-hand side
functions and the initial condition */

inner_arkode_mem = ARKStepCreate(ffe, ffi, t0, y0, sunctx);

/* setup ARKStep */
. . .

/* create MRIStepInnerStepper wrapper for the ARKStep memory block */
flag = ARKStepCreateMRIStepInnerStepper(inner_arkode_mem, &stepper);

/* create an MRIStep object, setting the slow (outer) right-hand side
functions and the initial condition */

outer_arkode_mem = MRIStepCreate(fse, fsi, t0, y0, stepper, sunctx);

Example codes:

• examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

Deprecated since version 6.2.0: Use ARKodeCreateMRIStepInnerStepper() instead.

5.7.2 Relaxation Methods

This section describes ARKStep-specific user-callable functions for applying relaxation methods with ARKStep. All of
these routines have been deprecated in favor of shared ARKODE-level routines, but this documentation will be retained
for as long as these functions are present in the library.

5.7.2.1 Enabling or Disabling Relaxation

int ARKStepSetRelaxFn(void *arkode_mem, ARKRelaxFn rfn, ARKRelaxJacFn rjac)
Attaches the user supplied functions for evaluating the relaxation function (rfn) and its Jacobian (rjac).

Both rfn and rjac are required and an error will be returned if only one of the functions is NULL. If both rfn
and rjac are NULL, relaxation is disabled.

With DIRK and IMEX-ARK methods or when a fixed mass matrix is present, applying relaxation requires allo-
cating s additional state vectors (where s is the number of stages in the method).

Parameters

• arkode_mem – the ARKStep memory structure

• rfn – the user-defined function to compute the relaxation function ξ(y)

• rjac – the user-defined function to compute the relaxation Jacobian ξ′(y)

Return values

• ARK_SUCCESS – the function exited successfully

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_ILL_INPUT – an invalid input combination was provided (see the output error message
for more details)

5.7. Using the ARKStep time-stepping module 257

User Documentation for ARKODE, v6.3.0

• ARK_MEM_FAIL – a memory allocation failed

Warning

Applying relaxation requires using a method of at least second order with bEi ≥ 0 and bIi ≥ 0. If these
conditions are not satisfied, ARKStepEvolve() will return with an error during initialization.

Note

When combined with fixed time step sizes, ARKStep will attempt each step using the specified step size. If
the step is successful, relaxation will be applied, effectively modifying the step size for the current step. If
the step fails or applying relaxation fails, ARKStepEvolve() will return with an error.

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxFn() instead.

5.7.2.2 Optional Input Functions

This section describes optional input functions used to control applying relaxation.

int ARKStepSetRelaxEtaFail(void *arkode_mem, sunrealtype eta_rf)
Sets the step size reduction factor applied after a failed relaxation application.

The default value is 0.25. Input values ≤ 0 or ≥ 1 will result in the default value being used.

Parameters

• arkode_mem – the ARKStep memory structure

• eta_rf – the step size reduction factor

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxEtaFail() instead.

int ARKStepSetRelaxLowerBound(void *arkode_mem, sunrealtype lower)
Sets the smallest acceptable value for the relaxation parameter.

Values smaller than the lower bound will result in a failed relaxation application and the step will be repeated
with a smaller step size (determined by ARKStepSetRelaxEtaFail()).

The default value is 0.8. Input values ≤ 0 or ≥ 1 will result in the default value being used.

Parameters

• arkode_mem – the ARKStep memory structure

• lower – the relaxation parameter lower bound

Return values

258 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxLowerBound() instead.

int ARKStepSetRelaxUpperBound(void *arkode_mem, sunrealtype upper)
Sets the largest acceptable value for the relaxation parameter.

Values larger than the upper bound will result in a failed relaxation application and the step will be repeated with
a smaller step size (determined by ARKStepSetRelaxEtaFail()).

The default value is 1.2. Input values ≤ 1 will result in the default value being used.

Parameters

• arkode_mem – the ARKStep memory structure

• upper – the relaxation parameter upper bound

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxUpperBound() instead.

int ARKStepSetRelaxMaxFails(void *arkode_mem, int max_fails)
Sets the maximum number of times applying relaxation can fail within a step attempt before the integration is
halted with an error.

The default value is 10. Input values ≤ 0 will result in the default value being used.

Parameters

• arkode_mem – the ARKStep memory structure

• max_fails – the maximum number of failed relaxation applications allowed in a step

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxMaxFails() instead.

int ARKStepSetRelaxMaxIters(void *arkode_mem, int max_iters)
Sets the maximum number of nonlinear iterations allowed when solving for the relaxation parameter.

If the maximum number of iterations is reached before meeting the solve tolerance (determined by ARKStepSe-
tRelaxResTol() and ARKStepSetRelaxTol()), the step will be repeated with a smaller step size (determined
by ARKStepSetRelaxEtaFail()).

The default value is 10. Input values ≤ 0 will result in the default value being used.

5.7. Using the ARKStep time-stepping module 259

User Documentation for ARKODE, v6.3.0

Parameters

• arkode_mem – the ARKStep memory structure

• max_iters – the maximum number of solver iterations allowed

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxMaxIters() instead.

int ARKStepSetRelaxSolver(void *arkode_mem, ARKRelaxSolver solver)
Sets the nonlinear solver method used to compute the relaxation parameter.

The default value is ARK_RELAX_NEWTON

Parameters

• arkode_mem – the ARKStep memory structure

• solver – the nonlinear solver to use

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

• ARK_ILL_INPUT – an invalid solver option was provided

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxSolver() instead.

int ARKStepSetRelaxResTol(void *arkode_mem, sunrealtype res_tol)
Sets the nonlinear solver residual tolerance to use when solving (2.63).

If the residual or iteration update tolerance (see ARKStepSetRelaxMaxIters()) is not reached within the max-
imum number of iterations (determined by ARKStepSetRelaxMaxIters()), the step will be repeated with a
smaller step size (determined by ARKStepSetRelaxEtaFail()).

The default value is 4ε where ε is floating-point precision. Input values≤ 0 will result in the default value being
used.

Parameters

• arkode_mem – the ARKStep memory structure

• res_tol – the nonlinear solver residual tolerance to use

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

260 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxResTol() instead.

int ARKStepSetRelaxTol(void *arkode_mem, sunrealtype rel_tol, sunrealtype abs_tol)
Sets the nonlinear solver relative and absolute tolerance on changes in r iterates when solving (2.63).

If the residual (see ARKStepSetRelaxResTol()) or iterate update tolerance is not reached within the maximum
number of iterations (determined by ARKStepSetRelaxMaxIters()), the step will be repeated with a smaller
step size (determined by ARKStepSetRelaxEtaFail()).

The default relative and absolute tolerances are 4ε and 10−14, respectively, where ε is floating-point precision.
Input values ≤ 0 will result in the default value being used.

Parameters

• arkode_mem – the ARKStep memory structure

• rel_tol – the nonlinear solver relative solution tolerance to use

• abs_tol – the nonlinear solver absolute solution tolerance to use

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxTol() instead.

5.7.2.3 Optional Output Functions

This section describes optional output functions used to retrieve information about the performance of the relaxation
method.

int ARKStepGetNumRelaxFnEvals(void *arkode_mem, long int *r_evals)
Get the number of times the user’s relaxation function was evaluated.

Parameters

• arkode_mem – the ARKStep memory structure

• r_evals – the number of relaxation function evaluations

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeGetNumRelaxFnEvals() instead.

int ARKStepGetNumRelaxJacEvals(void *arkode_mem, long int *J_evals)
Get the number of times the user’s relaxation Jacobian was evaluated.

Parameters

• arkode_mem – the ARKStep memory structure

5.7. Using the ARKStep time-stepping module 261

User Documentation for ARKODE, v6.3.0

• J_evals – the number of relaxation Jacobian evaluations

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeGetNumRelaxJacEvals() instead.

int ARKStepGetNumRelaxFails(void *arkode_mem, long int *fails)
Get the total number of times applying relaxation failed.

The counter includes the sum of the number of nonlinear solver failures (see ARKStepGetNumRelaxSolve-
Fails()) and the number of failures due an unacceptable relaxation value (see ARKStepSetRelaxLower-
Bound() and ARKStepSetRelaxUpperBound()).

Parameters

• arkode_mem – the ARKStep memory structure

• fails – the total number of failed relaxation attempts

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeGetNumRelaxFails() instead.

int ARKStepGetNumRelaxBoundFails(void *arkode_mem, long int *fails)
Get the number of times the relaxation parameter was deemed unacceptable.

Parameters

• arkode_mem – the ARKStep memory structure

• fails – the number of failures due to an unacceptable relaxation parameter value

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeGetNumRelaxBoundFails() instead.

int ARKStepGetNumRelaxSolveFails(void *arkode_mem, long int *fails)
Get the number of times the relaxation parameter nonlinear solver failed.

Parameters

• arkode_mem – the ARKStep memory structure

• fails – the number of relaxation nonlinear solver failures

262 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeGetNumRelaxSolveFails() instead.

int ARKStepGetNumRelaxSolveIters(void *arkode_mem, long int *iters)
Get the number of relaxation parameter nonlinear solver iterations.

Parameters

• arkode_mem – the ARKStep memory structure

• iters – the number of relaxation nonlinear solver iterations

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeGetNumRelaxSolveIters() instead.

5.7.3 Multigrid Reduction in Time with XBraid

The prior sections discuss using ARKODE in a traditional sequential time integration setting i.e., the solution is ad-
vanced from one time to the next where all parallelism resides within the evaluation of a step e.g., the computation of
the right-hand side, (non)linear solves, vector operations etc. For example, when discretizing a partial differential equa-
tion using a method of lines approach the spatially-discretized equations comprise a large set of ordinary differential
equations that can be evolved with ARKODE. In this case the parallelization lies in decomposing the spatial domain
unknowns across distributed computational nodes. Considering the strong scaling case at a given spatial resolution, as
the problem is spread across greater numbers of computational nodes scalability in the spatial dimension is exhausted
and sequential time integration becomes a bottleneck. This bottleneck is largely driven by the hardware shift from
faster clock speeds to greater concurrency to achieve performance gains. In this case, at the spatial scaling limit and
with stagnant clock speeds, more time steps will lead to an increased runtime.

An alternative approach to sequential time integration is to solve for all time values simultaneously. One such approach
is multigrid reduction in time [40] (MGRIT) which uses a highly parallel iterative method to expose parallelism in the
time domain in addition to the spatial parallelization. Starting with an initial temporal grid the multilevel algorithm
constructs successively coarser time grids and uses each coarse grid solution to improve the solution at the next finer
scale. In the two level case the MGRIT algorithm is as follows:

1. Relax the solution on the fine grid (parallel-in-time)

2. Restrict the solution to the fine grid (time re-discretization).

3. Solve the residual equation on the coarse grid (serial-in-time).

4. Correct the fine grid solution (parallel-in-time).

Applying this algorithm recursively for the solve step above leads to the multilevel algorithm.

The XBraid library [1] implements the MGRIT algorithm in a non-intrusive manner, enabling the reuse of existing
software for sequential time integration. The following sections describe the ARKODE + XBraid interface and the

5.7. Using the ARKStep time-stepping module 263

User Documentation for ARKODE, v6.3.0

steps necessary to modify an existing code that already uses ARKODE’s ARKStep time-stepping module to also use
XBraid.

5.7.3.1 SUNBraid Interface

Interfacing ARKODE with XBraid requires defining two data structures. The first is the XBraid application data struc-
ture that contains the data necessary for carrying out a time step and is passed to every interface function (much like
the user data pointer in SUNDIALS packages). For this structure the SUNBraid interface defines the generic SUN-
BraidApp structure described below that serves as the basis for creating integrator-specific or user-defined interfaces
to XBraid. The second structure holds the problem state data at a certain time value. This structure is defined by the
SUNBraidVector structure and simply contains an N_Vector. In addition to the two data structures several functions
defined by the XBraid API are required. These functions include vector operations (e.g., computing vector sums or
norms) as well as functions to initialize the problem state, access the current solution, and take a time step.

The ARKBraid interface, built on the SUNBraidApp and SUNBraidVector structures, provides all the functionality
needed combine ARKODE and XBraid for parallel-in-time integration. As such, only a minimal number of changes
are necessary to update an existing code that uses ARKODE to also use XBraid.

SUNBraidApp

As mentioned above the SUNBraid interface defines the SUNBraidApp structure to hold the data necessary to compute
a time step. This structure, like other SUNDIALS generic objects, is defined as a structure consisting of an implementa-
tion specific content field and an operations structure comprised of a set of function pointers for implmentation-defined
operations on the object. Specifically the SUNBraidApp type is defined as

/* Define XBraid App structure */
struct _braid_App_struct
{
void *content;
SUNBraidOps ops;

};

/* Pointer to the interface object (same as braid_App) */
typedef struct _braid_App_struct *SUNBraidApp;

Here, the SUNBraidOps structure is defined as

/* Structure containing function pointers to operations */
struct _SUNBraidOps
{
int (*getvectmpl)(braid_App app, N_Vector *tmpl);

};

/* Pointer to operations structure */
typedef struct _SUNBraidOps *SUNBraidOps;

The generic SUNBraidApp defines and implements the generic operations acting on a SUNBraidApp object. These
generic functions are nothing but wrappers to access the specific implementation through the object’s operations struc-
ture. To illustrate this point we show below the implementation of the SUNBraidApp_GetVecTmpl() function:

/* Get a template vector from the integrator */
int SUNBraidApp_GetVecTmpl(braid_App app, N_Vector *y)
{

(continues on next page)

264 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

(continued from previous page)

if (app->ops->getvectmpl == NULL) return SUNBRAID_OPNULL;
return app->ops->getvectmpl(app, y);

}

The SUNBraidApp operations are define below in §5.7.3.1.

SUNBraidOps

In this section we define the SUNBraidApp operations and, for each operation, we give the function signature, a de-
scription of the expected behavior, and an example usage of the function.

int SUNBraidApp_GetVecTmpl(braid_App app, N_Vector *y)
This function returns a vector to use as a template for creating new vectors with N_VClone().

Parameters

• app – input, a SUNBraidApp instance (XBraid app structure).

• y – output, the template vector.

Returns
If this function is not implemented by the SUNBraidApp implementation (i.e., the function
pointer is NULL) then this function will return SUNBRAID_OPNULL. Otherwise the return value
depends on the particular SUNBraidApp implementation. Users are encouraged to utilize the
return codes defined in sundials/sundials_xbraid.h and listed in Table 5.2.

/* Get template vector */
flag = SUNBraidApp_GetVecTmpl(app, y_ptr);
if (flag != SUNBRAID_SUCCESS) return flag;

SUNBraidApp Utility Functions

In addition to the generic SUNBraidApp operations the following utility functions are provided to assist in creating and
destroying a SUNBraidApp instance.

int SUNBraidApp_NewEmpty(braid_App *app)
This function creates a new SUNBraidApp instance with the content and operations initialized to NULL.

Parameters

• app – output, an empty SUNBraidApp instance (XBraid app structure).

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ALLOCFAIL – if a memory allocation failed.

/* Create empty XBraid interface object */
flag = SUNBraidApp_NewEmpty(app_ptr);
if (flag != SUNBRAID_SUCCESS) return flag;

int SUNBraidApp_FreeEmpty(braid_App *app)
This function destroys an empty SUNBraidApp instance.

Parameters

5.7. Using the ARKStep time-stepping module 265

User Documentation for ARKODE, v6.3.0

• app – input, an empty SUNBraidApp instance (XBraid app structure).

Return values
SUNBRAID_SUCCESS – if successful.

/* Free empty XBraid interface object */
flag = SUNBraidApp_FreeEmpty(app_ptr);

Warning

This function does not free the SUNBraidApp object’s content structure. An implementation should free its
content before calling SUNBraidApp_FreeEmpty() to deallocate the base SUNBraidApp structure.

SUNBraidVector

As mentioned above the SUNBraid interface defines the SUNBraidVector structure to store a snapshot of solution data
at a single point in time and this structure simply contains an N_Vector. Specifically, the structure is defined as follows:

typedef struct _braid_Vector_struct *SUNBraidVector;
Pointer to vector wrapper (same as braid_Vector)

struct _braid_Vector_struct

N_Vector y
SUNDIALS N_Vector wrapped by the braid_Vector

To assist in creating creating and destroying this structure the following utility functions are provided.

int SUNBraidVector_New(N_Vector y, SUNBraidVector *u)
This function creates a new SUNBraidVector wrapping the N_Vector y.

Parameters

• y – input, the N_Vector to wrap.

• u – output, the SUNBraidVector wrapping y.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if y is NULL.

• SUNBRAID_ALLOCFAIL – if a memory allocation fails.

/* Create new vector wrapper */
flag = SUNBraidVector_New(y, u_ptr);
if (flag != SUNBRAID_SUCCESS) return flag;

Warning

The SUNBraidVector takes ownership of the wrapped N_Vector and as such the wrapped N_Vector is de-
stroyed when the SUNBraidVector is freed with SUNBraidVector_Free().

266 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int SUNBraidVector_GetNVector(SUNBraidVector u, N_Vector *y)
This function retrieves the wrapped N_Vector from the SUNBraidVector.

Parameters

• u – input, the SUNBraidVector wrapping y.

• y – output, the wrapped N_Vector.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if u is NULL.

• SUNBRAID_MEMFAIL – if y is NULL.

/* Create new vector wrapper */
flag = SUNBraidVector_GetNVector(u, y_ptr);
if (flag != SUNBRAID_SUCCESS) return flag;

Finally, the SUNBraid interface defines the following vector operations acting on SUNBraidVectors, that consist of
thin wrappers to compatible SUNDIALS N_Vector operations.

int SUNBraidVector_Clone(braid_App app, braid_Vector u, braid_Vector *v_ptr)
This function creates a clone of the input SUNBraidVector and copies the values of the input vector u into the
output vector v_ptr using N_VClone() and N_VScale().

Parameters

• app – input, a SUNBraidApp instance (XBraid app structure).

• u – input, the SUNBraidVector to clone.

• v_ptr – output, the new SUNBraidVector.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if u is NULL.

• SUNBRAID_MEMFAIL – if the N_Vector y wrapped by u is NULL.

• SUNBRAID_ALLOCFAIL – if a memory allocation fails.

int SUNBraidVector_Free(braid_App app, braid_Vector u)
This function destroys the SUNBraidVector and the wrapped N_Vector using N_VDestroy().

Parameters

• app – input, a SUNBraidApp instance (XBraid app structure).

• u – input, the SUNBraidVector to destroy.

Return values
SUNBRAID_SUCCESS – if successful.

int SUNBraidVector_Sum(braid_App app, braid_Real alpha, braid_Vector x, braid_Real beta, braid_Vector y)
This function computes the vector sum αx+ βy → y using N_VLinearSum().

Parameters

• app – input, a SUNBraidApp instance (XBraid app structure).

• alpha – input, the constant α.

5.7. Using the ARKStep time-stepping module 267

User Documentation for ARKODE, v6.3.0

• x – input, the vector x.

• beta – input, the constant β.

• y – input/output, the vector y.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if x or y is NULL.

• SUNBRAID_MEMFAIL – if either of the wrapped N_Vectors are NULL.

int SUNBraidVector_SpatialNorm(braid_App app, braid_Vector u, braid_Real *norm_ptr)
This function computes the 2-norm of the vector u using N_VDotProd().

Parameters

• app – input, a SUNBraidApp instance (XBraid app structure).

• u – input, the vector u.

• norm_ptr – output, the L2 norm of u.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if u is NULL.

• SUNBRAID_MEMFAIL – if the wrapped N_Vector is NULL.

int SUNBraidVector_BufSize(braid_App app, braid_Int *size_ptr, braid_BufferStatus bstatus)
This function returns the buffer size for messages to exchange vector data using SUNBraidApp_GetVecTmpl()
and N_VBufSize().

Parameters

• app – input, a SUNBraidApp instance (XBraid app structure).

• size_ptr – output, the buffer size.

• bstatus – input, a status object to query for information on the message type.

Return values

• SUNBRAID_SUCCESS – if successful

• otherwise – an error flag from SUNBraidApp_GetVecTmpl() or N_VBufSize().

int SUNBraidVector_BufPack(braid_App app, braid_Vector u, void *buffer, braid_BufferStatus bstatus)
This function packs the message buffer for exchanging vector data using N_VBufPack().

Parameters

• app – input, a SUNBraidApp instance (XBraid app structure).

• u – input, the vector to pack into the exchange buffer.

• buffer – output, the packed exchange buffer to pack.

• bstatus – input, a status object to query for information on the message type.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if u is NULL.

268 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• otherwise – An error flag from N_VBufPack().

int SUNBraidVector_BufUnpack(braid_App app, void *buffer, braid_Vector *u_ptr, braid_BufferStatus bstatus)
This function unpacks the message buffer and creates a new N_Vector and SUNBraidVector with the buffer data
using N_VBufUnpack(), SUNBraidApp_GetVecTmpl(), and N_VClone().

Parameters

• app – input, a SUNBraidApp instance (XBraid app structure).

• buffer – input, the exchange buffer to unpack.

• u_ptr – output, a new SUNBraidVector containing the buffer data.

• bstatus – input, a status object to query for information on the message type.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if buffer is NULL.

• SUNBRAID_ALLOCFAIL – if a memory allocation fails.

• otherwise – an error flag from SUNBraidApp_GetVecTmpl() and N_VBufUnpack().

SUNBraid Return Codes

The SUNBraid interface return values are given in Table 5.2.

Table 5.2: SUNBraid Return Codes

Return value name Value Meaning
SUNBRAID_SUCCESS 0 The call/operation was successful.
SUNBRAID_ALLOCFAIL −1 A memory allocation failed.
SUNBRAID_MEMFAIL −2 A memory access fail.
SUNBRAID_OPNULL −3 The SUNBraid operation is NULL.
SUNBRAID_ILLINPUT −4 An invalid input was provided.
SUNBRAID_BRAIDFAIL −5 An XBraid function failed.
SUNBRAID_SUNFAIL −6 A SUNDIALS function failed.

5.7.3.2 ARKBraid Interface

This section describes the ARKBraid implementation of a SUNBraidApp for using the ARKODE’s ARKStep time-
stepping module with XBraid. The following section §5.7.3.2 describes routines for creating, initializing, and destroy-
ing the ARKODE + XBraid interface, routines for setting optional inputs, and routines for retrieving data from an
ARKBraid instance. As noted above, interfacing with XBraid requires providing functions to initialize the problem
state, access the current solution, and take a time step. The default ARKBraid functions for each of these actions are
defined in §5.7.3.2 and may be overridden by user-defined if desired. A skeleton of the user’s main or calling pro-
gram for using the ARKBraid interface is given in §5.7.3.3. Finally, for advanced users that wish to create their own
SUNBraidApp implementation using ARKODE, §5.7.3.4 describes some helpful functions available to the user.

5.7. Using the ARKStep time-stepping module 269

User Documentation for ARKODE, v6.3.0

ARKBraid Initialization and Deallocation Functions

This section describes the functions that are called by the user to create, initialize, and destroy an ARKBraid instance.
Each user-callable function returns SUNBRAID_SUCCESS (i.e., 0) on a successful call and a negative value if an error
occurred. The possible return codes are given in Table 5.2.

int ARKBraid_Create(void *arkode_mem, braid_App *app)
This function creates a SUNBraidApp object, sets the content pointer to the private ARKBraid interface structure,
and attaches the necessary SUNBraidOps implementations.

Parameters

• arkode_mem – input, a pointer to an ARKODE memory structure.

• app – output, an ARKBraid instance (XBraid app structure).

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – arkode_mem is NULL.

• SUNBRAID_ALLOCFAIL – if a memory allocation failed.

Warning

The ARKBraid interface is ARKStep-specific. Although one could eventually construct an XBraid interface
to other of ARKODE time-stepping modules (e.g., ERKStep or MRIStep), those are not currently supported
by this implementation.

int ARKBraid_BraidInit(MPI_Comm comm_w, MPI_Comm comm_t, sunrealtype tstart, sunrealtype tstop,
sunindextype ntime, braid_App app, braid_Core *core)

This function wraps the XBraid braid_Init() function to create the XBraid core memory structure and ini-
tializes XBraid with the ARKBraid and SUNBraidVector interface functions.

Parameters

• comm_w – input, the global MPI communicator for space and time.

• comm_t – input, the MPI communicator for the time dimension.

• tstart – input, the initial time value.

• tstop – input, the final time value.

• ntime – input, the initial number of grid points in time.

• app – input, an ARKBraid instance.

• core – output, the XBraid core memory structure.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if either MPI communicator is MPI_COMM_NULL, if ntime < 2, or if
app or its content is NULL.

• SUNBRAID_BRAIDFAIL – if the braid_Init() call fails. The XBraid return value can be
retrieved with ARKBraid_GetLastBraidFlag().

270 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Note

If desired, the default functions for vector initialization, accessing the solution, taking a time step, and com-
puting the spatial norm should be overridden before calling this function. See §5.7.3.2 for more details.

Warning

The user is responsible for deallocating the XBraid core memory structure with the XBraid function braid_-
Destroy().

int ARKBraid_Free(braid_App *app)
This function deallocates an ARKBraid instance.

Parameters

• app – input, a pointer to an ARKBraid instance.

Return values
SUNBRAID_SUCCESS – if successful.

ARKBraid Set Functions

This section describes the functions that are called by the user to set optional inputs to control the behavior of an
ARKBraid instance or to provide alternative XBraid interface functions. Each user-callable function returns SUN-
BRAID_SUCCESS (i.e., 0) on a successful call and a negative value if an error occurred. The possible return codes are
given in Table 5.2.

int ARKBraid_SetStepFn(braid_App app, braid_PtFcnStep step)
This function sets the step function provided to XBraid (default ARKBraid_Step()).

Parameters

• app – input, an ARKBraid instance.

• step – input, an XBraid step function. If step is NULL, the default function will be used.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if app is NULL.

• SUNBRAID_MEMFAIL – if the app content is NULL.

Note

This function must be called prior to ARKBraid_BraidInit().

int ARKBraid_SetInitFn(braid_App app, braid_PtFcnInit init)
This function sets the vector initialization function provided to XBraid (default ARKBraid_Init()).

Parameters

• app – input, an ARKBraid instance.

5.7. Using the ARKStep time-stepping module 271

User Documentation for ARKODE, v6.3.0

• init – input, an XBraid vector initialization function. If init is NULL, the default function
will be used.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if app is NULL.

• SUNBRAID_MEMFAIL – if the app content is NULL.

Note

This function must be called prior to ARKBraid_BraidInit().

int ARKBraid_SetSpatialNormFn(braid_App app, braid_PtFcnSpatialNorm snorm)
This function sets the spatial norm function provided to XBraid (default SUNBraidVector_SpatialNorm()).

Parameters

• app – input, an ARKBraid instance.

• snorm – input, an XBraid spatial norm function. If snorm is NULL, the default function will
be used.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if app is NULL.

• SUNBRAID_MEMFAIL – if the app content is NULL.

Note

This function must be called prior to ARKBraid_BraidInit().

int ARKBraid_SetAccessFn(braid_App app, braid_PtFcnAccess access)
This function sets the user access function provided to XBraid (default ARKBraid_Access()).

Parameters

• app – input, an ARKBraid instance.

• init – input, an XBraid user access function. If access is NULL, the default function will be
used.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if app is NULL.

• SUNBRAID_MEMFAIL – if the app content is NULL.

Note

This function must be called prior to ARKBraid_BraidInit().

272 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

ARKBraid Get Functions

This section describes the functions that are called by the user to retrieve data from an ARKBraid instance. Each user-
callable function returns SUNBRAID_SUCCESS (i.e., 0) on a successful call and a negative value if an error occurred.
The possible return codes are given in Table 5.2.

int ARKBraid_GetVecTmpl(braid_App app, N_Vector *tmpl)
This function returns a vector from the ARKODE memory to use as a template for creating new vectors with
N_VClone() i.e., this is the ARKBraid implementation of SUNBraidApp_GetVecTmpl().

Parameters

• app – input, an ARKBraid instance.

• tmpl – output, a template vector.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if app is NULL.

• SUNBRAID_MEMFAIL – if the app content or ARKODE memory is NULL.

int ARKBraid_GetARKodeMem(braid_App app, void **arkode_mem)
This function returns the ARKODE memory structure pointer attached with ARKBraid_Create().

Parameters

• app – input, an ARKBraid instance.

• arkode_mem – output, a pointer to the ARKODE memory structure.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if app is NULL.

• SUNBRAID_MEMFAIL – if the app content or ARKODE memory is NULL.

int ARKBraid_GetARKStepMem(braid_App app, void **arkode_mem)
This function returns the ARKStep memory structure pointer attached with ARKBraid_Create().

Parameters

• app – input, an ARKBraid instance.

• arkode_mem – output, a pointer to the ARKStep memory structure.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if app is NULL.

• SUNBRAID_MEMFAIL – if the app content or ARKStep memory is NULL.

Deprecated since version 6.1.0: Use ARKBraid_GetARKodeMem() instead.

int ARKBraid_GetUserData(braid_App app, void **user_data)
This function returns the user data pointer attached with ARKodeSetUserData().

Parameters

• app – input, an ARKBraid instance.

5.7. Using the ARKStep time-stepping module 273

User Documentation for ARKODE, v6.3.0

• user_data – output, a pointer to the user data structure.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if app is NULL.

• SUNBRAID_MEMFAIL – if the app content or ARKODE memory is NULL.

int ARKBraid_GetLastBraidFlag(braid_App app, int *last_flag)
This function returns the return value from the most recent XBraid function call.

Parameters

• app – input, an ARKBraid instance.

• last_flag – output, the XBraid return value.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if app is NULL.

• SUNBRAID_MEMFAIL – if the app content is NULL.

int ARKBraid_GetLastARKodeFlag(braid_App app, int *last_flag)
This function returns the return value from the most recent ARKODE function call.

Parameters

• app – input, an ARKBraid instance.

• last_flag – output, the ARKODE return value.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if app is NULL.

• SUNBRAID_MEMFAIL – if the app content is NULL.

int ARKBraid_GetLastARKStepFlag(braid_App app, int *last_flag)
This function returns the return value from the most recent ARKStep function call.

Parameters

• app – input, an ARKBraid instance.

• last_flag – output, the ARKStep return value.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if app is NULL.

• SUNBRAID_MEMFAIL – if the app content is NULL.

Deprecated since version 6.1.0: Use ARKBraid_GetLastARKodeFlag() instead.

int ARKBraid_GetSolution(braid_App app, sunrealtype *tout, N_Vector yout)
This function returns final time and state stored with the default access function ARKBraid_Access().

Parameters

• app – input, an ARKBraid instance.

274 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• last_flag – output, the ARKODE return value.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if app is NULL.

• SUNBRAID_MEMFAIL – if the app content or the stored vector is NULL.

Warning

If providing a non-default access function the final time and state are not stored within the ARKBraid structure
and this function will return an error. In this case the user should allocate space to store any desired output
within the user data pointer attached to ARKODE with ARKodeSetUserData(). This user data pointer can
be retrieved from the ARKBraid structure with ARKBraid_GetUserData().

ARKBraid Interface Functions

This section describes the default XBraid interface functions provided by ARKBraid and called by XBraid to perform
certain actions. Any or all of these functions may be overridden by supplying a user-defined function through the set
functions defined in §5.7.3.2. Each default interface function returns SUNBRAID_SUCCESS (i.e., 0) on a successful call
and a negative value if an error occurred. The possible return codes are given in Table 5.2.

int ARKBraid_Step(braid_App app, braid_Vector ustop, braid_Vector fstop, braid_Vector u, braid_StepStatus
status)

This is the default step function provided to XBraid. The step function is called by XBraid to advance the vector u
from one time to the next using the ARStep memory structure provided to ARKBraid_Create(). A user-defined
step function may be set with ARKBraid_SetStepFn().

Parameters

• app – input, an ARKBraid instance.

• ustop – input, u vector at the new time tstop.

• fstop – input, the right-hand side vector at the new time tstop.

• u – input/output, on input the vector at the start time and on return the vector at the new time.

• status – input, a status object to query for information about u and to steer XBraid e.g., for
temporal refinement.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if app is NULL.

• SUNBRAID_MEMFAIL – if the app content or ARKODE memory is NULL.

• SUNBRAID_BRAIDFAIL – if an XBraid function fails. The return value can be retrieved with
ARKBraid_GetLastBraidFlag().

• SUNBRAID_SUNFAIL – if a SUNDIALS function fails. The return value can be retrieved with
ARKBraid_GetLastARKStepFlag().

5.7. Using the ARKStep time-stepping module 275

User Documentation for ARKODE, v6.3.0

Note

If providing a non-default implementation of the step function the utility function ARKBraid_TakeStep()
should be used to advance the input vector u to the new time.

int ARKBraid_Init(braid_App app, sunrealtype t, braid_Vector *u_ptr)
This is the default vector initialization function provided to XBraid. The initialization function is called by
XBraid to create a new vector and set the initial guess for the solution at time t. When using this default function
the initial guess at all time values is the initial condition provided to ARKStepCreate(). A user-defined init
function may be set with ARKBraid_SetInitFn().

Parameters

• app – input, an ARKBraid instance.

• t – input, the initialization time for the output vector.

• u_ptr – output, the new and initialized SUNBraidVector.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if app is NULL.

• SUNBRAID_MEMFAIL – if the app content or ARKODE memory is NULL.

• SUNBRAID_ALLOCFAIL – if a memory allocation failed.

Note

If providing a non-default implementation of the vector initialization function the utility functions SUN-
BraidApp_GetVecTmpl() and SUNBraidVector_New() can be helpful when creating the new vector re-
turned by this function.

int ARKBraid_Access(braid_App app, braid_Vector u, braid_AccessStatus astatus)
This is the default access function provided to XBraid. The access function is called by XBraid to retrieve the
current solution. When using this default function the final solution time and state are stored within the ARKBraid
structure. This information can be retrieved with ARKBraid_GetSolution(). A user-defined access function
may be set with ARKBraid_SetAccessFn().

Parameters

• app – input, an ARKBraid instance.

• u – input, the vector to be accessed.

• status – input, a status object to query for information about u.

Return values

• SUNBRAID_SUCCESS – if successful.

• SUNBRAID_ILLINPUT – if any of the inputs are NULL.

• SUNBRAID_MEMFAIL – if the app content, the wrapped N_Vector, or the ARKODE memory
is NULL.

• SUNBRAID_ALLOCFAIL – if allocating storage for the final solution fails.

276 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• SUNBRAID_BRAIDFAIL – if an XBraid function fails. The return value can be retrieved with
ARKBraid_GetLastBraidFlag().

5.7.3.3 A skeleton of the user’s main program with XBraid

In addition to the header files required for the integration of the ODE problem (see the section §5.1), to use the ARK-
Braid interface, the user’s program must include the header file arkode/arkode_xbraid.hwhich declares the needed
function prototypes.

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
ARKODE’s ARKStep time-stepping module with XBraid for parallel-in-time integration. Most steps are unchanged
from the skeleton program presented in §5.2. New or updated steps are bold.

1. Initialize MPI

If parallelizing in space and time split the global communicator into communicators for space and time with
braid_SplitCommworld().

2. Set problem dimensions

3. Set vector of initial values

4. Create ARKStep object

5. Specify integration tolerances

6. Create matrix object

7. Create linear solver object

8. Set linear solver optional inputs

9. Attach linear solver module

10. Create nonlinear solver object

11. Attach nonlinear solver module

12. Set nonlinear solver optional inputs

13. Set optional inputs

14. Create ARKBraid interface

Call the constructor ARKBraid_Create() to create the XBraid app structure.

15. Set optional ARKBraid inputs

See §5.7.3.2 for ARKBraid inputs.

16. Initialize the ARKBraid interface

Call the initialization function ARKBraid_BraidInit() to create the XBraid core memory structure and attach
the ARKBraid interface app and functions.

17. Set optional XBraid inputs

See the XBraid documentation for available XBraid options.

18. Evolve the problem

Call braid_Drive() to evolve the problem with MGRIT.

19. Get optional outputs

See §5.7.3.2 for ARKBraid outputs.

5.7. Using the ARKStep time-stepping module 277

User Documentation for ARKODE, v6.3.0

20. Deallocate memory for solution vector

21. Free solver memory

22. Free linear solver memory

23. Free ARKBraid and XBraid memory

Call ARKBraid_Free() and braid_Destroy to deallocate the ARKBraid interface and and XBraid core mem-
ory structures, respectively.

24. Finalize MPI

5.7.3.4 Advanced ARKBraid Utility Functions

This section describes utility functions utilized in the ARKODE + XBraid interfacing. These functions are used inter-
nally by the above ARKBraid interface functions but are exposed to the user to assist in advanced usage of ARKODE
and XBraid that requires defining a custom SUNBraidApp implementation.

int ARKBraid_TakeStep(void *arkode_mem, sunrealtype tstart, sunrealtype tstop, N_Vector y, int *ark_flag)
This function advances the vector y from tstart to tstop using a single ARKODE time step with step size h =
tstop - start.

Parameters

• arkode_mem – input, the ARKODE memory structure pointer.

• tstart – input, the step start time.

• tstop – input, the step stop time.

• y – input/output, on input the solution a tstop and on return, the solution at time tstop if the
step was successful (ark_flag ≥ 0) or the solution at time tstart if the step failed (ark_flag <
0).

• ark_flag – output, the step status flag. If ark_flag is:

= 0 then the step succeeded and, if applicable, met the requested temporal accuracy.

> 0 then the step succeeded but failed to meet the requested temporal accuracy.

< 0 then the step failed e.g., a solver failure occurred.

Returns
If all ARKODE function calls are successful the return value is ARK_SUCCESS, otherwise the
return value is the error flag returned from the function that failed.

5.8 Using the ERKStep time-stepping module

This section is concerned with the use of the ERKStep time-stepping module for the solution of initial value problems
(IVPs) in a C or C++ language setting. Usage of ERKStep follows that of the rest of ARKODE, and so in this section
we primarily focus on those usage aspects that are specific to ERKStep.

278 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.8.1 ERKStep User-callable functions

This section describes the ERKStep-specific functions that may be called by the user to setup and then solve an IVP
using the ERKStep time-stepping module. The large majority of these routines merely wrap underlying ARKODE
functions, and are now deprecated – each of these are clearly marked. However, some of these user-callable functions
are specific to ERKStep, as explained below.

As discussed in the main ARKODE user-callable function introduction, each of ARKODE’s time-stepping modules
clarifies the categories of user-callable functions that it supports. ERKStep supports the following categories:

• temporal adaptivity

• relaxation Runge–Kutta methods

ERKStep also has forcing function support when converted to a SUNStepper or MRIStepInnerStepper. See
ARKodeCreateSUNStepper() and ARKStepCreateMRIStepInnerStepper() for additional details.

5.8.1.1 ERKStep initialization and deallocation functions

void *ERKStepCreate(ARKRhsFn f, sunrealtype t0, N_Vector y0, SUNContext sunctx)
This function allocates and initializes memory for a problem to be solved using the ERKStep time-stepping
module in ARKODE.

Arguments:

• f – the name of the C function (of type ARKRhsFn()) defining the right-hand side function in ẏ =
f(t, y).

• t0 – the initial value of t.

• y0 – the initial condition vector y(t0).

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a pointer to initialized problem memory of type void*, to be passed to all user-facing ERK-
Step routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message will be
printed to stderr.

void ERKStepFree(void **arkode_mem)
This function frees the problem memory arkode_mem created by ERKStepCreate().

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

Return value: None

Deprecated since version 6.1.0: Use ARKodeFree() instead.

5.8. Using the ERKStep time-stepping module 279

User Documentation for ARKODE, v6.3.0

5.8.1.2 ERKStep tolerance specification functions

int ERKStepSStolerances(void *arkode_mem, sunrealtype reltol, sunrealtype abstol)
This function specifies scalar relative and absolute tolerances.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• reltol – scalar relative tolerance.

• abstol – scalar absolute tolerance.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument had an illegal value (e.g. a negative tolerance).

Deprecated since version 6.1.0: Use ARKodeSStolerances() instead.

int ERKStepSVtolerances(void *arkode_mem, sunrealtype reltol, N_Vector abstol)
This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• reltol – scalar relative tolerance.

• abstol – vector containing the absolute tolerances for each solution component.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument had an illegal value (e.g. a negative tolerance).

Deprecated since version 6.1.0: Use ARKodeSVtolerances() instead.

int ERKStepWFtolerances(void *arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• efun – the name of the function (of type ARKEwtFn()) that implements the error weight vector com-
putation.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module

Deprecated since version 6.1.0: Use ARKodeWFtolerances() instead.

280 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.8.1.3 Rootfinding initialization function

int ERKStepRootInit(void *arkode_mem, int nrtfn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ERKStepCreate(), and before ERKStepEvolve().

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• nrtfn – number of functions gi, an integer ≥ 0.

• g – name of user-supplied function, of type ARKRootFn(), defining the functions gi whose roots are
sought.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_MEM_FAIL if there was a memory allocation failure

• ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes:
To disable the rootfinding feature after it has already been initialized, or to free memory associated with
ERKStep’s rootfinding module, call ERKStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to ERKStepReInit(), where the new IVP has no rootfind-
ing problem but the prior one did, then call ERKStepRootInit with nrtfn = 0.

Deprecated since version 6.1.0: Use ARKodeRootInit() instead.

5.8.1.4 ERKStep solver function

int ERKStepEvolve(void *arkode_mem, sunrealtype tout, N_Vector yout, sunrealtype *tret, int itask)
Integrates the ODE over an interval in t.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• tout – the next time at which a computed solution is desired.

• yout – the computed solution vector.

• tret – the time corresponding to yout (output).

• itask – a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, tout, in the direction of integration, i.e. tn−1 < tout≤ tn for forward integration,
or tn ≤ tout < tn−1 for backward integration. It will then compute an approximation to the solution
y(tout) by interpolation (using one of the dense output routines described in §2.2).

The ARK_ONE_STEP option tells the solver to only take a single internal step, yn−1 → yn, and return
the solution at that point, yn, in the vector yout.

Return value:

• ARK_SUCCESS if successful.

5.8. Using the ERKStep time-stepping module 281

User Documentation for ARKODE, v6.3.0

• ARK_ROOT_RETURN if ERKStepEvolve() succeeded, and found one or more roots. If the number
of root functions, nrtfn, is greater than 1, call ERKStepGetRootInfo() to see which gi were found to
have a root at (*tret).

• ARK_TSTOP_RETURN if ERKStepEvolve() succeeded and returned at tstop.

• ARK_MEM_NULL if the arkode_mem argument was NULL.

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if one of the inputs to ERKStepEvolve() is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

(a) A component of the error weight vector became zero during internal time-stepping.

(b) A root of one of the root functions was found both at a point t and also very near t.

(c) The initial condition violates the inequality constraints.

• ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

• ARK_TOO_MUCH_ACC if the solver could not satisfy the accuracy demanded by the user for some
internal step.

• ARK_ERR_FAILURE if error test failures occurred either too many times (ark_maxnef) during one
internal time step or occurred with |h| = hmin.

• ARK_VECTOROP_ERR a vector operation error occurred.

Notes:
The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ERKStepCreate().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale
of the independent variable.

All failure return values are negative and so testing the return argument for negative values will trap all
ERKStepEvolve() failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to ERKStepSetStopTime() before the call to ERKStepEvolve() to specify a fixed
stop time to end the time step and return to the user. Upon return from ERKStepEvolve(), a copy of the
internal solution yn will be returned in the vector yout. Once the integrator returns at a tstop time, any future
testing for tstop is disabled (and can be re-enabled only though a new call to ERKStepSetStopTime()).

On any error return in which one or more internal steps were taken by ERKStepEvolve(), the returned
values of tret and yout correspond to the farthest point reached in the integration. On all other error returns,
tret and yout are left unchanged from those provided to the routine.

Deprecated since version 6.1.0: Use ARKodeEvolve() instead.

282 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.8.1.5 Optional input functions

Optional inputs for ERKStep

int ERKStepSetDefaults(void *arkode_mem)
Resets all optional input parameters to ERKStep’s original default values.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Does not change problem-defining function pointer f or the user_data pointer.

Also leaves alone any data structures or options related to root-finding (those can be reset using ERKStep-
RootInit()).

Deprecated since version 6.1.0: Use ARKodeSetDefaults() instead.

int ERKStepSetInterpolantType(void *arkode_mem, int itype)
Deprecated since version 6.1.0: This function is now a wrapper to ARKodeSetInterpolantType(), see the
documentation for that function instead.

int ERKStepSetInterpolantDegree(void *arkode_mem, int degree)
Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• degree – requested polynomial degree.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory or interpolation module are NULL

• ARK_INTERP_FAIL if this is called after ERKStepEvolve()

• ARK_ILL_INPUT if an argument had an illegal value or the interpolation module has already been
initialized

Notes:
Allowed values are between 0 and 5.

This routine should be called after ERKStepCreate() and before ERKStepEvolve(). After the first call to
ERKStepEvolve() the interpolation degree may not be changed without first calling ERKStepReInit().

If a user calls both this routine and ERKStepSetInterpolantType(), then ERKStepSetInterpolant-
Type() must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on
which it is based, the actual polynomial degree that is used by ERKStep will be the minimum of q− 1 and
the input degree, for q > 1 where q is the order of accuracy for the time integration method.

5.8. Using the ERKStep time-stepping module 283

User Documentation for ARKODE, v6.3.0

Changed in version 5.5.1: When q = 1, a linear interpolant is the default to ensure values obtained by the
integrator are returned at the ends of the time interval.

Deprecated since version 6.1.0: Use ARKodeSetInterpolantDegree() instead.

int ERKStepSetDenseOrder(void *arkode_mem, int dord)
Deprecated since version 5.2.0: Use ARKodeSetInterpolantDegree() instead.

int ERKStepSetDiagnostics(void *arkode_mem, FILE *diagfp)
Specifies the file pointer for a diagnostics file where all ERKStep step adaptivity and solver information is written.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• diagfp – pointer to the diagnostics output file.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to a
unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer,
all diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from
all processes would be identical.

Deprecated since version 5.2.0: Use SUNLogger_SetInfoFilename() instead.

int ERKStepSetFixedStep(void *arkode_mem, sunrealtype hfixed)
Disabled time step adaptivity within ERKStep, and specifies the fixed time step size to use for the following
internal step(s).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hfixed – value of the fixed step size to use.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass 0.0 to return ERKStep to the default (adaptive-step) mode.

Use of this function is not generally recommended, since we it gives no assurance of the validity of the
computed solutions. It is primarily provided for code-to-code verification testing purposes.

When using ERKStepSetFixedStep(), any values provided to the functions ERKStepSetInit-
Step(), ERKStepSetAdaptivityFn(), ERKStepSetMaxErrTestFails(), ERKStepSetAdaptiv-
ityMethod(), ERKStepSetCFLFraction(), ERKStepSetErrorBias(), ERKStepSetFixedStep-
Bounds(), ERKStepSetMaxEFailGrowth(), ERKStepSetMaxFirstGrowth(), ERKStepSetMax-
Growth(), ERKStepSetMinReduction(), ERKStepSetSafetyFactor(), ERKStepSetSmallNumE-

284 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Fails(), ERKStepSetStabilityFn(), and ERKStepSetAdaptController() will be ignored, since
temporal adaptivity is disabled.

If both ERKStepSetFixedStep() and ERKStepSetStopTime() are used, then the fixed step size will be
used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ERKStepSetFixedStep()must be made prior to calling
ERKStepEvolve() to resume integration.

It is not recommended that ERKStepSetFixedStep() be used in concert with ERKStepSetMaxStep()
or ERKStepSetMinStep(), since at best those latter two routines will provide no useful information to the
solver, and at worst they may interfere with the desired fixed step size.

Deprecated since version 6.1.0: Use ARKodeSetFixedStep() instead.

int ERKStepSetInitStep(void *arkode_mem, sunrealtype hin)
Specifies the initial time step size ERKStep should use after initialization, re-initialization, or resetting.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hin – value of the initial step to be attempted (6= 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass 0.0 to use the default value.

By default, ERKStep estimates the initial step size to be h =

√
2

‖ÿ‖
, where ÿ is an estimate of the second

derivative of the solution at t0.

This routine will also reset the step size and error history.

Deprecated since version 6.1.0: Use ARKodeSetInitStep() instead.

int ERKStepSetMaxHnilWarns(void *arkode_mem, int mxhnil)
Specifies the maximum number of messages issued by the solver to warn that t+h = t on the next internal step,
before ERKStep will instead return with an error.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• mxhnil – maximum allowed number of warning messages (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

Deprecated since version 6.1.0: Use ARKodeSetMaxHnilWarns() instead.

5.8. Using the ERKStep time-stepping module 285

User Documentation for ARKODE, v6.3.0

int ERKStepSetMaxNumSteps(void *arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ERKStep will return with an error.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• mxsteps – maximum allowed number of internal steps.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Passing mxsteps = 0 results in ERKStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

Deprecated since version 6.1.0: Use ARKodeSetMaxNumSteps() instead.

int ERKStepSetMaxStep(void *arkode_mem, sunrealtype hmax)
Specifies the upper bound on the magnitude of the time step size.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hmax – maximum absolute value of the time step size (≥ 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass hmax ≤ 0.0 to set the default value of∞.

Deprecated since version 6.1.0: Use ARKodeSetMaxStep() instead.

int ERKStepSetMinStep(void *arkode_mem, sunrealtype hmin)
Specifies the lower bound on the magnitude of the time step size.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hmin – minimum absolute value of the time step size (≥ 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass hmin ≤ 0.0 to set the default value of 0.

Deprecated since version 6.1.0: Use ARKodeSetMinStep() instead.

286 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ERKStepSetStopTime(void *arkode_mem, sunrealtype tstop)
Specifies the value of the independent variable t past which the solution is not to proceed.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• tstop – stopping time for the integrator.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be re-enabled
only though a new call to ERKStepSetStopTime()).

A stop time not reached before a call to ERKStepReInit() or ERKStepReset() will remain active but
can be disabled by calling ERKStepClearStopTime().

Deprecated since version 6.1.0: Use ARKodeSetStopTime() instead.

int ERKStepSetInterpolateStopTime(void *arkode_mem, sunbooleantype interp)
Specifies that the output solution should be interpolated when the current t equals the specified tstop (instead
of merely copying the internal solution yn).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• interp – flag indicating to use interpolation (1) or copy (0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetInterpolateStopTime() instead.

int ERKStepClearStopTime(void *arkode_mem)
Disables the stop time set with ERKStepSetStopTime().

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

Notes:
The stop time can be re-enabled though a new call to ERKStepSetStopTime().

Added in version 5.5.1.

Deprecated since version 6.1.0: Use ARKodeClearStopTime() instead.

5.8. Using the ERKStep time-stepping module 287

User Documentation for ARKODE, v6.3.0

int ERKStepSetUserData(void *arkode_mem, void *user_data)
Specifies the user data block user_data and attaches it to the main ERKStep memory block.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• user_data – pointer to the user data.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;
otherwise NULL is passed.

Deprecated since version 6.1.0: Use ARKodeSetUserData() instead.

int ERKStepSetMaxErrTestFails(void *arkode_mem, int maxnef)
Specifies the maximum number of error test failures permitted in attempting one step, before returning with an
error.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• maxnef – maximum allowed number of error test failures (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default value is 7; set maxnef ≤ 0 to specify this default.

Deprecated since version 6.1.0: Use ARKodeSetMaxErrTestFails() instead.

int ERKStepSetConstraints(void *arkode_mem, N_Vector constraints)
Specifies a vector defining inequality constraints for each component of the solution vector y.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• constraints – vector of constraint flags. Each component specifies the type of solution constraint:

constraints[i] =


0.0 ⇒ no constraint is imposed on yi,
1.0 ⇒ yi ≥ 0,
−1.0 ⇒ yi ≤ 0,

2.0 ⇒ yi > 0,
−2.0 ⇒ yi < 0.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

288 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_ILL_INPUT if the constraints vector contains illegal values

Notes:
The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint check-
ing to be performed. However, a call with 0.0 in all components of constraints will result in an illegal
input return. A NULL constraints vector will disable constraint checking.

After a call to ERKStepResize() inequality constraint checking will be disabled and a call to ERK-
StepSetConstraints() is required to re-enable constraint checking.

Since constraint-handling is performed through cutting time steps that would violate the constraints, it is
possible that this feature will cause some problems to fail due to an inability to enforce constraints even at
the minimum time step size. Additionally, the features ERKStepSetConstraints() and ERKStepSet-
FixedStep() are incompatible, and should not be used simultaneously.

Deprecated since version 6.1.0: Use ARKodeSetConstraints() instead.

int ERKStepSetMaxNumConstrFails(void *arkode_mem, int maxfails)
Specifies the maximum number of constraint failures in a step before ERKStep will return with an error.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• maxfails – maximum allowed number of constrain failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

Notes:
Passing maxfails <= 0 results in ERKStep using the default value (10).

Deprecated since version 6.1.0: Use ARKodeSetMaxNumConstrFails() instead.

Optional inputs for IVP method selection

Table 5.3: Optional inputs for IVP method selection

Optional input Function name Default
Set integrator method order ERKStepSetOrder() 4
Set explicit RK table ERKStepSetTable() internal
Set explicit RK table via its number ERKStepSetTableNum() internal
Set explicit RK table via its name ERKStepSetTableName() internal

int ERKStepSetOrder(void *arkode_mem, int ord)
Specifies the order of accuracy for the ERK integration method.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• ord – requested order of accuracy.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

5.8. Using the ERKStep time-stepping module 289

User Documentation for ARKODE, v6.3.0

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
The allowed values are 2 ≤ ord ≤ 8. Any illegal input will result in the default value of 4.

Since ord affects the memory requirements for the internal ERKStep memory block, it cannot be changed
after the first call to ERKStepEvolve(), unless ERKStepReInit() is called.

Deprecated since version 6.1.0: Use ARKodeSetOrder() instead.

int ERKStepSetTable(void *arkode_mem, ARKodeButcherTable B)
Specifies a customized Butcher table for the ERK method.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• B – the Butcher table for the explicit RK method.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:

For a description of the ARKodeButcherTable type and related functions for creating Butcher tables,
see §6.

No error checking is performed to ensure that either the method order p or the embedding order q
specified in the Butcher table structure correctly describe the coefficients in the Butcher table.

Error checking is performed to ensure that the Butcher table is strictly lower-triangular (i.e. that it
specifies an ERK method).

If the Butcher table does not contain an embedding, the user must call ERKStepSetFixedStep() to
enable fixed-step mode and set the desired time step size.

Warning:
This should not be used with ARKodeSetOrder().

int ERKStepSetTableNum(void *arkode_mem, ARKODE_ERKTableID etable)
Indicates to use a specific built-in Butcher table for the ERK method.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• etable – index of the Butcher table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
etable should match an existing explicit method from §18.1. Error-checking is performed to ensure that the
table exists, and is not implicit.

290 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Warning:
This should not be used with ARKodeSetOrder().

int ERKStepSetTableName(void *arkode_mem, const char *etable)
Indicates to use a specific built-in Butcher table for the ERK method.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• etable – name of the Butcher table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
etable should match an existing explicit method from §18.1. Error-checking is performed to ensure that the
table exists, and is not implicit. This function is case sensitive.

Warning:
This should not be used with ARKodeSetOrder().

Optional inputs for time step adaptivity

The mathematical explanation of ARKODE’s time step adaptivity algorithm, including how each of the parameters
below is used within the code, is provided in §2.11.

int ERKStepSetAdaptController(void *arkode_mem, SUNAdaptController C)
Sets a user-supplied time-step controller object.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• C – user-supplied time adaptivity controller. If NULL then the I controller will be created (see §12.2).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_MEM_FAIL if C was NULL and the I controller could not be allocated.

Added in version 5.7.0.

Deprecated since version 6.1.0: Use ARKodeSetAdaptController() instead.

Changed in version 6.3.0: The default controller was changed from PI to I. Additionally, in prior versions, passing
NULL to this function would attach the PID controller.

int ERKStepSetAdaptivityFn(void *arkode_mem, ARKAdaptFn hfun, void *h_data)
Sets a user-supplied time-step adaptivity function.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hfun – name of user-supplied adaptivity function.

5.8. Using the ERKStep time-stepping module 291

User Documentation for ARKODE, v6.3.0

• h_data – pointer to user data passed to hfun every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
This function should focus on accuracy-based time step estimation; for stability based time steps the func-
tion ERKStepSetStabilityFn() should be used instead.

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

int ERKStepSetAdaptivityMethod(void *arkode_mem, int imethod, int idefault, int pq, sunrealtype
*adapt_params)

Specifies the method (and associated parameters) used for time step adaptivity.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• imethod – accuracy-based adaptivity method choice (0 ≤ imethod ≤ 5): 0 is PID, 1 is PI, 2 is I, 3 is
explicit Gustafsson, 4 is implicit Gustafsson, and 5 is the ImEx Gustafsson.

• idefault – flag denoting whether to use default adaptivity parameters (1), or that they will be supplied
in the adapt_params argument (0).

• pq – flag denoting whether to use the embedding order of accuracy p (0), the method order of accuracy
q (1), or the minimum of the two (any input not equal to 0 or 1) within the adaptivity algorithm. p is
the default.

• adapt_params[0] – k1 parameter within accuracy-based adaptivity algorithms.

• adapt_params[1] – k2 parameter within accuracy-based adaptivity algorithms.

• adapt_params[2] – k3 parameter within accuracy-based adaptivity algorithms.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
If custom parameters are supplied, they will be checked for validity against published stability intervals. If
other parameter values are desired, it is recommended to instead provide a custom function through a call
to ERKStepSetAdaptivityFn().

Changed in version 5.7.0: Prior to version 5.7.0, any nonzero value for pq would result in use of the em-
bedding order of accuracy.

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

int ERKStepSetAdaptivityAdjustment(void *arkode_mem, int adjust)
Called by a user to adjust the method order supplied to the temporal adaptivity controller. For example, if the
user expects order reduction due to problem stiffness, they may request that the controller assume a reduced order
of accuracy for the method by specifying a value adjust < 0.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

292 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• adjust – adjustment factor (default is 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
This should be called prior to calling ERKStepEvolve(), and can only be reset following a call to ERK-
StepReInit().

Added in version 5.7.0.

Deprecated since version 6.1.0: Use ARKodeSetAdaptivityAdjustment() instead.

Changed in version 6.3.0: The default value was changed from -1 to 0

int ERKStepSetCFLFraction(void *arkode_mem, sunrealtype cfl_frac)
Specifies the fraction of the estimated explicitly stable step to use.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• cfl_frac – maximum allowed fraction of explicitly stable step (default is 0.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetCFLFraction() instead.

int ERKStepSetErrorBias(void *arkode_mem, sunrealtype bias)
Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• bias – bias applied to error in accuracy-based time step estimation (default is 1.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value below 1.0 will imply a reset to the default value.

If both this and one of ERKStepSetAdaptivityMethod() or ERKStepSetAdaptController() will be
called, then this routine must be called second.

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

Changed in version 6.3.0: The default value was changed from 1.5 to 1.0

5.8. Using the ERKStep time-stepping module 293

User Documentation for ARKODE, v6.3.0

int ERKStepSetFixedStepBounds(void *arkode_mem, sunrealtype lb, sunrealtype ub)
Specifies the step growth interval in which the step size will remain unchanged.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• lb – lower bound on window to leave step size fixed (default is 1.0).

• ub – upper bound on window to leave step size fixed (default is 1.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any interval not containing 1.0 will imply a reset to the default values.

Deprecated since version 6.1.0: Use ARKodeSetFixedStepBounds() instead.

Changed in version 6.3.0: The default upper bound was changed from 1.5 to 1.0

int ERKStepSetMaxEFailGrowth(void *arkode_mem, sunrealtype etamxf)
Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• etamxf – time step reduction factor on multiple error fails (default is 0.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value outside the interval (0, 1] will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMaxEFailGrowth() instead.

int ERKStepSetMaxFirstGrowth(void *arkode_mem, sunrealtype etamx1)
Specifies the maximum allowed growth factor in step size following the very first integration step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• etamx1 – maximum allowed growth factor after the first time step (default is 10000.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value ≤ 1.0 will imply a reset to the default value.

294 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Deprecated since version 6.1.0: Use ARKodeSetMaxFirstGrowth() instead.

int ERKStepSetMaxGrowth(void *arkode_mem, sunrealtype mx_growth)
Specifies the maximum allowed growth factor in step size between consecutive steps in the integration process.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• mx_growth – maximum allowed growth factor between consecutive time steps (default is 20.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value ≤ 1.0 will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMaxGrowth() instead.

int ERKStepSetMinReduction(void *arkode_mem, sunrealtype eta_min)
Specifies the minimum allowed reduction factor in step size between step attempts, resulting from a temporal
error failure in the integration process.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• eta_min – minimum allowed reduction factor time step after an error test failure (default is 0.1).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value ≥ 1.0 or ≤ 0.0 will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMinReduction() instead.

int ERKStepSetSafetyFactor(void *arkode_mem, sunrealtype safety)
Specifies the safety factor to be applied to the accuracy-based estimated step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• safety – safety factor applied to accuracy-based time step (default is 0.9).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

5.8. Using the ERKStep time-stepping module 295

User Documentation for ARKODE, v6.3.0

Deprecated since version 6.1.0: Use ARKodeSetSafetyFactor() instead.

Changed in version 6.3.0: The default default was changed from 0.96 to 0.9. The maximum value is now exactly
1.0 rather than strictly less than 1.0.

int ERKStepSetSmallNumEFails(void *arkode_mem, int small_nef)
Specifies the threshold for “multiple” successive error failures before the etamxf parameter from ERKStepSet-
MaxEFailGrowth() is applied.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• small_nef – bound to determine “multiple” for etamxf (default is 2).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetSmallNumEFails() instead.

int ERKStepSetStabilityFn(void *arkode_mem, ARKExpStabFn EStab, void *estab_data)
Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE system.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• EStab – name of user-supplied stability function.

• estab_data – pointer to user data passed to EStab every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
This function should return an estimate of the absolute value of the maximum stable time step for the the
ODE system. It is not required, since accuracy-based adaptivity may be sufficient for retaining stability,
but this can be quite useful for problems where the right-hand side function f(t, y) contains stiff terms.

Deprecated since version 6.1.0: Use ARKodeSetStabilityFn() instead.

296 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Rootfinding optional input functions

int ERKStepSetRootDirection(void *arkode_mem, int *rootdir)
Specifies the direction of zero-crossings to be located and returned.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• rootdir – state array of length nrtfn, the number of root functions gi (the value of nrtfn was supplied
in the call to ERKStepRootInit()). If rootdir[i] == 0 then crossing in either direction for gi
should be reported. A value of +1 or -1 indicates that the solver should report only zero-crossings
where gi is increasing or decreasing, respectively.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default behavior is to monitor for both zero-crossing directions.

Deprecated since version 6.1.0: Use ARKodeSetRootDirection() instead.

int ERKStepSetNoInactiveRootWarn(void *arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

Notes:
ERKStep will not report the initial conditions as a possible zero-crossing (assuming that one or more com-
ponents gi are zero at the initial time). However, if it appears that some gi is identically zero at the initial
time (i.e., gi is zero at the initial time and after the first step), ERKStep will issue a warning which can be
disabled with this optional input function.

Deprecated since version 6.1.0: Use ARKodeSetNoInactiveRootWarn() instead.

5.8.1.6 Interpolated output function

int ERKStepGetDky(void *arkode_mem, sunrealtype t, int k, N_Vector dky)
Computes the k-th derivative of the function y at the time t, i.e., y(k)(t), for values of the independent variable
satisfying tn − hn ≤ t ≤ tn, with tn as current internal time reached, and hn is the last internal step size
successfully used by the solver. This routine uses an interpolating polynomial of degree min(degree, 5), where
degree is the argument provided to ERKStepSetInterpolantDegree(). The user may request k in the range
{0,. . . , min(degree, kmax)} where kmax depends on the choice of interpolation module. For Hermite interpolants
kmax = 5 and for Lagrange interpolants kmax = 3.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

5.8. Using the ERKStep time-stepping module 297

User Documentation for ARKODE, v6.3.0

• t – the value of the independent variable at which the derivative is to be evaluated.

• k – the derivative order requested.

• dky – output vector (must be allocated by the user).

Return value:

• ARK_SUCCESS if successful

• ARK_BAD_K if k is not in the range {0,. . . , min(degree, kmax)}.

• ARK_BAD_T if t is not in the interval [tn − hn, tn]

• ARK_BAD_DKY if the dky vector was NULL

• ARK_MEM_NULL if the ERKStep memory is NULL

Notes:
It is only legal to call this function after a successful return from ERKStepEvolve().

A user may access the values tn and hn via the functions ERKStepGetCurrentTime() and ERKStepGet-
LastStep(), respectively.

Deprecated since version 6.1.0: Use ARKodeGetDky() instead.

5.8.1.7 Optional output functions

Main solver optional output functions

int ERKStepGetWorkSpace(void *arkode_mem, long int *lenrw, long int *leniw)
Returns the ERKStep real and integer workspace sizes.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• lenrw – the number of sunrealtype values in the ERKStep workspace.

• leniw – the number of integer values in the ERKStep workspace.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetWorkSpace() instead.

int ERKStepGetNumSteps(void *arkode_mem, long int *nsteps)
Returns the cumulative number of internal steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• nsteps – number of steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumSteps() instead.

298 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ERKStepGetActualInitStep(void *arkode_mem, sunrealtype *hinused)
Returns the value of the integration step size used on the first step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hinused – actual value of initial step size.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
Even if the value of the initial integration step was specified by the user through a call to ERKStepSe-
tInitStep(), this value may have been changed by ERKStep to ensure that the step size fell within the
prescribed bounds (hmin ≤ h0 ≤ hmax), or to satisfy the local error test condition.

Deprecated since version 6.1.0: Use ARKodeGetActualInitStep() instead.

int ERKStepGetLastStep(void *arkode_mem, sunrealtype *hlast)
Returns the integration step size taken on the last successful internal step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hlast – step size taken on the last internal step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetLastStep() instead.

int ERKStepGetCurrentStep(void *arkode_mem, sunrealtype *hcur)
Returns the integration step size to be attempted on the next internal step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hcur – step size to be attempted on the next internal step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetCurrentStep() instead.

int ERKStepGetCurrentTime(void *arkode_mem, sunrealtype *tcur)
Returns the current internal time reached by the solver.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• tcur – current internal time reached.

Return value:

• ARK_SUCCESS if successful

5.8. Using the ERKStep time-stepping module 299

User Documentation for ARKODE, v6.3.0

• ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetCurrentTime() instead.

int ERKStepGetTolScaleFactor(void *arkode_mem, sunrealtype *tolsfac)
Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• tolsfac – suggested scaling factor for user-supplied tolerances.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetTolScaleFactor() instead.

int ERKStepGetErrWeights(void *arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• eweight – solution error weights at the current time.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The user must allocate space for eweight, that will be filled in by this function.

Deprecated since version 6.1.0: Use ARKodeGetErrWeights() instead.

int ERKStepGetStepStats(void *arkode_mem, long int *nsteps, sunrealtype *hinused, sunrealtype *hlast,
sunrealtype *hcur, sunrealtype *tcur)

Returns many of the most useful optional outputs in a single call.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• nsteps – number of steps taken in the solver.

• hinused – actual value of initial step size.

• hlast – step size taken on the last internal step.

• hcur – step size to be attempted on the next internal step.

• tcur – current internal time reached.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetStepStats() instead.

300 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ERKStepPrintAllStats(void *arkode_mem, FILE *outfile, SUNOutputFormat fmt)
Outputs all of the integrator and other statistics.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• outfile – pointer to output file.

• fmt – the output format:

– SUN_OUTPUTFORMAT_TABLE – prints a table of values

– SUN_OUTPUTFORMAT_CSV – prints a comma-separated list of key and value pairs e.g., key1,
value1,key2,value2,...

Return value:

• ARK_SUCCESS – if the output was successfully.

• CV_MEM_NULL – if the ERKStep memory was NULL.

• CV_ILL_INPUT – if an invalid formatting option was provided.

Note

The Python module tools/suntools provides utilities to read and output the data from a SUNDIALS CSV
output file using the key and value pair format.

Added in version 5.2.0.

Deprecated since version 6.1.0: Use ARKodePrintAllStats() instead.

char *ERKStepGetReturnFlagName(long int flag)
Returns the name of the ERKStep constant corresponding to flag. See ARKODE Constants.

Arguments:

• flag – a return flag from an ERKStep function.

Return value:
The return value is a string containing the name of the corresponding constant.

Deprecated since version 6.1.0: Use ARKodeGetReturnFlagName() instead.

int ERKStepGetNumExpSteps(void *arkode_mem, long int *expsteps)
Returns the cumulative number of stability-limited steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• expsteps – number of stability-limited steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumExpSteps() instead.

5.8. Using the ERKStep time-stepping module 301

User Documentation for ARKODE, v6.3.0

int ERKStepGetNumAccSteps(void *arkode_mem, long int *accsteps)
Returns the cumulative number of accuracy-limited steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• accsteps – number of accuracy-limited steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumAccSteps() instead.

int ERKStepGetNumStepAttempts(void *arkode_mem, long int *step_attempts)
Returns the cumulative number of steps attempted by the solver (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• step_attempts – number of steps attempted by solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumStepAttempts() instead.

int ERKStepGetNumRhsEvals(void *arkode_mem, long int *nf_evals)
Returns the number of calls to the user’s right-hand side function, f (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• nf_evals – number of calls to the user’s f(t, y) function.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.2.0: Use ARKodeGetNumRhsEvals() instead.

int ERKStepGetNumErrTestFails(void *arkode_mem, long int *netfails)
Returns the number of local error test failures that have occurred (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• netfails – number of error test failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumErrTestFails() instead.

302 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ERKStepGetCurrentButcherTable(void *arkode_mem, ARKodeButcherTable *B)
Returns the Butcher table currently in use by the solver.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• B – pointer to the Butcher table structure.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The ARKodeButcherTable data structure is defined as a pointer to the following C structure:

typedef struct ARKodeButcherTableMem {

int q; /* method order of accuracy */
int p; /* embedding order of accuracy */
int stages; /* number of stages */
sunrealtype **A; /* Butcher table coefficients */
sunrealtype *c; /* canopy node coefficients */
sunrealtype *b; /* root node coefficients */
sunrealtype *d; /* embedding coefficients */

} *ARKodeButcherTable;

For more details see §6.

int ERKStepGetEstLocalErrors(void *arkode_mem, N_Vector ele)
Returns the vector of estimated local truncation errors for the current step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• ele – vector of estimated local truncation errors.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The user must allocate space for ele, that will be filled in by this function.

The values returned in ele are valid only after a successful call to ERKStepEvolve() (i.e., it returned a
non-negative value).

The ele vector, together with the eweight vector from ERKStepGetErrWeights(), can be used to deter-
mine how the various components of the system contributed to the estimated local error test. Specifically,
that error test uses the WRMS norm of a vector whose components are the products of the components of
these two vectors. Thus, for example, if there were recent error test failures, the components causing the
failures are those with largest values for the products, denoted loosely as eweight[i]*ele[i].

Deprecated since version 6.1.0: Use ARKodeGetEstLocalErrors() instead.

5.8. Using the ERKStep time-stepping module 303

User Documentation for ARKODE, v6.3.0

int ERKStepGetTimestepperStats(void *arkode_mem, long int *expsteps, long int *accsteps, long int
*step_attempts, long int *nf_evals, long int *netfails)

Returns many of the most useful time-stepper statistics in a single call.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• expsteps – number of stability-limited steps taken in the solver.

• accsteps – number of accuracy-limited steps taken in the solver.

• step_attempts – number of steps attempted by the solver.

• nf_evals – number of calls to the user’s f(t, y) function.

• netfails – number of error test failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumConstrFails(void *arkode_mem, long int *nconstrfails)
Returns the cumulative number of constraint test failures (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• nconstrfails – number of constraint test failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumConstrFails() instead.

int ERKStepGetUserData(void *arkode_mem, void **user_data)
Returns the user data pointer previously set with ERKStepSetUserData().

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• user_data – memory reference to a user data pointer

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Added in version 5.3.0.

Deprecated since version 6.1.0: Use ARKodeGetUserData() instead.

304 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Rootfinding optional output functions

int ERKStepGetRootInfo(void *arkode_mem, int *rootsfound)
Returns an array showing which functions were found to have a root.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• rootsfound – array of length nrtfn with the indices of the user functions gi found to have a root (the value
of nrtfn was supplied in the call to ERKStepRootInit()). For i = 0 . . . nrtfn-1, rootsfound[i] is
nonzero if gi has a root, and 0 if not.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The user must allocate space for rootsfound prior to calling this function.

For the components of gi for which a root was found, the sign of rootsfound[i] indicates the direction
of zero-crossing. A value of +1 indicates that gi is increasing, while a value of -1 indicates a decreasing gi.

Deprecated since version 6.1.0: Use ARKodeGetRootInfo() instead.

int ERKStepGetNumGEvals(void *arkode_mem, long int *ngevals)
Returns the cumulative number of calls made to the user’s root function g.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• ngevals – number of calls made to g so far.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumGEvals() instead.

General usability functions

int ERKStepWriteParameters(void *arkode_mem, FILE *fp)
Outputs all ERKStep solver parameters to the provided file pointer.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• fp – pointer to use for printing the solver parameters.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

5.8. Using the ERKStep time-stepping module 305

User Documentation for ARKODE, v6.3.0

Notes:
The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for
all processes would be identical.

Deprecated since version 6.1.0: Use ARKodeWriteParameters() instead.

int ERKStepWriteButcher(void *arkode_mem, FILE *fp)
Outputs the current Butcher table to the provided file pointer.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• fp – pointer to use for printing the Butcher table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all
processes would be identical.

Deprecated since version 6.1.0: Use ERKStepGetCurrentButcherTable() and ARKodeButcherTable_-
Write() instead.

5.8.1.8 ERKStep re-initialization function

To reinitialize the ERKStep module for the solution of a new problem, where a prior call to ERKStepCreate() has been
made, the user must call the function ERKStepReInit(). The new problem must have the same size as the previous
one. This routine retains the current settings for all ERKstep module options and performs the same input checking and
initializations that are done in ERKStepCreate(), but it performs no memory allocation as it assumes that the existing
internal memory is sufficient for the new problem. A call to this re-initialization routine deletes the solution history
that was stored internally during the previous integration, and deletes any previously-set tstop value specified via a call
to ERKStepSetStopTime(). Following a successful call to ERKStepReInit(), call ERKStepEvolve() again for the
solution of the new problem.

The use of ERKStepReInit() requires that the number of Runge–Kutta stages, denoted by s, be no larger for the new
problem than for the previous problem. This condition is automatically fulfilled if the method order q is left unchanged.

One important use of the ERKStepReInit() function is in the treating of jump discontinuities in the RHS function.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted ODE model, using a call to this routine. To stop when the location of the discontinuity is
known, simply make that location a value of tout. To stop when the location of the discontinuity is determined by the
solution, use the rootfinding feature. In either case, it is critical that the RHS function not incorporate the discontinuity,
but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent rootfinding, if used)
can be done efficiently. Then use a switch within the RHS function (communicated through user_data) that can be
flipped between the stopping of the integration and the restart, so that the restarted problem uses the new values (which
have jumped). Similar comments apply if there is to be a jump in the dependent variable vector.

int ERKStepReInit(void *arkode_mem, ARKRhsFn f, sunrealtype t0, N_Vector y0)
Provides required problem specifications and re-initializes the ERKStep time-stepper module.

Arguments:

306 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• arkode_mem – pointer to the ERKStep memory block.

• f – the name of the C function (of type ARKRhsFn()) defining the right-hand side function in ẏ =
f(t, y).

• t0 – the initial value of t.

• y0 – the initial condition vector y(t0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument had an illegal value.

Notes:
All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ERKStepReInit() also sends an error message to the error handler function.

5.8.1.9 ERKStep reset function

int ERKStepReset(void *arkode_mem, sunrealtype tR, N_Vector yR)
Resets the current ERKStep time-stepper module state to the provided independent variable value and dependent
variable vector.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• tR – the value of the independent variable t.

• yR – the value of the dependent variable vector y(tR).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument had an illegal value.

Notes:
By default the next call to ERKStepEvolve() will use the step size computed by ERKStep prior to calling
ERKStepReset(). To set a different step size or have ERKStep estimate a new step size use ERKStepSe-
tInitStep().

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ERKStepReset() also sends an error message to the error handler function.

Deprecated since version 6.1.0: Use ARKodeReset() instead.

5.8. Using the ERKStep time-stepping module 307

User Documentation for ARKODE, v6.3.0

5.8.1.10 ERKStep system resize function

int ERKStepResize(void *arkode_mem, N_Vector yR, sunrealtype hscale, sunrealtype tR, ARKVecResizeFn resize,
void *resize_data)

Re-sizes ERKStep with a different state vector but with comparable dynamical time scale.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• yR – the newly-sized solution vector, holding the current dependent variable values y(tR).

• hscale – the desired time step scaling factor (i.e. the next step will be of size h*hscale).

• tR – the current value of the independent variable tR (this must be consistent with yR).

• resize – the user-supplied vector resize function (of type ARKVecResizeFn().

• resize_data – the user-supplied data structure to be passed to resize when modifying internal ERKStep
vectors.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if an argument had an illegal value.

Notes:
If an error occurred, ERKStepResize() also sends an error message to the error handler function.

If inequality constraint checking is enabled a call to ERKStepResize() will disable constraint checking.
A call to ERKStepSetConstraints() is required to re-enable constraint checking.

Deprecated since version 6.1.0: Use ARKodeResize() instead.

5.8.2 Relaxation Methods

This section describes ERKStep-specific user-callable functions for applying relaxation methods with ERKStep. All of
these routines have been deprecated in favor of shared ARKODE-level routines, but this documentation will be retained
for as long as these functions are present

5.8.2.1 Enabling or Disabling Relaxation

int ERKStepSetRelaxFn(void *arkode_mem, ARKRelaxFn rfn, ARKRelaxJacFn rjac)
Attaches the user supplied functions for evaluating the relaxation function (rfn) and its Jacobian (rjac).

Both rfn and rjac are required and an error will be returned if only one of the functions is NULL. If both rfn
and rjac are NULL, relaxation is disabled.

Parameters

• arkode_mem – the ERKStep memory structure

• rfn – the user-defined function to compute the relaxation function ξ(y)

• rjac – the user-defined function to compute the relaxation Jacobian ξ′(y)

Return values

308 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_SUCCESS – the function exited successfully

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_ILL_INPUT – an invalid input combination was provided (see the output error message
for more details)

• ARK_MEM_FAIL – a memory allocation failed

Warning

Applying relaxation requires using a method of at least second order with bi ≥ 0. If these conditions are not
satisfied, ERKStepEvolve() will return with an error during initialization.

Note

When combined with fixed time step sizes, ERKStep will attempt each step using the specified step size. If
the step is successful, relaxation will be applied, effectively modifying the step size for the current step. If
the step fails or applying relaxation fails, ERKStepEvolve() will return with an error.

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxFn() instead.

5.8.2.2 Optional Input Functions

This section describes optional input functions used to control applying relaxation.

int ERKStepSetRelaxEtaFail(void *arkode_mem, sunrealtype eta_rf)
Sets the step size reduction factor applied after a failed relaxation application.

The default value is 0.25. Input values ≤ 0 or ≥ 1 will result in the default value being used.

Parameters

• arkode_mem – the ERKStep memory structure

• eta_rf – the step size reduction factor

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxEtaFail() instead.

int ERKStepSetRelaxLowerBound(void *arkode_mem, sunrealtype lower)
Sets the smallest acceptable value for the relaxation parameter.

Values smaller than the lower bound will result in a failed relaxation application and the step will be repeated
with a smaller step size (determined by ERKStepSetRelaxEtaFail()).

The default value is 0.8. Input values ≤ 0 or ≥ 1 will result in the default value being used.

Parameters

5.8. Using the ERKStep time-stepping module 309

User Documentation for ARKODE, v6.3.0

• arkode_mem – the ERKStep memory structure

• lower – the relaxation parameter lower bound

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxLowerBound() instead.

int ERKStepSetRelaxUpperBound(void *arkode_mem, sunrealtype upper)
Sets the largest acceptable value for the relaxation parameter.

Values larger than the upper bound will result in a failed relaxation application and the step will be repeated with
a smaller step size (determined by ERKStepSetRelaxEtaFail()).

The default value is 1.2. Input values ≤ 1 will result in the default value being used.

Parameters

• arkode_mem – the ERKStep memory structure

• upper – the relaxation parameter upper bound

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxUpperBound() instead.

int ERKStepSetRelaxMaxFails(void *arkode_mem, int max_fails)
Sets the maximum number of times applying relaxation can fail within a step attempt before the integration is
halted with an error.

The default value is 10. Input values ≤ 0 will result in the default value being used.

Parameters

• arkode_mem – the ERKStep memory structure

• max_fails – the maximum number of failed relaxation applications allowed in a step

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxMaxFails() instead.

310 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ERKStepSetRelaxMaxIters(void *arkode_mem, int max_iters)
Sets the maximum number of nonlinear iterations allowed when solving for the relaxation parameter.

If the maximum number of iterations is reached before meeting the solve tolerance (determined by ERKStepSe-
tRelaxResTol() and ERKStepSetRelaxTol()), the step will be repeated with a smaller step size (determined
by ERKStepSetRelaxEtaFail()).

The default value is 10. Input values ≤ 0 will result in the default value being used.

Parameters

• arkode_mem – the ERKStep memory structure

• max_iters – the maximum number of solver iterations allowed

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxMaxIters() instead.

int ERKStepSetRelaxSolver(void *arkode_mem, ARKRelaxSolver solver)
Sets the nonlinear solver method used to compute the relaxation parameter.

The default value is ARK_RELAX_NEWTON

Parameters

• arkode_mem – the ERKStep memory structure

• solver – the nonlinear solver to use

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

• ARK_ILL_INPUT – an invalid solver option was provided

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxSolver() instead.

int ERKStepSetRelaxResTol(void *arkode_mem, sunrealtype res_tol)
Sets the nonlinear solver residual tolerance to use when solving (2.63).

If the residual or solution tolerance (see ERKStepSetRelaxMaxIters()) is not reached within the maximum
number of iterations (determined by ERKStepSetRelaxMaxIters()), the step will be repeated with a smaller
step size (determined by ERKStepSetRelaxEtaFail()).

The default value is 4ε where ε is floating-point precision. Input values≤ 0 will result in the default value being
used.

Parameters

• arkode_mem – the ERKStep memory structure

• res_tol – the nonlinear solver residual tolerance to use

5.8. Using the ERKStep time-stepping module 311

User Documentation for ARKODE, v6.3.0

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxResTol() instead.

int ERKStepSetRelaxTol(void *arkode_mem, sunrealtype rel_tol, sunrealtype abs_tol)
Sets the nonlinear solver relative and absolute tolerance on changes in r when solving (2.63).

If the residual (see ERKStepSetRelaxResTol()) or solution tolerance is not reached within the maximum
number of iterations (determined by ERKStepSetRelaxMaxIters()), the step will be repeated with a smaller
step size (determined by ERKStepSetRelaxEtaFail()).

The default relative and absolute tolerances are 4ε and 10−14, respectively, where ε is floating-point precision.
Input values ≤ 0 will result in the default value being used.

Parameters

• arkode_mem – the ERKStep memory structure

• rel_tol – the nonlinear solver relative solution tolerance to use

• abs_tol – the nonlinear solver absolute solution tolerance to use

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxTol() instead.

5.8.2.3 Optional Output Functions

This section describes optional output functions used to retrieve information about the performance of the relaxation
method.

int ERKStepGetNumRelaxFnEvals(void *arkode_mem, long int *r_evals)
Get the number of times the user’s relaxation function was evaluated.

Parameters

• arkode_mem – the ERKStep memory structure

• r_evals – the number of relaxation function evaluations

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeGetNumRelaxFnEvals() instead.

312 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int ERKStepGetNumRelaxJacEvals(void *arkode_mem, long int *J_evals)
Get the number of times the user’s relaxation Jacobian was evaluated.

Parameters

• arkode_mem – the ERKStep memory structure

• J_evals – the number of relaxation Jacobian evaluations

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeGetNumRelaxJacEvals() instead.

int ERKStepGetNumRelaxFails(void *arkode_mem, long int *fails)
Get the total number of times applying relaxation failed.

The counter includes the sum of the number of nonlinear solver failures (see ERKStepGetNumRelaxSolve-
Fails()) and the number of failures due an unacceptable relaxation value (see ERKStepSetRelaxLower-
Bound() and ERKStepSetRelaxUpperBound()).

Parameters

• arkode_mem – the ERKStep memory structure

• fails – the total number of failed relaxation attempts

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeGetNumRelaxFails() instead.

int ERKStepGetNumRelaxBoundFails(void *arkode_mem, long int *fails)
Get the number of times the relaxation parameter was deemed unacceptable.

Parameters

• arkode_mem – the ERKStep memory structure

• fails – the number of failures due to an unacceptable relaxation parameter value

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeGetNumRelaxBoundFails() instead.

5.8. Using the ERKStep time-stepping module 313

User Documentation for ARKODE, v6.3.0

int ERKStepGetNumRelaxSolveFails(void *arkode_mem, long int *fails)
Get the number of times the relaxation parameter nonlinear solver failed.

Parameters

• arkode_mem – the ERKStep memory structure

• fails – the number of relaxation nonlinear solver failures

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeGetNumRelaxSolveFails() instead.

int ERKStepGetNumRelaxSolveIters(void *arkode_mem, long int *iters)
Get the number of relaxation parameter nonlinear solver iterations.

Parameters

• arkode_mem – the ERKStep memory structure

• iters – the number of relaxation nonlinear solver iterations

Return values

• ARK_SUCCESS – the value was successfully set

• ARK_MEM_NULL – arkode_mem was NULL

• ARK_RELAX_MEM_NULL – the internal relaxation memory structure was NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeGetNumRelaxSolveIters() instead.

5.9 Using the ForcingStep time-stepping module

This section is concerned with the use of the ForcingStep time-stepping module for the solution of initial value problems
(IVPs) in a C or C++ language setting. Usage of ForcingStep follows that of the rest of ARKODE, and so in this section
we primarily focus on those usage aspects that are specific to ForcingStep. A skeleton of a program using ForcingStep
follows essentially the same structure as SplittingStep (see §5.12.1).

5.9.1 ForcingStep User-callable functions

This section describes the ForcingStep-specific functions that may be called by the user to setup and then solve an IVP
using the ForcingStep time-stepping module.

As discussed in the main ARKODE user-callable function introduction, each of ARKODE’s time-stepping modules
clarifies the categories of user-callable functions that it supports. ForcingStep does not support any of the categories
beyond the functions that apply for all time-stepping modules.

314 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.9.1.1 ForcingStep initialization functions

void *ForcingStepCreate(SUNStepper stepper1, SUNStepper stepper2, sunrealtype t0, N_Vector y0, SUNContext
sunctx)

This function allocates and initializes memory for a problem to be solved using the ForcingStep time-stepping
module in ARKODE.

Parameters

• stepper1 – A SUNStepper to integrate partition one. At minimum, it must implement
the SUNStepper_Evolve(), SUNStepper_Reset(), and SUNStepper_SetStopTime()
operations.

• stepper2 – A SUNStepper to integrate partition two including the forcing from partition
one. At minimum, it must implement the SUNStepper_Evolve(), SUNStepper_Reset(),
SUNStepper_SetStopTime(), and SUNStepper_SetForcing() operations.

• t0 – The initial value of t.

• y0 – The initial condition vector y(t0).

• sunctx – The SUNContext object (see §4.2)

Returns
If successful, a pointer to initialized problem memory of type void*, to be passed to all user-
facing ForcingStep routines listed below. If unsuccessful, a NULL pointer will be returned, and
an error message will be printed to stderr.

Example usage:

/* inner ARKODE objects for integrating individual partitions */
void *partition_mem[] = {NULL, NULL};

/* SUNSteppers to wrap the inner ARKStep objects */
SUNStepper steppers[] = {NULL, NULL};

/* create ARKStep objects, setting right-hand side functions and the
initial condition */

partition_mem[0] = ARKStepCreate(fe1, fi1, t0, y0, sunctx);
partition_mem[1] = ARKStepCreate(fe2, fi2, t0, y0, sunctx);

/* setup ARKStep */
. . .

/* create SUNStepper wrappers for the ARKStep memory blocks */
flag = ARKodeCreateSUNStepper(partition_mem[0], &stepper[0]);
flag = ARKodeCreateSUNStepper(partition_mem[1], &stepper[1]);

/* create a ForcingStep object */
arkode_mem = ForcingStepCreate(steppers[0], steppers[1], t0, y0, sunctx);

Example codes:

• examples/arkode/C_serial/ark_analytic_partitioned.c

Added in version 6.2.0.

5.9. Using the ForcingStep time-stepping module 315

User Documentation for ARKODE, v6.3.0

5.9.1.2 Optional output functions

int ForcingStepGetNumEvolves(void *arkode_mem, int partition, long int *evolves)
Returns the number of times the SUNStepper for the given partition index has been evolved (so far).

Parameters

• arkode_mem – pointer to the ForcingStep memory block.

• partition – index of the partition (0 or 1) or a negative number to indicate the total number
across both partitions.

• evolves – number of SUNStepper evolves.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the ForcingStep memory was NULL

• ARK_ILL_INPUT – if partition was out of bounds

Added in version 6.2.0.

5.9.1.3 ForcingStep re-initialization function

To reinitialize the ForcingStep module for the solution of a new problem, where a prior call to ForcingStepCreate()
has been made, the user must call the function ForcingStepReInit() and re-initialize each SUNStepper. The new
problem must have the same size as the previous one. This routine retains the current settings for all ForcingStep
module options and performs the same input checking and initializations that are done in ForcingStepCreate(), but
it performs no memory allocation as it assumes that the existing internal memory is sufficient for the new problem. A
call to this re-initialization routine deletes the solution history that was stored internally during the previous integration,
and deletes any previously-set tstop value specified via a call to ARKodeSetStopTime(). Following a successful call
to ForcingStepReInit(), call ARKodeEvolve() again for the solution of the new problem.

One important use of the ForcingStepReInit() function is in the treating of jump discontinuities in the RHS func-
tion. Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart
the integrator with a readjusted ODE model, using a call to this routine. To stop when the location of the discontinuity
is known, simply make that location a value of tout. To stop when the location of the discontinuity is determined by
the solution, use the rootfinding feature. In either case, it is critical that the RHS function not incorporate the disconti-
nuity, but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent rootfinding,
if used) can be done efficiently. Then use a switch within the RHS function (communicated through user_data) that
can be flipped between the stopping of the integration and the restart, so that the restarted problem uses the new values
(which have jumped). Similar comments apply if there is to be a jump in the dependent variable vector.

Another use of ForcingStepReInit() is changing the partitioning of the ODE and the SUNStepper objects used to
evolve each partition.

int ForcingStepReInit(void *arkode_mem, SUNStepper stepper1, SUNStepper stepper2, sunrealtype t0,
N_Vector y0)

Provides required problem specifications and re-initializes the ForcingStep time-stepper module.

Parameters

• arkode_mem – pointer to the ForcingStep memory block.

• stepper1 – A SUNStepper to integrate partition one. At minimum, it must implement
the SUNStepper_Evolve(), SUNStepper_Reset(), and SUNStepper_SetStopTime()
operations.

316 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• stepper2 – A SUNStepper to integrate partition two including the forcing from partition
one. At minimum, it must implement the SUNStepper_Evolve(), SUNStepper_Reset(),
SUNStepper_SetStopTime(), and SUNStepper_SetForcing() operations.

• t0 – The initial value of t.

• y0 – The initial condition vector y(t0).

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the ForcingStep memory was NULL

• ARK_MEM_FAIL – if a memory allocation failed

• ARK_ILL_INPUT – if an argument has an illegal value

Warning

This function does not perform any re-initialization of the SUNStepper objects. It is up to the user to do this,
if necessary.

Note

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

Added in version 6.2.0.

5.10 Using the LSRKStep time-stepping module

This section is concerned with the use of the LSRKStep time-stepping module for the solution of initial value problems
(IVPs) in a C or C++ language setting. Usage of LSRKStep follows that of the rest of ARKODE, and so in this section
we primarily focus on those usage aspects that are specific to LSRKStep.

5.10.1 LSRKStep User-callable functions

This section describes the LSRKStep-specific functions that may be called by the user to setup and then solve an IVP
using the LSRKStep time-stepping module. As mentioned in Section §5.3, shared ARKODE-level routines may be
used for the large majority of LSRKStep configuration and use. In this section, we describe only those routines that are
specific to LSRKStep.

As discussed in the main ARKODE user-callable function introduction, each of ARKODE’s time-stepping modules
clarifies the categories of user-callable functions that it supports. LSRKStep supports the following categories:

• temporal adaptivity

LSRKStep does not have forcing function support when converted to a SUNStepper or MRIStepInnerStepper. See
ARKodeCreateSUNStepper() and ARKStepCreateMRIStepInnerStepper() for additional details.

5.10. Using the LSRKStep time-stepping module 317

User Documentation for ARKODE, v6.3.0

5.10.1.1 LSRKStep initialization functions

void *LSRKStepCreateSTS(ARKRhsFn rhs, sunrealtype t0, N_Vector y0, SUNContext sunctx);
This function allocates and initializes memory for a problem to be solved using STS methods from the LSRKStep
time-stepping module in ARKODE.

Arguments:

• rhs – the name of the C function (of type ARKRhsFn()) defining the right-hand side function.

• t0 – the initial value of t.

• y0 – the initial condition vector y(t0).

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a pointer to initialized problem memory of type void*, to be passed to all user-facing LSRK-
Step routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message will be
printed to stderr.

void *LSRKStepCreateSSP(ARKRhsFn rhs, sunrealtype t0, N_Vector y0, SUNContext sunctx);
This function allocates and initializes memory for a problem to be solved using SSP methods from the LSRKStep
time-stepping module in ARKODE.

Arguments:

• rhs – the name of the C function (of type ARKRhsFn()) defining the right-hand side function.

• t0 – the initial value of t.

• y0 – the initial condition vector y(t0).

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a pointer to initialized problem memory of type void*, to be passed to all user-facing LSRK-
Step routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message will be
printed to stderr.

5.10.1.2 Optional input functions

int LSRKStepSetSTSMethod(void *arkode_mem, ARKODE_LSRKMethodType method);
This function selects the LSRK STS method that should be used. The list of allowable values for this input is
below. LSRKStepCreateSTS() defaults to using ARKODE_LSRK_RKC_2.

Arguments:

• arkode_mem – pointer to the LSRKStep memory block.

• method – Type of the method.

Return value:

• ARK_SUCCESS if successful

• ARK_ILL_INPUT if an argument had an illegal value (e.g. typo in the method type).

int LSRKStepSetSSPMethod(void *arkode_mem, ARKODE_LSRKMethodType method);
This function selects the LSRK SSP method that should be used. The list of allowable values for this input is
below. LSRKStepCreateSSP() defaults to using ARKODE_LSRK_SSP_S_2.

Arguments:

318 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• arkode_mem – pointer to the LSRKStep memory block.

• method – Type of the method.

Return value:

• ARK_SUCCESS if successful

• ARK_ILL_INPUT if an argument had an illegal value (e.g. typo in the method type).

Allowable Method Families

enum ARKODE_LSRKMethodType

enumerator ARKODE_LSRK_RKC_2
Second order Runge–Kutta–Chebyshev method

enumerator ARKODE_LSRK_RKL_2
Second order Runge–Kutta–Legendre method

enumerator ARKODE_LSRK_SSP_S_2
Second order, s-stage SSP(s,2) method

enumerator ARKODE_LSRK_SSP_S_3
Third order, s-stage SSP(s,3) method

enumerator ARKODE_LSRK_SSP_10_4
Fourth order, 10-stage SSP(10,4) method

int LSRKStepSetSTSMethodByName(void *arkode_mem, const char *emethod);
This function selects the LSRK STS method by name. The list of allowable values for this input is above.
LSRKStepCreateSTS() defaults to using ARKODE_LSRK_RKC_2.

Arguments:

• arkode_mem – pointer to the LSRKStep memory block.

• emethod – the method name.

Return value:

• ARK_SUCCESS if successful

• ARK_ILL_INPUT if an argument had an illegal value (e.g. typo in the method name).

int LSRKStepSetSSPMethodByName(void *arkode_mem, const char *emethod);
This function selects the LSRK SSP method by name. The list of allowable values for this input is above.
LSRKStepCreateSSP() defaults to using ARKODE_LSRK_SSP_S_2.

Arguments:

• arkode_mem – pointer to the LSRKStep memory block.

• emethod – the method name.

Return value:

• ARK_SUCCESS if successful

• ARK_ILL_INPUT if an argument had an illegal value (e.g. typo in the method name).

int LSRKStepSetDomEigFn(void *arkode_mem, ARKDomEigFn dom_eig);
Specifies the dominant eigenvalue approximation routine to be used for determining the number of stages that
will be used by either the RKC or RKL methods.

5.10. Using the LSRKStep time-stepping module 319

User Documentation for ARKODE, v6.3.0

Arguments:

• arkode_mem – pointer to the LSRKStep memory block.

• dom_eig – name of user-supplied dominant eigenvalue approximation function (of type ARK-
DomEigFn()).

Return value:

• ARK_SUCCESS if successful

• ARKLS_MEM_NULL if arkode_mem was NULL.

• ARK_ILL_INPUT dom_eig = NULL and LSRKStep does not currently estimate this internally.

Note

This function is currently required when either the RKC or RKL methods are used.

int LSRKStepSetDomEigFrequency(void *arkode_mem, long int nsteps);
Specifies the number of steps after which the dominant eigenvalue information is considered out-of-date, and
should be recomputed. This only applies to RKL and RKC methods.

Arguments:

• arkode_mem – pointer to the LSRKStep memory block.

• nsteps – the dominant eigenvalue re-computation update frequency. A value nsteps = 0 indicates
that the dominant eigenvalue will not change throughout the simulation.

Return value:

• ARK_SUCCESS if successful

• ARKLS_MEM_NULL if arkode_mem was NULL.

Note

If LSRKStepSetDomEigFrequency routine is not called, then the default nsteps is set to 25 as recommended
in [121]. Calling this function with nsteps < 0 resets the default value while nsteps = 0 refers to constant
dominant eigenvalue.

int LSRKStepSetMaxNumStages(void *arkode_mem, int stage_max_limit);
Specifies the maximum number of stages allowed within each time step. This bound only applies to RKL and
RKC methods.

Arguments:

• arkode_mem – pointer to the LSRKStep memory block.

• stage_max_limit – maximum allowed number of stages (>= 2).

Return value:

• ARK_SUCCESS if successful

• ARKLS_MEM_NULL if arkode_mem was NULL.

320 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Note

If LSRKStepSetMaxNumStages routine is not called, then the default stage_max_limit is set to 200. Calling
this function with stage_max_limit < 2 resets the default value. This limit should be chosen with consideration
of the following proportionality: s2 ∼ −hλ, where s is the number of stages used, h is the current step size and λ
is the dominant eigenvalue.

int LSRKStepSetDomEigSafetyFactor(void *arkode_mem, sunrealtype dom_eig_safety);
Specifies a safety factor to use for the result of the dominant eigenvalue estimation function. This value is used
to scale the magnitude of the dominant eigenvalue, in the hope of ensuring a sufficient number of stages for the
method to be stable. This input is only used for RKC and RKL methods.

Arguments:

• arkode_mem – pointer to the LSRKStep memory block.

• dom_eig_safety – safety factor (≥ 1).

Return value:

• ARK_SUCCESS if successful

• ARKLS_MEM_NULL if arkode_mem was NULL.

Note

If LSRKStepSetDomEigSafetyFactor routine is not called, then the default dom_eig_safety is set to 1.01. Calling
this function with dom_eig_safety < 1 resets the default value.

int LSRKStepSetNumSSPStages(void *arkode_mem, int num_of_stages);
Sets the number of stages, s in SSP(s, p) methods. This input is only utilized by SSPRK methods.

• ARKODE_LSRK_SSP_S_2 – num_of_stages must be greater than or equal to 2

• ARKODE_LSRK_SSP_S_3 – num_of_stages must be a perfect-square greater than or equal to 4

• ARKODE_LSRK_SSP_10_4 – num_of_stages cannot be modified from 10, so this function should not be
called.

Arguments:

• arkode_mem – pointer to the LSRKStep memory block.

• num_of_stages – number of stages (> 1) for SSP(s,2) and (n2 = s ≥ 4) for SSP(s,3).

Return value:

• ARK_SUCCESS if successful

• ARKLS_MEM_NULL if arkode_mem was NULL.

• ARK_ILL_INPUT if an argument had an illegal value (e.g. SSP method is not declared)

Note

If LSRKStepSetNumSSPStages routine is not called, then the default num_of_stages is set. Calling this function
with num_of_stages <= 0 resets the default values:

5.10. Using the LSRKStep time-stepping module 321

User Documentation for ARKODE, v6.3.0

• num_of_stages = 10 for ARKODE_LSRK_SSP_S_2

• num_of_stages = 9 for ARKODE_LSRK_SSP_S_3

• num_of_stages = 10 for ARKODE_LSRK_SSP_10_4

5.10.1.3 Optional output functions

int LSRKStepGetNumDomEigUpdates(void *arkode_mem, long int *dom_eig_num_evals);
Returns the number of dominant eigenvalue evaluations (so far).

Arguments:

• arkode_mem – pointer to the LSRKStep memory block.

• dom_eig_num_evals – number of calls to the user’s dom_eig function.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the LSRKStep memory was NULL

int LSRKStepGetMaxNumStages(void *arkode_mem, int *stage_max);
Returns the max number of stages used in any single step (so far).

Arguments:

• arkode_mem – pointer to the LSRKStep memory block.

• stage_max – max number of stages used.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the LSRKStep memory was NULL

5.10.1.4 LSRKStep re-initialization function

To reinitialize the LSRKStep module for the solution of a new problem, where a prior call to LSRKStepCreat-
eSTS() or LSRKStepCreateSSP() has been made, the user must call the function LSRKStepReInitSTS() or LSRK-
StepReInitSSP(), accordingly. The new problem must have the same size as the previous one. This routine retains
the current settings for all LSRKstep module options and performs the same input checking and initializations that are
done in LSRKStepCreateSTS() or LSRKStepCreateSSP(), but it performs no memory allocation as it assumes that
the existing internal memory is sufficient for the new problem. A call to this re-initialization routine deletes the solution
history that was stored internally during the previous integration, and deletes any previously-set tstop value specified via
a call to ARKodeSetStopTime(). Following a successful call to LSRKStepReInitSTS() or LSRKStepReInitSSP(),
call ARKodeEvolve() again for the solution of the new problem.

One important use of the LSRKStepReInitSTS() and LSRKStepReInitSSP() function is in the treating of jump
discontinuities in the RHS function. Except in cases of fairly small jumps, it is usually more efficient to stop at each
point of discontinuity and restart the integrator with a readjusted ODE model, using a call to this routine. To stop when
the location of the discontinuity is known, simply make that location a value of tout. To stop when the location of
the discontinuity is determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS
function not incorporate the discontinuity, but rather have a smooth extension over the discontinuity, so that the step
across it (and subsequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS function
(communicated through user_data) that can be flipped between the stopping of the integration and the restart, so that

322 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

the restarted problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the
dependent variable vector.

int LSRKStepReInitSTS(void *arkode_mem, ARKRhsFn rhs, sunrealtype t0, N_Vector y0);
Provides required problem specifications and re-initializes the LSRKStep time-stepper module when using STS
methods.

Arguments:

• arkode_mem – pointer to the LSRKStep memory block.

• rhs – the name of the C function (of type ARKRhsFn()) defining the right-hand side function.

• t0 – the initial value of t.

• y0 – the initial condition vector y(t0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the LSRKStep memory was NULL

• ARK_MEM_FAIL if memory allocation failed

• ARK_NO_MALLOC if memory allocation failed

• ARK_CONTROLLER_ERR if unable to reset error controller object

• ARK_ILL_INPUT if an argument had an illegal value.

Note

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, LSRKStepReInitSTS() also sends an error message to the error handler function.

int LSRKStepReInitSSP(void *arkode_mem, ARKRhsFn rhs, sunrealtype t0, N_Vector y0);
Provides required problem specifications and re-initializes the LSRKStep time-stepper module when using SSP
methods.

Arguments:

• arkode_mem – pointer to the LSRKStep memory block.

• rhs – the name of the C function (of type ARKRhsFn()) defining the right-hand side function.

• t0 – the initial value of t.

• y0 – the initial condition vector y(t0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the LSRKStep memory was NULL

• ARK_MEM_FAIL if memory allocation failed

• ARK_NO_MALLOC if memory allocation failed

• ARK_CONTROLLER_ERR if unable to reset error controller object

• ARK_ILL_INPUT if an argument had an illegal value.

5.10. Using the LSRKStep time-stepping module 323

User Documentation for ARKODE, v6.3.0

Note

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, LSRKStepReInitSSP() also sends an error message to the error handler function.

5.10.2 User-supplied functions

In addition to the required ARKRhsFn arguments that define the IVP, RKL and RKC methods additionally require an
ARKDomEigFn function to estimate the dominant eigenvalue.

5.10.2.1 The dominant eigenvalue estimation

When running LSRKStep with either the RKC or RKL methods, the user must supply a dominant eigenvalue estimation
function of type ARKDomEigFn:

typedef int (*ARKDomEigFn)(sunrealtype t, N_Vector y, N_Vector fn, sunrealtype *lambdaR, sunrealtype *lambdaI,
void *user_data, N_Vector temp1, N_Vector temp2, N_Vector temp3);

These functions compute the dominant eigenvalue of the Jacobian of the ODE right-hand side for a given value
of the independent variable t and state vector y.

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector.

Param fn
the current value of the vector f(t, y).

Param lambdaR
The real part of the dominant eigenvalue.

Param lambdaI
The imaginary part of the dominant eigenvalue.

Param user_data
the user_data pointer that was passed to ARKodeSetUserData().

Param tmp*
pointers to memory allocated to variables of type N_Vector which can be used by an ARK-
DomEigFn as temporary storage or work space.

Return
An ARKDomEigFn should return 0 if successful and any nonzero for a failure.

324 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.11 Using the MRIStep time-stepping module

This section is concerned with the use of the MRIStep time-stepping module for the solution of initial value problems
(IVPs) in a C or C++ language setting. Usage of MRIStep follows that of the rest of ARKODE, and so in this section
we primarily focus on those usage aspects that are specific to MRIStep.

5.11.1 A skeleton of the user’s main program

While MRIStep usage generally follows the same pattern as the rest of ARKODE, since it involves the solution of both
MRIStep for the slow time scale and another time integrator for the fast time scale, we summarize the differences in
using MRIStep here. Steps that are unchanged from the skeleton program presented in §5.2 are italicized.

1. Initialize parallel or multi-threaded environment, if appropriate.

2. Create the SUNDIALS simulation context object

3. Set problem dimensions, etc.

4. Set vector of initial values

5. Create an inner stepper object to solve the fast (inner) IVP

• If using an ARKODE stepper module for the fast integrator, create and configure the stepper as normal
following the steps detailed in the section for the desired stepper.

Once the ARKODE stepper object is setup, create an MRIStepInnerStepper object with ARKodeCre-
ateMRIStepInnerStepper().

• If supplying a user-defined fast (inner) integrator, create the MRIStepInnerStepper object as described
in section §5.11.4.

Note

When using ARKStep as a fast (inner) integrator it is the user’s responsibility to create, configure, and attach
the integrator to the MRIStep module. User-specified options regarding how this fast integration should be
performed (e.g., adaptive vs. fixed time step, explicit/implicit/ImEx partitioning, algebraic solvers, etc.) will
be respected during evolution of the fast time scale during MRIStep integration.

Due to the algorithms supported in MRIStep, the ARKStep module used for the fast time scale must be
configured with an identity mass matrix.

If a user_data pointer needs to be passed to user functions called by the fast (inner) integrator then it should
be attached here by calling ARKodeSetUserData(). This user_data pointer will only be passed to user-
supplied functions that are attached to the fast (inner) integrator. To supply a user_data pointer to user-
supplied functions called by the slow (outer) integrator the desired pointer should be attached by calling
ARKodeSetUserData() after creating the MRIStep memory below. The user_data pointers attached to the
inner and outer integrators may be the same or different depending on what is required by the user code.

Specifying a rootfinding problem for the fast integration is not supported. Rootfinding problems should
be created and initialized with the slow integrator. See the steps below and ARKodeRootInit() for more
details.

6. Create an MRIStep object for the slow (outer) integration

Create the MRIStep object by calling MRIStepCreate(). One of the inputs to MRIStepCreate() is the MRIS-
tepInnerStepper object for solving the fast (inner) IVP created in the previous step.

5.11. Using the MRIStep time-stepping module 325

User Documentation for ARKODE, v6.3.0

7. If using fixed step sizes, then set the slow step size by calling ARKodeSetFixedStep() on the MRIStep object
to specify the slow time step size.

If using adaptive slow steps, then specify the desired integration tolerances as normal. By default, MRIStep will
use a “decoupled” (see §2.11.1.1) I controller (see §12.2), Alternately, create and attach a multirate temporal
controller (see §12.4).

8. Create and configure implicit solvers (as appropriate)

Specifically, if MRIStep is configured with an implicit slow right-hand side function in the prior step, then the
following steps are recommended:

1. Specify integration tolerances

2. Create matrix object

3. Create linear solver object

4. Set linear solver optional inputs

5. Attach linear solver module

6. Create nonlinear solver object

7. Attach nonlinear solver module

8. Set nonlinear solver optional inputs

9. Set optional inputs

10. Specify rootfinding problem

11. Advance solution in time

12. Get optional outputs

13. Deallocate memory for solution vector

14. Free solver memory

• If ARKStep was used as the fast (inner) IVP integrator, call MRIStepInnerStepper_Free() and ARKode-
Free() to free the memory allocated for the fast (inner) integrator.

• If a user-defined fast (inner) integrator was supplied, free the integrator content and call MRIStepInner-
Stepper_Free() to free the MRIStepInnerStepper object.

• Call ARKodeFree() to free the memory allocated for the MRIStep slow integration object.

15. Free linear solver and matrix memory (as appropriate)

16. Free nonlinear solver memory (as appropriate)

17. Free the SUNContext object

18. Finalize MPI, if used

326 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.11.2 MRIStep User-callable functions

This section describes the MRIStep-specific functions that may be called by the user to setup and then solve an IVP
using the MRIStep time-stepping module. The large majority of these routines merely wrap underlying ARKODE
functions, and are now deprecated – each of these are clearly marked. However, some of these user-callable functions
are specific to MRIStep, as explained below.

As discussed in the main ARKODE user-callable function introduction, each of ARKODE’s time-stepping modules
clarifies the categories of user-callable functions that it supports. MRIStep supports the following categories:

• temporal adaptivity

• implicit nonlinear and/or linear solvers

MRIStep also has forcing function support when converted to a SUNStepper or MRIStepInnerStepper. See
ARKodeCreateSUNStepper() and ARKStepCreateMRIStepInnerStepper() for additional details.

5.11.2.1 MRIStep initialization and deallocation functions

void *MRIStepCreate(ARKRhsFn fse, ARKRhsFn fsi, sunrealtype t0, N_Vector y0, MRIStepInnerStepper stepper,
SUNContext sunctx)

This function allocates and initializes memory for a problem to be solved using the MRIStep time-stepping
module in ARKODE.

Parameters

• fse – the name of the function (of type ARKRhsFn()) defining the explicit slow portion of
the right-hand side function in ẏ = fE(t, y) + f I(t, y) + fF (t, y).

• fsi – the name of the function (of type ARKRhsFn()) defining the implicit slow portion of
the right-hand side function in ẏ = fE(t, y) + f I(t, y) + fF (t, y).

• t0 – the initial value of t.

• y0 – the initial condition vector y(t0).

• stepper – an MRIStepInnerStepper for integrating the fast time scale.

• sunctx – the SUNContext object (see §4.2)

Returns
If successful, a pointer to initialized problem memory of type void*, to be passed to all user-
facing MRIStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an
error message will be printed to stderr.

Example usage:

/* fast (inner) and slow (outer) ARKODE objects */
void *inner_arkode_mem = NULL;
void *outer_arkode_mem = NULL;

/* MRIStepInnerStepper to wrap the inner (fast) object */
MRIStepInnerStepper stepper = NULL;

/* create an ARKODE object, setting fast (inner) right-hand side
functions and the initial condition */

inner_arkode_mem = *StepCreate(...);

/* configure the inner integrator */
(continues on next page)

5.11. Using the MRIStep time-stepping module 327

User Documentation for ARKODE, v6.3.0

(continued from previous page)

retval = ARKodeSet*(inner_arkode_mem, ...);

/* create MRIStepInnerStepper wrapper for the ARKODE integrator */
flag = ARKodeCreateMRIStepInnerStepper(inner_arkode_mem, &stepper);

/* create an MRIStep object, setting the slow (outer) right-hand side
functions and the initial condition */

outer_arkode_mem = MRIStepCreate(fse, fsi, t0, y0, stepper, sunctx)

Example codes:

• examples/arkode/C_serial/ark_brusselator_mri.c

• examples/arkode/C_serial/ark_twowaycouple_mri.c

• examples/arkode/C_serial/ark_brusselator_1D_mri.c

• examples/arkode/C_serial/ark_onewaycouple_mri.c

• examples/arkode/C_serial/ark_reaction_diffusion_mri.c

• examples/arkode/C_serial/ark_kpr_mri.c

• examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

• examples/arkode/CXX_serial/ark_test_kpr_nestedmri.cpp (uses MRIStep within itself)

void MRIStepFree(void **arkode_mem)
This function frees the problem memory arkode_mem created by MRIStepCreate().

Parameters

• arkode_mem – pointer to the MRIStep memory block.

Deprecated since version 6.1.0: Use ARKodeFree() instead.

5.11.2.2 MRIStep tolerance specification functions

int MRIStepSStolerances(void *arkode_mem, sunrealtype reltol, sunrealtype abstol)
This function specifies scalar relative and absolute tolerances.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• reltol – scalar relative tolerance.

• abstol – scalar absolute tolerance.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

• ARK_NO_MALLOC – if the MRIStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT – if an argument had an illegal value (e.g. a negative tolerance).

Deprecated since version 6.1.0: Use ARKodeSStolerances() instead.

328 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int MRIStepSVtolerances(void *arkode_mem, sunrealtype reltol, N_Vector abstol)
This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• reltol – scalar relative tolerance.

• abstol – vector containing the absolute tolerances for each solution component.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

• ARK_NO_MALLOC – if the MRIStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT – if an argument had an illegal value (e.g. a negative tolerance).

Deprecated since version 6.1.0: Use ARKodeSVtolerances() instead.

int MRIStepWFtolerances(void *arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• efun – the name of the function (of type ARKEwtFn()) that implements the error weight
vector computation.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

• ARK_NO_MALLOC – if the MRIStep memory was not allocated by the time-stepping module

Deprecated since version 6.1.0: Use ARKodeWFtolerances() instead.

5.11.2.3 Linear solver interface functions

int MRIStepSetLinearSolver(void *arkode_mem, SUNLinearSolver LS, SUNMatrix J)
This function specifies the SUNLinearSolver object that MRIStep should use, as well as a template Jacobian
SUNMatrix object (if applicable).

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• LS – the SUNLinearSolver object to use.

• J – the template Jacobian SUNMatrix object to use (or NULL if not applicable).

Return values

• ARKLS_SUCCESS – if successful

• ARKLS_MEM_NULL – if the MRIStep memory was NULL

• ARKLS_MEM_FAIL – if there was a memory allocation failure

5.11. Using the MRIStep time-stepping module 329

User Documentation for ARKODE, v6.3.0

• ARKLS_ILL_INPUT – if ARKLS is incompatible with the provided LS or J input objects, or
the current N_Vector module.

Note

If LS is a matrix-free linear solver, then the J argument should be NULL.

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process, so if
additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size (see the documentation of the particular SUNMATRIX
type in §9 for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full
sparsity pattern of the Newton system matrices A = I − γJ , even if J itself has zeros in nonzero locations
of I . The reasoning for this is thatA is constructed in-place, on top of the user-specified values of J, so if the
sparsity pattern in J is insufficient to store A then it will need to be resized internally by MRIStep.

Deprecated since version 6.1.0: Use ARKodeSetLinearSolver() instead.

5.11.2.4 Nonlinear solver interface functions

int MRIStepSetNonlinearSolver(void *arkode_mem, SUNNonlinearSolver NLS)
This function specifies the SUNNonlinearSolver object that MRIStep should use for implicit stage solves.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• NLS – the SUNNonlinearSolver object to use.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

• ARK_MEM_FAIL – if there was a memory allocation failure

• ARK_ILL_INPUT – if MRIStep is incompatible with the provided NLS input object.

Note

MRIStep will use the Newton SUNNonlinearSolver module by default; a call to this routine replaces that
module with the supplied NLS object.

Deprecated since version 6.1.0: Use ARKodeSetNonlinearSolver() instead.

330 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.11.2.5 Rootfinding initialization function

int MRIStepRootInit(void *arkode_mem, int nrtfn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
MRIStepCreate(), and before MRIStepEvolve().

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• nrtfn – number of functions gi, an integer ≥ 0.

• g – name of user-supplied function, of type ARKRootFn(), defining the functions gi whose
roots are sought.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

• ARK_MEM_FAIL – if there was a memory allocation failure

• ARK_ILL_INPUT – if nrtfn is greater than zero but g = NULL.

Note

To disable the rootfinding feature after it has already been initialized, or to free memory associated with
MRIStep’s rootfinding module, call MRIStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to MRIStepReInit(), where the new IVP has no rootfinding
problem but the prior one did, then call MRIStepRootInit with nrtfn = 0.

Rootfinding is only supported for the slow (outer) integrator and should not be activated for the fast (inner)
integrator.

Deprecated since version 6.1.0: Use ARKodeRootInit() instead.

5.11.2.6 MRIStep solver function

int MRIStepEvolve(void *arkode_mem, sunrealtype tout, N_Vector yout, sunrealtype *tret, int itask)
Integrates the ODE over an interval in t.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• tout – the next time at which a computed solution is desired.

• yout – the computed solution vector.

• tret – the time corresponding to yout (output).

• itask – a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken
a user-specified output time, tout, in the direction of integration, i.e. tn−1 < tout ≤ tn for
forward integration, or tn ≤ tout < tn−1 for backward integration. It will then compute an
approximation to the solution y(tout) by interpolation (as described in §2.2).

5.11. Using the MRIStep time-stepping module 331

User Documentation for ARKODE, v6.3.0

The ARK_ONE_STEP option tells the solver to only take a single internal step, yn−1 → yn,
and return the solution at that point, yn, in the vector yout.

Return values

• ARK_SUCCESS – if successful.

• ARK_ROOT_RETURN – if MRIStepEvolve() succeeded, and found one or more roots. If the
number of root functions, nrtfn, is greater than 1, call ARKodeGetRootInfo() to see which
gi were found to have a root at (*tret).

• ARK_TSTOP_RETURN – if MRIStepEvolve() succeeded and returned at tstop.

• ARK_MEM_NULL – if the arkode_mem argument was NULL.

• ARK_NO_MALLOC – if arkode_mem was not allocated.

• ARK_ILL_INPUT – if one of the inputs to MRIStepEvolve() is illegal, or some other input
to the solver was either illegal or missing. Details will be provided in the error message.
Typical causes of this failure:

(a) A component of the error weight vector became zero during internal time-stepping.

(b) The linear solver initialization function (called by the user after calling ARKStepCre-
ate()) failed to set the linear solver-specific lsolve field in arkode_mem.

(c) A root of one of the root functions was found both at a point t and also very near t.

• ARK_TOO_MUCH_WORK – if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

• ARK_CONV_FAILURE – if convergence test failures occurred too many times (ark_maxncf)
during one internal time step.

• ARK_LINIT_FAIL – if the linear solver’s initialization function failed.

• ARK_LSETUP_FAIL – if the linear solver’s setup routine failed in an unrecoverable manner.

• ARK_LSOLVE_FAIL – if the linear solver’s solve routine failed in an unrecoverable manner.

• ARK_VECTOROP_ERR – a vector operation error occurred.

• ARK_INNERSTEP_FAILED – if the inner stepper returned with an unrecoverable error. The
value returned from the inner stepper can be obtained with MRIStepGetLastInner-
StepFlag().

• ARK_INVALID_TABLE – if an invalid coupling table was provided.

Note

The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
MRIStepCreate().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale
of the independent variable.

All failure return values are negative and so testing the return argument for negative values will trap all
MRIStepEvolve() failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to MRIStepSetStopTime() before the call to MRIStepEvolve() to specify a fixed
stop time to end the time step and return to the user. Upon return from MRIStepEvolve(), a copy of the
internal solution yn will be returned in the vector yout. Once the integrator returns at a tstop time, any future
testing for tstop is disabled (and can be re-enabled only though a new call to MRIStepSetStopTime()).

332 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

On any error return in which one or more internal steps were taken by MRIStepEvolve(), the returned
values of tret and yout correspond to the farthest point reached in the integration. On all other error returns,
tret and yout are left unchanged from those provided to the routine.

Deprecated since version 6.1.0: Use ARKodeEvolve() instead.

5.11.2.7 Optional input functions

Optional inputs for MRIStep

int MRIStepSetDefaults(void *arkode_mem)
Resets all optional input parameters to MRIStep’s original default values.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

This function does not change problem-defining function pointers fs and ff or the user_data pointer. It also
does not affect any data structures or options related to root-finding (those can be reset using MRIStepRoo-
tInit()).

Deprecated since version 6.1.0: Use ARKodeSetDefaults() instead.

int MRIStepSetInterpolantType(void *arkode_mem, int itype)
Deprecated since version 6.1.0: This function is now a wrapper to ARKodeSetInterpolantType(), see the
documentation for that function instead.

int MRIStepSetInterpolantDegree(void *arkode_mem, int degree)
Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• degree – requested polynomial degree.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory or interpolation module are NULL

• ARK_INTERP_FAIL – if this is called after MRIStepEvolve()

• ARK_ILL_INPUT – if an argument has an illegal value or the interpolation module has already
been initialized

5.11. Using the MRIStep time-stepping module 333

User Documentation for ARKODE, v6.3.0

Note

Allowed values are between 0 and 5.

This routine should be called after MRIStepCreate() and before MRIStepEvolve(). After the first call to
MRIStepEvolve() the interpolation degree may not be changed without first calling MRIStepReInit().

If a user calls both this routine and MRIStepSetInterpolantType(), then MRIStepSetInterpolant-
Type() must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on
which it is based, the actual polynomial degree that is used by MRIStep will be the minimum of q − 1 and
the input degree, for q > 1 where q is the order of accuracy for the time integration method.

Changed in version 5.5.1: When q = 1, a linear interpolant is the default to ensure values obtained by the
integrator are returned at the ends of the time interval.

Deprecated since version 6.1.0: Use ARKodeSetInterpolantDegree() instead.

int MRIStepSetDenseOrder(void *arkode_mem, int dord)
Deprecated since version 5.2.0: Use ARKodeSetInterpolantDegree() instead.

int MRIStepSetDiagnostics(void *arkode_mem, FILE *diagfp)
Specifies the file pointer for a diagnostics file where all MRIStep step adaptivity and solver information is written.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• diagfp – pointer to the diagnostics output file.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to a
unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer, all
diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from all
processes would be identical.

Deprecated since version 5.2.0: Use SUNLogger_SetInfoFilename() instead.

int MRIStepSetFixedStep(void *arkode_mem, sunrealtype hs)
Set the slow step size used within MRIStep for the following internal step(s).

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• hs – value of the outer (slow) step size.

Return values

334 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

The step sizes used by the inner (fast) stepper may be controlled through calling the appropriate “Set” routines
on the inner integrator.

Deprecated since version 6.1.0: Use ARKodeSetFixedStep() instead.

int MRIStepSetMaxHnilWarns(void *arkode_mem, int mxhnil)
Specifies the maximum number of messages issued by the solver to warn that t+h = t on the next internal step,
before MRIStep will instead return with an error.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• mxhnil – maximum allowed number of warning messages (> 0).

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

Deprecated since version 6.1.0: Use ARKodeSetMaxHnilWarns() instead.

int MRIStepSetMaxNumSteps(void *arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before MRIStep will return with an error.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• mxsteps – maximum allowed number of internal steps.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

Passing mxsteps = 0 results in MRIStep using the default value (500).

5.11. Using the MRIStep time-stepping module 335

User Documentation for ARKODE, v6.3.0

Passing mxsteps < 0 disables the test (not recommended).

Deprecated since version 6.1.0: Use ARKodeSetMaxNumSteps() instead.

int MRIStepSetStopTime(void *arkode_mem, sunrealtype tstop)
Specifies the value of the independent variable t past which the solution is not to proceed.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• tstop – stopping time for the integrator.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

The default is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be re-enabled
only though a new call to MRIStepSetStopTime()).

A stop time not reached before a call to MRIStepReInit() or MRIStepReset() will remain active but can
be disabled by calling MRIStepClearStopTime().

Deprecated since version 6.1.0: Use ARKodeSetStopTime() instead.

int MRIStepSetInterpolateStopTime(void *arkode_mem, sunbooleantype interp)
Specifies that the output solution should be interpolated when the current t equals the specified tstop (instead
of merely copying the internal solution yn).

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• interp – flag indicating to use interpolation (1) or copy (0).

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetInterpolateStopTime() instead.

int MRIStepClearStopTime(void *arkode_mem)
Disables the stop time set with MRIStepSetStopTime().

Parameters

• arkode_mem – pointer to the MRIStep memory block.

Return values

• ARK_SUCCESS – if successful

336 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_MEM_NULL – if the MRIStep memory is NULL

Note

The stop time can be re-enabled though a new call to MRIStepSetStopTime().

Added in version 5.5.1.

Deprecated since version 6.1.0: Use ARKodeClearStopTime() instead.

int MRIStepSetUserData(void *arkode_mem, void *user_data)
Specifies the user data block user_data for the outer integrator and attaches it to the main MRIStep memory
block.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• user_data – pointer to the user data.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

If specified, the pointer to user_data is passed to all user-supplied functions called by the outer integrator for
which it is an argument; otherwise NULL is passed.

To attach a user data block to the inner integrator call the appropriate SetUserData function for the inner
integrator memory structure (e.g., ARKStepSetUserData() if the inner stepper is ARKStep). This pointer
may be the same as or different from the pointer attached to the outer integrator depending on what is required
by the user code.

Deprecated since version 6.1.0: Use ARKodeSetUserData() instead.

int MRIStepSetPreInnerFn(void *arkode_mem, MRIStepPreInnerFn prefn)
Specifies the function called before each inner integration.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• prefn – the name of the C function (of type MRIStepPreInnerFn()) defining pre inner
integration function.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

int MRIStepSetPostInnerFn(void *arkode_mem, MRIStepPostInnerFn postfn)
Specifies the function called after each inner integration.

Parameters

5.11. Using the MRIStep time-stepping module 337

User Documentation for ARKODE, v6.3.0

• arkode_mem – pointer to the MRIStep memory block.

• postfn – the name of the C function (of type MRIStepPostInnerFn()) defining post inner
integration function.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

Optional inputs for IVP method selection

Table 5.4: Optional inputs for IVP method selection

Optional input Function name Default
Select the default MRI method of a given order MRIStepSetOrder() 3
Set MRI coupling coefficients MRIStepSetCoupling() internal

int MRIStepSetOrder(void *arkode_mem, int ord)
Select the default MRI method of a given order.

The default order is 3. An order less than 1 will result in using the default.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• ord – the method order.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

Deprecated since version 6.1.0: Use ARKodeSetOrder() instead.

int MRIStepSetCoupling(void *arkode_mem, MRIStepCoupling C)
Specifies a customized set of slow-to-fast coupling coefficients for the MRI method.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• C – the table of coupling coefficients for the MRI method.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

For a description of the MRIStepCoupling type and related functions for creating Butcher tables see §5.11.3.

338 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Warning

This should not be used with ARKodeSetOrder().

Optional inputs for implicit stage solves

int MRIStepSetLinear(void *arkode_mem, int timedepend)
Specifies that the implicit slow right-hand side function, f I(t, y) is linear in y.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• timedepend – flag denoting whether the Jacobian of f I(t, y) is time-dependent (1) or not
(0). Alternately, when using a matrix-free iterative linear solver this flag denotes time de-
pendence of the preconditioner.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

Tightens the linear solver tolerances and takes only a single Newton iteration. Calls MRIStepSetDeltaGam-
maMax() to enforce Jacobian recomputation when the step size ratio changes by more than 100 times the unit
roundoff (since nonlinear convergence is not tested). Only applicable when used in combination with the
modified or inexact Newton iteration (not the fixed-point solver).

The only SUNDIALS-provided SUNNonlinearSolver module that is compatible with the MRIStepSetLin-
ear() option is the Newton solver.

Deprecated since version 6.1.0: Use ARKodeSetLinear() instead.

int MRIStepSetNonlinear(void *arkode_mem)
Specifies that the implicit slow right-hand side function, f I(t, y) is nonlinear in y.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

This is the default behavior of MRIStep, so the function is primarily useful to undo a previous call to MRIS-
tepSetLinear(). Calls MRIStepSetDeltaGammaMax() to reset the step size ratio threshold to the default
value.

5.11. Using the MRIStep time-stepping module 339

User Documentation for ARKODE, v6.3.0

Deprecated since version 6.1.0: Use ARKodeSetNonlinear() instead.

int MRIStepSetPredictorMethod(void *arkode_mem, int method)
Specifies the method to use for predicting implicit solutions.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• method – the predictor method

– 0 is the trivial predictor,

– 1 is the maximum order (dense output) predictor,

– 2 is the variable order predictor, that decreases the polynomial degree for more distant RK
stages,

– 3 is the cutoff order predictor, that uses the maximum order for early RK stages, and a
first-order predictor for distant RK stages,

– 4 is the bootstrap predictor, that uses a second-order predictor based on only information
within the current step. deprecated

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

The default value is 0. If method is set to an undefined value, this default predictor will be used.

Warning

The “bootstrap” predictor (option 4 above) has been deprecated, and will be removed from a future release.

Deprecated since version 6.1.0: Use ARKodeSetPredictorMethod() instead.

int MRIStepSetMaxNonlinIters(void *arkode_mem, int maxcor)
Specifies the maximum number of nonlinear solver iterations permitted per slow MRI stage within each time
step.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• maxcor – maximum allowed solver iterations per stage (> 0).

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value or if the SUNNONLINSOL module
is NULL

• ARK_NLS_OP_ERR – if the SUNNONLINSOL object returned a failure flag

340 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Note

The default value is 3; set maxcor ≤ 0 to specify this default.

Deprecated since version 6.1.0: Use ARKodeSetMaxNonlinIters() instead.

int MRIStepSetNonlinConvCoef(void *arkode_mem, sunrealtype nlscoef)
Specifies the safety factor used within the nonlinear solver convergence test.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• nlscoef – coefficient in nonlinear solver convergence test (> 0.0).

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

The default value is 0.1; set nlscoef ≤ 0 to specify this default.

Deprecated since version 6.1.0: Use ARKodeSetNonlinConvCoef() instead.

int MRIStepSetNonlinCRDown(void *arkode_mem, sunrealtype crdown)
Specifies the constant used in estimating the nonlinear solver convergence rate.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• crdown – nonlinear convergence rate estimation constant (default is 0.3).

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetNonlinCRDown() instead.

int MRIStepSetNonlinRDiv(void *arkode_mem, sunrealtype rdiv)
Specifies the nonlinear correction threshold beyond which the iteration will be declared divergent.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• rdiv – tolerance on nonlinear correction size ratio to declare divergence (default is 2.3).

5.11. Using the MRIStep time-stepping module 341

User Documentation for ARKODE, v6.3.0

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetNonlinRDiv() instead.

int MRIStepSetStagePredictFn(void *arkode_mem, ARKStagePredictFn PredictStage)
Sets the user-supplied function to update the implicit stage predictor prior to execution of the nonlinear or linear
solver algorithms that compute the implicit stage solution.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• PredictStage – name of user-supplied predictor function. If NULL, then any previously-
provided stage prediction function will be disabled.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

Note

See §5.4.6 for more information on this user-supplied routine.

Deprecated since version 6.1.0: Use ARKodeSetStagePredictFn() instead.

int MRIStepSetNlsRhsFn(void *arkode_mem, ARKRhsFn nls_fs)
Specifies an alternative implicit slow right-hand side function for evaluating f I(t, y) within nonlinear system
function evaluations.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• nls_fs – the alternative C function for computing the right-hand side function f I(t, y) in
the ODE.

Return values

• ARK_SUCCESS – if successful.

• ARK_MEM_NULL – if the MRIStep memory was NULL.

Note

The default is to use the implicit slow right-hand side function provided to MRIStepCreate() in nonlinear
system functions. If the input implicit slow right-hand side function is NULL, the default is used.

342 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

When using a non-default nonlinear solver, this function must be called after MRIStepSetNonlinear-
Solver().

Deprecated since version 6.1.0: Use ARKodeSetNlsRhsFn() instead.

int MRIStepSetDeduceImplicitRhs(void *arkode_mem, sunbooleantype deduce)
Specifies if implicit stage derivatives are deduced without evaluating f I . See §2.15.1 for more details.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• deduce – If SUNFALSE (default), the stage derivative is obtained by evaluating f I with the
stage solution returned from the nonlinear solver. If SUNTRUE, the stage derivative is deduced
without an additional evaluation of f I .

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

Added in version 5.2.0.

Deprecated since version 6.1.0: Use ARKodeSetDeduceImplicitRhs() instead.

Linear solver interface optional input functions

Optional inputs for the ARKLS linear solver interface

int MRIStepSetDeltaGammaMax(void *arkode_mem, sunrealtype dgmax)
Specifies a scaled step size ratio tolerance, beyond which the linear solver setup routine will be signaled.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• dgmax – tolerance on step size ratio change before calling linear solver setup routine (default
is 0.2).

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetDeltaGammaMax() instead.

int MRIStepSetLSetupFrequency(void *arkode_mem, int msbp)
Specifies the frequency of calls to the linear solver setup routine.

Parameters

5.11. Using the MRIStep time-stepping module 343

User Documentation for ARKODE, v6.3.0

• arkode_mem – pointer to the MRIStep memory block.

• msbp – the linear solver setup frequency.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

Note

Positive values of msbp specify the linear solver setup frequency. For example, an input of 1 means the setup
function will be called every time step while an input of 2 means it will be called called every other time step.
If msbp is 0, the default value of 20 will be used. A negative value forces a linear solver step at each implicit
stage.

Deprecated since version 6.1.0: Use ARKodeSetLSetupFrequency() instead.

int MRIStepSetJacEvalFrequency(void *arkode_mem, long int msbj)
Specifies the frequency for recomputing the Jacobian or recommending a preconditioner update.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• msbj – the Jacobian re-computation or preconditioner update frequency.

Return values

• ARKLS_SUCCESS – if successful.

• ARKLS_MEM_NULL – if the MRIStep memory was NULL.

• ARKLS_LMEM_NULL – if the linear solver memory was NULL.

Note

The Jacobian update frequency is only checked within calls to the linear solver setup routine, as such values
of msbj < msbp will result in recomputing the Jacobian every msbp steps. See MRIStepSetLSetupFre-
quency() for setting the linear solver setup frequency msbp.

Passing a value msbj ≤ 0 indicates to use the default value of 50.

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

Deprecated since version 6.1.0: Use ARKodeSetJacEvalFrequency() instead.

344 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Optional inputs for matrix-based SUNLinearSolver modules

int MRIStepSetJacFn(void *arkode_mem, ARKLsJacFn jac)
Specifies the Jacobian approximation routine to be used for the matrix-based solver with the ARKLS interface.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• jac – name of user-supplied Jacobian approximation function.

Return values

• ARKLS_SUCCESS – if successful

• ARKLS_MEM_NULL – if the MRIStep memory was NULL

• ARKLS_LMEM_NULL – if the linear solver memory was NULL

Note

This routine must be called after the ARKLS linear solver interface has been initialized through a call to
MRIStepSetLinearSolver().

By default, ARKLS uses an internal difference quotient function for dense and band matrices. If NULL is
passed in for jac, this default is used. An error will occur if no jac is supplied when using other matrix types.

The function type ARKLsJacFn() is described in §5.4.

Deprecated since version 6.1.0: Use ARKodeSetJacFn() instead.

int MRIStepSetLinSysFn(void *arkode_mem, ARKLsLinSysFn linsys)
Specifies the linear system approximation routine to be used for the matrix-based solver with the ARKLS inter-
face.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• linsys – name of user-supplied linear system approximation function.

Return values

• ARKLS_SUCCESS – if successful

• ARKLS_MEM_NULL – if the MRIStep memory was NULL

• ARKLS_LMEM_NULL – if the linear solver memory was NULL

Note

This routine must be called after the ARKLS linear solver interface has been initialized through a call to
MRIStepSetLinearSolver().

By default, ARKLS uses an internal linear system function that leverages the SUNMATRIX API to form the
system I − γJ . If NULL is passed in for linsys, this default is used.

The function type ARKLsLinSysFn() is described in §5.4.

Deprecated since version 6.1.0: Use ARKodeSetLinSysFn() instead.

5.11. Using the MRIStep time-stepping module 345

User Documentation for ARKODE, v6.3.0

int MRIStepSetLinearSolutionScaling(void *arkode_mem, sunbooleantype onoff)
Enables or disables scaling the linear system solution to account for a change in γ in the linear system. For more
details see §10.2.1.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• onoff – flag to enable (SUNTRUE) or disable (SUNFALSE) scaling

Return values

• ARKLS_SUCCESS – if successful

• ARKLS_MEM_NULL – if the MRIStep memory was NULL

• ARKLS_ILL_INPUT – if the attached linear solver is not matrix-based

Note

Linear solution scaling is enabled by default when a matrix-based linear solver is attached.

Deprecated since version 6.1.0: Use ARKodeSetLinearSolutionScaling() instead.

Optional inputs for matrix-free SUNLinearSolver modules

int MRIStepSetJacTimes(void *arkode_mem, ARKLsJacTimesSetupFn jtsetup, ARKLsJacTimesVecFn jtimes)
Specifies the Jacobian-times-vector setup and product functions.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• jtsetup – user-defined Jacobian-vector setup function. Pass NULL if no setup is necessary.

• jtimes – user-defined Jacobian-vector product function.

Return values

• ARKLS_SUCCESS – if successful.

• ARKLS_MEM_NULL – if the MRIStep memory was NULL.

• ARKLS_LMEM_NULL – if the linear solver memory was NULL.

• ARKLS_ILL_INPUT – if an input has an illegal value.

• ARKLS_SUNLS_FAIL – if an error occurred when setting up the Jacobian-vector product in
the SUNLinearSolver object used by the ARKLS interface.

Note

The default is to use an internal finite difference quotient for jtimes and to leave out jtsetup. If NULL is passed
to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup inputs.

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

The function types ARKLsJacTimesSetupFn and ARKLsJacTimesVecFn are described in §5.4.

346 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Deprecated since version 6.1.0: Use ARKodeSetJacTimes() instead.

int MRIStepSetJacTimesRhsFn(void *arkode_mem, ARKRhsFn jtimesRhsFn)
Specifies an alternative implicit right-hand side function for use in the internal Jacobian-vector product difference
quotient approximation.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• jtimesRhsFn – the name of the C function defining the alternative right-hand side function.

Return values

• ARKLS_SUCCESS – if successful.

• ARKLS_MEM_NULL – if the MRIStep memory was NULL.

• ARKLS_LMEM_NULL – if the linear solver memory was NULL.

• ARKLS_ILL_INPUT – if an input has an illegal value.

Note

The default is to use the implicit right-hand side function provided to MRIStepCreate() in the internal
difference quotient. If the input implicit right-hand side function is NULL, the default is used.

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

Deprecated since version 6.1.0: Use ARKodeSetJacTimesRhsFn() instead.

Optional inputs for iterative SUNLinearSolver modules

int MRIStepSetPreconditioner(void *arkode_mem, ARKLsPrecSetupFn psetup, ARKLsPrecSolveFn psolve)
Specifies the user-supplied preconditioner setup and solve functions.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• psetup – user defined preconditioner setup function. Pass NULL if no setup is needed.

• psolve – user-defined preconditioner solve function.

Return values

• ARKLS_SUCCESS – if successful.

• ARKLS_MEM_NULL – if the MRIStep memory was NULL.

• ARKLS_LMEM_NULL – if the linear solver memory was NULL.

• ARKLS_ILL_INPUT – if an input has an illegal value.

• ARKLS_SUNLS_FAIL – if an error occurred when setting up preconditioning in the SUNLin-
earSolver object used by the ARKLS interface.

5.11. Using the MRIStep time-stepping module 347

User Documentation for ARKODE, v6.3.0

Note

The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

Both of the function types ARKLsPrecSetupFn() and ARKLsPrecSolveFn() are described in §5.4.

Deprecated since version 6.1.0: Use ARKodeSetPreconditioner() instead.

int MRIStepSetEpsLin(void *arkode_mem, sunrealtype eplifac)
Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the linear
iteration.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• eplifac – linear convergence safety factor.

Return values

• ARKLS_SUCCESS – if successful.

• ARKLS_MEM_NULL – if the MRIStep memory was NULL.

• ARKLS_LMEM_NULL – if the linear solver memory was NULL.

• ARKLS_ILL_INPUT – if an input has an illegal value.

Note

Passing a value eplifac ≤ 0 indicates to use the default value of 0.05.

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

Deprecated since version 6.1.0: Use ARKodeSetEpsLin() instead.

int MRIStepSetLSNormFactor(void *arkode_mem, sunrealtype nrmfac)
Specifies the factor to use when converting from the integrator tolerance (WRMS norm) to the linear solver
tolerance (L2 norm) for Newton linear system solves e.g., tol_L2 = fac * tol_WRMS.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• nrmfac – the norm conversion factor. If nrmfac is:

> 0 then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac =
sqrt(N_VGetLength(y)) (default).

< 0 then the conversion factor is computed using the vector dot product i.e., nrmfac =
sqrt(N_VDotProd(v,v)) where all the entries of v are one.

Return values

• ARK_SUCCESS – if successful.

348 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_MEM_NULL – if the MRIStep memory was NULL.

Note

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

Deprecated since version 6.1.0: Use ARKodeSetLSNormFactor() instead.

Rootfinding optional input functions

int MRIStepSetRootDirection(void *arkode_mem, int *rootdir)
Specifies the direction of zero-crossings to be located and returned.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• rootdir – state array of length nrtfn, the number of root functions gi (the value of nrtfn was
supplied in the call to MRIStepRootInit()). If rootdir[i] == 0 then crossing in either
direction for gi should be reported. A value of +1 or -1 indicates that the solver should report
only zero-crossings where gi is increasing or decreasing, respectively.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

The default behavior is to monitor for both zero-crossing directions.

Deprecated since version 6.1.0: Use ARKodeSetRootDirection() instead.

int MRIStepSetNoInactiveRootWarn(void *arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory is NULL

Note

MRIStep will not report the initial conditions as a possible zero-crossing (assuming that one or more com-
ponents gi are zero at the initial time). However, if it appears that some gi is identically zero at the initial
time (i.e., gi is zero at the initial time and after the first step), MRIStep will issue a warning which can be
disabled with this optional input function.

5.11. Using the MRIStep time-stepping module 349

User Documentation for ARKODE, v6.3.0

Deprecated since version 6.1.0: Use ARKodeSetNoInactiveRootWarn() instead.

5.11.2.8 Interpolated output function

int MRIStepGetDky(void *arkode_mem, sunrealtype t, int k, N_Vector dky)
Computes the k-th derivative of the function y at the time t, i.e. y(k)(t), for values of the independent variable
satisfying tn − hn ≤ t ≤ tn, with tn as current internal time reached, and hn is the last internal step size
successfully used by the solver. This routine uses an interpolating polynomial of degree min(degree, 5), where
degree is the argument provided to MRIStepSetInterpolantDegree(). The user may request k in the range
{0,. . . , min(degree, kmax)} where kmax depends on the choice of interpolation module. For Hermite interpolants
kmax = 5 and for Lagrange interpolants kmax = 3.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• t – the value of the independent variable at which the derivative is to be evaluated.

• k – the derivative order requested.

• dky – output vector (must be allocated by the user).

Return values

• ARK_SUCCESS – if successful

• ARK_BAD_K – if k is not in the range {0,. . . , min(degree, kmax)}.

• ARK_BAD_T – if t is not in the interval [tn − hn, tn]

• ARK_BAD_DKY – if the dky vector was NULL

• ARK_MEM_NULL – if the MRIStep memory is NULL

Note

It is only legal to call this function after a successful return from MRIStepEvolve().

A user may access the values tn and hn via the functions MRIStepGetCurrentTime() and MRIStepGet-
LastStep(), respectively.

Deprecated since version 6.1.0: Use ARKodeGetDky() instead.

5.11.2.9 Optional output functions

Main solver optional output functions

int MRIStepGetNumInnerStepperFails(void *arkode_mem, long int *inner_fails)
Returns the number of recoverable failures reported by the inner stepper (so far).

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• inner_fails – number of failed fast (inner) integrations.

Return values

• ARK_SUCCESS – if successful

350 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_MEM_NULL – if the MRIStep memory was NULL

Added in version 6.2.0.

int MRIStepGetWorkSpace(void *arkode_mem, long int *lenrw, long int *leniw)
Returns the MRIStep real and integer workspace sizes.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• lenrw – the number of realtype values in the MRIStep workspace.

• leniw – the number of integer values in the MRIStep workspace.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetWorkSpace() instead.

int MRIStepGetNumSteps(void *arkode_mem, long int *nssteps, long int *nfsteps)
Returns the cumulative number of slow and fast internal steps taken by the solver (so far).

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• nssteps – number of slow steps taken in the solver.

• nfsteps – number of fast steps taken in the solver.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumSteps() instead.

int MRIStepGetLastStep(void *arkode_mem, sunrealtype *hlast)
Returns the integration step size taken on the last successful internal step.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• hlast – step size taken on the last internal step.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetLastStep() instead.

int MRIStepGetCurrentTime(void *arkode_mem, sunrealtype *tcur)
Returns the current internal time reached by the solver.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• tcur – current internal time reached.

Return values

5.11. Using the MRIStep time-stepping module 351

User Documentation for ARKODE, v6.3.0

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetCurrentTime() instead.

int MRIStepGetCurrentState(void *arkode_mem, N_Vector *ycur)
Returns the current internal solution reached by the solver.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• ycur – current internal solution.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Note

Users should exercise extreme caution when using this function, as altering values of ycur may lead to un-
desirable behavior, depending on the particular use case and on when this routine is called.

Deprecated since version 6.1.0: Use ARKodeGetCurrentState() instead.

int MRIStepGetCurrentGamma(void *arkode_mem, sunrealtype *gamma)
Returns the current internal value of γ used in the implicit solver Newton matrix (see equation (2.47)).

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• gamma – current step size scaling factor in the Newton system.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetCurrentGamma() instead.

int MRIStepGetTolScaleFactor(void *arkode_mem, sunrealtype *tolsfac)
Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• tolsfac – suggested scaling factor for user-supplied tolerances.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetTolScaleFactor() instead.

352 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int MRIStepGetErrWeights(void *arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• eweight – solution error weights at the current time.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Note

The user must allocate space for eweight, that will be filled in by this function.

Deprecated since version 6.1.0: Use ARKodeGetErrWeights() instead.

int MRIStepPrintAllStats(void *arkode_mem, FILE *outfile, SUNOutputFormat fmt)
Outputs all of the integrator, nonlinear solver, linear solver, and other statistics.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• outfile – pointer to output file.

• fmt – the output format:

– SUN_OUTPUTFORMAT_TABLE – prints a table of values

– SUN_OUTPUTFORMAT_CSV – prints a comma-separated list of key and value pairs e.g.,
key1,value1,key2,value2,...

Return values

• ARK_SUCCESS – if the output was successfully.

• ARK_MEM_NULL – if the MRIStep memory was NULL.

• ARK_ILL_INPUT – if an invalid formatting option was provided.

Note

The Python module tools/suntools provides utilities to read and output the data from a SUNDIALS CSV
output file using the key and value pair format.

Added in version 5.2.0.

Deprecated since version 6.1.0: Use ARKodePrintAllStats() instead.

char *MRIStepGetReturnFlagName(long int flag)
Returns the name of the MRIStep constant corresponding to flag. See ARKODE Constants.

Parameters

• flag – a return flag from an MRIStep function.

5.11. Using the MRIStep time-stepping module 353

User Documentation for ARKODE, v6.3.0

Returns
A string containing the name of the corresponding constant.

Deprecated since version 6.1.0: Use ARKodeGetReturnFlagName() instead.

int MRIStepGetNumRhsEvals(void *arkode_mem, long int *nfse_evals, long int *nfsi_evals)
Returns the number of calls to the user’s outer (slow) right-hand side functions, fE and f I , so far.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• nfse_evals – number of calls to the user’s fE(t, y) function.

• nfsi_evals – number of calls to the user’s f I(t, y) function.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Deprecated since version 6.2.0: Use ARKodeGetNumRhsEvals() instead.

int MRIStepGetNumStepSolveFails(void *arkode_mem, long int *ncnf)
Returns the number of failed steps due to a nonlinear solver failure (so far).

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• ncnf – number of step failures.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumStepSolveFails() instead.

int MRIStepGetCurrentCoupling(void *arkode_mem, MRIStepCoupling *C)
Returns the MRI coupling table currently in use by the solver.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• C – pointer to slow-to-fast MRI coupling structure.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Note

The MRIStepCoupling data structure is defined in the header file arkode/arkode_mristep.h. For more
details see §5.11.3.

int MRIStepGetLastInnerStepFlag(void *arkode_mem, int *flag)
Returns the last return value from the inner stepper.

Parameters

354 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• arkode_mem – pointer to the MRIStep memory block.

• flag – inner stepper return value.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

int MRIStepGetUserData(void *arkode_mem, void **user_data)
Returns the user data pointer previously set with MRIStepSetUserData().

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• user_data – memory reference to a user data pointer

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the ARKStep memory was NULL

Added in version 5.3.0.

Deprecated since version 6.1.0: Use ARKodeGetUserData() instead.

Implicit solver optional output functions

int MRIStepGetNumLinSolvSetups(void *arkode_mem, long int *nlinsetups)
Returns the number of calls made to the linear solver’s setup routine (so far).

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• nlinsetups – number of linear solver setup calls made.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Note

This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to MRIStep, or when MRIStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumLinSolvSetups() instead.

int MRIStepGetNumNonlinSolvIters(void *arkode_mem, long int *nniters)
Returns the number of nonlinear solver iterations performed (so far).

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• nniters – number of nonlinear iterations performed.

Return values

5.11. Using the MRIStep time-stepping module 355

User Documentation for ARKODE, v6.3.0

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

• ARK_NLS_OP_ERR – if the SUNNONLINSOL object returned a failure flag

Note

This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to MRIStep, or when MRIStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumNonlinSolvIters() instead.

int MRIStepGetNumNonlinSolvConvFails(void *arkode_mem, long int *nncfails)
Returns the number of nonlinear solver convergence failures that have occurred (so far).

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• nncfails – number of nonlinear convergence failures.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Note

This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to MRIStep, or when MRIStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumNonlinSolvConvFails() instead.

int MRIStepGetNonlinSolvStats(void *arkode_mem, long int *nniters, long int *nncfails)
Returns all of the nonlinear solver statistics in a single call.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• nniters – number of nonlinear iterations performed.

• nncfails – number of nonlinear convergence failures.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

• ARK_NLS_OP_ERR – if the SUNNONLINSOL object returned a failure flag

Note

These are only accumulated for the “life” of the nonlinear solver object; the counters are reset whenever a
new nonlinear solver module is “attached” to MRIStep, or when MRIStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNonlinSolvStats() instead.

356 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Rootfinding optional output functions

int MRIStepGetRootInfo(void *arkode_mem, int *rootsfound)
Returns an array showing which functions were found to have a root.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• rootsfound – array of length nrtfn with the indices of the user functions gi found to have
a root (the value of nrtfn was supplied in the call to MRIStepRootInit()). For i = 0 . . .
nrtfn-1, rootsfound[i] is nonzero if gi has a root, and 0 if not.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Note

The user must allocate space for rootsfound prior to calling this function.

For the components of gi for which a root was found, the sign of rootsfound[i] indicates the direction of
zero-crossing. A value of +1 indicates that gi is increasing, while a value of -1 indicates a decreasing gi.

Deprecated since version 6.1.0: Use ARKodeGetRootInfo() instead.

int MRIStepGetNumGEvals(void *arkode_mem, long int *ngevals)
Returns the cumulative number of calls made to the user’s root function g.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• ngevals – number of calls made to g so far.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumGEvals() instead.

Linear solver interface optional output functions

int MRIStepGetJac(void *arkode_mem, SUNMatrix *J)
Returns the internally stored copy of the Jacobian matrix of the ODE implicit slow right-hand side function.

Parameters

• arkode_mem – the MRIStep memory structure

• J – the Jacobian matrix

Return values

• ARKLS_SUCCESS – the output value has been successfully set

• ARKLS_MEM_NULL – arkode_mem was NULL

5.11. Using the MRIStep time-stepping module 357

User Documentation for ARKODE, v6.3.0

• ARKLS_LMEM_NULL – the linear solver interface has not been initialized

Warning

This function is provided for debugging purposes and the values in the returned matrix should not be altered.

Deprecated since version 6.1.0: Use ARKodeGetJac() instead.

int MRIStepGetJacTime(void *arkode_mem, sunrealtype *t_J)
Returns the time at which the internally stored copy of the Jacobian matrix of the ODE implicit slow right-hand
side function was evaluated.

Parameters

• arkode_mem – the MRIStep memory structure

• t_J – the time at which the Jacobian was evaluated

Return values

• ARKLS_SUCCESS – the output value has been successfully set

• ARKLS_MEM_NULL – arkode_mem was NULL

• ARKLS_LMEM_NULL – the linear solver interface has not been initialized

Deprecated since version 6.1.0: Use ARKodeGetJacTime() instead.

int MRIStepGetJacNumSteps(void *arkode_mem, long int *nst_J)
Returns the value of the internal step counter at which the internally stored copy of the Jacobian matrix of the
ODE implicit slow right-hand side function was evaluated.

Parameters

• arkode_mem – the MRIStep memory structure

• nst_J – the value of the internal step counter at which the Jacobian was evaluated

Return values

• ARKLS_SUCCESS – the output value has been successfully set

• ARKLS_MEM_NULL – arkode_mem was NULL

• ARKLS_LMEM_NULL – the linear solver interface has not been initialized

Deprecated since version 6.1.0: Use ARKodeGetJacNumSteps() instead.

int MRIStepGetLinWorkSpace(void *arkode_mem, long int *lenrwLS, long int *leniwLS)
Returns the real and integer workspace used by the ARKLS linear solver interface.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• lenrwLS – the number of realtype values in the ARKLS workspace.

• leniwLS – the number of integer values in the ARKLS workspace.

Return values

• ARKLS_SUCCESS – if successful

• ARKLS_MEM_NULL – if the MRIStep memory was NULL

• ARKLS_LMEM_NULL – if the linear solver memory was NULL

358 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Note

The workspace requirements reported by this routine correspond only to memory allocated within this inter-
face and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian matrix
allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e., summed over all processors).

Deprecated since version 6.1.0: Use ARKodeGetLinWorkSpace() instead.

int MRIStepGetNumJacEvals(void *arkode_mem, long int *njevals)
Returns the number of Jacobian evaluations.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• njevals – number of Jacobian evaluations.

Return values

• ARKLS_SUCCESS – if successful

• ARKLS_MEM_NULL – if the MRIStep memory was NULL

• ARKLS_LMEM_NULL – if the linear solver memory was NULL

Note

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to MRIStep, or when MRIStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumJacEvals() instead.

int MRIStepGetNumPrecEvals(void *arkode_mem, long int *npevals)
Returns the total number of preconditioner evaluations, i.e., the number of calls made to psetup with jok =
SUNFALSE and that returned *jcurPtr = SUNTRUE.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• npevals – the current number of calls to psetup.

Return values

• ARKLS_SUCCESS – if successful

• ARKLS_MEM_NULL – if the MRIStep memory was NULL

• ARKLS_LMEM_NULL – if the linear solver memory was NULL

Note

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to MRIStep, or when MRIStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumPrecEvals() instead.

5.11. Using the MRIStep time-stepping module 359

User Documentation for ARKODE, v6.3.0

int MRIStepGetNumPrecSolves(void *arkode_mem, long int *npsolves)
Returns the number of calls made to the preconditioner solve function, psolve.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• npsolves – the number of calls to psolve.

Return values

• ARKLS_SUCCESS – if successful

• ARKLS_MEM_NULL – if the MRIStep memory was NULL

• ARKLS_LMEM_NULL – if the linear solver memory was NULL

Note

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to MRIStep, or when MRIStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumPrecSolves() instead.

int MRIStepGetNumLinIters(void *arkode_mem, long int *nliters)
Returns the cumulative number of linear iterations.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• nliters – the current number of linear iterations.

Return values

• ARKLS_SUCCESS – if successful

• ARKLS_MEM_NULL – if the MRIStep memory was NULL

• ARKLS_LMEM_NULL – if the linear solver memory was NULL

Note

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to MRIStep, or when MRIStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumLinIters() instead.

int MRIStepGetNumLinConvFails(void *arkode_mem, long int *nlcfails)
Returns the cumulative number of linear convergence failures.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• nlcfails – the current number of linear convergence failures.

Return values

• ARKLS_SUCCESS – if successful

• ARKLS_MEM_NULL – if the MRIStep memory was NULL

360 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARKLS_LMEM_NULL – if the linear solver memory was NULL

Note

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to MRIStep, or when MRIStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumLinConvFails() instead.

int MRIStepGetNumJTSetupEvals(void *arkode_mem, long int *njtsetup)
Returns the cumulative number of calls made to the user-supplied Jacobian-vector setup function, jtsetup.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• njtsetup – the current number of calls to jtsetup.

Return values

• ARKLS_SUCCESS – if successful

• ARKLS_MEM_NULL – if the MRIStep memory was NULL

• ARKLS_LMEM_NULL – if the linear solver memory was NULL

Note

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to MRIStep, or when MRIStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumJTSetupEvals() instead.

int MRIStepGetNumJtimesEvals(void *arkode_mem, long int *njvevals)
Returns the cumulative number of calls made to the Jacobian-vector product function, jtimes.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• njvevals – the current number of calls to jtimes.

Return values

• ARKLS_SUCCESS – if successful

• ARKLS_MEM_NULL – if the MRIStep memory was NULL

• ARKLS_LMEM_NULL – if the linear solver memory was NULL

Note

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to MRIStep, or when MRIStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumJtimesEvals() instead.

5.11. Using the MRIStep time-stepping module 361

User Documentation for ARKODE, v6.3.0

int MRIStepGetNumLinRhsEvals(void *arkode_mem, long int *nfevalsLS)
Returns the number of calls to the user-supplied implicit right-hand side function f I for finite difference Jacobian
or Jacobian-vector product approximation.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• nfevalsLS – the number of calls to the user implicit right-hand side function.

Return values

• ARKLS_SUCCESS – if successful

• ARKLS_MEM_NULL – if the MRIStep memory was NULL

• ARKLS_LMEM_NULL – if the linear solver memory was NULL

Note

The value nfevalsLS is incremented only if the default internal difference quotient function is used.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to MRIStep, or when MRIStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumLinRhsEvals() instead.

int MRIStepGetLastLinFlag(void *arkode_mem, long int *lsflag)
Returns the last return value from an ARKLS routine.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• lsflag – the value of the last return flag from an ARKLS function.

Return values

• ARKLS_SUCCESS – if successful

• ARKLS_MEM_NULL – if the MRIStep memory was NULL

• ARKLS_LMEM_NULL – if the linear solver memory was NULL

Note

If the ARKLS setup function failed when using the SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then
the value of lsflag is equal to the column index (numbered from one) at which a zero diagonal element was
encountered during the LU factorization of the (dense or banded) Jacobian matrix. For all other failures,
lsflag is negative.

Otherwise, if the ARKLS setup function failed (MRIStepEvolve() returned ARK_LSETUP_FAIL), then
lsflag will be SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC or SUNLS_PACKAGE_FAIL_-
UNREC.

If the ARKLS solve function failed (MRIStepEvolve() returned ARK_LSOLVE_FAIL), then lsflag contains
the error return flag from the SUNLinearSolver object, which will be one of:

• SUNLS_MEM_NULL, indicating that the SUNLinearSolver memory is NULL;

• SUNLS_ATIMES_NULL, indicating that a matrix-free iterative solver was provided, but is missing a
routine for the matrix-vector product approximation,

362 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• SUNLS_ATIMES_FAIL_UNREC, indicating an unrecoverable failure in the Jv function;

• SUNLS_PSOLVE_NULL, indicating that an iterative linear solver was configured to use precondition-
ing, but no preconditioner solve routine was provided,

• SUNLS_PSOLVE_FAIL_UNREC, indicating that the preconditioner solve function failed unrecover-
ably;

• SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt procedure (SPGMR and SPFGMR only);

• SUNLS_QRSOL_FAIL, indicating that the matrix R was found to be singular during the QR solve
phase (SPGMR and SPFGMR only); or

• SUNLS_PACKAGE_FAIL_UNREC, indicating an unrecoverable failure in an external iterative linear
solver package.

Deprecated since version 6.1.0: Use ARKodeGetLastLinFlag() instead.

char *MRIStepGetLinReturnFlagName(long int lsflag)
Returns the name of the ARKLS constant corresponding to lsflag.

Parameters

• lsflag – a return flag from an ARKLS function.

Returns
The return value is a string containing the name of the corresponding constant. If using the
SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then if 1 ≤ lsflag ≤ n (LU factorization
failed), this routine returns “NONE”.

Deprecated since version 6.1.0: Use ARKodeGetLinReturnFlagName() instead.

General usability functions

int MRIStepWriteParameters(void *arkode_mem, FILE *fp)
Outputs all MRIStep solver parameters to the provided file pointer.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• fp – pointer to use for printing the solver parameters.

Return values

• ARKS_SUCCESS – if successful

• ARKS_MEM_NULL – if the MRIStep memory was NULL

Note

The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for
all processes would be identical.

Deprecated since version 6.1.0: Use ARKodeWriteParameters() instead.

5.11. Using the MRIStep time-stepping module 363

User Documentation for ARKODE, v6.3.0

int MRIStepWriteCoupling(void *arkode_mem, FILE *fp)
Outputs the current MRI coupling table to the provided file pointer.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• fp – pointer to use for printing the Butcher tables.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

Note

The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all
processes would be identical.

Deprecated since version 6.1.0: Use MRIStepGetCurrentCoupling() and MRIStepCoupling_Write() in-
stead.

5.11.2.10 MRIStep re-initialization function

To reinitialize the MRIStep module for the solution of a new problem, where a prior call to MRIStepCreate() has been
made, the user must call the function MRIStepReInit(). The new problem must have the same size as the previous
one. This routine retains the current settings for all MRIStep module options and performs the same input checking
and initializations that are done in MRIStepCreate(), but it performs no memory allocation as is assumes that the
existing internal memory is sufficient for the new problem. A call to this re-initialization routine deletes the solution
history that was stored internally during the previous integration, and deletes any previously-set tstop value specified
via a call to MRIStepSetStopTime(). Following a successful call to MRIStepReInit(), call MRIStepEvolve()
again for the solution of the new problem.

The use of MRIStepReInit() requires that the number of Runge–Kutta stages for both the slow and fast methods be
no larger for the new problem than for the previous problem.

One important use of the MRIStepReInit() function is in the treating of jump discontinuities in the RHS functions.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted ODE model, using a call to this routine. To stop when the location of the discontinuity is
known, simply make that location a value of tout. To stop when the location of the discontinuity is determined by the
solution, use the rootfinding feature. In either case, it is critical that the RHS functions not incorporate the discontinuity,
but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent rootfinding, if used)
can be done efficiently. Then use a switch within the RHS functions (communicated through user_data) that can be
flipped between the stopping of the integration and the restart, so that the restarted problem uses the new values (which
have jumped). Similar comments apply if there is to be a jump in the dependent variable vector.

int MRIStepReInit(void *arkode_mem, ARKRhsFn fse, ARKRhsFn fsi, sunrealtype t0, N_Vector y0)
Provides required problem specifications and re-initializes the MRIStep outer (slow) stepper.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• fse – the name of the function (of type ARKRhsFn()) defining the explicit slow portion of
the right-hand side function in ẏ = fE(t, y) + f I(t, y) + fF (t, y).

364 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• fsi – the name of the function (of type ARKRhsFn()) defining the implicit slow portion of
the right-hand side function in ẏ = fE(t, y) + f I(t, y) + fF (t, y).

• t0 – the initial value of t.

• y0 – the initial condition vector y(t0).

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

• ARK_MEM_FAIL – if a memory allocation failed

• ARK_ILL_INPUT – if an argument has an illegal value.

Note

If the inner (fast) stepper also needs to be reinitialized, its reinitialization function should be called before
calling MRIStepReInit() to reinitialize the outer stepper.

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, MRIStepReInit() also sends an error message to the error handler function.

5.11.2.11 MRIStep reset function

int MRIStepReset(void *arkode_mem, sunrealtype tR, N_Vector yR)
Resets the current MRIStep outer (slow) time-stepper module state to the provided independent variable value
and dependent variable vector.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• tR – the value of the independent variable t.

• yR – the value of the dependent variable vector y(tR).

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

• ARK_MEM_FAIL – if a memory allocation failed

• ARK_ILL_INPUT – if an argument has an illegal value.

Note

If the inner (fast) stepper also needs to be reset, its reset function should be called before calling MRIStep-
Reset() to reset the outer stepper.

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, MRIStepReset() also sends an error message to the error handler function.

Changed in version 5.3.0: This now calls the corresponding MRIStepInnerResetFn with the same (tR, yR)
arguments for the MRIStepInnerStepper object that is used to evolve the MRI “fast” time scale subproblems.

5.11. Using the MRIStep time-stepping module 365

User Documentation for ARKODE, v6.3.0

Deprecated since version 6.1.0: Use ARKodeReset() instead.

5.11.2.12 MRIStep system resize function

int MRIStepResize(void *arkode_mem, N_Vector yR, sunrealtype tR, ARKVecResizeFn resize, void *resize_data)
Re-initializes MRIStep with a different state vector.

Parameters

• arkode_mem – pointer to the MRIStep memory block.

• yR – the newly-sized solution vector, holding the current dependent variable values y(tR).

• tR – the current value of the independent variable tR (this must be consistent with yR).

• resize – the user-supplied vector resize function (of type ARKVecResizeFn().

• resize_data – the user-supplied data structure to be passed to resize when modifying in-
ternal MRIStep vectors.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the MRIStep memory was NULL

• ARK_NO_MALLOC – if arkode_mem was not allocated.

• ARK_ILL_INPUT – if an argument has an illegal value.

Note

If an error occurred, MRIStepResize() also sends an error message to the error handler function.

Resizing the linear solver:
When using any of the SUNDIALS-provided linear solver modules, the linear solver memory struc-
tures must also be resized. At present, none of these include a solver-specific “resize” function, so the
linear solver memory must be destroyed and re-allocated following each call to MRIStepResize().
Moreover, the existing ARKLS interface should then be deleted and recreated by attaching the up-
dated SUNLinearSolver (and possibly SUNMatrix) object(s) through calls to MRIStepSetLinear-
Solver().

If any user-supplied routines are provided to aid the linear solver (e.g. Jacobian construction, Jacobian-
vector product, mass-matrix-vector product, preconditioning), then the corresponding “set” routines
must be called again following the solver re-specification.

Resizing the absolute tolerance array:
If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the call
to MRIStepResize(), so the new absolute tolerance vector should be re-set following each call to
MRIStepResize() through a new call to MRIStepSVtolerances().

If scalar-valued tolerances or a tolerance function was specified through either MRIStepSStoler-
ances() or MRIStepWFtolerances(), then these will remain valid and no further action is neces-
sary.

Example codes:
For an example showing usage of the similar ARKStepResize() routine, see the supplied serial C
example problem, ark_heat1D_adapt.c.

Deprecated since version 6.1.0: Use ARKodeResize() instead.

366 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.11.3 MRI Coupling Coefficients Data Structure

MRIStep supplies several built-in MIS, MRI-GARK, and IMEX-MRI-GARK methods, see §5.11.3.2 for the current
set of coupling tables and their corresponding identifiers. Additionally, a user may supply a custom set of slow-to-fast
time scale coupling coefficients by constructing a coupling table and attaching it with MRIStepSetCoupling(). A
given MRI coupling table can encode any of the MRI methods supported by MRIStep. The family of MRI method
encoded by the table is determined by an enumerated type, MRISTEP_METHOD_TYPE:

enum MRISTEP_METHOD_TYPE
The MRI method family encoded by a MRIStepCoupling table

enumerator MRISTEP_EXPLICIT
An explicit MRI-GARK method (does not support a slow implicit operator, f I).

enumerator MRISTEP_IMPLICIT
An implicit MRI-GARK method (does not support a slow explicit operator, fE).

enumerator MRISTEP_IMEX
An IMEX-MRK-GARK method.

enumerator MRISTEP_MERK
A explicit MERK method (does not support a slow implicit operator, f I).

enumerator MRISTEP_SR
An IMEX-MRI-SR method.

The MRI coupling tables themselves are stored in an MRIStepCoupling() object which is a pointer to a MRIStep-
CouplingMem structure:

typedef MRIStepCouplingMem *MRIStepCoupling

struct MRIStepCouplingMem
Structure for storing the coupling coefficients defining an MIS, MRI-GARK, or IMEX-MRI-GARK method.

As described in §2.7, the coupling from the slow time scale to the fast time scale is encoded by a vector of slow
stage time abscissae, cS ∈ Rs+1 and a set of coupling tensors Γ ∈ R(s+1)×(s+1)×k and Ω ∈ R(s+1)×(s+1)×k.

MRISTEP_METHOD_TYPE type
Flag indicating the type of MRI method encoded by this table.

int nmat
The value of k above i.e., number of coupling matrices in Ω for the slow-nonstiff terms and/or in Γ for the
slow-stiff terms in (2.11).

int stages
The number of abscissae i.e., s+ 1 above.

int q
The method order of accuracy.

int p
The embedding order of accuracy.

sunrealtype *c
An array of length [stages] containing the slow abscissae cS for the method.

5.11. Using the MRIStep time-stepping module 367

User Documentation for ARKODE, v6.3.0

sunrealtype ***W
A three-dimensional array with dimensions [nmat][stages+1][stages] containing the method’s Ω cou-
pling coefficients for the slow-nonstiff (explicit) terms in (2.11).

sunrealtype ***G
A three-dimensional array with dimensions [nmat][stages+1][stages] containing the method’s Γ cou-
pling coefficients for the slow-stiff (implicit) terms in (2.11).

int ngroup
Number of stage groups for the method (only relevant for MERK methods).

int **group
A two-dimensional array with dimensions [stages][stages] that encodes which stages should be com-
bined together within fast integration groups (only relevant for MERK methods).

5.11.3.1 MRIStepCoupling functions

This section describes the functions for creating and interacting with coupling tables. The function prototypes and as
well as the relevant integer constants are defined arkode/arkode_mristep.h.

Table 5.5: MRIStepCoupling functions

Function name Description
MRIStepCoupling_LoadTable() Loads a pre-defined MRIStepCoupling table by ID
MRIStepCoupling_LoadTableByName() Loads a pre-defined MRIStepCoupling table by name
MRIStepCoupling_Alloc() Allocate an empty MRIStepCoupling table
MRIStepCoupling_Create() Create a new MRIStepCoupling table from coefficients
MRIStepCoupling_MIStoMRI() Create a new MRIStepCoupling table from a Butcher table
MRIStepCoupling_Copy() Create a copy of a MRIStepCoupling table
MRIStepCoupling_Space() Get the MRIStepCoupling table real and integer workspace sizes
MRIStepCoupling_Free() Deallocate a MRIStepCoupling table
MRIStepCoupling_Write() Write the MRIStepCoupling table to an output file

MRIStepCoupling MRIStepCoupling_LoadTable(ARKODE_MRITableID method)
Retrieves a specified coupling table. For further information on the current set of coupling tables and their
corresponding identifiers, see §5.11.3.2.

Parameters

• method – the coupling table identifier.

Returns
An MRIStepCoupling structure if successful. A NULL pointer if method was invalid or an allo-
cation error occurred.

MRIStepCoupling MRIStepCoupling_LoadTableByName(const char *method)
Retrieves a specified coupling table. For further information on the current set of coupling tables and their
corresponding name, see §5.11.3.2.

Parameters

• method – the coupling table name.

Returns
An MRIStepCoupling structure if successful. A NULL pointer if method was invalid, method
was "ARKODE_MRI_NONE", or an allocation error occurred.

368 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Note

This function is case sensitive.

MRIStepCoupling MRIStepCoupling_Alloc(int nmat, int stages, MRISTEP_METHOD_TYPE type)
Allocates an empty MRIStepCoupling table.

Parameters

• nmat – the value of k i.e., number of number of coupling matrices in Ω for the slow-nonstiff
terms and/or in Γ for the slow-stiff terms in (2.11).

• stages – number of stages in the coupling table.

• type – the type of MRI method the table will encode.

Returns
An MRIStepCoupling structure if successful. A NULL pointer if stages or type was invalid or
an allocation error occurred.

Note

For MRISTEP_EXPLICIT tables, the G and group arrays are not allocated.

For MRISTEP_IMPLICIT tables, the W and group arrays are not allocated.

For MRISTEP_IMEX tables, the group array is not allocated.

For MRISTEP_MERK tables, the G array is not allocated.

For MRISTEP_SR tables, the group array is not allocated.

When allocated, both Ω and Γ are initialized to all zeros, so only nonzero coefficients need to be provided.

When allocated, all entries in group are initialized to -1, indicating an unused group and/or the end of a stage
group. Users who supply a custom MRISTEP_MERK table should overwrite all active stages in each group.
For example the ARKODE_MERK32 method has 4 stages that are evolved in 3 groups – the first group consists
of stage 1, the second group consists of stages 2 and 4, while the third group consists of stage 3. Thus ngroup
should equal 3, and group should have non-default entries

C->group[0][0] = 1;
C->group[1][0] = 2;
C->group[1][1] = 4;
C->group[2][0] = 3;

Changed in version 6.2.0: This function now supports a broader range of MRI method types.

MRIStepCoupling MRIStepCoupling_Create(int nmat, int stages, int q, int p, sunrealtype *W, sunrealtype *G,
sunrealtype *c)

Allocates a coupling table and fills it with the given values.

This routine can only be used to create coupling tables with type MRISTEP_EXPLICIT, MRISTEP_IMPLICIT, or
MRISTEP_IMEX. The routine determines the relevant type based on whether either of the arguments W and G
are NULL. Users who wish to create MRI methods of type MRISTEP_MERK or MRISTEP_SR must currently do so
manually.

The assumed size of the input arrays W and G depends on the input value for the embedding order of accuracy,
p.

5.11. Using the MRIStep time-stepping module 369

User Documentation for ARKODE, v6.3.0

• Non-embedded methods should be indicated by an input p=0, in which case W and/or G should have entries
stored as a 1D array of size nmat * stages * stages, in row-major order.

• Embedded methods should be indicated by an input p>0, in which case W and/or G should have entries
stored as a 1D array of size nmat * (stages+1) * stages, in row-major order. The additional “row”
is assumed to hold the embedding coefficients.

Parameters

• nmat – the value of k i.e., number of number of coupling matrices in Ω for the slow-nonstiff
terms and/or in Γ for the slow-stiff terms in (2.11).

• stages – number of stages in the method.

• q – global order of accuracy for the method.

• p – global order of accuracy for the embedded method.

• W – array of values defining the explicit coupling coefficients Ω. If the slow method is implicit
pass NULL.

• G – array of values defining the implicit coupling coefficients Γ. If the slow method is explicit
pass NULL.

• c – array of slow abscissae for the MRI method. The entries should be stored as a 1D array
of length stages.

Returns
An MRIStepCoupling structure if successful. A NULL pointer if stages was invalid, an allo-
cation error occurred, or the input data arrays are inconsistent with the method type.

MRIStepCoupling MRIStepCoupling_MIStoMRI(ARKodeButcherTable B, int q, int p)
Creates an MRI coupling table for a traditional MIS method based on the slow Butcher table B.

The s-stage slow Butcher table must have an explicit first stage (i.e., c1 = 0 and A1,j = 0 for 1 ≤ j ≤ s),
sorted abscissae (i.e., ci ≥ ci−1 for 2 ≤ i ≤ s), and a final abscissa value cs ≤ 1. In this case, the (s+ 1)-stage
coupling table is computed as

Ωi,j,1 or Γi,j,1 =


0, if i = 1,

Ai,j −Ai−1,j , if 2 ≤ i ≤ s,
bj −As,j , if i = s+ 1.

and the embedding coefficients (if applicable) are computed as

Ω̃i,j,1 or Γ̃i,j,1 = b̃j −As,j .

We note that only one of Ω or Γ will be filled in. If B corresponded to an explicit method, then this routine fills
Ω; if B is diagonally-implicit, then this routine inserts redundant “padding” stages to ensure a solve-decoupled
structure and then uses the above formula to fill Γ.

For general slow tables with at least second-order accuracy, the MIS method will be second order. However, if
the slow table is at least third order and additionally satisfies

s∑
i=2

(ci − ci−1)(ei + ei−1)TAc+ (1− cs)
(

1

2
+ eTs Ac

)
=

1

3
,

where ej corresponds to the j-th column from the s × s identity matrix, then the overall MIS method will be
third order.

As a result, the values of q and p may differ from the method and embedding orders of accuracy for the
Runge–Kutta method encoded in B, which is why these arguments should be supplied separately.

370 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

If p>0 is input, then the table B must include embedding coefficients.

Parameters

• B – the ARKodeButcherTable for the “slow” MIS method.

• q – the overall order of the MIS/MRI method.

• p – the overall order of the MIS/MRI embedding.

Returns
An MRIStepCoupling structure if successful. A NULL pointer if an allocation error occurred.

MRIStepCoupling MRIStepCoupling_Copy(MRIStepCoupling C)
Creates copy of the given coupling table.

Parameters

• C – the coupling table to copy.

Returns
An MRIStepCoupling structure if successful. A NULL pointer if an allocation error occurred.

void MRIStepCoupling_Space(MRIStepCoupling C, sunindextype *liw, sunindextype *lrw)
Get the real and integer workspace size for a coupling table.

Parameters

• C – the coupling table.

• lenrw – the number of sunrealtype values in the coupling table workspace.

• leniw – the number of integer values in the coupling table workspace.

Return values

• ARK_SUCCESS – if successful.

• ARK_MEM_NULL – if the Butcher table memory was NULL.

Deprecated since version 6.3.0: Work space functions will be removed in version 8.0.0.

void MRIStepCoupling_Free(MRIStepCoupling C)
Deallocate the coupling table memory.

Parameters

• C – the coupling table.

void MRIStepCoupling_Write(MRIStepCoupling C, FILE *outfile)
Write the coupling table to the provided file pointer.

Parameters

• C – the coupling table.

• outfile – pointer to use for printing the table.

Note

The outfile argument can be stdout or stderr, or it may point to a specific file created using fopen.

5.11. Using the MRIStep time-stepping module 371

User Documentation for ARKODE, v6.3.0

5.11.3.2 MRI Coupling Tables

MRIStep currently includes three classes of coupling tables: those that encode methods that are explicit at the slow
time scale, those that are diagonally-implicit and solve-decoupled at the slow time scale, and those that encode methods
with an implicit-explicit method at the slow time scale. We list the current identifiers, multirate order of accuracy, and
relevant references for each in the tables below. For methods with an implicit component, we also list the number of
implicit solves per step that are required at the slow time scale.

Each of the coupling tables that are packaged with MRIStep are specified by a unique ID having type:

typedef int ARKODE_MRITableID

with values specified for each method below (e.g., ARKODE_MIS_KW3).

Table 5.6: Explicit MRIStep coupling tables.

Table name Method
Order

Embedding
Order

Slow RHS
Calls

Refer-
ence

ARKODE_MRI_GARK_FORWARD_EU-
LER

1∗ – 1

ARKODE_MRI_GARK_ERK22a 2 1 2 [92]
ARKODE_MRI_GARK_ERK22b 2∗◦ 1 2 [92]
ARKODE_MRI_GARK_RALSTON2 2 1 2 [87]
ARKODE_MERK21 2 1 2 [79]
ARKODE_MIS_KW3 3∗ – 3 [95]
ARKODE_MRI_GARK_ERK33a 3◦ 2 3 [92]
ARKODE_MRI_GARK_RALSTON3 3 2 3 [87]
ARKODE_MERK32 3 2 3 [79]
ARKODE_MRI_GARK_ERK45a 4∗◦ 3 5 [92]
ARKODE_MERK43 4 3 6 [79]
ARKODE_MERK54 5A 4 10 [79]

Notes regarding the above table:

1. The default method for each order when using fixed step sizes is marked with an asterisk (∗).

2. The default method for each order when using adaptive time stepping is marked with a circle (◦).

3. The “Slow RHS Calls” column corresponds to the number of calls to the slow right-hand side function, fE , per
time step.

4. Note A: although all MERK methods were derived in [79] under an assumption that the fast function fF (t, y)
is linear in y, in [45] it was proven that MERK methods also satisfy all nonlinear order conditions up through
their linear order. The lone exception is ARKODE_MERK54, where it was only proven to satisfy all nonlinear
conditions up to order 4 (since [45] did not establish the formulas for the order 5 conditions). All our numerical
tests to date have shown ARKODE_MERK54 to achieve fifth order for nonlinear problems, and so we conjecture
that it also satisfies the nonlinear fifth order conditions.

372 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Table 5.7: Diagonally-implicit, solve-decoupled MRI-GARK coupling
tables. The default method for each order when using fixed step sizes
is marked with an asterisk (∗); the default method for each order when
using adaptive time stepping is marked with a circle (◦). The “Implicit
Solves” column corresponds to the number of slow implicit (non)linear
solves required per time step.

Table name Method
Order

Embedding Or-
der

Implicit
Solves

Refer-
ence

ARKODE_MRI_GARK_BACKWARD_EU-
LER

1∗◦ – 1

ARKODE_MRI_GARK_IRK21a 2∗◦ 1 1 [92]
ARKODE_MRI_GARK_IMPLICIT_MID-
POINT

2 – 2

ARKODE_MRI_GARK_ESDIRK34a 3∗◦ 2 3 [92]
ARKODE_MRI_GARK_ESDIRK46a 4∗◦ 3 5 [92]

Table 5.8: Diagonally-implicit, solve-decoupled IMEX-MRI-GARK
coupling tables. The default method for each order when using fixed
step sizes is marked with an asterisk (∗); the default method for each or-
der when using adaptive time stepping is marked with a circle (◦). The
“Implicit Solves” column corresponds to the number of slow implicit
(non)linear solves required per time step.

Table name Method
Order

Embedding Or-
der

Implicit
Solves

Refer-
ence

ARKODE_IMEX_MRI_GARK_EULER 1∗ – 1
ARKODE_IMEX_MRI_GARK_TRAPE-
ZOIDAL

2∗ – 1

ARKODE_IMEX_MRI_GARK_MIDPOINT 2 – 2
ARKODE_IMEX_MRI_SR21 2◦ 1 3 [45]
ARKODE_IMEX_MRI_GARK3a 3∗ – 2 [29]
ARKODE_IMEX_MRI_GARK3b 3 – 2 [29]
ARKODE_IMEX_MRI_SR32 3◦ 2 4 [45]
ARKODE_IMEX_MRI_GARK4 4∗ – 5 [29]
ARKODE_IMEX_MRI_SR43 4◦ 3 5 [45]

5.11.4 MRIStep Custom Inner Steppers

Recall that infinitesimal multirate methods require solving a set of auxiliary IVPs

v̇(t) = fF (t, v) + ri(t), v(ti,0) = vi,0, (5.2)

on intervals t ∈ [ti,0, ti,f]. For the MIS, MRI-GARK and IMEX-MRI-GARK methods implemented in MRIStep, the
forcing term ri(t) presented in §2.7 can be equivalently written as

ri(t) =
∑
k≥1

ω̂i,kτ
k−1 +

∑
k≥1

γ̂i,kτ
k−1

(5.3)

5.11. Using the MRIStep time-stepping module 373

User Documentation for ARKODE, v6.3.0

where τ = (t− tSn,i−1)/(hS∆cSi) is the normalized time with ∆cSi =
(
cSi − cSi−1

)
, the slow stage times are tSn,i−1 =

tn−1 + cSi−1h
S , and the polynomial coefficient vectors are

ω̂i,k =
1

∆cSi

i−1∑
j=1

Ωi,j,kf
E(tSn,j , zj) and γ̂i,k =

1

∆cSi

i∑
j=1

Γi,j,kf
I(tSn,j , zj). (5.4)

The MERK and IMEX-MRI-SR methods included in MRIStep compute the forcing polynomial (5.3) similarly, with
appropriate modifications to ∆cSi , tSn,i−1, and the coefficients (5.4).

To evolve the IVP (5.2) MRIStep utilizes a generic time integrator interface defined by the MRIStepInnerStepper
base class. This section presents the MRIStepInnerStepper base class and methods that define the integrator interface
as well as detailing the steps for creating an MRIStepInnerStepper.

5.11.4.1 The MRIStepInnerStepper Class

As with other SUNDIALS classes, the MRIStepInnerStepper abstract base class is implemented using a C structure
containing a content pointer to the derived class member data and a structure of function pointers (vtable) to the
derived class implementations of the base class virtual methods.

type MRIStepInnerStepper
An object for solving the fast (inner) ODE in an MRI method.

The actual definitions of the structure and the corresponding operations structure are kept private to allow for the
object internals to change without impacting user code. The following sections describe the base (§5.11.4.1) and
virtual methods (§5.11.4.1) that a must be provided by a derived class.

Base Class Methods

This section describes methods provided by the MRIStepInnerStepper abstract base class that aid the user in imple-
menting derived classes. This includes functions for creating and destroying a generic base class object, attaching and
retrieving the derived class content pointer, setting function pointers to derived class method implementations, and
accessing base class data e.g., for computing the forcing term (5.3).

Creating and Destroying an Object

int MRIStepInnerStepper_Create(SUNContext sunctx, MRIStepInnerStepper *stepper)
This function creates an MRIStepInnerStepper object to which a user should attach the member data (content)
pointer and method function pointers.

Parameters

• sunctx – the SUNDIALS simulation context.

• stepper – a pointer to an inner stepper object.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_FAIL – if a memory allocation error occurs

Example usage:

/* create an instance of the base class */
MRIStepInnerStepper inner_stepper = NULL;
flag = MRIStepInnerStepper_Create(&inner_stepper);

374 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Example codes:

• examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

Note

See §5.11.4.1 and §5.11.4.1 for details on how to attach member data and method function pointers.

int MRIStepInnerStepper_CreateFromSUNStepper(SUNStepper sunstepper, MRIStepInnerStepper *stepper)
This utility function wraps a SUNStepper as an MRIStepInnerStepper.

Parameters

• sunctx – the SUNDIALS simulation context.

• sunstepper – the c:type:SUNStepper to wrap.

• stepper – a pointer to an MRI inner stepper object.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_FAIL – if a memory allocation error occurs

Example usage:

SUNStepper sunstepper = NULL;
SUNStepper_Create(ctx, &sunstepper);
/* Attach content and functions to the SUNStepper... */

MRIStepInnerStepper inner_stepper = NULL;
flag = MRIStepInnerStepper_CreateFromSUNStepper(sunstepper, &inner_stepper);

Added in version 6.2.0.

int MRIStepInnerStepper_Free(MRIStepInnerStepper *stepper)
This function destroys an MRIStepInnerStepper object.

Parameters

• stepper – a pointer to an inner stepper object.

Return values
ARK_SUCCESS – if successful

Example usage:

/* destroy an instance of the base class */
flag = MRIStepInnerStepper_Free(&inner_stepper);

Example codes:

• examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

5.11. Using the MRIStep time-stepping module 375

User Documentation for ARKODE, v6.3.0

Note

This function only frees memory allocated within the base class and the base class structure itself. The user
is responsible for freeing any memory allocated for the member data (content).

Attaching and Accessing the Content Pointer

int MRIStepInnerStepper_SetContent(MRIStepInnerStepper stepper, void *content)
This function attaches a member data (content) pointer to an MRIStepInnerStepper object.

Parameters

• stepper – an inner stepper object.

• content – a pointer to the stepper member data.

Return values

• ARK_SUCCESS – if successful

• ARK_ILL_INPUT – if the stepper is NULL

Example usage:

/* set the inner stepper content pointer */
MyStepperContent my_object_data;
flag = MRIStepInnerStepper_SetContent(inner_stepper, &my_object_data);

Example codes:

• examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

int MRIStepInnerStepper_GetContent(MRIStepInnerStepper stepper, void **content)
This function retrieves the member data (content) pointer from an MRIStepInnerStepper object.

Parameters

• stepper – an inner stepper object.

• content – a pointer to set to the stepper member data pointer.

Return values

• ARK_SUCCESS – if successful

• ARK_ILL_INPUT – if the stepper is NULL

Example usage:

/* get the inner stepper content pointer */
void *content;
MyStepperContent *my_object_data;

flag = MRIStepInnerStepper_GetContent(inner_stepper, &content);
my_object_data = (MyStepperContent*) content;

Example codes:

• examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

376 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Setting Member Functions

int MRIStepInnerStepper_SetEvolveFn(MRIStepInnerStepper stepper, MRIStepInnerEvolveFn fn)
This function attaches an MRIStepInnerEvolveFn function to an MRIStepInnerStepper object.

Parameters

• stepper – an inner stepper object.

• fn – the MRIStepInnerStepper function to attach.

Return values

• ARK_SUCCESS – if successful

• ARK_ILL_INPUT – if the stepper is NULL

Example usage:

/* set the inner stepper evolve function */
flag = MRIStepInnerStepper_SetEvolveFn(inner_stepper, MyEvolve);

Example codes:

• examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

int MRIStepInnerStepper_SetFullRhsFn(MRIStepInnerStepper stepper, MRIStepInnerFullRhsFn fn)
This function attaches an MRIStepInnerFullRhsFn function to an MRIStepInnerStepper object.

Parameters

• stepper – an inner stepper object.

• fn – the MRIStepInnerFullRhsFn function to attach.

Return values

• ARK_SUCCESS – if successful

• ARK_ILL_INPUT – if the stepper is NULL

Example usage:

/* set the inner stepper full right-hand side function */
flag = MRIStepInnerStepper_SetFullRhsFn(inner_stepper, MyFullRHS);

Example codes:

• examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

int MRIStepInnerStepper_SetResetFn(MRIStepInnerStepper stepper, MRIStepInnerResetFn fn)
This function attaches an MRIStepInnerResetFn function to an MRIStepInnerStepper object.

Parameters

• stepper – an inner stepper object.

• fn – the MRIStepInnerResetFn function to attach.

Return values

• ARK_SUCCESS – if successful

5.11. Using the MRIStep time-stepping module 377

User Documentation for ARKODE, v6.3.0

• ARK_ILL_INPUT – if the stepper is NULL

Example usage:

/* set the inner stepper reset function */
flag = MRIStepInnerStepper_SetResetFn(inner_stepper, MyReset);

Example codes:

• examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

int MRIStepInnerStepper_SetAccumulatedErrorGetFn(MRIStepInnerStepper stepper,
MRIStepInnerGetAccumulatedError fn)

This function attaches an MRIStepInnerGetAccumulatedError function to an MRIStepInnerStepper ob-
ject.

Parameters

• stepper – an inner stepper object.

• fn – the MRIStepInnerGetAccumulatedError function to attach.

Return values

• ARK_SUCCESS – if successful

• ARK_ILL_INPUT – if the stepper is NULL

int MRIStepInnerStepper_SetAccumulatedErrorResetFn(MRIStepInnerStepper stepper,
MRIStepInnerResetAccumulatedError fn)

This function attaches an MRIStepInnerResetAccumulatedError function to an MRIStepInnerStepper
object.

Parameters

• stepper – an inner stepper object.

• fn – the MRIStepInnerResetAccumulatedError function to attach.

Return values

• ARK_SUCCESS – if successful

• ARK_ILL_INPUT – if the stepper is NULL

int MRIStepInnerStepper_SetRTolFn(MRIStepInnerStepper stepper, MRIStepInnerSetRTol fn)
This function attaches an MRIStepInnerSetRTol function to an MRIStepInnerStepper object.

Parameters

• stepper – an inner stepper object.

• fn – the MRIStepInnerSetRTol function to attach.

Return values

• ARK_SUCCESS – if successful

• ARK_ILL_INPUT – if the stepper is NULL

378 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Applying and Accessing Forcing Data

When integrating the ODE (5.2) the MRIStepInnerStepper is responsible for evaluating ODE right-hand side func-
tion fF (t, v) as well as computing and applying the forcing term (5.3) to obtain the full right-hand side of the inner
(fast) ODE (5.2). The functions in this section can be used to either apply the inner (fast) forcing or access the data
necessary to construct the inner (fast) forcing polynomial. While the first of these is less intrusive and may be used to
package an existing black-box IVP solver as an MRIStepInnerStepper, the latter may be more computationally efficient
since it does not traverse the data directly.

int MRIStepInnerStepper_AddForcing(MRIStepInnerStepper stepper, sunrealtype t, N_Vector ff)
This function computes the forcing term (5.3) at the input time t and adds it to input vector ff, i.e., the inner (fast)
right-hand side vector.

Parameters

• stepper – an inner stepper object.

• t – the time at which the forcing should be evaluated.

• f – the vector to which the forcing should be applied.

Return values

• ARK_SUCCESS – if successful

• ARK_ILL_INPUT – if the stepper is NULL

Example codes:

• examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

int MRIStepInnerStepper_GetForcingData(MRIStepInnerStepper stepper, sunrealtype *tshift, sunrealtype
*tscale, N_Vector **forcing, int *nforcing)

This function provides access to data necessary to compute the forcing term (5.3). This includes the shift and
scaling factors for the normalized time τ = (t−tSn,i−1)/(hS∆cSi) and the array of polynomial coefficient vectors
γ̂i,k.

Parameters

• stepper – an inner stepper object.

• tshift – the time shift to apply to the current time when computing the forcing, tSn,i−1.

• tscale – the time scaling to apply to the current time when computing the forcing, hS∆cSi .

• forcing – a pointer to an array of forcing vectors, γ̂i,k.

• nforcing – the number of forcing vectors.

Return values

• ARK_SUCCESS – if successful

• ARK_ILL_INPUT – if the stepper is NULL

Example usage:

int k, flag;
int nforcing_vecs; /* number of forcing vectors */
double tshift, tscale; /* time normalization values */
double tau; /* normalized time */
double tau_k; /* tau raised to the power k */

(continues on next page)

5.11. Using the MRIStep time-stepping module 379

User Documentation for ARKODE, v6.3.0

(continued from previous page)

N_Vector *forcing_vecs; /* array of forcing vectors */

/* get the forcing data from the inner (fast) stepper */
flag = MRIStepInnerStepper_GetForcingData(inner_stepper, &tshift, &tscale,

&forcing_vecs, &nforcing_vecs);

/* compute the normalized time, initialize tau^k */
tau = (t - tshift) / tscale;
tau_k = 1.0;

/* compute the polynomial forcing terms and add them to fast RHS vector */
for (k = 0; k < nforcing_vecs; k++)
{
N_VLinearSum(1.0, f_fast, tau_k, forcing_vecs[k], f_fast);
tau_k *= tau;

}

Example codes:

• examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

Implementation Specific Methods

This section describes the required and optional virtual methods defined by the MRIStepInnerStepper abstract base
class.

Required Member Functions

An MRIStepInnerStepper must provide implementations of the following member functions:

typedef int (*MRIStepInnerEvolveFn)(MRIStepInnerStepper stepper, sunrealtype t0, sunrealtype tout, N_Vector v)
This function advances the state vector v for the inner (fast) ODE system from time t0 to time tout.

Arguments:

• stepper – the inner stepper object.

• t0 – the initial time for the inner (fast) integration.

• tout – the final time for the inner (fast) integration.

• v – on input the state at time t0 and, on output, the state at time tout.

Return value:
An MRIStepInnerEvolveFn should return 0 if successful, a positive value if a recoverable error occurred
(i.e., the function could be successful if called over a smaller time interval [t0, tout]), or a negative value
if it failed unrecoverably.

Example codes:

• examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

380 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Optional Member Functions

An MRIStepInnerStepper may provide implementations of any of the following member functions:

typedef int (*MRIStepInnerFullRhsFn)(MRIStepInnerStepper stepper, sunrealtype t, N_Vector v, N_Vector f, int
mode)

This function computes the full right-hand side function of the inner (fast) ODE, fF (t, v) in (5.2) for a given
value of the independent variable t and state vector y. We note that this routine should not include contributions
from the forcing term (5.3).

Arguments:

• stepper – the inner stepper object.

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• f – the output vector that forms a portion the ODE right-hand side, fF (t, y) in (2.11).

• mode – a flag indicating the purpose for which the right-hand side function evaluation is called.

– ARK_FULLRHS_START – called at the beginning of the simulation

– ARK_FULLRHS_END – called at the end of a successful step

– ARK_FULLRHS_OTHER – called elsewhere e.g., for dense output

Return value:
An MRIStepInnerFullRhsFn should return 0 if successful, or a nonzero value upon failure.

Example codes:

• examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

Changed in version v5.7.0: Supplying a full right-hand side function was made optional.

typedef int (*MRIStepInnerResetFn)(MRIStepInnerStepper stepper, sunrealtype tR, N_Vector vR)
This function resets the inner (fast) stepper state to the provided independent variable value and dependent vari-
able vector.

If provided, the MRIStepInnerResetFn function will be called before a call to MRIStepInnerEvolveFn when
the state was updated at the slow timescale.

Arguments:

• stepper – the inner stepper object.

• tR – the value of the independent variable tR.

• vR – the value of the dependent variable vector v(tR).

Return value:
An MRIStepInnerResetFn should return 0 if successful, or a nonzero value upon failure.

Example codes:

• examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

typedef int (*MRIStepInnerGetAccumulatedError)(MRIStepInnerStepper stepper, sunrealtype *accum_error)
This function returns an estimate of the accumulated solution error arising from the inner stepper. Both the
MRIStepInnerGetAccumulatedError and MRIStepInnerResetAccumulatedError functions should be
provided, or not; if only one is provided then MRIStep will disable multirate temporal adaptivity and call neither.

Arguments:

5.11. Using the MRIStep time-stepping module 381

User Documentation for ARKODE, v6.3.0

• stepper – the inner stepper object.

• accum_error – estimation of the accumulated solution error.

Return value:
An MRIStepInnerGetAccumulatedError should return 0 if successful, a positive value if a recoverable
error occurred (i.e., the function could be successful if called over a smaller time interval [t0, tout]), or a
negative value if it failed unrecoverably.

Note

This function is required when multirate temporal adaptivity has been enabled, using a SUNAdaptCon-
troller module having type SUN_ADAPTCONTROLLER_MRI_H_TOL.

If provided, the MRIStepInnerGetAccumulatedError function will always be called after a preceding call
to the MRIStepInnerResetAccumulatedError function.

typedef int (*MRIStepInnerResetAccumulatedError)(MRIStepInnerStepper stepper)
This function resets the inner stepper’s accumulated solution error to zero. This function performs a different
role within MRIStep than the MRIStepInnerResetFn, and thus an implementation should make no assumptions
about the frequency/ordering of calls to either.

Arguments:

• stepper – the inner stepper object.

Return value:
An MRIStepInnerResetAccumulatedError should return 0 if successful, or a nonzero value upon fail-
ure.

Note

This function is required when multirate temporal adaptivity has been enabled, using a SUNAdaptCon-
troller module having type SUN_ADAPTCONTROLLER_MRI_H_TOL.

The MRIStepInnerResetAccumulatedError function will always be called before any calls to the MRIS-
tepInnerGetAccumulatedError function.

Both the MRIStepInnerGetAccumulatedError and MRIStepInnerResetAccumulatedError functions
should be provided, or not; if only one is provided then MRIStep will disable multirate temporal adaptivity
and call neither.

typedef int (*MRIStepInnerSetRTol)(MRIStepInnerStepper stepper, sunrealtype rtol)
This function accepts a relative tolerance for the inner stepper to use in its upcoming adaptive solve. It is assumed
that if the inner stepper supports absolute tolerances as well, then these have been set up directly by the user to
indicate the “noise” level for solution components.

Arguments:

• stepper – the inner stepper object.

• rtol – relative tolerance to use on the upcoming solve.

Return value:
An MRIStepInnerSetRTol should return 0 if successful, or a nonzero value upon failure.

382 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Note

This function is required when multirate temporal adaptivity has been enabled using a SUNAdaptCon-
troller module having type SUN_ADAPTCONTROLLER_MRI_H_TOL.

5.11.4.2 Implementing an MRIStepInnerStepper

To create an MRIStepInnerStepper implementation:

1. Define the stepper-specific content.

This is typically a user-defined structure in C codes, a user-defined class or structure in C++ codes, or a user-
defined module in Fortran codes. This content should hold any data necessary to perform the operations defined
by the MRIStepInnerStepper member functions.

2. Define implementations of the required member functions (see §5.11.4.1).

These are typically user-defined functions in C, member functions of the user-defined structure or class in C++,
or functions contained in the user-defined module in Fortran.

Note that all member functions are passed the MRIStepInnerStepper object and the stepper-specific content
can, if necessary, be retrieved using MRIStepInnerStepper_GetContent().

3. In the user code, before creating the MRIStep memory structure with MRIStepCreate(), do the following:

1. Create an MRIStepInnerStepper object with MRIStepInnerStepper_Create().

2. Attach a pointer to the stepper content to the MRIStepInnerStepper object with MRIStepInnerStep-
per_SetContent() if necessary, e.g., when the content is a C structure.

3. Attach the member function implementations using the functions described in §5.11.4.1.

4. Attach the MRIStepInnerStepper object to the MRIStep memory structure with MRIStepCreate().

For an example of creating and attaching a user-defined inner stepper see the example code examples/arkode/CXX_-
parallel/ark_diffusion_reaction_p.cpp where CVODE is wrapped as an MRIStepInnerStepper.

5.12 Using the SplittingStep time-stepping module

This section is concerned with the use of the SplittingStep time-stepping module for the solution of initial value prob-
lems (IVPs) in a C or C++ language setting. Usage of SplittingStep follows that of the rest of ARKODE, and so in this
section we primarily focus on those usage aspects that are specific to SplittingStep.

5.12.1 A skeleton of the user’s main program

While SplittingStep usage generally follows the same pattern as the rest of ARKODE, since it is the composition of
other steppers, we summarize the differences in using SplittingStep here. Steps that are unchanged from the skeleton
program presented in §5.2 are italicized.

1. Initialize parallel or multi-threaded environment, if appropriate.

2. Create the SUNDIALS simulation context object

3. Set problem dimensions, etc.

4. Set vector of initial values

5. Create a stepper object for each problem partition

5.12. Using the SplittingStep time-stepping module 383

User Documentation for ARKODE, v6.3.0

• If using an ARKODE stepper module as an partition integrator, create and configure the stepper as normal
following the steps detailed in the section for the desired stepper.

Once the ARKODE stepper object is setup, create a SUNStepper object with ARKodeCreateSUNStep-
per().

• If supplying a user-defined partition integrator, create the SUNStepper object as described in section §13.2.

Note

When using ARKODE for partition integrators, it is the user’s responsibility to create and configure the
integrator. User-specified options regarding how the integration should be performed (e.g., adaptive vs. fixed
time step, explicit/implicit/ImEx partitioning, algebraic solvers, etc.) will be respected during evolution of a
partition during SplittingStep integration.

If a user_data pointer needs to be passed to user functions called by a partition integrator then it should
be attached to the partition integrator here by calling ARKodeSetUserData(). This user_data pointer will
only be passed to user-supplied functions that are attached to a partition integrator. To supply a user_data
pointer to user-supplied functions called by the SplittingStep integrator, the desired pointer should be attached
by calling ARKodeSetUserData() after creating the SplittingStep memory below. The user_data pointers
attached to the partition and SplittingStep integrators may be the same or different depending on what is
required by the user code.

Specifying a rootfinding problem for a partition integrator is not supported. Rootfinding problems should be
created and initialized with SplittingStep. See the steps below and ARKodeRootInit() for more details.

6. Create a SplittingStep object

Create the SplittingStep object by calling SplittingStepCreate(). One of the inputs to SplittingStepCre-
ate() is an array of SUNStepper objects with one to evolve each partition.

7. Set the SplittingStep step size

Call ARKodeSetFixedStep() on the SplittingStep object to specify the overall time step size.

8. Set optional inputs

9. Specify rootfinding problem

10. Advance solution in time

11. Get optional outputs

12. Deallocate memory for solution vector

13. Free solver memory

• If an ARKODE stepper module was used as a partition IVP integrator, call SUNStepper_Destroy() and
ARKodeFree() to free the memory allocated for that integrator.

• If a user-defined partition integrator was supplied, free the integrator content and call SUNStepper_De-
stroy() to free the SUNStepper object.

• Call ARKodeFree() to free the memory allocated for the SplittingStep integration object.

14. Free the SUNContext object

15. Finalize MPI, if used

384 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.12.2 SplittingStep User-callable functions

This section describes the SplittingStep-specific functions that may be called by the user to setup and then solve an IVP
using the SplittingStep time-stepping module.

As discussed in the main ARKODE user-callable function introduction, each of ARKODE’s time-stepping modules
clarifies the categories of user-callable functions that it supports. SplittingStep does not support any of the categories
beyond the functions that apply for all time-stepping modules.

5.12.2.1 SplittingStep initialization functions

void *SplittingStepCreate(SUNStepper *steppers, int partitions, sunrealtype t0, N_Vector y0, SUNContext
sunctx)

This function allocates and initializes memory for a problem to be solved using the SplittingStep time-stepping
module in ARKODE.

Parameters

• steppers – an array of SUNStepper objects with one for each partition of the IVP. At min-
imum, they must implement the SUNStepper_Evolve(), SUNStepper_Reset(), SUN-
Stepper_SetStopTime(), and SUNStepper_SetStepDirection() operations.

• partitions – the number of partitions, P > 1, in the IVP.

• t0 – the initial value of t.

• y0 – the initial condition vector y(t0).

• sunctx – the SUNContext object (see §4.2)

Returns
If successful, a pointer to initialized problem memory of type void*, to be passed to all user-
facing SplittingStep routines listed below. If unsuccessful, a NULL pointer will be returned, and
an error message will be printed to stderr.

Example usage:

/* ARKODE objects for integrating individual partitions */
void *partition_mem[] = {NULL, NULL};

/* SUNSteppers to wrap the ARKODE objects */
SUNStepper steppers[] = {NULL, NULL};

/* create ARKODE objects, setting right-hand side functions and the
initial condition */

partition_mem[0] = ERKStepCreate(f1, t0, y0, sunctx);
partition_mem[1] = ARKStepCreate(fe2, fi2, t0, y0, sunctx);

/* setup ARKODE objects */
. . .

/* create SUNStepper wrappers for the ARKODE memory blocks */
flag = ARKodeCreateSUNStepper(partition_mem[0], &stepper[0]);
flag = ARKodeCreateSUNStepper(partition_mem[1], &stepper[1]);

/* create a SplittingStep object with two partitions */
arkode_mem = SplittingStepCreate(steppers, 2, t0, y0, sunctx);

5.12. Using the SplittingStep time-stepping module 385

User Documentation for ARKODE, v6.3.0

Example codes:

• examples/arkode/C_serial/ark_advection_diffusion_reaction_splitting.c

• examples/arkode/C_serial/ark_analytic_partitioned.c

Added in version 6.2.0.

5.12.2.2 Optional inputs for IVP method selection

int SplittingStepSetCoefficients(void *arkode_mem, SplittingStepCoefficients coefficients)
Specifies a set of coefficients for the operator splitting method.

Parameters

• arkode_mem – pointer to the SplittingStep memory block.

• coefficients – the splitting coefficients for the method.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SplittingStep memory is NULL

• ARK_ILL_INPUT – if an argument has an illegal value

Note

For a description of the SplittingStepCoefficients type and related functions for creating splitting
coefficients see §5.12.3.

Warning

This should not be used with ARKodeSetOrder().

Added in version 6.2.0.

5.12.2.3 Optional output functions

int SplittingStepGetNumEvolves(void *arkode_mem, int partition, long int *evolves)
Returns the number of times the SUNStepper for the given partition index has been evolved (so far).

Parameters

• arkode_mem – pointer to the SplittingStep memory block.

• partition – index of the partition between 0 and P − 1 or a negative number to indicate
the total number across all partitions.

• evolves – number of SUNStepper evolves.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SplittingStep memory was NULL

386 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_ILL_INPUT – if partition was out of bounds

Added in version 6.2.0.

5.12.2.4 SplittingStep re-initialization function

To reinitialize the SplittingStep module for the solution of a new problem, where a prior call to SplittingStepCre-
ate() has been made, the user must call the function SplittingStepReInit() and re-initialize each SUNStepper.
The new problem must have the same size as the previous one. This routine retains the current settings for all Splitting-
Step module options and performs the same input checking and initializations that are done in SplittingStepCre-
ate(), but it performs no memory allocation as it assumes that the existing internal memory is sufficient for the new
problem. A call to this re-initialization routine deletes the solution history that was stored internally during the previ-
ous integration, and deletes any previously-set tstop value specified via a call to ARKodeSetStopTime(). Following
a successful call to SplittingStepReInit(), call ARKodeEvolve() again for the solution of the new problem.

One important use of the SplittingStepReInit() function is in the treating of jump discontinuities in the RHS
function. Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and
restart the integrator with a readjusted ODE model, using a call to this routine. To stop when the location of the
discontinuity is known, simply make that location a value of tout. To stop when the location of the discontinuity is
determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS function not incorporate
the discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent
rootfinding, if used) can be done efficiently. Then use a switch within the RHS function (communicated through
user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted problem
uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent variable
vector.

Another use of SplittingStepReInit() is changing the partitioning of the ODE and the SUNStepper objects used
to evolve each partition.

int SplittingStepReInit(void *arkode_mem, SUNStepper *steppers, int partitions, sunrealtype t0, N_Vector y0)
Provides required problem specifications and re-initializes the SplittingStep time-stepper module.

Parameters

• arkode_mem – pointer to the SplittingStep memory block.

• steppers – an array of SUNStepper objects with one for each partition of the IVP. At min-
imum, they must implement the SUNStepper_Evolve(), SUNStepper_Reset(), SUN-
Stepper_SetStopTime(), and SUNStepper_SetStepDirection() operations.

• partitions – the number of partitions, P > 1, in the IVP.

• t0 – the initial value of t.

• y0 – the initial condition vector y(t0).

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SplittingStep memory was NULL

• ARK_MEM_FAIL – if a memory allocation failed

• ARK_ILL_INPUT – if an argument has an illegal value

Warning

5.12. Using the SplittingStep time-stepping module 387

User Documentation for ARKODE, v6.3.0

This function does not perform any re-initialization of the SUNStepper objects. It is up to the user to do this,
if necessary.

Warning

If the number of partitions changes and coefficients were previously specified with SplittingStepSetCo-
efficients(), the coefficients will be reset since they are no longer compatible. Otherwise, all previously
set options are retained but may be updated by calling the appropriate “Set” functions.

Added in version 6.2.0.

5.12.3 Operator Splitting Coefficients Data Structure

SplittingStep supplies several functions to construct operator splitting coefficients of various orders and partitions.
There are also a number of built-in methods of fixed orders and partitions (see §5.12.3.2). Finally, a user may construct a
custom set of coefficients and attach it with SplittingStepSetCoefficients(). The operator splitting coefficients
are stored in a SplittingStepCoefficients object which is a pointer to a SplittingStepCoefficientsMem
structure:

typedef SplittingStepCoefficientsMem *SplittingStepCoefficients

struct SplittingStepCoefficientsMem
Structure for storing the coefficients defining an operator splitting method.

As described in §2.8, an operator splitting method is defined by a vector α ∈ Rr and a tensor β ∈ Rr×(s+1)×P

where r is the number of sequential methods, s is the number of stages, and P is the number of partitions.

sunrealtype *alpha
An array containing the weight of each sequential method used to produce the overall operator splitting
solution. The array is of length [sequential_methods].

sunrealtype ***beta
A three-dimensional array containing the time nodes of the partition integrations. The array has dimensions
[sequential_methods][stages+1][partitions].

int sequential_methods
The number of sequential methods, r, combined to produce the overall operator splitting solution

int stages
The number of stages, s

int partitions
The number of partitions, P , in the IVP

int order
The method order of accuracy

388 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.12.3.1 SplittingStepCoefficients Functions

This section describes the functions for creating and interacting with operator splitting coefficients. The function
prototypes and as well as the relevant integer constants are defined arkode/arkode_splittingstep.h.

Table 5.9: SplittingStepCoefficients functions

Function name Description
SplittingStepCoefficients_LoadCoeffi-
cients()

Load a pre-defined SplittingStepCoefficients by ID

SplittingStepCoefficients_LoadCoeffi-
cientsByName()

Load a pre-defined SplittingStepCoefficients by name

SplittingStepCoefficients_IDToName() Convert a pre-defined SplittingStepCoefficients to its name
SplittingStepCoefficients_LieTrotter() Create a Lie–Trotter splitting method
SplittingStepCoefficients_Strang() Create a Strang splitting method
SplittingStepCoefficients_SymmetricPar-
allel()

Create a symmetrization of the Lie–Trotter splitting method

SplittingStepCoefficients_ThirdOrder-
Suzuki()

Create a third order composition method of Suzuki

SplittingStepCoefficients_TripleJump() Create an arbitrary order, three-jump composition method
SplittingStepCoefficients_SuzukiFrac-
tal()

Create an arbitrary order, five-jump composition method

SplittingStepCoefficients_Alloc() Allocate an empty SplittingStepCoefficients object
SplittingStepCoefficients_Create() Create a new SplittingStepCoefficients object from

coefficient arrays
SplittingStepCoefficients_Copy() Create a copy of a SplittingStepCoefficients object
SplittingStepCoefficients_Destroy() Deallocate a SplittingStepCoefficients object
SplittingStepCoefficients_Write() Write the SplittingStepCoefficients object to an out-

put file

SplittingStepCoefficients SplittingStepCoefficients_LoadCoefficients(ARKODE_SplittingCoefficientsID
method)

Retrieves specified splitting coefficients. For further information on the current set of splitting coefficients and
their corresponding identifiers, see §5.12.3.2.

Parameters

• method – the splitting coefficients identifier.

Returns
A SplittingStepCoefficients structure if successful or a NULL pointer if method was in-
valid or an allocation error occurred.

Added in version 6.2.0.

SplittingStepCoefficients SplittingStepCoefficients_LoadCoefficientsByName(const char *method)
Retrieves specified splitting coefficients. For further information on the current set of splitting coefficients and
their corresponding name, see §5.12.3.2.

Parameters

• method – the splitting coefficients identifier.

Returns
A SplittingStepCoefficients structure if successful or a NULL pointer if method was in-
valid or an allocation error occurred.

5.12. Using the SplittingStep time-stepping module 389

User Documentation for ARKODE, v6.3.0

Note

This function is case sensitive.

Added in version 6.2.0.

const char *SplittingStepCoefficients_IDToName(ARKODE_SplittingCoefficientsID method)
Converts specified splitting coefficients ID to a string of the same name. For further information on the current
set of splitting coefficients and their corresponding name, see §5.12.3.2.

Parameters

• method – the splitting coefficients identifier.

Returns
A SplittingStepCoefficients structure if successful or a NULL pointer if method was in-
valid or an allocation error occurred.

Added in version 6.2.0.

SplittingStepCoefficients SplittingStepCoefficients_LieTrotter(int partitions)
Create the coefficients for the first order Lie–Trotter splitting, see (2.20).

Parameters

• partitions – The number of partitions, P > 1, in the IVP.

Returns
A SplittingStepCoefficients structure if successful or a NULL pointer if partitions was
invalid or an allocation error occurred.

Added in version 6.2.0.

SplittingStepCoefficients SplittingStepCoefficients_Strang(int partitions)
Create the coefficients for the second order Strang splitting [110], see (2.22).

Parameters

• partitions – The number of partitions, P > 1, in the IVP.

Returns
A SplittingStepCoefficients structure if successful or a NULL pointer if partitions was
invalid or an allocation error occurred.

Added in version 6.2.0.

SplittingStepCoefficients SplittingStepCoefficients_Parallel(int partitions)
Create the coefficients for the first order parallel splitting method

yn = φ1hn
(yn−1) + φ2hn

(yn−1) + · · ·+ φPhn
(yn−1) + (1− P)yn−1.

Parameters

• partitions – The number of partitions, P > 1, in the IVP.

Returns
A SplittingStepCoefficients structure if successful or a NULL pointer if partitions was
invalid or an allocation error occurred.

Added in version 6.2.0.

390 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

SplittingStepCoefficients SplittingStepCoefficients_SymmetricParallel(int partitions)
Create the coefficients for the second order, symmetrized Lie–Trotter splitting [109]

yn =
1

2

(
Lhn(yn−1) + L∗hn

(yn−1)
)
,

where Lhn is the Lie–Trotter splitting (2.20) and L∗hn
is its adjoint (2.21).

Parameters

• partitions – The number of partitions, P > 1, in the IVP.

Returns
A SplittingStepCoefficients structure if successful or a NULL pointer if partitions was
invalid or an allocation error occurred.

Added in version 6.2.0.

SplittingStepCoefficients SplittingStepCoefficients_ThirdOrderSuzuki(int partitions)
Create the coefficients for a splitting method of Suzuki [114]

yn =
(
Lp1hn

◦ L∗p2hn
◦ Lp3hn

◦ L∗p4hn
◦ Lp5hn

)
(yn−1),

whereLhn
is the Lie–Trotter splitting (2.20) andL∗hn

is its adjoint (2.21). The parameters p1, . . . , p5 are selected
to give third order.

Parameters

• partitions – The number of partitions, P > 1, in the IVP.

Returns
A SplittingStepCoefficients structure if successful or a NULL pointer if partitions was
invalid or an allocation error occurred.

Added in version 6.2.0.

SplittingStepCoefficients SplittingStepCoefficients_TripleJump(int partitions, int order)
Create the coefficients for the triple jump splitting method [30]

T
[2]
hn

= Shn ,

T
[i+2]
hn

= T
[i]
γ1hn

◦ T [i]
(1−2γ1)hn

◦ T [i]
γ1hn

,

yn = T
[order]
hn

(yn−1),

where S is the Strang splitting (2.22) and γ1 is selected to increase the order by two each recursion.

Parameters

• partitions – The number of partitions, P > 1, in the IVP.

• order – A positive even number for the method order of accuracy.

Returns
A SplittingStepCoefficients structure if successful or a NULL pointer if an argument was
invalid or an allocation error occurred.

Added in version 6.2.0.

5.12. Using the SplittingStep time-stepping module 391

User Documentation for ARKODE, v6.3.0

SplittingStepCoefficients SplittingStepCoefficients_SuzukiFractal(int partitions, int order)
Create the coefficients for the quintuple jump splitting method [113]

Q
[2]
hn

= Shn ,

Q
[i+2]
hn

= Q
[i]
γ1hn

◦Q[i]
γ1hn

◦Qi(1−4γ1)hn
◦Q[i]

γ1hn
◦Q[i]

γ1hn
,

yn = Q
[order]
hn

(yn−1),

where S is the Strang splitting (2.22) and γ1 is selected to increase the order by two each recursion.

Parameters

• partitions – The number of partitions, P > 1, in the IVP.

• order – A positive even number for the method order of accuracy.

Returns
A SplittingStepCoefficients structure if successful or a NULL pointer if an argument was
invalid or an allocation error occurred.

Added in version 6.2.0.

SplittingStepCoefficients SplittingStepCoefficients_Alloc(int sequential_methods, int stages, int partitions)
Allocates an empty SplittingStepCoefficients object.

Parameters

• sequential_methods – The number of sequential methods, r ≥ 1, combined to produce
the overall operator splitting solution.

• stages – The number of stages, s ≥ 1.

• partitions – The number of partitions, P > 1, in the IVP.

Returns
A SplittingStepCoefficients structure if successful or a NULL pointer if an argument was
invalid or an allocation error occurred.

Added in version 6.2.0.

SplittingStepCoefficients SplittingStepCoefficients_Create(int sequential_methods, int stages, int partitions,
int order, sunrealtype *alpha, sunrealtype *beta)

Allocates a SplittingStepCoefficients object and fills it with the given values.

Parameters

• sequential_methods – The number of sequential methods, r ≥ 1 combined to produce
the overall operator splitting solution.

• stages – The number of stages, s ≥ 1.

• partitions – The number of partitions, P > 1 in the IVP.

• order – The method order of accuracy.

• alpha – An array of length sequential_methods containing the weight of each sequential
method used to produce the overall operator splitting solution.

• beta – An array of length sequential_methods * (stages+1) * partitions con-
taining the time nodes of the partition integrations in the C order

β1,1,1, . . . , β1,1,P , . . . , β1,s+1,1, . . . , β1,s+1,P , . . . ,

β2,1,1, . . . , β2,1,P , . . . , β2,s+1,1, . . . , β2,s+1,P , . . . ,

βr,1,1, . . . , βr,1,P , . . . , βr,s+1,1, . . . , βr,s+1,P .

392 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Returns
A SplittingStepCoefficients structure if successful or a NULL pointer if an argument was
invalid or an allocation error occurred.

Added in version 6.2.0.

SplittingStepCoefficients SplittingStepCoefficients_Copy(SplittingStepCoefficients coefficients)
Creates copy of the given splitting coefficients.

Parameters

• coefficients – The splitting coefficients to copy.

Returns
A SplittingStepCoefficients structure if successful or a NULL pointer if an allocation error
occurred.

Added in version 6.2.0.

void SplittingStepCoefficients_Destroy(SplittingStepCoefficients *coefficients)
Deallocate the splitting coefficients memory.

Parameters

• coefficients – A pointer to the splitting coefficients.

Added in version 6.2.0.

void SplittingStepCoefficients_Write(SplittingStepCoefficients coefficients, FILE *outfile)
Write the splitting coefficients to the provided file pointer.

Parameters

• coefficients – The splitting coefficients.

• outfile – Pointer to use for printing the splitting coefficients. It can be stdout or stderr,
or it may point to a specific file created using fopen.

Added in version 6.2.0.

5.12.3.2 Operator Splitting Coefficients

SplittingStep currently provides several pre-defined coefficients for problems with two partitions. We list the identifiers,
order of accuracy, and relevant references for each in the table below. We use the naming convention

ARKODE_SPLITTING_<name>_<stages>_<order>_<partitions>

Each of the splitting coefficients that are packaged with SplittingStep are specified by a unique ID having type:

enum ARKODE_SplittingCoefficientsID

with values specified for each method below (e.g., ARKODE_SPLITTING_LIE_TROTTER_1_1_2).

5.12. Using the SplittingStep time-stepping module 393

User Documentation for ARKODE, v6.3.0

Table 5.10: Operator splitting coefficients.

Table name Order Reference
ARKODE_SPLITTING_LIE_TROTTER_1_1_2 1
ARKODE_SPLITTING_STRANG_2_2_2 2 [110]
ARKODE_SPLITTING_BEST_2_2_2 2 [13]
ARKODE_SPLITTING_SUZUKI_3_3_2 3 [114]
ARKODE_SPLITTING_RUTH_3_3_2 3 [89]
ARKODE_SPLITTING_YOSHIDA_4_4_2 4 [124]
ARKODE_SPLITTING_YOSHIDA_8_6_2 6 [124]

5.12.3.3 Default Operator Splitting Coefficients

The default SplittingStep coefficients are Lie–Trotter. If a particular order is requested with ARKodeSetOrder(), the
following are the default for each order

Table 5.11: Default operator splitting coefficients by order.

Order Default operator splitting coefficients
1 SplittingStepCoefficients_LieTrotter()
2 SplittingStepCoefficients_Strang()
3 SplittingStepCoefficients_ThirdOrderSuzuki()
4, 6, 8, . . . SplittingStepCoefficients_TripleJump()
5, 7, 9, . . . Warning: this will select a triple jump method of the next even order

5.13 Using the SPRKStep time-stepping module

This section is concerned with the use of the SPRKStep time-stepping module for the solution of initial value problems
(IVPs) in a C or C++ language setting. Usage of SPRKStep follows that of the rest of ARKODE, and so in this section
we primarily focus on those usage aspects that are specific to SPRKStep.

We note that of the ARKODE example programs located in the source code examples/arkode folder, the following
demonstrate SPRKStep usage:

• examples/arkode/C_serial/ark_harmonic_symplectic.c

• examples/arkode/C_serial/ark_damped_harmonic_symplectic.c, and

• examples/arkode/C_serial/ark_kepler.c

5.13.1 SPRKStep User-callable functions

This section describes the SPRKStep-specific functions that may be called by the user to setup and then solve an IVP
using the SPRKStep time-stepping module. The large majority of these routines merely wrap underlying ARKODE
functions, and are now deprecated – each of these are clearly marked. However, some of these user-callable functions
are specific to SPRKStep, as explained below.

As discussed in the main ARKODE user-callable function introduction, each of ARKODE’s time-stepping modules
clarifies the categories of user-callable functions that it supports. SPRKStep supports only the basic set of user-callable
functions, and does not support any of the restricted groups (time adaptivity, implicit solvers, etc.).

394 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

SPRKStep does not have forcing function support when converted to a SUNStepper or MRIStepInnerStepper. See
ARKodeCreateSUNStepper() and ARKStepCreateMRIStepInnerStepper() for additional details.

5.13.1.1 SPRKStep initialization and deallocation functions

void *SPRKStepCreate(ARKRhsFn f1, ARKRhsFn f2, sunrealtype t0, N_Vector y0, SUNContext sunctx)
This function allocates and initializes memory for a problem to be solved using the SPRKStep time-stepping
module in ARKODE.

Parameters

• f1 – the name of the C function (of type ARKRhsFn()) defining f1(t, q) = −∂V (t,q)
∂q

• f2 – the name of the C function (of type ARKRhsFn()) defining f2(t, p) = ∂T (t,p)
∂p

• t0 – the initial value of t

• y0 – the initial condition vector y(t0)

• sunctx – the SUNContext object (see §4.2)

Returns
If successful, a pointer to initialized problem memory of type void*, to be passed to all user-
facing SPRKStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an
error message will be printed to stderr.

Warning

SPRKStep requires a partitioned problem where f1 should only modify the q variables and f2 should only
modify the p variables (or vice versa). However, the vector passed to these functions is the full vector with
both p and q. The ordering of the variables is determined implicitly by the user when they set the initial
conditions.

void SPRKStepFree(void **arkode_mem)
This function frees the problem memory arkode_mem created by SPRKStepCreate().

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

Deprecated since version 6.1.0: Use ARKodeFree() instead.

5.13.1.2 Rootfinding initialization function

int SPRKStepRootInit(void *arkode_mem, int nrtfn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
SPRKStepCreate(), and before SPRKStepEvolve().

To disable the rootfinding feature after it has already been initialized, or to free memory associated with SPRK-
Step’s rootfinding module, call SPRKStepRootInit() with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to SPRKStepReInit(), where the new IVP has no rootfinding
problem but the prior one did, then call SPRKStepRootInit() with nrtfn = 0.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

5.13. Using the SPRKStep time-stepping module 395

User Documentation for ARKODE, v6.3.0

• nrtfn – number of functions gi, an integer ≥ 0.

• g – name of user-supplied function, of type ARKRootFn(), defining the functions gi whose
roots are sought.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

• ARK_MEM_FAIL – if there was a memory allocation failure

• ARK_ILL_INPUT – if nrtfn is greater than zero but g = NULL.

Deprecated since version 6.1.0: Use ARKodeRootInit() instead.

5.13.1.3 SPRKStep solver function

int SPRKStepEvolve(void *arkode_mem, sunrealtype tout, N_Vector yout, sunrealtype *tret, int itask)
Integrates the ODE over an interval in t.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• tout – the next time at which a computed solution is desired.

• yout – the computed solution vector.

• tret – the time corresponding to yout (output).

• itask – a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken
a user-specified output time, tout, in the direction of integration, i.e. tn−1 < tout ≤ tn for
forward integration, or tn ≤ tout < tn−1 for backward integration. It will then compute
an approximation to the solution y(tout) by interpolation (using one of the dense output
routines described in §2.2).

The ARK_ONE_STEP option tells the solver to only take a single internal step, yn−1 → yn,
and return the solution at that point, yn, in the vector yout.

Return values

• ARK_SUCCESS – if successful.

• ARK_ROOT_RETURN – if SPRKStepEvolve() succeeded, and found one or more roots. If
the number of root functions, nrtfn, is greater than 1, call SPRKStepGetRootInfo() to see
which gi were found to have a root at (*tret).

• ARK_TSTOP_RETURN – if SPRKStepEvolve() succeeded and returned at tstop.

• ARK_MEM_NULL – if the arkode_mem argument was NULL.

• ARK_NO_MALLOC – if arkode_mem was not allocated.

• ARK_ILL_INPUT – if one of the inputs to SPRKStepEvolve() is illegal, or some other input
to the solver was either illegal or missing. Details will be provided in the error message.
Typical causes of this failure are a root of one of the root functions was found both at a point
t and also very near t.

• ARK_TOO_MUCH_WORK – if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

396 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_ERR_FAILURE – if error test failures occurred either too many times (ark_maxnef) dur-
ing one internal time step or occurred with |h| = hmin.

• ARK_VECTOROP_ERR – a vector operation error occurred.

Note

The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
SPRKStepCreate().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale
of the independent variable.

All failure return values are negative and so testing the return argument for negative values will trap all
SPRKStepEvolve() failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to SPRKStepSetStopTime() before the call to SPRKStepEvolve() to specify a
fixed stop time to end the time step and return to the user. Upon return from SPRKStepEvolve(), a copy
of the internal solution yn will be returned in the vector yout. Once the integrator returns at a tstop time,
any future testing for tstop is disabled (and can be re-enabled only though a new call to SPRKStepSet-
StopTime()). Interpolated outputs may or may not conserve the Hamiltonian. Our testing has shown that
Lagrange interpolation typically performs well in this regard, while Hermite interpolation does not. As such,
SPRKStep uses the Lagrange interpolation module by default.

On any error return in which one or more internal steps were taken by SPRKStepEvolve(), the returned
values of tret and yout correspond to the farthest point reached in the integration. On all other error returns,
tret and yout are left unchanged from those provided to the routine.

Deprecated since version 6.1.0: Use ARKodeEvolve() instead.

5.13.1.4 Optional input functions

Optional inputs for SPRKStep

int SPRKStepSetDefaults(void *arkode_mem)
Resets all optional input parameters to SPRKStep’s original default values.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory is NULL

• ARK_ILL_INPUT – if an argument had an illegal value

Note

Does not change problem-defining function pointer f or the user_data pointer.

Also leaves alone any data structures or options related to root-finding (those can be reset using SPRKStep-
RootInit()).

5.13. Using the SPRKStep time-stepping module 397

User Documentation for ARKODE, v6.3.0

Deprecated since version 6.1.0: Use ARKodeSetDefaults() instead.

int SPRKStepSetInterpolantType(void *arkode_mem, int itype)
Deprecated since version 6.1.0: This function is now a wrapper to ARKodeSetInterpolantType(), see the
documentation for that function instead.

int SPRKStepSetInterpolantDegree(void *arkode_mem, int degree)
Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values). Allowed values are between 0 and 5.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• degree – requested polynomial degree.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory or interpolation module are NULL

• ARK_INTERP_FAIL – if this is called after SPRKStepEvolve()

• ARK_ILL_INPUT – if an argument had an illegal value or the interpolation module has already
been initialized

Note

This routine should be called after SPRKStepCreate() and before SPRKStepEvolve(). After the first
call to SPRKStepEvolve() the interpolation degree may not be changed without first calling SPRK-
StepReInit().

If a user calls both this routine and SPRKStepSetInterpolantType(), then SPRKStepSetInterpolant-
Type() must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on
which it is based, the actual polynomial degree that is used by SPRKStep will be the minimum of q− 1 and
the input degree, for q > 1 where q is the order of accuracy for the time integration method.

When q = 1, a linear interpolant is the default to ensure values obtained by the integrator are returned at the
ends of the time interval.

Deprecated since version 6.1.0: Use ARKodeSetInterpolantDegree() instead.

int SPRKStepSetFixedStep(void *arkode_mem, sunrealtype hfixed)
Sets the time step size used within SPRKStep.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• hfixed – value of the fixed step size to use.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory is NULL

• ARK_ILL_INPUT – if an argument had an illegal value

Deprecated since version 6.1.0: Use ARKodeSetFixedStep() instead.

398 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

int SPRKStepSetMaxNumSteps(void *arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before SPRKStep will return with an error.

Passing mxsteps = 0 results in SPRKStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• mxsteps – maximum allowed number of internal steps.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory is NULL

• ARK_ILL_INPUT – if an argument had an illegal value

Deprecated since version 6.1.0: Use ARKodeSetMaxNumSteps() instead.

int SPRKStepSetStopTime(void *arkode_mem, sunrealtype tstop)
Specifies the value of the independent variable t past which the solution is not to proceed.

The default is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be re-enabled only
though a new call to SPRKStepSetStopTime()).

A stop time not reached before a call to SPRKStepReInit() or SPRKStepReset() will remain active but can
be disabled by calling SPRKStepClearStopTime().

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• tstop – stopping time for the integrator.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory is NULL

• ARK_ILL_INPUT – if an argument had an illegal value

Deprecated since version 6.1.0: Use ARKodeSetStopTime() instead.

int SPRKStepClearStopTime(void *arkode_mem)
Disables the stop time set with SPRKStepSetStopTime().

The stop time can be re-enabled though a new call to SPRKStepSetStopTime().

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory is NULL

Deprecated since version 6.1.0: Use ARKodeClearStopTime() instead.

5.13. Using the SPRKStep time-stepping module 399

User Documentation for ARKODE, v6.3.0

int SPRKStepSetUserData(void *arkode_mem, void *user_data)
Specifies the user data block user_data and attaches it to the main SPRKStep memory block.

If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument; otherwise
NULL is passed.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• user_data – pointer to the user data.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory is NULL

• ARK_ILL_INPUT – if an argument had an illegal value

Deprecated since version 6.1.0: Use ARKodeSetUserData() instead.

Optional inputs for IVP method selection

Table 5.12: Optional inputs for IVP method selection

Optional input Function name Default
Set integrator method order SPRKStepSetOrder() 4
Set SPRK method SPRKStepSetMethod() ARKODE_SPRK_MCLACHLAN_4_4
Set SPRK method by name SPRKStepSetMethodName() “ARKODE_SPRK_MCLACHLAN_4_-

4”
Use compensated summa-
tion

SPRKStepSetUseCompensated-
Sums()

false

int SPRKStepSetOrder(void *arkode_mem, int ord)
Specifies the order of accuracy for the SPRK integration method.

The allowed values are 1, 2, 3, 4, 5, 6, 8, 10. Any illegal input will result in the default value of 4.

Since ord affects the memory requirements for the internal SPRKStep memory block, it cannot be changed after
the first call to SPRKStepEvolve(), unless SPRKStepReInit() is called.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• ord – requested order of accuracy.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory is NULL

• ARK_ILL_INPUT – if an argument had an illegal value

400 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Warning

This overrides any previously set method so it should not be used with SPRKStepSetMethod() or SPRK-
StepSetMethodName().

Deprecated since version 6.1.0: Use ARKodeSetOrder() instead.

int SPRKStepSetMethod(void *arkode_mem, ARKodeSPRKTable sprk_table)
Specifies the SPRK method.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• sprk_table – the SPRK method table.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory is NULL

• ARK_ILL_INPUT – if an argument had an illegal value

Note

No error checking is performed on the coefficients contained in the table to ensure its declared order of
accuracy.

Warning

This should not be used with ARKodeSetOrder().

int SPRKStepSetMethodName(void *arkode_mem, const char *method)
Specifies the SPRK method by its name.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• method – the SPRK method name.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory is NULL

• ARK_ILL_INPUT – if an argument had an illegal value

Warning

This should not be used with ARKodeSetOrder().

5.13. Using the SPRKStep time-stepping module 401

User Documentation for ARKODE, v6.3.0

int SPRKStepSetUseCompensatedSums(void *arkode_mem, sunbooleantype onoff)
Specifies if compensated summation (and the incremental form) should be used where applicable.

This increases the computational cost by 2 extra vector operations per stage and an additional 5 per time step. It
also requires one extra vector to be stored. However, it is significantly more robust to roundoff error accumulation.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• onoff – should compensated summation be used (1) or not (0)

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory is NULL

• ARK_ILL_INPUT – if an argument had an illegal value

Rootfinding optional input functions

int SPRKStepSetRootDirection(void *arkode_mem, int *rootdir)
Specifies the direction of zero-crossings to be located and returned.

The default behavior is to monitor for both zero-crossing directions.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• rootdir – state array of length nrtfn, the number of root functions gi (the value of nrtfn
was supplied in the call to SPRKStepRootInit()). If rootdir[i] == 0 then crossing in
either direction for gi should be reported. A value of +1 or -1 indicates that the solver should
report only zero-crossings where gi is increasing or decreasing, respectively.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory is NULL

• ARK_ILL_INPUT – if an argument had an illegal value

Deprecated since version 6.1.0: Use ARKodeSetRootDirection() instead.

int SPRKStepSetNoInactiveRootWarn(void *arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

SPRKStep will not report the initial conditions as a possible zero-crossing (assuming that one or more compo-
nents gi are zero at the initial time). However, if it appears that some gi is identically zero at the initial time (i.e.,
gi is zero at the initial time and after the first step), SPRKStep will issue a warning which can be disabled with
this optional input function.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory is NULL

Deprecated since version 6.1.0: Use ARKodeSetNoInactiveRootWarn() instead.

402 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

5.13.1.5 Interpolated output function

int SPRKStepGetDky(void *arkode_mem, sunrealtype t, int k, N_Vector dky)
Computes the k-th derivative of the function y at the time t, i.e., y(k)(t), for values of the independent variable
satisfying tn−hn ≤ t ≤ tn, with tn as current internal time reached, and hn is the last internal step size success-
fully used by the solver. A user may access the values tn and hn via the functions SPRKStepGetCurrentTime()
and SPRKStepGetLastStep(), respectively.

This routine uses an interpolating polynomial of degree min(degree, 5), where degree is the argument provided to
SPRKStepSetInterpolantDegree(). The user may request k in the range {0,. . . , min(degree, kmax)} where
kmax depends on the choice of interpolation module. For Hermite interpolants kmax = 5 and for Lagrange
interpolants kmax = 3.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• t – the value of the independent variable at which the derivative is to be evaluated.

• k – the derivative order requested.

• dky – output vector (must be allocated by the user).

Return values

• ARK_SUCCESS – if successful

• ARK_BAD_K – if k is not in the range {0,. . . , min(degree, kmax)}.

• ARK_BAD_T – if t is not in the interval [tn − hn, tn]

• ARK_BAD_DKY – if the dky vector was NULL

• ARK_MEM_NULL – if the SPRKStep memory is NULL

Note

Dense outputs may or may not conserve the Hamiltonian. Our testing has shown that Lagrange interpolation
typically performs well in this regard, while Hermite interpolation does not.

Warning

It is only legal to call this function after a successful return from SPRKStepEvolve().

Deprecated since version 6.1.0: Use ARKodeGetDky() instead.

5.13.1.6 Optional output functions

Main solver optional output functions

int SPRKStepGetNumSteps(void *arkode_mem, long int *nsteps)
Returns the cumulative number of internal steps taken by the solver (so far).

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

5.13. Using the SPRKStep time-stepping module 403

User Documentation for ARKODE, v6.3.0

• nsteps – number of steps taken in the solver.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumSteps() instead.

int SPRKStepGetLastStep(void *arkode_mem, sunrealtype *hlast)
Returns the integration step size taken on the last successful internal step.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• hlast – step size taken on the last internal step.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetLastStep() instead.

int SPRKStepGetCurrentStep(void *arkode_mem, sunrealtype *hcur)
Returns the integration step size to be attempted on the next internal step.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• hcur – step size to be attempted on the next internal step.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetCurrentStep() instead.

int SPRKStepGetCurrentTime(void *arkode_mem, sunrealtype *tcur)
Returns the current internal time reached by the solver.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• tcur – current internal time reached.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetCurrentTime() instead.

int SPRKStepGetCurrentState(void *arkode_mem, N_Vector *ycur)
Returns the current internal solution reached by the solver.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• ycur – current internal solution

404 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

Warning

Users should exercise extreme caution when using this function, as altering values of ycur may lead to un-
desirable behavior, depending on the particular use case and on when this routine is called.

Deprecated since version 6.1.0: Use ARKodeGetCurrentState() instead.

int SPRKStepGetStepStats(void *arkode_mem, long int *nsteps, sunrealtype *hinused, sunrealtype *hlast,
sunrealtype *hcur, sunrealtype *tcur)

Returns many of the most useful optional outputs in a single call.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• nsteps – number of steps taken in the solver.

• hinused – actual value of initial step size.

• hlast – step size taken on the last internal step.

• hcur – step size to be attempted on the next internal step.

• tcur – current internal time reached.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetStepStats() instead.

int SPRKStepPrintAllStats(void *arkode_mem, FILE *outfile, SUNOutputFormat fmt)
Outputs all of the integrator statistics.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• outfile – pointer to output file.

• fmt – the output format:

– SUN_OUTPUTFORMAT_TABLE – prints a table of values

– SUN_OUTPUTFORMAT_CSV – prints a comma-separated list of key and value pairs e.g.,
key1,value1,key2,value2,...

Return values

• ARK_SUCCESS – – if the output was successfully.

• ARK_MEM_NULL – – if the SPRKStep memory was NULL.

• ARK_ILL_INPUT – – if an invalid formatting option was provided.

5.13. Using the SPRKStep time-stepping module 405

User Documentation for ARKODE, v6.3.0

Note

The Python module tools/suntools provides utilities to read and output the data from a SUNDIALS CSV
output file using the key and value pair format.

Deprecated since version 6.1.0: Use ARKodePrintAllStats() instead.

char *SPRKStepGetReturnFlagName(long int flag)
Returns the name of the SPRKStep constant corresponding to flag. See ARKODE Constants.

Parameters

• flag – a return flag from an SPRKStep function.

Returns
The return value is a string containing the name of the corresponding constant.

Deprecated since version 6.1.0: Use ARKodeGetReturnFlagName() instead.

int SPRKStepGetNumStepAttempts(void *arkode_mem, long int *step_attempts)
Returns the cumulative number of steps attempted by the solver (so far).

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• step_attempts – number of steps attempted by solver.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumStepAttempts() instead.

int SPRKStepGetNumRhsEvals(void *arkode_mem, long int *nf1, long int *nf2)
Returns the number of calls to the user’s right-hand side functions, f1 and f2 (so far).

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• nf1 – number of calls to the user’s f1(t, p) function.

• nf2 – number of calls to the user’s f2(t, q) function.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

Deprecated since version 6.2.0: Use ARKodeGetNumRhsEvals() instead.

int SPRKStepGetCurrentMethod(void *arkode_mem, ARKodeSPRKTable *sprk_table)
Returns the SPRK method coefficient table currently in use by the solver.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• sprk_table – pointer to the SPRK method table.

Return values

406 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

int SPRKStepGetUserData(void *arkode_mem, void **user_data)
Returns the user data pointer previously set with SPRKStepSetUserData().

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• user_data – memory reference to a user data pointer

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetUserData() instead.

Rootfinding optional output functions

int SPRKStepGetRootInfo(void *arkode_mem, int *rootsfound)
Returns an array showing which functions were found to have a root.

For the components of gi for which a root was found, the sign of rootsfound[i] indicates the direction of
zero-crossing. A value of +1 indicates that gi is increasing, while a value of -1 indicates a decreasing gi.

The user must allocate space for rootsfound prior to calling this function.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• rootsfound – array of length nrtfn with the indices of the user functions gi found to have
a root (the value of nrtfn was supplied in the call to SPRKStepRootInit()). For i = 0 . . .
nrtfn-1, rootsfound[i] is nonzero if gi has a root, and 0 if not.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetRootInfo() instead.

int SPRKStepGetNumGEvals(void *arkode_mem, long int *ngevals)
Returns the cumulative number of calls made to the user’s root function g.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• ngevals – number of calls made to g so far.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumGEvals() instead.

5.13. Using the SPRKStep time-stepping module 407

User Documentation for ARKODE, v6.3.0

General usability functions

int SPRKStepWriteParameters(void *arkode_mem, FILE *fp)
Outputs all SPRKStep solver parameters to the provided file pointer.

The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for all
processes would be identical.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• fp – pointer to use for printing the solver parameters.

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeWriteParameters() instead.

5.13.1.7 SPRKStep re-initialization function

To reinitialize the SPRKStep module for the solution of a new problem, where a prior call to SPRKStepCreate()
has been made, the user must call the function SPRKStepReInit(). The new problem must have the same size as
the previous one. This routine retains the current settings for all SPRKStep module options and performs the same
input checking and initializations that are done in SPRKStepCreate(), but it performs no memory allocation as it
assumes that the existing internal memory is sufficient for the new problem. A call to this re-initialization routine
deletes the solution history that was stored internally during the previous integration, and deletes any previously-set
tstop value specified via a call to SPRKStepSetStopTime(). Following a successful call to SPRKStepReInit(), call
SPRKStepEvolve() again for the solution of the new problem.

The use of SPRKStepReInit() requires that the number of Runge–Kutta stages, denoted by s, be no larger for the new
problem than for the previous problem. This condition is automatically fulfilled if the method order q is left unchanged.

One potential use of the SPRKStepReInit() function is in the treating of jump discontinuities in the RHS function
[115]. In lieu of including if statements within the RHS function to handle discontinuities, it may be more computa-
tionally efficient to stop at each point of discontinuity (e.g., through use of tstop or the rootfinding feature) and restart
the integrator with a readjusted ODE model, using a call to this routine. We note that for the solution to retain temporal
accuracy, the RHS function should not incorporate the discontinuity.

int SPRKStepReInit(void *arkode_mem, ARKRhsFn f1, ARKRhsFn f2, sunrealtype t0, N_Vector y0)
Provides required problem specifications and re-initializes the SPRKStep time-stepper module.

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, SPRKStepReInit() also sends an error message to the error handler function.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• f1 – the name of the C function (of type ARKRhsFn()) defining f1(t, q) = ∂V (t,q)
∂q

• f2 – the name of the C function (of type ARKRhsFn()) defining f2(t, p) = ∂T (t,p)
∂p

• t0 – the initial value of t.

• y0 – the initial condition vector y(t0).

408 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

• ARK_MEM_FAIL – if a memory allocation failed

• ARK_ILL_INPUT – if an argument had an illegal value.

5.13.1.8 SPRKStep reset function

int SPRKStepReset(void *arkode_mem, sunrealtype tR, N_Vector yR)
Resets the current SPRKStep time-stepper module state to the provided independent variable value and dependent
variable vector.

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, SPRKStepReset() also sends an error message to the error handler function.

Parameters

• arkode_mem – pointer to the SPRKStep memory block.

• tR – the value of the independent variable t.

• yR – the value of the dependent variable vector y(tR).

Return values

• ARK_SUCCESS – if successful

• ARK_MEM_NULL – if the SPRKStep memory was NULL

• ARK_MEM_FAIL – if a memory allocation failed

• ARK_ILL_INPUTL – if an argument had an illegal value.

Note

By default the next call to SPRKStepEvolve()will use the step size computed by SPRKStep prior to calling
SPRKStepReset().

Deprecated since version 6.1.0: Use ARKodeReset() instead.

5.14 Adjoint Sensitivity Analysis

Added in version 6.3.0.

The previous sections discuss using ARKODE for the integration of forward ODE models. This section discusses how
to use ARKODE for adjoint sensitivity analysis as introduced in §2.19. To use ARKStep for adjoint sensitivity analysis
(ASA), users simply setup the forward integration as usual (following §5.2) with a few differences. Below we provide
an updated version of the ARKODE usage in section §5.2 where steps that are unchanged are italicized. The example
code examples/arkode/C_serial/ark_lotka_volterra_asa.c demonstrates these steps in detail.

1. Initialize parallel or multi-threaded environment, if appropriate.

2. Create the SUNDIALS simulation context object

3. Set problem dimensions, etc.

5.14. Adjoint Sensitivity Analysis 409

User Documentation for ARKODE, v6.3.0

4. Set vector of initial values

5. Create ARKODE object

6. Specify a fixed time step size.

Currently the discrete ASA capability only allows a fixed time step size to be used. Call ARKodeSetFixed-
Step() to set the time step.

7. Set optional inputs

8. Specify rootfinding problem

9. Create a SUNAdjointCheckpointScheme object

Create the SUNAdjointCheckpointScheme object by calling SUNAdjointCheckpointScheme_Create_*.
Available SUNAdjointCheckpointScheme implementations are found in section §14.3.

10. Attach the checkpoint scheme object to ARKODE

Call ARKodeSetAdjointCheckpointScheme().

11. Advance solution in time

12. Get optional outputs

13. Create the sensitivities vector with the terminal condition

The sensitivities vector must be an instance of the ManyVector N_Vector implementation. You will have one
subvector for the initial condition sensitivities and an additional subvector if you want sensitivities with respect
to parameters. The vectors should contain the terminal conditions for the adjoint problem. The first subvec-
tor should contain dg(tf , y(tf), p)/dy(tf) and the second subvector should contain dg(tf , y(tf), p)/dp. The
subvectors can be any implementation of the N_Vector class.

For example, in a problem with 10 state variables and 4 parameters using serial computations, the ManyVector
can be constructed as follows:

sunindextype num_equations = 10;
sunindextype num_params = 4;
N_Vector sensu0 = N_VNew_Serial(num_equations, sunctx);
N_Vector sensp = N_VNew_Serial(num_params, sunctx);
N_Vector sens[2] = {sensu0, sensp};
N_Vector sf = N_VNew_ManyVector(2, sens, sunctx);
// Set the terminal condition for the adjoint system, which
// should be the the gradient of our cost function at tf.
dgdu(u, sensu0, params);
dgdp(u, sensp, params);

14. Create the SUNAdjointStepper object

Call ERKStepCreateAdjointStepper() or ARKStepCreateAdjointStepper().

15. Set optional ASA input

Refer to §14.2 for options.

16. Advance the adjoint sensitivity analysis ODE

Call SUNAdjointStepper_Evolve() or SUNAdjointStepper_OneStep().

17. Get optional ASA outputs

Refer to §14.2 for options.

410 Chapter 5. Using ARKODE

User Documentation for ARKODE, v6.3.0

18. Deallocate memory for ASA objects

Deallocate the sensitivities vector, SUNAdjointStepper, and SUNAdjointCheckpointScheme objects.

19. Deallocate memory for solution vector

20. Free solver memory

Call SUNStepper_Destroy() and ARKodeFree() to free the memory allocated for the SUNStepper and
ARKODE integrator objects.

21. Free the SUNContext object

22. Finalize MPI, if used

5.14.1 User Callable Functions

This section describes user-callable functions for performing adjoint sensitivity analysis with methods with ERKStep
and ARKStep.

int ERKStepCreateAdjointStepper(void *arkode_mem, SUNAdjRhsFn f, sunrealtype tf, N_Vector sf,
SUNContext sunctx, SUNAdjointStepper *adj_stepper_ptr)

Creates a SUNAdjointStepper object compatible with the provided ERKStep instance for integrating the ad-
joint sensitivity system (2.68).

Parameters

• arkode_mem – a pointer to the ERKStep memory block.

• f – the adjoint right hand side function which implements Λ = f∗y (t, y, p)λ and, if sensitiv-
ities with respect to parameters should be computed, ν = f∗p (t, y, p)λ.

• tf – the terminal time for the adjoint sensitivity system.

• sf – the sensitivity vector holding the adjoint system terminal condition. This must be
an NVECTOR_MANYVECTOR instance. The first subvector must be g∗y(tf , y(tf), p) ∈
RN . If sensitivities to parameters should be computed, then the second subvector must be
g∗p(tf , y(tf), p) ∈ RNs , otherwise only one subvector should be provided.

• sunctx – the SUNDIALS simulation context object.

• adj_stepper_ptr – the newly created SUNAdjointStepper object.

Return values

• ARK_SUCCESS – if successful.

• ARK_MEM_FAIL – if a memory allocation failed.

• ARK_ILL_INPUT – if an argument has an illegal value.

Added in version 6.3.0.

Note

Currently fixed time steps must be used. Furthermore, the explicit stability function, inequality constraints,
and relaxation features are not yet compatible as they require adaptive time steps.

5.14. Adjoint Sensitivity Analysis 411

User Documentation for ARKODE, v6.3.0

int ARKStepCreateAdjointStepper(void *arkode_mem, SUNAdjRhsFn fe, SUNAdjRhsFn fi, sunrealtype tf,
N_Vector sf, SUNContext sunctx, SUNAdjointStepper *adj_stepper_ptr)

Creates a SUNAdjointStepper object compatible with the provided ARKStep instance for integrating the ad-
joint sensitivity system (2.68).

Parameters

• arkode_mem – a pointer to the ARKStep memory block.

• fe – the adjoint right hand side function which implements Λ = fE,∗y (t, y, p)λ and, if sen-
sitivities with respect to parameters should be computed, ν = f∗p (t, y, p)λ.

• fi – not yet support, the user should pass NULL.

• tf – the terminal time for the adjoint sensitivity system.

• sf – the sensitivity vector holding the adjoint system terminal condition. This must be a
NVECTOR_MANYVECTOR instance. The first subvector must be g∗y(tf , y(tf), p) ∈ RN .
If sensitivities to parameters should be computed, then the second subvector must be
g∗p(tf , y(tf), p) ∈ RNs , otherwise only one subvector should be provided.

• sunctx – the SUNDIALS simulation context object.

• adj_stepper_ptr – the newly created SUNAdjointStepper object.

Return values

• ARK_SUCCESS – if successful.

• ARK_MEM_FAIL – if a memory allocation failed.

• ARK_ILL_INPUT – if an argument has an illegal value.

Added in version 6.3.0.

Note

Currently only explicit methods with identity mass matrices are supported for ASA, and fixed time steps must
be used. Furthermore, the explicit stability function, inequality constraints, and relaxation features are not
yet compatible as they require adaptive time steps.

412 Chapter 5. Using ARKODE

Chapter 6

Butcher Table Data Structure

To store a Butcher table, B, defining a Runge–Kutta method ARKODE provides the ARKodeButcherTable type and
several related utility routines. We use the following notation

B ≡
c A
q b

p b̃

=

c1 a1,1 · · · a1,s−1 a1,s
c2 a2,1 · · · a2,s−1 a2,s
...

...
...

...
...

cs as,1 · · · as,s−1 as,s
q b1 · · · bs−1 bs
p b̃1 · · · b̃s−1 b̃s

.

An ARKodeButcherTable is a pointer to the ARKodeButcherTableMem structure:

typedef ARKodeButcherTableMem *ARKodeButcherTable

struct ARKodeButcherTableMem
Structure for storing a Butcher table

int q
The method order of accuracy

int p
The embedding order of accuracy, typically q = p+ 1

int stages
The number of stages in the method, s

sunrealtype **A
The method coefficients A ∈ Rs

sunrealtype *c
The method abscissa c ∈ Rs

sunrealtype *b
The method coefficients b ∈ Rs

sunrealtype *d

The method embedding coefficients b̃ ∈ Rs

413

User Documentation for ARKODE, v6.3.0

6.1 ARKodeButcherTable functions

Table 6.1: ARKodeButcherTable functions

Function name Description
ARKodeButcherTable_LoadERK() Retrieve a given explicit Butcher table by its unique ID
ARKodeButcherTable_LoadERKByName() Retrieve a given explicit Butcher table by its unique name
ARKodeButcherTable_ERKIDToName() Convert an explicit Butcher table ID to its name
ARKodeButcherTable_LoadDIRK() Retrieve a given implicit Butcher table by its unique ID
ARKodeButcherTable_LoadDIRKByName() Retrieve a given implicit Butcher table by its unique name
ARKodeButcherTable_DIRKIDToName() Convert an implicit Butcher table ID to its name
ARKodeButcherTable_Alloc() Allocate an empty Butcher table
ARKodeButcherTable_Create() Create a new Butcher table
ARKodeButcherTable_Copy() Create a copy of a Butcher table
ARKodeButcherTable_Space() Get the Butcher table real and integer workspace size
ARKodeButcherTable_Free() Deallocate a Butcher table
ARKodeButcherTable_Write() Write the Butcher table to an output file
ARKodeButcherTable_IsStifflyAccurate() Determine if A[stages - 1][i] == b[i]
ARKodeButcherTable_CheckOrder() Check the order of a Butcher table
ARKodeButcherTable_CheckARKOrder() Check the order of an ARK pair of Butcher tables

ARKodeButcherTable ARKodeButcherTable_LoadERK(ARKODE_ERKTableID emethod)
Retrieves a specified explicit Butcher table. The prototype for this function, as well as the integer names for each
provided method, are defined in the header file arkode/arkode_butcher_erk.h. For further information on
these tables and their corresponding identifiers, see §18.

Arguments:

• emethod – integer input specifying the given Butcher table.

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer if emethod was invalid.

ARKodeButcherTable ARKodeButcherTable_LoadERKByName(const char *emethod)
Retrieves a specified explicit Butcher table. The prototype for this function, as well as the names for each provided
method, are defined in the header file arkode/arkode_butcher_erk.h. For further information on these tables
and their corresponding names, see §18.

Arguments:

• emethod – name of the Butcher table.

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer if emethod was invalid or "ARKODE_ERK_NONE".

Notes:
This function is case sensitive.

const char *ARKodeButcherTable_ERKIDToName(ARKODE_ERKTableID emethod)
Converts a specified explicit Butcher table ID to a string of the same name. The prototype for this function, as well
as the integer names for each provided method, are defined in the header file arkode/arkode_butcher_erk.h.
For further information on these tables and their corresponding identifiers, see §18.

414 Chapter 6. Butcher Table Data Structure

User Documentation for ARKODE, v6.3.0

Arguments:

• emethod – integer input specifying the given Butcher table.

Return value:

• The name associated with emethod.

• NULL pointer if emethod was invalid.

Added in version 6.1.0.

ARKodeButcherTable ARKodeButcherTable_LoadDIRK(ARKODE_DIRKTableID imethod)
Retrieves a specified diagonally-implicit Butcher table. The prototype for this function, as well as the integer
names for each provided method, are defined in the header file arkode/arkode_butcher_dirk.h. For further
information on these tables and their corresponding identifiers, see §18.

Arguments:

• imethod – integer input specifying the given Butcher table.

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer if imethod was invalid.

ARKodeButcherTable ARKodeButcherTable_LoadDIRKByName(const char *imethod)
Retrieves a specified diagonally-implicit Butcher table. The prototype for this function, as well as the names for
each provided method, are defined in the header file arkode/arkode_butcher_dirk.h. For further informa-
tion on these tables and their corresponding names, see §18.

Arguments:

• imethod – name of the Butcher table.

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer if imethod was invalid or "ARKODE_DIRK_NONE".

Notes:
This function is case sensitive.

const char *ARKodeButcherTable_DIRKIDToName(ARKODE_DIRKTableID imethod)
Converts a specified diagonally-implicit Butcher table ID to a string of the same name. The prototype for this
function, as well as the integer names for each provided method, are defined in the header file arkode/arkode_-
butcher_dirk.h. For further information on these tables and their corresponding identifiers, see §18.

Arguments:

• imethod – integer input specifying the given Butcher table.

Return value:

• The name associated with imethod.

• NULL pointer if imethod was invalid.

Added in version 6.1.0.

ARKodeButcherTable ARKodeButcherTable_Alloc(int stages, sunbooleantype embedded)
Allocates an empty Butcher table.

Arguments:

6.1. ARKodeButcherTable functions 415

User Documentation for ARKODE, v6.3.0

• stages – the number of stages in the Butcher table.

• embedded – flag denoting whether the Butcher table has an embedding (SUNTRUE) or not (SUNFALSE).

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer if stages was invalid or an allocation error occurred.

ARKodeButcherTable ARKodeButcherTable_Create(int s, int q, int p, sunrealtype *c, sunrealtype *A, sunrealtype
*b, sunrealtype *d)

Allocates a Butcher table and fills it with the given values.

Arguments:

• s – number of stages in the RK method.

• q – global order of accuracy for the RK method.

• p – global order of accuracy for the embedded RK method.

• c – array (of length s) of stage times for the RK method.

• A – array of coefficients defining the RK stages. This should be stored as a 1D array of size s*s, in
row-major order.

• b – array of coefficients (of length s) defining the time step solution.

• d – array of coefficients (of length s) defining the embedded solution.

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer if stages was invalid or an allocation error occurred.

Notes:
If the method does not have an embedding then d should be NULL and p should be equal to zero.

Warning

When calling this function from Fortran, it is important to note that A is expected to be in row-major
ordering.

ARKodeButcherTable ARKodeButcherTable_Copy(ARKodeButcherTable B)
Creates copy of the given Butcher table.

Arguments:

• B – the Butcher table to copy.

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer an allocation error occurred.

void ARKodeButcherTable_Space(ARKodeButcherTable B, sunindextype *liw, sunindextype *lrw)
Get the real and integer workspace size for a Butcher table.

Arguments:

• B – the Butcher table.

416 Chapter 6. Butcher Table Data Structure

User Documentation for ARKODE, v6.3.0

• lenrw – the number of sunrealtype values in the Butcher table workspace.

• leniw – the number of integer values in the Butcher table workspace.

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the Butcher table memory was NULL.

Deprecated since version 6.3.0: Work space functions will be removed in version 8.0.0.

void ARKodeButcherTable_Free(ARKodeButcherTable B)
Deallocate the Butcher table memory.

Arguments:

• B – the Butcher table.

void ARKodeButcherTable_Write(ARKodeButcherTable B, FILE *outfile)
Write the Butcher table to the provided file pointer.

Arguments:

• B – the Butcher table.

• outfile – pointer to use for printing the Butcher table.

Notes:
The outfile argument can be stdout or stderr, or it may point to a specific file created using fopen.

void ARKodeButcherTable_IsStifflyAccurate(ARKodeButcherTable B)
Determine if the table satisfies A[stages - 1][i] == b[i]

Arguments:

• B – the Butcher table.

Returns

• SUNTRUE if the method is “stiffly accurate”, otherwise returns SUNFALSE

Added in version v5.7.0.

int ARKodeButcherTable_CheckOrder(ARKodeButcherTable B, int *q, int *p, FILE *outfile)
Determine the analytic order of accuracy for the specified Butcher table. The analytic (necessary) conditions are
checked up to order 6. For orders greater than 6 the Butcher simplifying (sufficient) assumptions are used.

Arguments:

• B – the Butcher table.

• q – the measured order of accuracy for the method.

• p – the measured order of accuracy for the embedding; 0 if the method does not have an embedding.

• outfile – file pointer for printing results; NULL to suppress output.

Return value:

• 0 – success, the measured vales of q and p match the values of q and p in the provided Butcher tables.

• 1 – warning, the values of q and p in the provided Butcher tables are lower than the measured values,
or the measured values achieve the maximum order possible with this function and the values of q and
p in the provided Butcher tables table are higher.

• -1 – failure, the values of q and p in the provided Butcher tables are higher than the measured values.

6.1. ARKodeButcherTable functions 417

User Documentation for ARKODE, v6.3.0

• -2 – failure, the input Butcher table or critical table contents are NULL.

Notes:
For embedded methods, if the return flags for q and p would differ, failure takes precedence over warning,
which takes precedence over success.

int ARKodeButcherTable_CheckARKOrder(ARKodeButcherTable B1, ARKodeButcherTable B2, int *q, int *p,
FILE *outfile)

Determine the analytic order of accuracy (up to order 6) for a specified ARK pair of Butcher tables.

Arguments:

• B1 – a Butcher table in the ARK pair.

• B2 – a Butcher table in the ARK pair.

• q – the measured order of accuracy for the method.

• p – the measured order of accuracy for the embedding; 0 if the method does not have an embedding.

• outfile – file pointer for printing results; NULL to suppress output.

Return value:

• 0 – success, the measured vales of q and p match the values of q and p in the provided Butcher tables.

• 1 – warning, the values of q and p in the provided Butcher tables are lower than the measured values,
or the measured values achieve the maximum order possible with this function and the values of q and
p in the provided Butcher tables table are higher.

• -1 – failure, the input Butcher tables or critical table contents are NULL.

Notes:
For embedded methods, if the return flags for q and p would differ, warning takes precedence over success.

418 Chapter 6. Butcher Table Data Structure

Chapter 7

SPRK Method Table Structure

To store the pair of Butcher tables defining a SPRK method of order q ARKODE provides the ARKodeSPRKTable type
and several related utility routines. We use the following notation

B ≡ c A
b

=

c1 0 · · · 0 0

c2 a1 0 · · ·
...

...
...

.
...

cs a1 · · · as−1 0
a1 · · · as−1 as

B̂ ≡ ĉ Â

b̂
=

ĉ1 â1 · · · 0 0

ĉ2 â1 â2 · · ·
...

...
...

.
...

ĉs â1 â2 · · · âs
â1 â2 · · · âs

where B and B̂ contain the coefficients for the explicit and diagonally implicit tables, respectively. We use a compact
storage of these coefficients in terms of two arrays, one for a values and one for â values. The abscissae (only relevant
for non-autonomous problems) are computed dynamically as cj =

∑j
i=1 ai and ĉj =

∑j
i=1 âi, respectively [35, 63].

The ARKodeSPRKTable type is a pointer to the ARKodeSPRKTableMem structure:

typedef ARKodeSPRKTableMem *ARKodeSPRKTable

type ARKodeSPRKTableMem
Structure representing the SPRK method that holds the method coefficients.

int q
The method order of accuracy.

int stages
The number of stages.

sunrealtype *a
Array of coefficients that generate the explicit Butcher table. a[i] is the coefficient appearing in column
i+1.

sunrealtype *ahat
Array of coefficients that generate the diagonally-implicit Butcher table. ahat[i] is the coefficient appear-
ing in column i.

419

User Documentation for ARKODE, v6.3.0

7.1 ARKodeSPRKTable functions

Table 7.1: ARKodeSPRKTable functions

Function name Description
ARKodeSPRKTable_Alloc() Allocate an empty table
ARKodeSPRKTable_Load() Load SPRK method using an identifier
ARKodeSPRKTable_LoadByName() Load SPRK method using a string version of the identifier
ARKodeSPRKTable_Create() Create a new table
ARKodeSPRKTable_Copy() Create a copy of a table
ARKodeSPRKTable_Space() Get the table real and integer workspace size
ARKodeSPRKTable_Free() Deallocate a table

ARKodeSPRKTable ARKodeSPRKTable_Create(int stages, int q, const sunrealtype *a, const sunrealtype *ahat)
Creates and allocates an ARKodeSPRKTable with the specified number of stages and the coefficients provided.

Parameters

• stages – The number of stages.

• q – The order of the method.

• a – An array of the coefficients for the a table.

• ahat – An array of the coefficients for the ahat table.

Returns
ARKodeSPRKTable for the loaded method.

ARKodeSPRKTable ARKodeSPRKTable_Alloc(int stages)
Allocate memory for an ARKodeSPRKTable with the specified number of stages.

Parameters

• stages – The number of stages.

Returns
ARKodeSPRKTable for the loaded method.

ARKodeSPRKTable ARKodeSPRKTable_Load(ARKODE_SPRKMethodID id)
Load the ARKodeSPRKTable for the specified method ID.

Parameters

• id – The ID of the SPRK method, see Symplectic Partitioned Butcher tables.

Returns
ARKodeSPRKTable for the loaded method.

ARKodeSPRKTable ARKodeSPRKTable_LoadByName(const char *method)
Load the ARKodeSPRKTable for the specified method name.

Parameters

• method – The name of the SPRK method, see Symplectic Partitioned Butcher tables.

Returns
ARKodeSPRKTable for the loaded method.

420 Chapter 7. SPRK Method Table Structure

User Documentation for ARKODE, v6.3.0

ARKodeSPRKTable ARKodeSPRKTable_Copy(ARKodeSPRKTable sprk_table)
Create a copy of the ARKodeSPRKTable.

Parameters

• sprk_table – The ARKodeSPRKTable to copy.

Returns
Pointer to the copied ARKodeSPRKTable.

void ARKodeSPRKTable_Write(ARKodeSPRKTable sprk_table, FILE *outfile)
Write the ARKodeSPRKTable out to the file.

Parameters

• sprk_table – The ARKodeSPRKTable to write.

• outfile – The FILE that will be written to.

void ARKodeSPRKTable_Space(ARKodeSPRKTable sprk_table, sunindextype *liw, sunindextype *lrw)
Get the workspace sizes required for the ARKodeSPRKTable.

Parameters

• sprk_table – The ARKodeSPRKTable.

• liw – Pointer to store the integer workspace size.

• lrw – Pointer to store the real workspace size.

Deprecated since version 6.3.0: Work space functions will be removed in version 8.0.0.

void ARKodeSPRKTable_Free(ARKodeSPRKTable sprk_table)
Free the memory allocated for the ARKodeSPRKTable.

Parameters

• sprk_table – The ARKodeSPRKTable to free.

int ARKodeSPRKTable_ToButcher(ARKodeSPRKTable sprk_table, ARKodeButcherTable *a_ptr,
ARKodeButcherTable *b_ptr)

Convert the ARKodeSPRKTable to the Butcher table representation.

Parameters

• sprk_table – The ARKodeSPRKTable.

• a_ptr – Pointer to store the explicit Butcher table.

• b_ptr – Pointer to store the diagonally-implicit Butcher table.

7.1. ARKodeSPRKTable functions 421

User Documentation for ARKODE, v6.3.0

422 Chapter 7. SPRK Method Table Structure

Chapter 8

Vector Data Structures

The SUNDIALS library comes packaged with a variety of NVECTOR implementations, designed for simulations in
serial, shared-memory parallel, and distributed-memory parallel environments, as well as interfaces to vector data
structures used within external linear solver libraries. All native implementations assume that the process-local data is
stored contiguously, and they in turn provide a variety of standard vector algebra operations that may be performed on
the data.

In addition, SUNDIALS provides a simple interface for generic vectors (akin to a C++ abstract base class). All of the
major SUNDIALS solvers (CVODE(s), IDA(s), KINSOL, ARKODE) in turn are constructed to only depend on these
generic vector operations, making them immediately extensible to new user-defined vector objects. The only exceptions
to this rule relate to the dense, banded and sparse-direct linear system solvers, since they rely on particular data storage
and access patterns in the NVECTORS used.

8.1 Description of the NVECTOR Modules

SUNDIALS solvers are written in a data-independent manner. They all operate on generic vectors (of type N_Vector)
through a set of operations defined by, and specific to, the particular vector implementation. Users can provide a
custom vector implementation or use one provided with SUNDIALS. The generic operations are described below. In
the sections following, the implementations provided with SUNDIALS are described.

An N_Vector is a pointer to the _generic_N_Vector structure:

typedef struct _generic_N_Vector *N_Vector

struct _generic_N_Vector
The structure defining the SUNDIALS vector class.

void *content
Pointer to vector-specific member data.

N_Vector_Ops ops
A virtual table of vector operations provided by a specific implementation.

SUNContext sunctx
The SUNDIALS simulation context

The virtual table structure is defined as

typedef _generic_N_Vector_Ops *N_Vector_Ops

423

User Documentation for ARKODE, v6.3.0

struct _generic_N_Vector_Ops
The structure defining N_Vector operations.

N_Vector_ID (*nvgetvectorid)(N_Vector)
The function implementing N_VGetVectorID()

N_Vector (*nvclone)(N_Vector)
The function implementing N_VClone()

N_Vector (*nvcloneempty)(N_Vector)
The function implementing N_VCloneEmpty()

void (*nvdestroy)(N_Vector)
The function implementing N_VDestroy()

void (*nvspace)(N_Vector, sunindextype*, sunindextype*)
The function implementing N_VSpace()

sunrealtype *(*nvgetarraypointer)(N_Vector)
The function implementing N_VGetArrayPointer()

sunrealtype *(*nvgetdevicearraypointer)(N_Vector)
The function implementing N_VGetDeviceArrayPointer()

void (*nvsetarraypointer)(sunrealtype*, N_Vector)
The function implementing N_VSetArrayPointer()

SUNComm (*nvgetcommunicator)(N_Vector)
The function implementing N_VGetCommunicator()

sunindextype (*nvgetlength)(N_Vector)
The function implementing N_VGetLength()

sunindextype (*nvgetlocallength)(N_Vector)
The function implementing N_VGetLocalLength()

void (*nvlinearsum)(sunrealtype, N_Vector, sunrealtype, N_Vector, N_Vector)
The function implementing N_VLinearSum()

void (*nvconst)(sunrealtype, N_Vector)
The function implementing N_VConst()

void (*nvprod)(N_Vector, N_Vector, N_Vector)
The function implementing N_VProd()

void (*nvdiv)(N_Vector, N_Vector, N_Vector)
The function implementing N_VDiv()

void (*nvscale)(sunrealtype, N_Vector, N_Vector)
The function implementing N_VScale()

void (*nvabs)(N_Vector, N_Vector)
The function implementing N_VAbs()

void (*nvinv)(N_Vector, N_Vector)
The function implementing N_VInv()

424 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

void (*nvaddconst)(N_Vector, sunrealtype, N_Vector)
The function implementing N_VAddConst()

sunrealtype (*nvdotprod)(N_Vector, N_Vector)
The function implementing N_VDotProd()

sunrealtype (*nvmaxnorm)(N_Vector)
The function implementing N_VMaxNorm()

sunrealtype (*nvwrmsnorm)(N_Vector, N_Vector)
The function implementing N_VWrmsNorm()

sunrealtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector)
The function implementing N_VWrmsNormMask()

sunrealtype (*nvmin)(N_Vector)
The function implementing N_VMin()

sunrealtype (*nvwl2norm)(N_Vector, N_Vector)
The function implementing N_VWL2Norm()

sunrealtype (*nvl1norm)(N_Vector)
The function implementing N_VL1Norm()

void (*nvcompare)(sunrealtype, N_Vector, N_Vector)
The function implementing N_VCompare()

sunbooleantype (*nvinvtest)(N_Vector, N_Vector)
The function implementing N_VInvTest()

sunbooleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector)
The function implementing N_VConstrMask()

sunrealtype (*nvminquotient)(N_Vector, N_Vector)
The function implementing N_VMinQuotient()

SUNErrCode (*nvlinearcombination)(int, sunrealtype*, N_Vector*, N_Vector)
The function implementing N_VLinearCombination()

SUNErrCode (*nvscaleaddmulti)(int, sunrealtype*, N_Vector, N_Vector*, N_Vector*)
The function implementing N_VScaleAddMulti()

SUNErrCode (*nvdotprodmulti)(int, N_Vector, N_Vector*, sunrealtype*)
The function implementing N_VDotProdMulti()

SUNErrCode (*nvlinearsumvectorarray)(int, sunrealtype, N_Vector*, sunrealtype, N_Vector*,
N_Vector*)

The function implementing N_VLinearSumVectorArray()

SUNErrCode (*nvscalevectorarray)(int, sunrealtype*, N_Vector*, N_Vector*)
The function implementing N_VScaleVectorArray()

SUNErrCode (*nvconstvectorarray)(int, sunrealtype, N_Vector*)
The function implementing N_VConstVectorArray()

SUNErrCode (*nvwrmsnormvectorarray)(int, N_Vector*, N_Vector*, sunrealtype*)
The function implementing N_VWrmsNormVectorArray()

8.1. Description of the NVECTOR Modules 425

User Documentation for ARKODE, v6.3.0

SUNErrCode (*nvwrmsnormmaskvectorarray)(int, N_Vector*, N_Vector*, N_Vector, sunrealtype*)
The function implementing N_VWrmsNormMaskVectorArray()

SUNErrCode (*nvscaleaddmultivectorarray)(int, int, sunrealtype*, N_Vector*, N_Vector**,
N_Vector**)

The function implementing N_VScaleAddMultiVectorArray()

SUNErrCode (*nvlinearcombinationvectorarray)(int, int, sunrealtype*, N_Vector**, N_Vector*)
The function implementing N_VLinearCombinationVectorArray()

sunrealtype (*nvdotprodlocal)(N_Vector, N_Vector)
The function implementing N_VDotProdLocal()

sunrealtype (*nvmaxnormlocal)(N_Vector)
The function implementing N_VMaxNormLocal()

sunrealtype (*nvminlocal)(N_Vector)
The function implementing N_VMinLocal()

sunrealtype (*nvl1normlocal)(N_Vector)
The function implementing N_VL1NormLocal()

sunbooleantype (*nvinvtestlocal)(N_Vector, N_Vector)
The function implementing N_VInvTestLocal()

sunbooleantype (*nvconstrmasklocal)(N_Vector, N_Vector, N_Vector)
The function implementing N_VConstrMaskLocal()

sunrealtype (*nvminquotientlocal)(N_Vector, N_Vector)
The function implementing N_VMinQuotientLocal()

sunrealtype (*nvwsqrsumlocal)(N_Vector, N_Vector)
The function implementing N_VWSqrSumLocal()

sunrealtype (*nvwsqrsummasklocal)(N_Vector, N_Vector, N_Vector)
The function implementing N_VWSqrSumMaskLocal()

SUNErrCode (*nvdotprodmultilocal)(int, N_Vector, N_Vector*, sunrealtype*)
The function implementing N_VDotProdMultiLocal()

SUNErrCode (*nvdotprodmultiallreduce)(int, N_Vector, sunrealtype*)
The function implementing N_VDotProdMultiAllReduce()

SUNErrCode (*nvbufsize)(N_Vector, sunindextype*)
The function implementing N_VBufSize()

SUNErrCode (*nvbufpack)(N_Vector, void*)
The function implementing N_VBufPack()

SUNErrCode (*nvbufunpack)(N_Vector, void*)
The function implementing N_VBufUnpack()

void (*nvprint)(N_Vector)
The function implementing N_VPrint()

426 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

void (*nvprintfile)(N_Vector, FILE*)
The function implementing N_VPrintFile()

The generic NVECTOR module defines and implements the vector operations acting on a N_Vector. These routines
are nothing but wrappers for the vector operations defined by a particular NVECTOR implementation, which are
accessed through the ops field of the N_Vector structure. To illustrate this point we show below the implementation
of a typical vector operation from the generic NVECTOR module, namely N_VScale, which performs the operation
z ← cx for vectors x and z and a scalar c:

void N_VScale(sunrealtype c, N_Vector x, N_Vector z) {
z->ops->nvscale(c, x, z);

}

§8.2 contains a complete list of all standard vector operations defined by the generic NVECTOR module. §8.2.2,
§8.2.3, §8.2.4, §8.2.5, and §8.2.6 list optional fused, vector array, local reduction, single buffer reduction, and exchange
operations, respectively.

Fused and vector array operations (see §8.2.2 and §8.2.3) are intended to increase data reuse, reduce parallel communi-
cation on distributed memory systems, and lower the number of kernel launches on systems with accelerators. If a par-
ticular NVECTOR implementation defines a fused or vector array operation as NULL, the generic NVECTOR module
will automatically call standard vector operations as necessary to complete the desired operation. In all SUNDIALS-
provided NVECTOR implementations, all fused and vector array operations are disabled by default. However, these
implementations provide additional user-callable functions to enable/disable any or all of the fused and vector array
operations. See the following sections for the implementation specific functions to enable/disable operations.

Local reduction operations (see §8.2.4) are similarly intended to reduce parallel communication on distributed memory
systems, particularly when NVECTOR objects are combined together within an NVECTOR_MANYVECTOR object
(see §8.17). If a particular NVECTOR implementation defines a local reduction operation as NULL, the NVECTOR_-
MANYVECTOR module will automatically call standard vector reduction operations as necessary to complete the
desired operation. All SUNDIALS-provided NVECTOR implementations include these local reduction operations,
which may be used as templates for user-defined implementations.

The single buffer reduction operations (§8.2.5) are used in low-synchronization methods to combine separate reductions
into one MPI_Allreduce call.

The exchange operations (see §8.2.6) are intended only for use with the XBraid library for parallel-in-time integration
(accessible from ARKODE) and are otherwise unused by SUNDIALS packages.

8.1.1 NVECTOR Utility Functions

The generic NVECTOR module also defines several utility functions to aid in creation and management of arrays of
N_Vector objects – these functions are particularly useful for Fortran users to utilize the NVECTOR_MANYVECTOR
or SUNDIALS’ sensitivity-enabled packages CVODES and IDAS.

The functions N_VCloneVectorArray() and N_VCloneVectorArrayEmpty() create (by cloning) an array of count
variables of type N_Vector, each of the same type as an existing N_Vector input:

N_Vector *N_VCloneVectorArray(int count, N_Vector w)
Clones an array of count N_Vector objects, allocating their data arrays (similar to N_VClone()).

Arguments:

• count – number of N_Vector objects to create.

• w – template N_Vector to clone.

Return value:

• pointer to a new N_Vector array on success.

8.1. Description of the NVECTOR Modules 427

User Documentation for ARKODE, v6.3.0

• NULL pointer on failure.

N_Vector *N_VCloneVectorArrayEmpty(int count, N_Vector w)
Clones an array of count N_Vector objects, leaving their data arrays unallocated (similar to N_-
VCloneEmpty()).

Arguments:

• count – number of N_Vector objects to create.

• w – template N_Vector to clone.

Return value:

• pointer to a new N_Vector array on success.

• NULL pointer on failure.

An array of variables of type N_Vector can be destroyed by calling N_VDestroyVectorArray():

void N_VDestroyVectorArray(N_Vector *vs, int count)
Destroys an array of count N_Vector objects.

Arguments:

• vs – N_Vector array to destroy.

• count – number of N_Vector objects in vs array.

Notes:
This routine will internally call the N_Vector implementation-specific N_VDestroy() operation.

If vs was allocated using N_VCloneVectorArray() then the data arrays for each N_Vector object will
be freed; if vs was allocated using N_VCloneVectorArrayEmpty() then it is the user’s responsibility to
free the data for each N_Vector object.

Finally, we note that users of the Fortran 2003 interface may be interested in the additional utility functions N_VNewVec-
torArray(), N_VGetVecAtIndexVectorArray(), and N_VSetVecAtIndexVectorArray(), that are wrapped as
FN_NewVectorArray, FN_VGetVecAtIndexVectorArray, and FN_VSetVecAtIndexVectorArray, respectively.
These functions allow a Fortran 2003 user to create an empty vector array, access a vector from this array, and set a
vector within this array:

N_Vector *N_VNewVectorArray(int count, SUNContext sunctx)
Creates an array of count N_Vector objects, the pointers to each are initialized as NULL.

Arguments:

• count – length of desired N_Vector array.

• sunctx – a SUNContext object

Return value:

• pointer to a new N_Vector array on success.

• NULL pointer on failure.

Changed in version 7.0.0: The function signature was updated to add the SUNContext argument.

N_Vector *N_VGetVecAtIndexVectorArray(N_Vector *vs, int index)
Accesses the N_Vector at the location index within the N_Vector array vs.

Arguments:

• vs – N_Vector array.

428 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

• index – desired N_Vector to access from within vs.

Return value:

• pointer to the indexed N_Vector on success.

• NULL pointer on failure (index < 0 or vs == NULL).

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

void N_VSetVecAtIndexVectorArray(N_Vector *vs, int index, N_Vector w)
Sets a pointer to w at the location index within the vector array vs.

Arguments:

• vs – N_Vector array.

• index – desired location to place the pointer to w within vs.

• w – N_Vector to set within vs.

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

8.1.2 Implementing a custom NVECTOR

A particular implementation of the NVECTOR module must:

• Specify the content field of the N_Vector structure.

• Define and implement the vector operations. Note that the names of these routines should be unique to that im-
plementation in order to permit using more than one NVECTOR module (each with different N_Vector internal
data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an N_Vector with the
new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly-defined N_Vector (e.g.,
a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly-defined N_Vector.

To aid in the creation of custom NVECTOR modules, the generic NVECTOR module provides two utility functions N_-
VNewEmpty() and N_VCopyOps(). When used in custom NVECTOR constructors and clone routines these functions
will ease the introduction of any new optional vector operations to the NVECTOR API by ensuring that only required
operations need to be set, and that all operations are copied when cloning a vector.

N_Vector N_VNewEmpty(SUNContext sunctx)
This allocates a new generic N_Vector object and initializes its content pointer and the function pointers in the
operations structure to NULL.

Return value: If successful, this function returns an N_Vector object. If an error occurs when allocating the
object, then this routine will return NULL.

void N_VFreeEmpty(N_Vector v)
This routine frees the generic N_Vector object, under the assumption that any implementation-specific data that
was allocated within the underlying content structure has already been freed. It will additionally test whether the
ops pointer is NULL, and, if it is not, it will free it as well.

8.1. Description of the NVECTOR Modules 429

User Documentation for ARKODE, v6.3.0

Arguments:

• v – an N_Vector object

SUNErrCode N_VCopyOps(N_Vector w, N_Vector v)
This function copies the function pointers in the ops structure of w into the ops structure of v.

Arguments:

• w – the vector to copy operations from

• v – the vector to copy operations to

Return value: Returns a SUNErrCode.

enum N_Vector_ID
Each N_Vector implementation included in SUNDIALS has a unique identifier specified in enumeration and
shown in Table 8.1. It is recommended that a user supplied NVECTOR implementation use the SUNDIALS_-
NVEC_CUSTOM identifier.

Table 8.1: Vector Identifications associated with vector kernels supplied
with SUNDIALS

Vector ID Vector type ID Value
SUNDIALS_NVEC_SERIAL Serial 0
SUNDIALS_NVEC_PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS_NVEC_OPENMP OpenMP shared memory parallel 2
SUNDIALS_NVEC_PTHREADS PThreads shared memory parallel 3
SUNDIALS_NVEC_PARHYP hypre ParHyp parallel vector 4
SUNDIALS_NVEC_PETSC PETSc parallel vector 5
SUNDIALS_NVEC_CUDA CUDA vector 6
SUNDIALS_NVEC_HIP HIP vector 7
SUNDIALS_NVEC_SYCL SYCL vector 8
SUNDIALS_NVEC_RAJA RAJA vector 9
SUNDIALS_NVEC_OPENMPDEV OpenMP vector with device offloading 10
SUNDIALS_NVEC_TRILINOS Trilinos Tpetra vector 11
SUNDIALS_NVEC_MANYVECTOR “ManyVector” vector 12
SUNDIALS_NVEC_MPIMANYVECTOR MPI-enabled “ManyVector” vector 13
SUNDIALS_NVEC_MPIPLUSX MPI+X vector 14
SUNDIALS_NVEC_CUSTOM User-provided custom vector 15

8.1.3 Support for complex-valued vectors

While SUNDIALS itself is written under an assumption of real-valued data, it does provide limited support for complex-
valued problems. However, since none of the built-in NVECTOR modules supports complex-valued data, users must
provide a custom NVECTOR implementation for this task. Many of the NVECTOR routines described in the subsection
§8.2 naturally extend to complex-valued vectors; however, some do not. To this end, we provide the following guidance:

• N_VMin() and N_VMinLocal() should return the minimum of all real components of the vector, i.e., m =
min

0≤i<n
real(xi).

• N_VConst() (and similarly N_VConstVectorArray()) should set the real components of the vector to the input
constant, and set all imaginary components to zero, i.e., zi = c+ 0j for 0 ≤ i < n.

• N_VAddConst() should only update the real components of the vector with the input constant, leaving all imag-
inary components unchanged.

430 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

• N_VWrmsNorm(), N_VWrmsNormMask(), N_VWSqrSumLocal() and N_VWSqrSumMaskLocal() should assume
that all entries of the weight vector w and the mask vector id are real-valued.

• N_VDotProd() should mathematically return a complex number for complex-valued vectors; as this is not pos-
sible with SUNDIALS’ current sunrealtype, this routine should be set to NULL in the custom NVECTOR
implementation.

• N_VCompare(), N_VConstrMask(), N_VMinQuotient(), N_VConstrMaskLocal() and N_VMinQuotient-
Local() are ill-defined due to the lack of a clear ordering in the complex plane. These routines should be set to
NULL in the custom NVECTOR implementation.

While many SUNDIALS solver modules may be utilized on complex-valued data, others cannot. Specifically, although
each package’s linear solver interface (e.g., ARKLS or CVLS) may be used on complex-valued problems, none of the
built-in SUNMatrix or SUNLinearSolver modules will work (all of the direct linear solvers must store complex-valued
data, and all of the iterative linear solvers require N_VDotProd()). Hence a complex-valued user must provide custom
linear solver modules for their problem. At a minimum this will consist of a custom SUNLinearSolver implementation
(see §10.1.8), and optionally a custom SUNMatrix as well. The user should then attach these modules as normal to the
package’s linear solver interface.

Similarly, although both the SUNNonlinearSolver_Newton and SUNNonlinearSolver_FixedPoint modules may be
used with any of the IVP solvers (CVODE(S), IDA(S) and ARKODE) for complex-valued problems, the Anderson-
acceleration option with SUNNonlinearSolver_FixedPoint cannot be used due to its reliance on N_VDotProd(). By
this same logic, the Anderson acceleration feature within KINSOL will also not work with complex-valued vectors.

Finally, constraint-handling features of each package cannot be used for complex-valued data, due to the issue of order-
ing in the complex plane discussed above with N_VCompare(), N_VConstrMask(), N_VMinQuotient(), N_VCon-
strMaskLocal() and N_VMinQuotientLocal().

We provide a simple example of a complex-valued example problem, including a custom complex-valued Fortran
2003 NVECTOR module, in the files examples/arkode/F2003_custom/ark_analytic_complex_f2003.f90,
examples/arkode/F2003_custom/fnvector_complex_mod.f90, and examples/arkode/F2003_custom/
test_fnvector_complex_mod.f90.

8.2 Description of the NVECTOR operations

8.2.1 Standard vector operations

The standard vector operations defined by the generic N_Vector module are defined as follows. For each of these
operations, we give the name, usage of the function, and a description of its mathematical operations below.

N_Vector_ID N_VGetVectorID(N_Vector w)
Returns the vector type identifier for the vector w. It is used to determine the vector implementation type (e.g.
serial, parallel, . . .) from the abstract N_Vector interface. Returned values are given in Table 8.1.

Usage:

id = N_VGetVectorID(w);

N_Vector N_VClone(N_Vector w)
Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not copy the
vector, but rather allocates storage for the new vector.

Usage:

v = N_VClone(w);

8.2. Description of the NVECTOR operations 431

User Documentation for ARKODE, v6.3.0

N_Vector N_VCloneEmpty(N_Vector w)
Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not allocate
storage for the new vector’s data.

Usage:

v = N VCloneEmpty(w);

void N_VDestroy(N_Vector v)
Destroys the N_Vector v and frees memory allocated for its internal data.

Usage:

N_VDestroy(v);

void N_VSpace(N_Vector v, sunindextype *lrw, sunindextype *liw)
Returns storage requirements for the N_Vector v:

• lrw contains the number of sunrealtype words

• liw contains the number of integer words.

This function is advisory only, for use in determining a user’s total space requirements; it could be a dummy
function in a user-supplied NVECTOR module if that information is not of interest.

Usage:

N_VSpace(nvSpec, &lrw, &liw);

Deprecated since version 7.3.0: Work space functions will be removed in version 8.0.0.

sunrealtype *N_VGetArrayPointer(N_Vector v)
Returns a pointer to a sunrealtype array from the N_Vector v. Note that this assumes that the internal data in
the N_Vector is a contiguous array of sunrealtype and is accessible from the CPU.

This routine is only used in the solver-specific interfaces to the dense and banded (serial) linear solvers, and in
the interfaces to the banded (serial) and band-block-diagonal (parallel) preconditioner modules provided with
SUNDIALS.

Usage:

vdata = N_VGetArrayPointer(v);

sunrealtype *N_VGetDeviceArrayPointer(N_Vector v)
Returns a device pointer to a sunrealtype array from the N_Vector v. Note that this assumes that the internal
data in N_Vector is a contiguous array of sunrealtype and is accessible from the device (e.g., GPU).

This operation is optional except when using the GPU-enabled direct linear solvers.

Usage:

vdata = N_VGetArrayPointer(v);

void N_VSetArrayPointer(sunrealtype *vdata, N_Vector v)
Replaces the data array pointer in an N_Vector with a given array of sunrealtype. Note that this assumes
that the internal data in the N_Vector is a contiguous array of sunrealtype. This routine is only used in the
interfaces to the dense (serial) linear solver, hence need not exist in a user-supplied NVECTOR module.

Usage:

432 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

N_VSetArrayPointer(vdata,v);

SUNComm N_VGetCommunicator(N_Vector v)
Returns the SUNComm (which is just an MPI_Comm when SUNDIALS is built with MPI, otherwise it is an int)
associated with the vector (if applicable). For MPI-unaware vector implementations, this should return SUN_-
COMM_NULL.

Usage:

MPI_Comm comm = N_VGetCommunicator(v); // Works if MPI is enabled
int comm = N_VGetCommunicator(v); // Works if MPI is disabled
SUNComm comm = N_VGetCommunicator(v); // Works with or without MPI

sunindextype N_VGetLength(N_Vector v)
Returns the global length (number of “active” entries) in the NVECTOR v. This value should be cumulative
across all processes if the vector is used in a parallel environment. If v contains additional storage, e.g., for
parallel communication, those entries should not be included.

Usage:

global_length = N_VGetLength(v);

sunindextype N_VGetLocalLength(N_Vector v)
Returns the local length (number of “active” entries) in the NVECTOR v. This value should be the length of the
array returned by N_VGetArrayPointer() or N_VGetDeviceArrayPointer().

Usage:

local_length = N_VGetLocalLength(v);

void N_VLinearSum(sunrealtype a, N_Vector x, sunrealtype b, N_Vector y, N_Vector z)
Performs the operation z = ax + by, where a and b are sunrealtype scalars and x and y are of type N_Vector:

zi = axi + byi, i = 0, . . . , n− 1.

The output vector z can be the same as either of the input vectors (x or y).

Usage:

N_VLinearSum(a, x, b, y, z);

void N_VConst(sunrealtype c, N_Vector z)
Sets all components of the N_Vector z to sunrealtype c:

zi = c, i = 0, . . . , n− 1.

Usage:

N_VConst(c, z);

void N_VProd(N_Vector x, N_Vector y, N_Vector z)
Sets the N_Vector z to be the component-wise product of the N_Vector inputs x and y:

zi = xiyi, i = 0, . . . , n− 1.

Usage:

8.2. Description of the NVECTOR operations 433

User Documentation for ARKODE, v6.3.0

N_VProd(x, y, z);

void N_VDiv(N_Vector x, N_Vector y, N_Vector z)
Sets the N_Vector z to be the component-wise ratio of the N_Vector inputs x and y:

zi =
xi
yi
, i = 0, . . . , n− 1.

The yi may not be tested for 0 values. It should only be called with a y that is guaranteed to have all nonzero
components.

Usage:

N_VDiv(x, y, z);

void N_VScale(sunrealtype c, N_Vector x, N_Vector z)
Scales the N_Vector x by the sunrealtype scalar c and returns the result in z:

zi = cxi, i = 0, . . . , n− 1.

Usage:

N_VScale(c, x, z);

void N_VAbs(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the absolute values of the components of the N_Vector x:

zi = |xi|, i = 0, . . . , n− 1.

Usage:

N_VAbs(x, z);

void N_VInv(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x:

zi =
1

xi
, i = 0, . . . , n− 1.

This routine may not check for division by 0. It should be called only with an x which is guaranteed to have all
nonzero components.

Usage:

N_VInv(x, z);

void N_VAddConst(N_Vector x, sunrealtype b, N_Vector z)
Adds the sunrealtype scalar b to all components of x and returns the result in the N_Vector z:

zi = xi + b, i = 0, . . . , n− 1.

Usage:

N_VAddConst(x, b, z);

434 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

sunrealtype N_VDotProd(N_Vector x, N_Vector z)
Returns the value of the dot-product of the vectors x and y:

d =

n−1∑
i=0

xiyi.

Usage:

d = N_VDotProd(x, y);

sunrealtype N_VMaxNorm(N_Vector x)
Returns the value of the l∞ norm of the N_Vector x:

m = max
0≤i<n

|xi|.

Usage:

m = N_VMaxNorm(x);

sunrealtype N_VWrmsNorm(N_Vector x, N_Vector w)
Returns the weighted root-mean-square norm of the N_Vector x with (positive) sunrealtype weight vector w:

m =

√√√√(n−1∑
i=0

(xiwi)2

)
/n

Usage:

m = N_VWrmsNorm(x, w);

sunrealtype N_VWrmsNormMask(N_Vector x, N_Vector w, N_Vector id)
Returns the weighted root mean square norm of the N_Vector x with sunrealtype weight vector w built using
only the elements of x corresponding to positive elements of the N_Vector id:

m =

√√√√(n−1∑
i=0

(xiwiH(idi))2

)
/n,

where H(α) =

{
1 α > 0

0 α ≤ 0
.

Usage:

m = N_VWrmsNormMask(x, w, id);

sunrealtype N_VMin(N_Vector x)
Returns the smallest element of the N_Vector x:

m = min
0≤i<n

xi.

Usage:

m = N_VMin(x);

8.2. Description of the NVECTOR operations 435

User Documentation for ARKODE, v6.3.0

sunrealtype N_VWL2Norm(N_Vector x, N_Vector w)
Returns the weighted Euclidean l2 norm of the N_Vector x with sunrealtype weight vector w:

m =

√√√√n−1∑
i=0

(xiwi)
2
.

Usage:

m = N_VWL2Norm(x, w);

sunrealtype N_VL1Norm(N_Vector x)
Returns the l1 norm of the N_Vector x:

m =

n−1∑
i=0

|xi|.

Usage:

m = N_VL1Norm(x);

void N_VCompare(sunrealtype c, N_Vector x, N_Vector z)
Compares the components of the N_Vector x to the sunrealtype scalar c and returns an N_Vector z such that
for all 0 ≤ i < n,

zi =

{
1.0 if |xi| ≥ c,
0.0 otherwise

.

Usage:

N_VCompare(c, x, z);

sunbooleantype N_VInvTest(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x, with prior
testing for zero values:

zi =
1

xi
, i = 0, . . . , n− 1.

This routine returns a boolean assigned to SUNTRUE if all components of x are nonzero (successful inversion)
and returns SUNFALSE otherwise.

Usage:

t = N_VInvTest(x, z);

sunbooleantype N_VConstrMask(N_Vector c, N_Vector x, N_Vector m)
Performs the following constraint tests based on the values in ci:

xi > 0 if ci = 2,
xi ≥ 0 if ci = 1,
xi < 0 if ci = −2,
xi ≤ 0 if ci = −1.

There is no constraint on xi if ci = 0. This routine returns a boolean assigned to SUNFALSE if any element failed
the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m, with elements equal to 1.0
where the constraint test failed, and 0.0 where the test passed. This routine is used only for constraint checking.

Usage:

436 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

t = N_VConstrMask(c, x, m);

sunrealtype N_VMinQuotient(N_Vector num, N_Vector denom)
This routine returns the minimum of the quotients obtained by termwise dividing the elements of n by the ele-
ments in d:

min
0≤i<n

numi

denomi
.

A zero element in denom will be skipped. If no such quotients are found, then the large value SUN_BIG_REAL
(defined in the header file sundials_types.h) is returned.

Usage:

minq = N_VMinQuotient(num, denom);

8.2.2 Fused operations

The following fused vector operations are optional. These operations are intended to increase data reuse, reduce parallel
communication on distributed memory systems, and lower the number of kernel launches on systems with accelerators.
If a particular NVECTOR implementation defines one of the fused vector operations as NULL, the NVECTOR interface
will call one of the above standard vector operations as necessary. As above, for each operation, we give the name,
usage of the function, and a description of its mathematical operations below.

SUNErrCode N_VLinearCombination(int nv, sunrealtype *c, N_Vector *X, N_Vector z)
This routine computes the linear combination of nv vectors with n elements:

zi =

nv−1∑
j=0

cjxj,i, i = 0, . . . , n− 1,

where c is an array of nv scalars, xj is a vector in the vector array X, and z is the output vector. If the output
vector z is one of the vectors in X, then it must be the first vector in the vector array. The operation returns a
SUNErrCode.

Usage:

retval = N_VLinearCombination(nv, c, X, z);

SUNErrCode N_VScaleAddMulti(int nv, sunrealtype *c, N_Vector x, N_Vector *Y, N_Vector *Z)
This routine scales and adds one vector to nv vectors with n elements:

zj,i = cjxi + yj,i, j = 0, . . . , nv − 1 i = 0, . . . , n− 1,

where c is an array of scalars, x is a vector, yj is a vector in the vector array Y, and zj is an output vector in the
vector array Z. The operation returns a SUNErrCode.

Usage:

retval = N_VScaleAddMulti(nv, c, x, Y, Z);

SUNErrCode N_VDotProdMulti(int nv, N_Vector x, N_Vector *Y, sunrealtype *d)
This routine computes the dot product of a vector with nv vectors having n elements:

dj =

n−1∑
i=0

xiyj,i, j = 0, . . . , nv − 1,

8.2. Description of the NVECTOR operations 437

User Documentation for ARKODE, v6.3.0

where d is an array of scalars containing the computed dot products, x is a vector, and yj is a vector the vector
array Y. The operation returns a SUNErrCode.

Usage:

retval = N_VDotProdMulti(nv, x, Y, d);

8.2.3 Vector array operations

The following vector array operations are also optional. As with the fused vector operations, these are intended to
increase data reuse, reduce parallel communication on distributed memory systems, and lower the number of kernel
launches on systems with accelerators. If a particular NVECTOR implementation defines one of the fused or vector
array operations as NULL, the NVECTOR interface will call one of the above standard vector operations as necessary.
As above, for each operation, we give the name, usage of the function, and a description of its mathematical operations
below.

SUNErrCode N_VLinearSumVectorArray(int nv, sunrealtype a, N_Vector *X, sunrealtype b, N_Vector *Y,
N_Vector *Z)

This routine computes the linear sum of two vector arrays of nv vectors with n elements:

zj,i = axj,i + byj,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where a and b are scalars, xj and yj are vectors in the vector arrays X and Y respectively, and zj is a vector in
the output vector array Z. The operation returns a SUNErrCode.

Usage:

retval = N_VLinearSumVectorArray(nv, a, X, b, Y, Z);

SUNErrCode N_VScaleVectorArray(int nv, sunrealtype *c, N_Vector *X, N_Vector *Z)
This routine scales each element in a vector of n elements in a vector array of nv vectors by a potentially different
constant:

zj,i = cjxj,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of scalars, xj is a vector in the vector array X, and zj is a vector in the output vector array Z.
The operation returns a SUNErrCode.

Usage:

retval = N_VScaleVectorArray(nv, c, X, Z);

SUNErrCode N_VConstVectorArray(int nv, sunrealtype c, N_Vector *Z)
This routine sets each element in a vector of n elements in a vector array of nv vectors to the same value:

zj,i = c, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is a scalar and zj is a vector in the vector array Z. The operation returns a SUNErrCode.

Usage:

retval = N_VConstVectorArray(nv, c, Z);

438 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

SUNErrCode N_VWrmsNormVectorArray(int nv, N_Vector *X, N_Vector *W, sunrealtype *m)
This routine computes the weighted root mean square norm of each vector in a vector array:

mj =

(
1

n

n−1∑
i=0

(xj,iwj,i)
2

)1/2

, j = 0, . . . , nv − 1,

where xj is a vector in the vector array X, wj is a weight vector in the vector array W, and m is the output array
of scalars containing the computed norms. The operation returns a SUNErrCode.

Usage:

retval = N_VWrmsNormVectorArray(nv, X, W, m);

SUNErrCode N_VWrmsNormMaskVectorArray(int nv, N_Vector *X, N_Vector *W, N_Vector id, sunrealtype *m)
This routine computes the masked weighted root mean square norm of each vector in a vector array:

mj =

(
1

n

n−1∑
i=0

(xj,iwj,iH(idi))
2

)1/2

, j = 0, . . . , nv − 1,

where H(idi) = 1 if idi > 0 and is zero otherwise, xj is a vector in the vector array X, wj is a weight vector
in the vector array W, id is the mask vector, and m is the output array of scalars containing the computed norms.
The operation returns a SUNErrCode.

Usage:

retval = N_VWrmsNormMaskVectorArray(nv, X, W, id, m);

SUNErrCode N_VScaleAddMultiVectorArray(int nv, int nsum, sunrealtype *c, N_Vector *X, N_Vector **YY,
N_Vector **ZZ)

This routine scales and adds a vector array of nv vectors to nsum other vector arrays:

zk,j,i = ckxj,i + yk,j,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1, k = 0, . . . , nsum− 1

where c is an array of scalars, xj is a vector in the vector array X, yk,j is a vector in the array of vector arrays YY,
and zk,j is an output vector in the array of vector arrays ZZ. The operation returns a SUNErrCode.

Usage:

retval = N_VScaleAddMultiVectorArray(nv, nsum, c, x, YY, ZZ);

SUNErrCode N_VLinearCombinationVectorArray(int nv, int nsum, sunrealtype *c, N_Vector **XX, N_Vector
*Z)

This routine computes the linear combination of nsum vector arrays containing nv vectors:

zj,i =

nsum−1∑
k=0

ckxk,j,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of scalars, xk,j is a vector in array of vector arrays XX, and zj,i is an output vector in the
vector array Z. If the output vector array is one of the vector arrays in XX, it must be the first vector array in XX.
The operation returns a SUNErrCode.

Usage:

retval = N_VLinearCombinationVectorArray(nv, nsum, c, XX, Z);

8.2. Description of the NVECTOR operations 439

User Documentation for ARKODE, v6.3.0

8.2.4 Local reduction operations

The following local reduction operations are also optional. As with the fused and vector array operations, these are
intended to reduce parallel communication on distributed memory systems. If a particular NVECTOR implementation
defines one of the local reduction operations as NULL, the NVECTOR interface will call one of the above standard vector
operations as necessary. As above, for each operation, we give the name, usage of the function, and a description of its
mathematical operations below.

sunrealtype N_VDotProdLocal(N_Vector x, N_Vector y)
This routine computes the MPI task-local portion of the ordinary dot product of x and y:

d =

nlocal−1∑
i=0

xiyi,

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

d = N_VDotProdLocal(x, y);

sunrealtype N_VMaxNormLocal(N_Vector x)
This routine computes the MPI task-local portion of the maximum norm of the NVECTOR x:

m = max
0≤i<nlocal

|xi|,

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

m = N_VMaxNormLocal(x);

sunrealtype N_VMinLocal(N_Vector x)
This routine computes the smallest element of the MPI task-local portion of the NVECTOR x:

m = min
0≤i<nlocal

xi,

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

m = N_VMinLocal(x);

sunrealtype N_VL1NormLocal(N_Vector x)
This routine computes the MPI task-local portion of the l1 norm of the N_Vector x:

n =

nlocal−1∑
i=0

|xi|,

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

440 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

n = N_VL1NormLocal(x);

sunrealtype N_VWSqrSumLocal(N_Vector x, N_Vector w)
This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w:

s =

nlocal−1∑
i=0

(xiwi)
2,

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

s = N_VWSqrSumLocal(x, w);

sunrealtype N_VWSqrSumMaskLocal(N_Vector x, N_Vector w, N_Vector id)
This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w built using only the elements of x corresponding to positive elements of the NVECTOR id:

m =

nlocal−1∑
i=0

(xiwiH(idi))
2,

where

H(α) =

{
1 α > 0

0 α ≤ 0

and nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

s = N_VWSqrSumMaskLocal(x, w, id);

sunbooleantype N_VInvTestLocal(N_Vector x)
This routine sets the MPI task-local components of the NVECTOR z to be the inverses of the components of the
NVECTOR x, with prior testing for zero values:

zi =
1

xi
, i = 0, . . . , nlocal − 1

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications). This routine returns a boolean assigned to SUNTRUE if all task-local components of x are
nonzero (successful inversion) and returns SUNFALSE otherwise.

Usage:

t = N_VInvTestLocal(x);

sunbooleantype N_VConstrMaskLocal(N_Vector c, N_Vector x, N_Vector m)
Performs the following constraint tests based on the values in ci:

xi > 0 if ci = 2,
xi ≥ 0 if ci = 1,
xi < 0 if ci = −2,
xi ≤ 0 if ci = −1.

8.2. Description of the NVECTOR operations 441

User Documentation for ARKODE, v6.3.0

for all MPI task-local components of the vectors. This routine returns a boolean assigned to SUNFALSE if any
task-local element failed the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m,
with elements equal to 1.0 where the constraint test failed, and 0.0 where the test passed. This routine is used
only for constraint checking.

Usage:

t = N_VConstrMaskLocal(c, x, m);

sunrealtype N_VMinQuotientLocal(N_Vector num, N_Vector denom)
This routine returns the minimum of the quotients obtained by term-wise dividing numi by denomi, for all MPI
task-local components of the vectors. A zero element in denom will be skipped. If no such quotients are found,
then the large value SUN_BIG_REAL (defined in the header file sundials_types.h) is returned.

Usage:

minq = N_VMinQuotientLocal(num, denom);

8.2.5 Single Buffer Reduction Operations

The following optional operations are used to combine separate reductions into a single MPI call by splitting the local
computation and communication into separate functions. These operations are used in low-synchronization orthogo-
nalization methods to reduce the number of MPI Allreduce calls. If a particular NVECTOR implementation does
not define these operations additional communication will be required.

SUNErrCode N_VDotProdMultiLocal(int nv, N_Vector x, N_Vector *Y, sunrealtype *d)
This routine computes the MPI task-local portion of the dot product of a vector x with nv vectors yj :

dj =

nlocal−1∑
i=0

xiyj,i, j = 0, . . . , nv − 1,

where d is an array of scalars containing the computed dot products, x is a vector, yj is a vector in the vector array
Y, and nlocal corresponds to the number of components in the vector on this MPI task. The operation returns a
SUNErrCode.

Usage:

retval = N_VDotProdMultiLocal(nv, x, Y, d);

SUNErrCode N_VDotProdMultiAllReduce(int nv, N_Vector x, sunrealtype *d)
This routine combines the MPI task-local portions of the dot product of a vector x with nv vectors:

retval = MPI_Allreduce(MPI_IN_PLACE, d, nv, MPI_SUNREALTYPE, MPI_SUM, comm)

where d is an array of nv scalars containing the local contributions to the dot product and comm is the MPI
communicator associated with the vector x. The operation returns a SUNErrCode.

Usage:

retval = N_VDotProdMultiAllReduce(nv, x, d);

442 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

8.2.6 Exchange operations

The following vector exchange operations are also optional and are intended only for use when interfacing with the
XBraid library for parallel-in-time integration. In that setting these operations are required but are otherwise unused
by SUNDIALS packages and may be set to NULL. For each operation, we give the function signature, a description of
the expected behavior, and an example of the function usage.

SUNErrCode N_VBufSize(N_Vector x, sunindextype *size)
This routine returns the buffer size need to exchange in the data in the vector x between computational nodes.

Usage:

flag = N_VBufSize(x, &buf_size)

SUNErrCode N_VBufPack(N_Vector x, void *buf)
This routine fills the exchange buffer buf with the vector data in x.

Usage:

flag = N_VBufPack(x, &buf)

SUNErrCode N_VBufUnpack(N_Vector x, void *buf)
This routine unpacks the data in the exchange buffer buf into the vector x.

Usage:

flag = N_VBufUnpack(x, buf)

8.2.7 Output operations

The following optional vector operations are for writing vector data either to stdout or to a given file.

void N_VPrint(N_Vector x)
This routine prints vector data to stdout

Usage:

N_VPrint(x);

void N_VPrintFile(N_Vector x, FILE *file)
This routine writes vector data to the given file pointer.

Usage:

FILE* fp = fopen("vector_data.txt", "w");
N_VPrintFile(x, fp);
fclose(fp);

8.2. Description of the NVECTOR operations 443

User Documentation for ARKODE, v6.3.0

8.3 NVECTOR functions required by ARKODE

In Table 8.2 below, we list the vector functions in the N_Vector module that are called within the ARKODE package.
The table also shows, for each function, which ARKODE module uses the function. The ARKStep, ERKStep, MRIStep,
and SPRKStep columns show function usage within the main time-stepping modules and the shared ARKODE infras-
tructure, while the remaining columns show function usage within the ARKLS linear solver interface, within constraint-
handling (i.e., when ARKStepSetConstraints() and ERKStepSetConstraints() are used), relaxation (i.e., when
ARKStepSetRelaxFn(), ERKStepSetRelaxFn() and related are used), the ARKBANDPRE and ARKBBDPRE pre-
conditioner modules.

Note that for ARKLS we only list the N_Vector routines used directly by ARKLS, each SUNLinearSolver module
may have additional requirements that are not listed here. In addition, specific SUNNonlinearSolvermodules attached
to ARKODE may have additional N_Vector requirements. For additional requirements by specific SUNLinearSolver
and SUNNonlinearSolver modules, please see the accompanying sections §10 and §11.

At this point, we should emphasize that the user does not need to know anything about ARKODE’s usage of vector
functions in order to use ARKODE. Instead, this information is provided primarily for users interested in constructing
a custom N_Vector module. We note that a number of N_Vector functions from the section §8.1 are not listed in the
above table. Therefore a user-supplied N_Vector module for ARKODE could safely omit these functions from their
implementation (although some may be needed by SUNNonlinearSolver or SUNLinearSolver modules).

Table 8.2: List of vector functions usage by ARKODE code modules

Routine ARK-
Step

ERK-
Step

MRIS-
tep

SPRK-
Step

ARKLS Con-
straints

Relax-
ation

BBDPRE,
BANDPRE

N_VAbs() X X X X
N_VAddConst() X X X X
N_VClone() X X X X X
N_VCloneEmpty() 1
N_VConst() X X X X X
N_VConstrMask() X
N_VDestroy() X X X X X
N_VDiv() X X
N_VDotProd() X
N_VGetArray-
Pointer()

1 X

N_VGetLength() 4
N_VInv() X X X X
N_VLinearCombi-
nation()3

X X X X

N_VLinearSum() X X X X X X
N_VMaxNorm() X X X
N_VMin() X X X X
N_VMinQuotient() X
N_VProd() X
N_VScale() X X X X X X X X
N_VSetArray-
Pointer()

1

N_VSpace()2 X X X X X X
N_VWrmsNorm() X X X X X X

Special cases (numbers match markings in table):

444 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

1. This is only required with the SUNMATRIX_DENSE or SUNMATRIX_BAND modules, where the default
difference-quotient Jacobian approximation is used.

2. The N_VSpace() function is only informational, and will only be called if provided by the N_Vector imple-
mentation.

3. The N_VLinearCombination() function is in fact optional; if it is not supplied then N_VLinearSum() will be
used instead.

4. The N_VGetLength() function is only required when an iterative or matrix iterative SUNLinearSolvermodule
is used.

8.4 The NVECTOR_SERIAL Module

The serial implementation of the NVECTOR module provided with SUNDIALS, NVECTOR_SERIAL, defines the
content field of an N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a
contiguous data array, and a boolean flag own_data which specifies the ownership of data.

struct _N_VectorContent_Serial {
sunindextype length;
sunbooleantype own_data;
sunrealtype *data;

};

The header file to be included when using this module is nvector_serial.h. The installed module library to link to
is libsundials_nvecserial.lib where .lib is typically .so for shared libraries and .a for static libraries.

8.4.1 NVECTOR_SERIAL accessor macros

The following five macros are provided to access the content of an NVECTOR_SERIAL vector. The suffix _S in the
names denotes the serial version.

NV_CONTENT_S(v)
This macro gives access to the contents of the serial vector N_Vector v.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the serial N_Vector content
structure.

Implementation:

#define NV_CONTENT_S(v) ((N_VectorContent_Serial)(v->content))

NV_OWN_DATA_S(v)
Access the own_data component of the serial N_Vector v.

Implementation:

#define NV_OWN_DATA_S(v) (NV_CONTENT_S(v)->own_data)

NV_DATA_S(v)
The assignment v_data = NV_DATA_S(v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_S(v) = v_data sets the component array of v to be v_data by storing the
pointer v_data.

8.4. The NVECTOR_SERIAL Module 445

User Documentation for ARKODE, v6.3.0

Implementation:

#define NV_DATA_S(v) (NV_CONTENT_S(v)->data)

NV_LENGTH_S(v)
Access the length component of the serial N_Vector v.

The assignment v_len = NV_LENGTH_S(v) sets v_len to be the length of v. On the other hand, the call NV_-
LENGTH_S(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_S(v) (NV_CONTENT_S(v)->length)

NV_Ith_S(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_S(v,i) sets r to be the value of the i-th component of v.

The assignment NV_Ith_S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) (NV_DATA_S(v)[i])

8.4.2 NVECTOR_SERIAL functions

The NVECTOR_SERIAL module defines serial implementations of all vector operations listed in §8.2.1, §8.2.2,
§8.2.3, and §8.2.4. Their names are obtained from those in those sections by appending the suffix _Serial (e.g. N_-
VDestroy_Serial). All the standard vector operations listed in §8.2.1 with the suffix _Serial appended are callable
via the Fortran 2003 interface by prepending an F (e.g. FN_VDestroy_Serial).

The module NVECTOR_SERIAL provides the following additional user-callable routines:

N_Vector N_VNew_Serial(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a serial N_Vector. Its only argument is the vector length.

N_Vector N_VNewEmpty_Serial(sunindextype vec_length, SUNContext sunctx)
This function creates a new serial N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Serial(sunindextype vec_length, sunrealtype *v_data, SUNContext sunctx)
This function creates and allocates memory for a serial vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

void N_VPrint_Serial(N_Vector v)
This function prints the content of a serial vector to stdout.

void N_VPrintFile_Serial(N_Vector v, FILE *outfile)
This function prints the content of a serial vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_SERIAL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Serial(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector
using N_VClone(). This guarantees that the new vectors will have the same operations enabled/disabled as cloned

446 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

vectors inherit the same enable/disable options as the vector they are cloned, from while vectors created with N_-
VNew_Serial() will have the default settings for the NVECTOR_SERIAL module.

SUNErrCode N_VEnableFusedOps_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the serial vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the serial
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the serial vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the serial
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the serial
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the serial vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the serial vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
serial vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the serial vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the serial vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the serial vector. The return value is a SUNErrCode.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = NV_DATA_S(v), or equivalently v_data = N_VGetArrayPointer(v), and then access v_-
data[i] within the loop than it is to use NV_Ith_S(v,i) within the loop.

• N_VNewEmpty_Serial() and N_VMake_Serial() set the field own_data to SUNFALSE. The implementation
of N_VDestroy() will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointer.

8.4. The NVECTOR_SERIAL Module 447

User Documentation for ARKODE, v6.3.0

• To maximize efficiency, vector operations in the NVECTOR_SERIAL implementation that have more than one
N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
length.

8.4.3 NVECTOR_SERIAL Fortran Interface

The NVECTOR_SERIAL module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_serial_mod Fortran module defines interfaces to all NVECTOR_SERIAL C functions using the
intrinsic iso_c_bindingmodule which provides a standardized mechanism for interoperating with C. As noted in the
C function descriptions above, the interface functions are named after the corresponding C function, but with a leading
F. For example, the function N_VNew_Serial is interfaced as FN_VNew_Serial.

The Fortran 2003 NVECTOR_SERIAL interface module can be accessed with the use statement, i.e. use fnvec-
tor_serial_mod, and linking to the library libsundials_fnvectorserial_mod.lib in addition to the C library.
For details on where the library and module file fnvector_serial_mod.mod are installed see §16. We note that the
module is accessible from the Fortran 2003 SUNDIALS integrators without separately linking to the libsundials_-
fnvectorserial_mod library.

8.5 The NVECTOR_PARALLEL Module

The NVECTOR_PARALLEL implementation of the NVECTOR module provided with SUNDIALS is based on MPI.
It defines the content field of an N_Vector to be a structure containing the global and local lengths of the vector, a
pointer to the beginning of a contiguous local data array, an MPI communicator, an a boolean flag own_data indicating
ownership of the data array data.

struct _N_VectorContent_Parallel {
sunindextype local_length;
sunindextype global_length;
sunbooleantype own_data;
sunrealtype *data;
MPI_Comm comm;

};

The header file to be included when using this module is nvector_parallel.h. The installed module library to link
to is libsundials_nvecparallel.lib where .lib is typically .so for shared libraries and .a for static libraries.

8.5.1 NVECTOR_PARALLEL accessor macros

The following seven macros are provided to access the content of a NVECTOR_PARALLEL vector. The suffix _P in
the names denotes the distributed memory parallel version.

NV_CONTENT_P(v)
This macro gives access to the contents of the parallel N_Vector v.

The assignment v_cont = NV_CONTENT_P(v) sets v_cont to be a pointer to the N_Vector content structure
of type struct N_VectorContent_Parallel.

Implementation:

#define NV_CONTENT_P(v) ((N_VectorContent_Parallel)(v->content))

448 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

NV_OWN_DATA_P(v)
Access the own_data component of the parallel N_Vector v.

Implementation:

#define NV_OWN_DATA_P(v) (NV_CONTENT_P(v)->own_data)

NV_DATA_P(v)
The assignment v_data = NV_DATA_P(v) sets v_data to be a pointer to the first component of the local_data
for the N_Vector v.

The assignment NV_DATA_P(v) = v_data sets the component array of v to be v_data by storing the pointer
v_data into data.

Implementation:

#define NV_DATA_P(v) (NV_CONTENT_P(v)->data)

NV_LOCLENGTH_P(v)
The assignment v_llen = NV_LOCLENGTH_P(v) sets v_llen to be the length of the local part of v.

The call NV_LOCLENGTH_P(v) = llen_v sets the local_length of v to be llen_v.

Implementation:

#define NV_LOCLENGTH_P(v) (NV_CONTENT_P(v)->local_length)

NV_GLOBLENGTH_P(v)
The assignment v_glen = NV_GLOBLENGTH_P(v) sets v_glen to be the global_length of the vector v.

The call NV_GLOBLENGTH_P(v) = glen_v sets the global_length of v to be glen_v.

Implementation:

#define NV_GLOBLENGTH_P(v) (NV_CONTENT_P(v)->global_length)

NV_COMM_P(v)
This macro provides access to the MPI communicator used by the parallel N_Vector v.

Implementation:

#define NV_COMM_P(v) (NV_CONTENT_P(v)->comm)

NV_Ith_P(v, i)
This macro gives access to the individual components of the local_data array of an N_Vector.

The assignment r = NV_Ith_P(v,i) sets r to be the value of the i-th component of the local part of v.

The assignment NV_Ith_P(v,i) = r sets the value of the i-th component of the local part of v to be r.

Here i ranges from 0 to n− 1, where n is the local_length.

Implementation:

#define NV_Ith_P(v,i) (NV_DATA_P(v)[i])

8.5. The NVECTOR_PARALLEL Module 449

User Documentation for ARKODE, v6.3.0

8.5.2 NVECTOR_PARALLEL functions

The NVECTOR_PARALLEL module defines parallel implementations of all vector operations listed in §8.2. Their
names are obtained from the generic names by appending the suffix _Parallel (e.g. N_VDestroy_Parallel). The
module NVECTOR_PARALLEL provides the following additional user-callable routines:

N_Vector N_VNew_Parallel(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates and allocates memory for a parallel vector having global length global_length, having
processor-local length local_length, and using the MPI communicator comm.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates a new parallel N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Parallel(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
sunrealtype *v_data, SUNContext sunctx)

This function creates and allocates memory for a parallel vector with user-provided data array.

(This function does not allocate memory for v_data itself.)

sunindextype N_VGetLocalLength_Parallel(N_Vector v)
This function returns the local vector length.

void N_VPrint_Parallel(N_Vector v)
This function prints the local content of a parallel vector to stdout.

void N_VPrintFile_Parallel(N_Vector v, FILE *outfile)
This function prints the local content of a parallel vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PARALLEL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Parallel(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees that the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from, while vectors created with
N_VNew_Parallel() will have the default settings for the NVECTOR_PARALLEL module.

SUNErrCode N_VEnableFusedOps_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the parallel
vector. The return value is a SUNErrCode.

450 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

SUNErrCode N_VEnableScaleVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the parallel vector. The return value is a SUNErrCode.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the local component
array via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_P(v), and then access
v_data[i] within the loop than it is to use NV_Ith_P(v,i) within the loop.

• N_VNewEmpty_Parallel() and N_VMake_Parallel() set the field own_data to SUNFALSE. The implementa-
tion of N_VDestroy()will not attempt to free the pointer data for any N_Vectorwith own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_PARALLEL implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

8.5.3 NVECTOR_PARALLEL Fortran Interface

The NVECTOR_PARALLEL module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_parallel_mod Fortran module defines interfaces to all NVECTOR_PARALLEL C functions using
the intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted
in the C function descriptions above, the interface functions are named after the corresponding C function, but with a
leading F. For example, the function N_VNew_Parallel is interfaced as FN_VNew_Parallel.

The Fortran 2003 NVECTOR_PARALLEL interface module can be accessed with the use statement, i.e. use fn-
vector_parallel_mod, and linking to the library libsundials_fnvectorparallel_mod.lib in addition to the
C library. For details on where the library and module file fnvector_parallel_mod.mod are installed see §16. We
note that the module is accessible from the Fortran 2003 SUNDIALS integrators without separately linking to the
libsundials_fnvectorparallel_mod library.

8.5. The NVECTOR_PARALLEL Module 451

User Documentation for ARKODE, v6.3.0

8.6 The NVECTOR_OPENMP Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length
at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

The OpenMP NVECTOR implementation provided with SUNDIALS, NVECTOR_OPENMP, defines the content field
of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous data array,
a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on the vector
are threaded using OpenMP, the number of threads used is based on the supplied argument in the vector constructor.

struct _N_VectorContent_OpenMP {
sunindextype length;
sunbooleantype own_data;
sunrealtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_openmp.h. The installed module library to link to
is libsundials_nvecopenmp.lib where .lib is typically .so for shared libraries and .a for static libraries. The
Fortran module file to use when using the Fortran 2003 interface to this module is fnvector_openmp_mod.mod.

8.6.1 NVECTOR_OPENMP accessor macros

The following six macros are provided to access the content of an NVECTOR_OPENMP vector. The suffix _OMP in
the names denotes the OpenMP version.

NV_CONTENT_OMP(v)
This macro gives access to the contents of the OpenMP vector N_Vector v.

The assignment v_cont = NV_CONTENT_OMP(v) sets v_cont to be a pointer to the OpenMP N_Vector content
structure.

Implementation:

#define NV_CONTENT_OMP(v) ((N_VectorContent_OpenMP)(v->content))

NV_OWN_DATA_OMP(v)
Access the own_data component of the OpenMP N_Vector v.

Implementation:

#define NV_OWN_DATA_OMP(v) (NV_CONTENT_OMP(v)->own_data)

NV_DATA_OMP(v)
The assignment v_data = NV_DATA_OMP(v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_OMP(v) = v_data sets the component array of v to be v_data by storing
the pointer v_data.

Implementation:

452 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

#define NV_DATA_OMP(v) (NV_CONTENT_OMP(v)->data)

NV_LENGTH_OMP(v)
Access the length component of the OpenMP N_Vector v.

The assignment v_len = NV_LENGTH_OMP(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_OMP(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_OMP(v) (NV_CONTENT_OMP(v)->length)

NV_NUM_THREADS_OMP(v)
Access the num_threads component of the OpenMP N_Vector v.

The assignment v_threads = NV_NUM_THREADS_OMP(v) sets v_threads to be the num_threads of v. On
the other hand, the call NV_NUM_THREADS_OMP(v) = num_threads_v sets the num_threads of v to be num_-
threads_v.

Implementation:

#define NV_NUM_THREADS_OMP(v) (NV_CONTENT_OMP(v)->num_threads)

NV_Ith_OMP(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_OMP(v,i) sets r to be the value of the i-th component of v.

The assignment NV_Ith_OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) (NV_DATA_OMP(v)[i])

8.6.2 NVECTOR_OPENMP functions

The NVECTOR_OPENMP module defines OpenMP implementations of all vector operations listed in §8.2, §8.2.2,
§8.2.3, and §8.2.4. Their names are obtained from those in those sections by appending the suffix _OpenMP (e.g. N_-
VDestroy_OpenMP). All the standard vector operations listed in §8.2 with the suffix _OpenMP appended are callable
via the Fortran 2003 interface by prepending an F’ (e.g. ``FN_VDestroy_OpenMP`).

The module NVECTOR_OPENMP provides the following additional user-callable routines:

N_Vector N_VNew_OpenMP(sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates and allocates memory for a OpenMP N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_OpenMP(sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates a new OpenMP N_Vector with an empty (NULL) data array.

N_Vector N_VMake_OpenMP(sunindextype vec_length, sunrealtype *v_data, int num_threads, SUNContext sunctx)
This function creates and allocates memory for a OpenMP vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

8.6. The NVECTOR_OPENMP Module 453

User Documentation for ARKODE, v6.3.0

void N_VPrint_OpenMP(N_Vector v)
This function prints the content of an OpenMP vector to stdout.

void N_VPrintFile_OpenMP(N_Vector v, FILE *outfile)
This function prints the content of an OpenMP vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_OPENMP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_OpenMP(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_OpenMP() will
have the default settings for the NVECTOR_OPENMP module.

SUNErrCode N_VEnableFusedOps_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the OpenMP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the OpenMP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the OpenMP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the OpenMP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the OpenMP vector. The return value is a SUNErrCode.

454 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_OMP(v) and then access v_-
data[i] within the loop than it is to use NV_Ith_OMP(v,i) within the loop.

• N_VNewEmpty_OpenMP() and N_VMake_OpenMP() set the field own_data to SUNFALSE. The implementation
of N_VDestroy() will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_OPENMP implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

8.6.3 NVECTOR_OPENMP Fortran Interface

The NVECTOR_OPENMP module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_openmp_mod Fortran module defines interfaces to all NVECTOR_OPENMP C functions using the
intrinsic iso_c_bindingmodule which provides a standardized mechanism for interoperating with C. As noted in the
C function descriptions above, the interface functions are named after the corresponding C function, but with a leading
F. For example, the function N_VNew_OpenMP is interfaced as FN_VNew_OpenMP.

The Fortran 2003 NVECTOR_OPENMP interface module can be accessed with the use statement, i.e. use fnvec-
tor_openmp_mod, and linking to the library libsundials_fnvectoropenmp_mod.lib in addition to the C library.
For details on where the library and module file fnvector_openmp_mod.mod are installed see §16.

8.7 The NVECTOR_PTHREADS Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length
at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

The Pthreads NVECTOR implementation provided with SUNDIALS, denoted NVECTOR_PTHREADS, defines the
content field of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous
data array, a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on
the vector are threaded using POSIX threads (Pthreads).

struct _N_VectorContent_Pthreads {
sunindextype length;
sunbooleantype own_data;
sunrealtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_pthreads.h. The installed module library to link
to is libsundials_nvecpthreads.lib where .lib is typically .so for shared libraries and .a for static libraries.

8.7. The NVECTOR_PTHREADS Module 455

User Documentation for ARKODE, v6.3.0

8.7.1 NVECTOR_PTHREADS accessor macros

The following six macros are provided to access the content of an NVECTOR_PTHREADS vector. The suffix _PT in
the names denotes the Pthreads version.

NV_CONTENT_PT(v)
This macro gives access to the contents of the Pthreads vector N_Vector v.

The assignment v_cont = NV_CONTENT_PT(v) sets v_cont to be a pointer to the Pthreads N_Vector content
structure.

Implementation:

#define NV_CONTENT_PT(v) ((N_VectorContent_Pthreads)(v->content))

NV_OWN_DATA_PT(v)
Access the own_data component of the Pthreads N_Vector v.

Implementation:

#define NV_OWN_DATA_PT(v) (NV_CONTENT_PT(v)->own_data)

NV_DATA_PT(v)
The assignment v_data = NV_DATA_PT(v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_PT(v) = v_data sets the component array of v to be v_data by storing
the pointer v_data.

Implementation:

#define NV_DATA_PT(v) (NV_CONTENT_PT(v)->data)

NV_LENGTH_PT(v)
Access the length component of the Pthreads N_Vector v.

The assignment v_len = NV_LENGTH_PT(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_PT(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_PT(v) (NV_CONTENT_PT(v)->length)

NV_NUM_THREADS_PT(v)
Access the num_threads component of the Pthreads N_Vector v.

The assignment v_threads = NV_NUM_THREADS_PT(v) sets v_threads to be the num_threads of v. On
the other hand, the call NV_NUM_THREADS_PT(v) = num_threads_v sets the num_threads of v to be num_-
threads_v.

Implementation:

#define NV_NUM_THREADS_PT(v) (NV_CONTENT_PT(v)->num_threads)

NV_Ith_PT(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_PT(v,i) sets r to be the value of the i-th component of v.

456 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

The assignment NV_Ith_PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) (NV_DATA_PT(v)[i])

8.7.2 NVECTOR_PTHREADS functions

The NVECTOR_PTHREADS module defines Pthreads implementations of all vector operations listed in §8.2, §8.2.2,
§8.2.3, and §8.2.4. Their names are obtained from those in those sections by appending the suffix _Pthreads (e.g.
N_VDestroy_Pthreads). All the standard vector operations listed in §8.2 are callable via the Fortran 2003 interface
by prepending an F’ (e.g. ``FN_VDestroy_Pthreads`). The module NVECTOR_PTHREADS provides the following
additional user-callable routines:

N_Vector N_VNew_Pthreads(sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates and allocates memory for a Pthreads N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_Pthreads(sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates a new Pthreads N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Pthreads(sunindextype vec_length, sunrealtype *v_data, int num_threads, SUNContext
sunctx)

This function creates and allocates memory for a Pthreads vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

void N_VPrint_Pthreads(N_Vector v)
This function prints the content of a Pthreads vector to stdout.

void N_VPrintFile_Pthreads(N_Vector v, FILE *outfile)
This function prints the content of a Pthreads vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PTHREADS module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Pthreads(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Pthreads() will have the default settings for the NVECTOR_PTHREADS module.

SUNErrCode N_VEnableFusedOps_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the Pthreads
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the Pthreads
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the Pthreads vector. The return value is a SUNErrCode.

8.7. The NVECTOR_PTHREADS Module 457

User Documentation for ARKODE, v6.3.0

SUNErrCode N_VEnableDotProdMulti_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
Pthreads vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the Pthreads
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the Pthreads
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the Pthreads
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
Pthreads vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the Pthreads vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the Pthreads vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the Pthreads vector. The return value is a SUNErrCode.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_PT(v) and then access v_-
data[i] within the loop than it is to use NV_Ith_S(v,i) within the loop.

• N_VNewEmpty_Pthreads() and N_VMake_Pthreads() set the field own_data to SUNFALSE. The implementa-
tion of N_VDestroy()will not attempt to free the pointer data for any N_Vectorwith own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_PTHREADS implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

8.7.3 NVECTOR_PTHREADS Fortran Interface

The NVECTOR_PTHREADS module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_pthreads_mod Fortran module defines interfaces to all NVECTOR_PTHREADS C functions using
the intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted
in the C function descriptions above, the interface functions are named after the corresponding C function, but with a
leading F. For example, the function N_VNew_Pthreads is interfaced as FN_VNew_Pthreads.

458 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

The Fortran 2003 NVECTOR_PTHREADS interface module can be accessed with the use statement, i.e. use fn-
vector_pthreads_mod, and linking to the library libsundials_fnvectorpthreads_mod.lib in addition to the
C library. For details on where the library and module file fnvector_pthreads_mod.mod are installed see §16.

8.8 The NVECTOR_PARHYP Module

The NVECTOR_PARHYP implementation of the NVECTOR module provided with SUNDIALS is a wrapper around
HYPRE’s ParVector class. Most of the vector kernels simply call HYPRE vector operations. The implementation
defines the content field of N_Vector to be a structure containing the global and local lengths of the vector, a pointer
to an object of type hypre_ParVector, an MPI communicator, and a boolean flag own_parvector indicating ownership
of the HYPRE parallel vector object x.

struct _N_VectorContent_ParHyp {
sunindextype local_length;
sunindextype global_length;
sunbooleantype own_data;
sunbooleantype own_parvector;
sunrealtype *data;
MPI_Comm comm;
hypre_ParVector *x;

};

The header file to be included when using this module is nvector_parhyp.h. The installed module library to link to
is libsundials_nvecparhyp.lib where .lib is typically .so for shared libraries and .a for static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PARHYP does not provide macros to access its member variables.
Note that NVECTOR_PARHYP requires SUNDIALS to be built with MPI support.

8.8.1 NVECTOR_PARHYP functions

The NVECTOR_PARHYP module defines implementations of all vector operations listed in §8.2 except for N_VSe-
tArrayPointer() and N_VGetArrayPointer() because accessing raw vector data is handled by low-level HYPRE
functions. As such, this vector is not available for use with SUNDIALS Fortran interfaces. When access to raw vector
data is needed, one should extract the HYPRE vector first, and then use HYPRE methods to access the data. Usage
examples of NVECTOR_PARHYP are provided in the cvAdvDiff_non_ph.c example programs for CVODE and the
ark_diurnal_kry_ph.c example program for ARKODE.

The names of parhyp methods are obtained from those in §8.2, §8.2.2, §8.2.3, and §8.2.4 by appending the suffix
_ParHyp (e.g. N_VDestroy_ParHyp). The module NVECTOR_PARHYP provides the following additional user-
callable routines:

N_Vector N_VNewEmpty_ParHyp(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates a new parhyp N_Vector with the pointer to the HYPRE vector set to NULL.

N_Vector N_VMake_ParHyp(hypre_ParVector *x, SUNContext sunctx)
This function creates an N_Vector wrapper around an existing HYPRE parallel vector. It does not allocate
memory for x itself.

hypre_ParVector *N_VGetVector_ParHyp(N_Vector v)
This function returns a pointer to the underlying HYPRE vector.

8.8. The NVECTOR_PARHYP Module 459

User Documentation for ARKODE, v6.3.0

void N_VPrint_ParHyp(N_Vector v)
This function prints the local content of a parhyp vector to stdout.

void N_VPrintFile_ParHyp(N_Vector v, FILE *outfile)
This function prints the local content of a parhyp vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PARHYP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VMake_ParHyp(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VMake_ParHyp()will
have the default settings for the NVECTOR_PARHYP module.

SUNErrCode N_VEnableFusedOps_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the parhyp vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
parhyp vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the parhyp vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the parhyp vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the parhyp vector. The return value is a SUNErrCode.

460 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

Notes

• When there is a need to access components of an N_Vector_ParHyp v, it is recommended to extract the HYPRE
vector via x_vec = N_VGetVector_ParHyp(v) and then access components using appropriate HYPRE func-
tions.

• N_VNewEmpty_ParHyp(), and N_VMake_ParHyp() set the field
own_parvector to SUNFALSE. The implementation of N_VDestroy()will not attempt to delete an underly-
ing HYPRE vector for any N_Vector with own_parvector set to SUNFALSE. In such a case, it is the user’s
responsibility to delete the underlying vector.

• To maximize efficiency, vector operations in the NVECTOR_PARHYP implementation that have more than
one N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

8.9 The NVECTOR_PETSC Module

The NVECTOR_PETSC module is an NVECTOR wrapper around the PETSc vector. It defines the content field of a
N_Vector to be a structure containing the global and local lengths of the vector, a pointer to the PETSc vector, an MPI
communicator, and a boolean flag own_data indicating ownership of the wrapped PETSc vector.

struct _N_VectorContent_Petsc {
sunindextype local_length;
sunindextype global_length;
sunbooleantype own_data;
Vec *pvec;
MPI_Comm comm;

};

The header file to be included when using this module is nvector_petsc.h. The installed module library to link to
is libsundials_nvecpetsc.lib where .lib is typically .so for shared libraries and .a for static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PETSC does not provide macros to access its member variables.
Note that NVECTOR_PETSC requires SUNDIALS to be built with MPI support.

8.9.1 NVECTOR_PETSC functions

The NVECTOR_PETSC module defines implementations of all vector operations listed in §8.2 except for N_VGe-
tArrayPointer() and N_VSetArrayPointer(). As such, this vector cannot be used with SUNDIALS Fortran
interfaces. When access to raw vector data is needed, it is recommended to extract the PETSc vector first, and then use
PETSc methods to access the data. Usage examples of NVECTOR_PETSC is provided in example programs for IDA.

The names of vector operations are obtained from those in §8.2, §8.2.2, §8.2.3, and §8.2.4 by appending the suffice
_Petsc (e.g. N_VDestroy_Petsc). The module NVECTOR_PETSC provides the following additional user-callable
routines:

N_Vector N_VNewEmpty_Petsc(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates a new PETSC N_Vector with the pointer to the wrapped PETSc vector set to NULL. It is
used by the N_VMake_Petsc and N_VClone_Petsc implementations. It should be used only with great caution.

N_Vector N_VMake_Petsc(Vec *pvec, SUNContext sunctx)
This function creates and allocates memory for an NVECTOR_PETSC wrapper with a user-provided PETSc
vector. It does not allocate memory for the vector pvec itself.

8.9. The NVECTOR_PETSC Module 461

User Documentation for ARKODE, v6.3.0

Vec *N_VGetVector_Petsc(N_Vector v)
This function returns a pointer to the underlying PETSc vector.

void N_VPrint_Petsc(N_Vector v)
This function prints the global content of a wrapped PETSc vector to stdout.

void N_VPrintFile_Petsc(N_Vector v, const char fname[])
This function prints the global content of a wrapped PETSc vector to fname.

By default all fused and vector array operations are disabled in the NVECTOR_PETSC module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VMake_Petsc(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VMake_Petsc() will
have the default settings for the NVECTOR_PETSC module.

SUNErrCode N_VEnableFusedOps_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the PETSc vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
PETSc vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the PETSc vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the PETSc vector. The return value is a SUNErrCode.

462 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

SUNErrCode N_VEnableLinearCombinationVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the PETSc vector. The return value is a SUNErrCode.

Notes

• When there is a need to access components of an N_Vector_Petsc v, it is recommended to extract the PETSc
vector via x_vec = N_VGetVector_Petsc(v); and then access components using appropriate PETSc func-
tions.

• The functions N_VNewEmpty_Petsc() and N_VMake_Petsc(), set the field own_data to SUNFALSE. The im-
plementation of N_VDestroy() will not attempt to free the pointer pvec for any N_Vector with own_data set
to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the pvec pointer.

• To maximize efficiency, vector operations in the NVECTOR_PETSC implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

8.10 The NVECTOR_CUDA Module

The NVECTOR_CUDA module is an NVECTOR implementation in the CUDA language. The module allows for
SUNDIALS vector kernels to run on NVIDIA GPU devices. It is intended for users who are already familiar with
CUDA and GPU programming. Building this vector module requires a CUDA compiler and, by extension, a C++
compiler. The vector content layout is as follows:

struct _N_VectorContent_Cuda
{
sunindextype length;
sunbooleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNCudaExecPolicy* stream_exec_policy;
SUNCudaExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
void* priv; /* 'private' data */

};

typedef struct _N_VectorContent_Cuda *N_VectorContent_Cuda;

The content members are the vector length (size), boolean flags that indicate if the vector owns the execution policies
and memory helper objects (i.e., it is in change of freeing the objects), SUNMemory objects for the vector data on
the host and device, pointers to execution policies that control how streaming and reduction kernels are launched, a
SUNMemoryHelper for performing memory operations, and a private data structure which holds additional members
that should not be accessed directly.

When instantiated with N_VNew_Cuda(), the underlying data will be allocated on both the host and the device. Al-
ternatively, a user can provide host and device data arrays by using the N_VMake_Cuda() constructor. To use CUDA
managed memory, the constructors N_VNewManaged_Cuda() and N_VMakeManaged_Cuda() are provided. Addition-
ally, a user-defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewWith-
MemHelp_Cuda(). Details on each of these constructors are provided below.

To use the NVECTOR_CUDA module, include nvector_cuda.h and link to the library libsundials_nveccuda.
lib. The extension, .lib, is typically .so for shared libraries and .a for static libraries.

8.10. The NVECTOR_CUDA Module 463

User Documentation for ARKODE, v6.3.0

8.10.1 NVECTOR_CUDA functions

Unlike other native SUNDIALS vector types, the NVECTOR_CUDA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:

sunrealtype *N_VGetHostArrayPointer_Cuda(N_Vector v)
This function returns pointer to the vector data on the host.

sunrealtype *N_VGetDeviceArrayPointer_Cuda(N_Vector v)
This function returns pointer to the vector data on the device.

sunbooleantype N_VIsManagedMemory_Cuda(N_Vector v)
This function returns a boolean flag indicating if the vector data array is in managed memory or not.

The NVECTOR_CUDA module defines implementations of all standard vector operations defined in §8.2, §8.2.2,
§8.2.3, and §8.2.4, except for N_VSetArrayPointer(), and, if using unmanaged memory, N_VGetArrayPointer().
As such, this vector can only be used with SUNDIALS direct solvers and preconditioners when using managed mem-
ory. The NVECTOR_CUDA module provides separate functions to access data on the host and on the device for the
unmanaged memory use case. It also provides methods for copying from the host to the device and vice versa. Usage
examples of NVECTOR_CUDA are provided in example programs for CVODE [61].

The names of vector operations are obtained from those in §8.2, §8.2.2, §8.2.3, and §8.2.4 by appending the suffix
_Cuda (e.g. N_VDestroy_Cuda). The module NVECTOR_CUDA provides the following additional user-callable
routines:

N_Vector N_VNew_Cuda(sunindextype length, SUNContext sunctx)
This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated on both
the host and device.

N_Vector N_VNewManaged_Cuda(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated in managed
memory.

N_Vector N_VNewWithMemHelp_Cuda(sunindextype length, sunbooleantype use_managed_mem,
SUNMemoryHelper helper, SUNContext sunctx)

This function creates a new CUDA N_Vector with a user-supplied SUNMemoryHelper for allocating/freeing
memory.

N_Vector N_VNewEmpty_Cuda(sunindextype vec_length, SUNContext sunctx)
This function creates a new CUDA N_Vectorwhere the members of the content structure have not been allocated.
This utility function is used by the other constructors to create a new vector.

N_Vector N_VMake_Cuda(sunindextype vec_length, sunrealtype *h_vdata, sunrealtype *d_vdata, SUNContext
sunctx)

This function creates a CUDA N_Vector with user-supplied vector data arrays for the host and the device.

N_Vector N_VMakeManaged_Cuda(sunindextype vec_length, sunrealtype *vdata, SUNContext sunctx)
This function creates a CUDA N_Vector with a user-supplied managed memory data array.

N_Vector N_VMakeWithManagedAllocator_Cuda(sunindextype length, void *(*allocfn)(size_t size), void
(*freefn)(void *ptr))

This function creates a CUDA N_Vector with a user-supplied memory allocator. It requires the user to provide
a corresponding free function as well. The memory allocated by the allocator function must behave like CUDA
managed memory.

The module NVECTOR_CUDA also provides the following user-callable routines:

464 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

void N_VSetKernelExecPolicy_Cuda(N_Vector v, SUNCudaExecPolicy *stream_exec_policy,
SUNCudaExecPolicy *reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction CUDA kernels. By default the vector is setup to use the SUNCudaThreadDirectExecPolicy
and SUNCudaBlockReduceAtomicExecPolicy. Any custom execution policy for reductions must ensure that
the grid dimensions (number of thread blocks) is a multiple of the CUDA warp size (32). See §8.10.2 below
for more information about the SUNCudaExecPolicy class. Providing NULL for an argument will result in the
default policy being restored.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note

Note: All vectors used in a single instance of a SUNDIALS package must use the same execution policy.
It is strongly recommended that this function is called immediately after constructing the vector, and any
subsequent vector be created by cloning to ensure consistent execution policies across vectors

sunrealtype *N_VCopyToDevice_Cuda(N_Vector v)
This function copies host vector data to the device.

sunrealtype *N_VCopyFromDevice_Cuda(N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Cuda(N_Vector v)
This function prints the content of a CUDA vector to stdout.

void N_VPrintFile_Cuda(N_Vector v, FILE *outfile)
This function prints the content of a CUDA vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_CUDA module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Cuda(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Cuda() will
have the default settings for the NVECTOR_CUDA module.

SUNErrCode N_VEnableFusedOps_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the CUDA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the CUDA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the CUDA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the CUDA
vector. The return value is a SUNErrCode.

8.10. The NVECTOR_CUDA Module 465

User Documentation for ARKODE, v6.3.0

SUNErrCode N_VEnableLinearSumVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the CUDA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the CUDA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the CUDA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
CUDA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the CUDA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the CUDA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the CUDA vector. The return value is a SUNErrCode.

Notes

• When there is a need to access components of an N_Vector_Cuda, v, it is recommended to use functions N_-
VGetDeviceArrayPointer_Cuda() or N_VGetHostArrayPointer_Cuda(). However, when using managed
memory, the function N_VGetArrayPointer() may also be used.

• To maximize efficiency, vector operations in the NVECTOR_CUDA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

8.10.2 The SUNCudaExecPolicy Class

In order to provide maximum flexibility to users, the CUDA kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials::cuda::ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNCudaExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNCudaExecPolicy class is defined as

typedef sundials::cuda::ExecPolicy SUNCudaExecPolicy

where the sundials::cuda::ExecPolicy class is defined in the header file sundials_cuda_policies.hpp, as
follows:

class sundials::cuda::ExecPolicy

ExecPolicy(cudaStream_t stream = 0)

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0)

466 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0)

virtual const cudaStream_t *stream() const

virtual ExecPolicy *clone() const

ExecPolicy *clone_new_stream(cudaStream_t stream) const

virtual bool atomic() const

virtual ~ExecPolicy()

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials::cuda::ThreadDirectExecPolicy (aka in the global
namespace as SUNCudaThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim, cudaStream_t stream = 0)
: blockDim_(blockDim), ExecPolicy(stream)

{}

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), ExecPolicy(ex.stream_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t /*blockDim*/ = 0) const
{
/* ceil(n/m) = floor((n + m - 1) / m) */
return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t /*numWorkUnits*/ = 0, size_t /*gridDim*/ = 0) const
{
return blockDim_;

}

virtual ExecPolicy* clone() const
{
return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));

}

private:
const size_t blockDim_;

};

In total, SUNDIALS provides 3 execution policies:

SUNCudaThreadDirectExecPolicy(const size_t blockDim, const cudaStream_t stream = 0)
Maps each CUDA thread to a work unit. The number of threads per block (blockDim) can be set to
anything. The grid size will be calculated so that there are enough threads for one thread per element.
If a CUDA stream is provided, it will be used to execute the kernel.

8.10. The NVECTOR_CUDA Module 467

User Documentation for ARKODE, v6.3.0

SUNCudaGridStrideExecPolicy(const size_t blockDim, const size_t gridDim, const cudaStream_t
stream = 0)

Is for kernels that use grid stride loops. The number of threads per block (blockDim) can be set to
anything. The number of blocks (gridDim) can be set to anything. If a CUDA stream is provided, it
will be used to execute the kernel.

SUNCudaBlockReduceExecPolicy(const size_t blockDim, const cudaStream_t stream = 0)
Is for kernels performing a reduction across individual thread blocks. The number of threads per
block (blockDim) can be set to any valid multiple of the CUDA warp size. The grid size (gridDim)
can be set to any value greater than 0. If it is set to 0, then the grid size will be chosen so that there is
enough threads for one thread per work unit. If a CUDA stream is provided, it will be used to execute
the kernel.

SUNCudaBlockReduceAtomicExecPolicy(const size_t blockDim, const cudaStream_t stream = 0)
Is for kernels performing a reduction across individual thread blocks using atomic operations. The
number of threads per block (blockDim) can be set to any valid multiple of the CUDA warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size will be
chosen so that there is enough threads for one thread per work unit. If a CUDA stream is provided,
it will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created like so:

cudaStream_t stream;
cudaStreamCreate(&stream);
SUNCudaThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.

8.11 The NVECTOR_HIP Module

The NVECTOR_HIP module is an NVECTOR implementation using the AMD ROCm HIP library [2]. The module
allows for SUNDIALS vector kernels to run on AMD or NVIDIA GPU devices. It is intended for users who are already
familiar with HIP and GPU programming. Building this vector module requires the HIP-clang compiler. The vector
content layout is as follows:

struct _N_VectorContent_Hip
{
sunindextype length;
sunbooleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNHipExecPolicy* stream_exec_policy;
SUNHipExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
void* priv; /* 'private' data */

};

typedef struct _N_VectorContent_Hip *N_VectorContent_Hip;

The content members are the vector length (size), a boolean flag that signals if the vector owns the data (i.e. it is in charge
of freeing the data), pointers to vector data on the host and the device, pointers to SUNHipExecPolicy implementations
that control how the HIP kernels are launched for streaming and reduction vector kernels, and a private data structure
which holds additional members that should not be accessed directly.

468 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

When instantiated with N_VNew_Hip(), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Hip() constructor. To use managed
memory, the constructors N_VNewManaged_Hip() and N_VMakeManaged_Hip() are provided. Additionally, a user-
defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewWithMemHelp_-
Hip(). Details on each of these constructors are provided below.

To use the NVECTOR_HIP module, include nvector_hip.h and link to the library libsundials_nvechip.lib.
The extension, .lib, is typically .so for shared libraries and .a for static libraries.

8.11.1 NVECTOR_HIP functions

Unlike other native SUNDIALS vector types, the NVECTOR_HIP module does not provide macros to access its mem-
ber variables. Instead, user should use the accessor functions:

sunrealtype *N_VGetHostArrayPointer_Hip(N_Vector v)
This function returns pointer to the vector data on the host.

sunrealtype *N_VGetDeviceArrayPointer_Hip(N_Vector v)
This function returns pointer to the vector data on the device.

sunbooleantype N_VIsManagedMemory_Hip(N_Vector v)
This function returns a boolean flag indicating if the vector data array is in managed memory or not.

The NVECTOR_HIP module defines implementations of all standard vector operations defined in §8.2, §8.2.2, §8.2.3,
and §8.2.4, except for N_VSetArrayPointer(). The names of vector operations are obtained from those in §8.2,
§8.2.2, §8.2.3, and §8.2.4 by appending the suffix _Hip (e.g. N_VDestroy_Hip). The module NVECTOR_HIP pro-
vides the following additional user-callable routines:

N_Vector N_VNew_Hip(sunindextype length, SUNContext sunctx)
This function creates and allocates memory for a HIP N_Vector. The vector data array is allocated on both the
host and device.

N_Vector N_VNewManaged_Hip(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a HIP N_Vector. The vector data array is allocated in managed
memory.

N_Vector N_VNewWithMemHelp_Hip(sunindextype length, sunbooleantype use_managed_mem,
SUNMemoryHelper helper, SUNContext sunctx)

This function creates a new HIP N_Vectorwith a user-supplied SUNMemoryHelper for allocating/freeing mem-
ory.

N_Vector N_VNewEmpty_Hip(sunindextype vec_length, SUNContext sunctx)
This function creates a new HIP N_Vector where the members of the content structure have not been allocated.
This utility function is used by the other constructors to create a new vector.

N_Vector N_VMake_Hip(sunindextype vec_length, sunrealtype *h_vdata, sunrealtype *d_vdata, SUNContext
sunctx)

This function creates a HIP N_Vector with user-supplied vector data arrays for the host and the device.

N_Vector N_VMakeManaged_Hip(sunindextype vec_length, sunrealtype *vdata, SUNContext sunctx)
This function creates a HIP N_Vector with a user-supplied managed memory data array.

The module NVECTOR_HIP also provides the following user-callable routines:

void N_VSetKernelExecPolicy_Hip(N_Vector v, SUNHipExecPolicy *stream_exec_policy, SUNHipExecPolicy
*reduce_exec_policy)

8.11. The NVECTOR_HIP Module 469

User Documentation for ARKODE, v6.3.0

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction HIP kernels. By default the vector is setup to use the SUNHipThreadDirectExecPolicy()
and SUNHipBlockReduceExecPolicy(). Any custom execution policy for reductions must ensure that the grid
dimensions (number of thread blocks) is a multiple of the HIP warp size (32 for NVIDIA GPUs, 64 for AMD
GPUs). See §8.11.2 below for more information about the SUNHipExecPolicy class. Providing NULL for an
argument will result in the default policy being restored.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note

Note: All vectors used in a single instance of a SUNDIALS package must use the same execution policy.
It is strongly recommended that this function is called immediately after constructing the vector, and any
subsequent vector be created by cloning to ensure consistent execution policies across vectors*

sunrealtype *N_VCopyToDevice_Hip(N_Vector v)
This function copies host vector data to the device.

sunrealtype *N_VCopyFromDevice_Hip(N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Hip(N_Vector v)
This function prints the content of a HIP vector to stdout.

void N_VPrintFile_Hip(N_Vector v, FILE *outfile)
This function prints the content of a HIP vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_HIP module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VNew_Hip(), enable/disable the
desired operations for that vector with the functions below, and create any additional vectors from that vector using N_-
VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Hip()will have
the default settings for the NVECTOR_HIP module.

SUNErrCode N_VEnableFusedOps_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the HIP vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the HIP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the HIP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the HIP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the HIP
vector. The return value is a SUNErrCode.

470 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

SUNErrCode N_VEnableScaleVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the HIP vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the HIP vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the HIP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the HIP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the HIP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the HIP vector. The return value is a SUNErrCode.

Notes

• When there is a need to access components of an N_Vector_Hip, v, it is recommended to use functions N_-
VGetDeviceArrayPointer_Hip() or N_VGetHostArrayPointer_Hip(). However, when using managed
memory, the function N_VGetArrayPointer() may also be used.

• To maximize efficiency, vector operations in the NVECTOR_HIP implementation that have more than one N_-
Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

8.11.2 The SUNHipExecPolicy Class

In order to provide maximum flexibility to users, the HIP kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials::hip::ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNHipExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNHipExecPolicy class is defined as

typedef sundials::hip::ExecPolicy SUNHipExecPolicy

where the sundials::hip::ExecPolicy class is defined in the header file sundials_hip_policies.hpp, as fol-
lows:

class sundials::hip::ExecPolicy

ExecPolicy(hipStream_t stream = 0)

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0)

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0)

virtual const hipStream_t *stream() const

8.11. The NVECTOR_HIP Module 471

User Documentation for ARKODE, v6.3.0

virtual ExecPolicy *clone() const

ExecPolicy *clone_new_stream(hipStream_t stream) const

virtual bool atomic() const

virtual ~ExecPolicy()

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials::hip::ThreadDirectExecPolicy (aka in the global
namespace as SUNHipThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim, hipStream_t stream = 0)
: blockDim_(blockDim), ExecPolicy(stream)

{}

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), ExecPolicy(ex.stream_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t /*blockDim*/ = 0) const
{
/* ceil(n/m) = floor((n + m - 1) / m) */
return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t /*numWorkUnits*/ = 0, size_t /*gridDim*/ = 0) const
{
return blockDim_;

}

virtual ExecPolicy* clone() const
{
return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));

}

private:
const size_t blockDim_;

};

In total, SUNDIALS provides 4 execution policies:

SUNHipThreadDirectExecPolicy(const size_t blockDim, const hipStream_t stream = 0)
Maps each HIP thread to a work unit. The number of threads per block (blockDim) can be set to
anything. The grid size will be calculated so that there are enough threads for one thread per element.
If a HIP stream is provided, it will be used to execute the kernel.

SUNHipGridStrideExecPolicy(const size_t blockDim, const size_t gridDim, const hipStream_t
stream = 0)

Is for kernels that use grid stride loops. The number of threads per block (blockDim) can be set to
anything. The number of blocks (gridDim) can be set to anything. If a HIP stream is provided, it will
be used to execute the kernel.

472 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

SUNHipBlockReduceExecPolicy(const size_t blockDim, const hipStream_t stream = 0)
Is for kernels performing a reduction across individual thread blocks. The number of threads per
block (blockDim) can be set to any valid multiple of the HIP warp size. The grid size (gridDim) can
be set to any value greater than 0. If it is set to 0, then the grid size will be chosen so that there is
enough threads for one thread per work unit. If a HIP stream is provided, it will be used to execute
the kernel.

SUNHipBlockReduceAtomicExecPolicy(const size_t blockDim, const hipStream_t stream = 0)
Is for kernels performing a reduction across individual thread blocks using atomic operations. The
number of threads per block (blockDim) can be set to any valid multiple of the HIP warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size will be
chosen so that there is enough threads for one thread per work unit. If a HIP stream is provided, it
will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created like so:

hipStream_t stream;
hipStreamCreate(&stream);
SUNHipThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.

8.12 The NVECTOR_SYCL Module

The NVECTOR_SYCL module is an experimental NVECTOR implementation using the SYCL abstraction layer. At
present the only supported SYCL compiler is the DPC++ (Intel oneAPI) compiler. This module allows for SUNDIALS
vector kernels to run on Intel GPU devices. The module is intended for users who are already familiar with SYCL and
GPU programming.

The vector content layout is as follows:

struct _N_VectorContent_Sycl
{
sunindextype length;
sunbooleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNSyclExecPolicy* stream_exec_policy;
SUNSyclExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
sycl::queue* queue;
void* priv; /* 'private' data */

};

typedef struct _N_VectorContent_Sycl *N_VectorContent_Sycl;

The content members are the vector length (size), boolean flags that indicate if the vector owns the execution policies
and memory helper objects (i.e., it is in charge of freeing the objects), SUNMemory objects for the vector data on
the host and device, pointers to execution policies that control how streaming and reduction kernels are launched, a
SUNMemoryHelper for performing memory operations, the SYCL queue, and a private data structure which holds
additional members that should not be accessed directly.

When instantiated with N_VNew_Sycl(), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Sycl() constructor. To use managed

8.12. The NVECTOR_SYCL Module 473

https://www.khronos.org/sycl/

User Documentation for ARKODE, v6.3.0

(shared) memory, the constructors N_VNewManaged_Sycl() and N_VMakeManaged_Sycl() are provided. Addition-
ally, a user-defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewWith-
MemHelp_Sycl(). Details on each of these constructors are provided below.

The header file to include when using this is nvector_sycl.h. The installed module library to link to is libsundi-
als_nvecsycl.lib. The extension .lib is typically .so for shared libraries .a for static libraries.

8.12.1 NVECTOR_SYCL functions

The NVECTOR_SYCL module implementations of all vector operations listed in §8.2, §8.2.2, §8.2.3, and §8.2.4,
except for N_VDotProdMulti(), N_VWrmsNormVectorArray(), N_VWrmsNormMaskVectorArray() as support for
arrays of reduction vectors is not yet supported. These functions will be added to the NVECTOR_SYCL implementa-
tion in the future. The names of vector operations are obtained from those in the aforementioned sections by appending
the suffix _Sycl (e.g., N_VDestroy_Sycl).

Additionally, the NVECTOR_SYCL module provides the following user-callable constructors for creating a new
NVECTOR_SYCL:

N_Vector N_VNew_Sycl(sunindextype vec_length, sycl::queue *Q, SUNContext sunctx)
This function creates and allocates memory for an NVECTOR_SYCL. Vector data arrays are allocated on both
the host and the device associated with the input queue. All operation are launched in the provided queue.

N_Vector N_VNewManaged_Sycl(sunindextype vec_length, sycl::queue *Q, SUNContext sunctx)
This function creates and allocates memory for a NVECTOR_SYCL. The vector data array is allocated in man-
aged (shared) memory using the input queue. All operation are launched in the provided queue.

N_Vector N_VMake_Sycl(sunindextype length, sunrealtype *h_vdata, sunrealtype *d_vdata, sycl::queue *Q,
SUNContext sunctx)

This function creates an NVECTOR_SYCL with user-supplied host and device data arrays. This function does
not allocate memory for data itself. All operation are launched in the provided queue.

N_Vector N_VMakeManaged_Sycl(sunindextype length, sunrealtype *vdata, sycl::queue *Q, SUNContext sunctx)
This function creates an NVECTOR_SYCL with a user-supplied managed (shared) data array. This function
does not allocate memory for data itself. All operation are launched in the provided queue.

N_Vector N_VNewWithMemHelp_Sycl(sunindextype length, sunbooleantype use_managed_mem,
SUNMemoryHelper helper, sycl::queue *Q, SUNContext sunctx)

This function creates an NVECTOR_SYCL with a user-supplied SUNMemoryHelper for allocating/freeing
memory. All operation are launched in the provided queue.

N_Vector N_VNewEmpty_Sycl()
This function creates a new N_Vector where the members of the content structure have not been allocated. This
utility function is used by the other constructors to create a new vector.

The following user-callable functions are provided for accessing the vector data arrays on the host and device and
copying data between the two memory spaces. Note the generic NVECTOR operations N_VGetArrayPointer() and
N_VSetArrayPointer() are mapped to the corresponding HostArray functions given below. To ensure memory
coherency, a user will need to call the CopyTo or CopyFrom functions as necessary to transfer data between the host
and device, unless managed (shared) memory is used.

sunrealtype *N_VGetHostArrayPointer_Sycl(N_Vector v)
This function returns a pointer to the vector host data array.

sunrealtype *N_VGetDeviceArrayPointer_Sycl(N_Vector v)
This function returns a pointer to the vector device data array.

474 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

void N_VSetHostArrayPointer_Sycl(sunrealtype *h_vdata, N_Vector v)
This function sets the host array pointer in the vector v.

void N_VSetDeviceArrayPointer_Sycl(sunrealtype *d_vdata, N_Vector v)
This function sets the device array pointer in the vector v.

void N_VCopyToDevice_Sycl(N_Vector v)
This function copies host vector data to the device.

void N_VCopyFromDevice_Sycl(N_Vector v)
This function copies vector data from the device to the host.

sunbooleantype N_VIsManagedMemory_Sycl(N_Vector v)
This function returns SUNTRUE if the vector data is allocated as managed (shared) memory otherwise it returns
SUNFALSE.

The following user-callable function is provided to set the execution policies for how SYCL kernels are launched on a
device.

SUNErrCode N_VSetKernelExecPolicy_Sycl(N_Vector v, SUNSyclExecPolicy *stream_exec_policy,
SUNSyclExecPolicy *reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction kernels. By default the vector is setup to use the SUNSyclThreadDirectExecPolicy() and
SUNSyclBlockReduceExecPolicy(). See §8.12.2 below for more information about the SUNSyclExecPol-
icy class.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note

All vectors used in a single instance of a SUNDIALS package must use the same execution policy. It is
strongly recommended that this function is called immediately after constructing the vector, and any sub-
sequent vector be created by cloning to ensure consistent execution policies across vectors.

The following user-callable functions are provided to print the host vector data array. Unless managed memory is used,
a user may need to call N_VCopyFromDevice_Sycl() to ensure consistency between the host and device array.

void N_VPrint_Sycl(N_Vector v)
This function prints the host data array to stdout.

void N_VPrintFile_Sycl(N_Vector v, FILE *outfile)
This function prints the host data array to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_SYCL module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To ensure
consistency across vectors it is recommended to first create a vector with one of the above constructors, enable/disable
the desired operations on that vector with the functions below, and then use this vector in conjunction with N_VClone()
to create any additional vectors. This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created by any
of the constructors above will have the default settings for the NVECTOR_SYCL module.

SUNErrCode N_VEnableFusedOps_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the SYCL
vector. The return value is a SUNErrCode.

8.12. The NVECTOR_SYCL Module 475

User Documentation for ARKODE, v6.3.0

SUNErrCode N_VEnableLinearCombination_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the SYCL
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the SYCL vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the SYCL
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the SYCL vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the SYCL vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the SYCL vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the SYCL vector. The return value is a SUNErrCode.

Notes

• When there is a need to access components of an NVECTOR_SYCL, v, it is recommended to use N_VGetDe-
viceArrayPointer() to access the device array or N_VGetArrayPointer() for the host array. When using
managed (shared) memory, either function may be used. To ensure memory coherency, a user may need to call
the CopyTo or CopyFrom functions as necessary to transfer data between the host and device, unless managed
(shared) memory is used.

• To maximize efficiency, vector operations in the NVECTOR_SYCL implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

8.12.2 The SUNSyclExecPolicy Class

In order to provide maximum flexibility to users, the SYCL kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials::sycl::ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNSyclExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNSyclExecPolicy class is defined as

typedef sundials::sycl::ExecPolicy SUNSyclExecPolicy

where the sundials::sycl::ExecPolicy class is defined in the header file sundials_sycl_policies.hpp, as
follows:

class sundials::sycl::ExecPolicy

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0)

476 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0)

virtual ExecPolicy *clone() const

virtual ~ExecPolicy()

For consistency the function names and behavior mirror the execution policies for the CUDA and HIP vectors. In
the SYCL case the blockSize is the local work-group range in a one-dimensional nd_range (threads per group).
The gridSize is the number of local work groups so the global work-group range in a one-dimensional nd_range is
blockSize * gridSize (total number of threads). All vector kernels are written with a many-to-one mapping where
work units (vector elements) are mapped in a round-robin manner across the global range. As such, the blockSize
and gridSize can be set to any positive value.

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials::sycl::ThreadDirectExecPolicy (aka in the global
namespace as SUNSyclThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim)
: blockDim_(blockDim)

{}

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const
{
return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const
{
return blockDim_;

}

virtual ExecPolicy* clone() const
{
return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));

}

private:
const size_t blockDim_;

};

SUNDIALS provides the following execution policies:

SUNSyclThreadDirectExecPolicy(const size_t blockDim)
Is for kernels performing streaming operations and maps each work unit (vector element) to a work-
item (thread). Based on the local work-group range (number of threads per group, blockSize) the
number of local work-groups (gridSize) is computed so there are enough work-items in the global
work-group range (total number of threads, blockSize * gridSize) for one work unit per work-
item (thread).

8.12. The NVECTOR_SYCL Module 477

User Documentation for ARKODE, v6.3.0

SUNSyclGridStrideExecPolicy(const size_t blockDim, const size_t gridDim)
Is for kernels performing streaming operations and maps each work unit (vector element) to a work-
item (thread) in a round-robin manner so the local work-group range (number of threads per group,
blockSize) and the number of local work-groups (gridSize) can be set to any positive value. In
this case the global work-group range (total number of threads, blockSize * gridSize) may be
less than the number of work units (vector elements).

SUNSyclBlockReduceExecPolicy(const size_t blockDim)
Is for kernels performing a reduction, the local work-group range (number of threads per group,
blockSize) and the number of local work-groups (gridSize) can be set to any positive value or the
gridSize may be set to 0 in which case the global range is chosen so that there are enough threads
for at most two work units per work-item.

By default the NVECTOR_SYCL module uses the SUNSyclThreadDirectExecPolicy and SUNSyclBlockReduce-
ExecPolicywhere the default blockDim is determined by querying the device for the max_work_group_size. User
may specify different policies by constructing a new SyclExecPolicy and attaching it with N_VSetKernelExecPol-
icy_Sycl(). For example, a policy that uses 128 work-items (threads) per group can be created and attached like so:

N_Vector v = N_VNew_Sycl(length, SUNContext sunctx);
SUNSyclThreadDirectExecPolicy thread_direct(128);
SUNSyclBlockReduceExecPolicy block_reduce(128);
flag = N_VSetKernelExecPolicy_Sycl(v, &thread_direct, &block_reduce);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.

8.13 The NVECTOR_RAJA Module

The NVECTOR_RAJA module is an experimental NVECTOR implementation using the RAJA hardware abstraction
layer. In this implementation, RAJA allows for SUNDIALS vector kernels to run on AMD, NVIDIA, or Intel GPU
devices. The module is intended for users who are already familiar with RAJA and GPU programming. Building this
vector module requires a C++11 compliant compiler and either the NVIDIA CUDA programming environment, the
AMD ROCm HIP programming environment, or a compiler that supports the SYCL abstraction layer. When using the
AMD ROCm HIP environment, the HIP-clang compiler must be utilized. Users can select which backend to compile
with by setting the SUNDIALS_RAJA_BACKENDS CMake variable to either CUDA, HIP, or SYCL. Besides the CUDA,
HIP, and SYCL backends, RAJA has other backends such as serial, OpenMP, and OpenACC. These backends are not
used in this SUNDIALS release.

The vector content layout is as follows:

struct _N_VectorContent_Raja
{
sunindextype length;
sunbooleantype own_data;
sunrealtype* host_data;
sunrealtype* device_data;
void* priv; /* 'private' data */

};

The content members are the vector length (size), a boolean flag that signals if the vector owns the data (i.e., it is in
charge of freeing the data), pointers to vector data on the host and the device, and a private data structure which holds
the memory management type, which should not be accessed directly.

When instantiated with N_VNew_Raja(), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Raja() constructor. To use managed

478 Chapter 8. Vector Data Structures

https://software.llnl.gov/RAJA/

User Documentation for ARKODE, v6.3.0

memory, the constructors N_VNewManaged_Raja() and N_VMakeManaged_Raja() are provided. Details on each of
these constructors are provided below.

The header file to include when using this is nvector_raja.h. The installed module library to link to is libsun-
dials_nveccudaraja.lib when using the CUDA backend, libsundials_nvechipraja.lib when using the HIP
backend, and libsundials_nvecsyclraja.lib when using the SYCL backend. The extension .lib is typically
.so for shared libraries .a for static libraries.

8.13.1 NVECTOR_RAJA functions

Unlike other native SUNDIALS vector types, the NVECTOR_RAJA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:

sunrealtype *N_VGetHostArrayPointer_Raja(N_Vector v)
This function returns pointer to the vector data on the host.

sunrealtype *N_VGetDeviceArrayPointer_Raja(N_Vector v)
This function returns pointer to the vector data on the device.

sunbooleantype N_VIsManagedMemory_Raja(N_Vector v)
This function returns a boolean flag indicating if the vector data is allocated in managed memory or not.

The NVECTOR_RAJA module defines the implementations of all vector operations listed in §8.2, §8.2.2, §8.2.3, and
§8.2.4, except for N_VDotProdMulti(), N_VWrmsNormVectorArray(), and N_VWrmsNormMaskVectorArray() as
support for arrays of reduction vectors is not yet supported in RAJA. These functions will be added to the NVEC-
TOR_RAJA implementation in the future. Additionally, the operations N_VGetArrayPointer() and N_VSetArray-
Pointer() are not implemented by the RAJA vector. As such, this vector cannot be used with SUNDIALS direct
solvers and preconditioners. The NVECTOR_RAJA module provides separate functions to access data on the host and
on the device. It also provides methods for copying from the host to the device and vice versa. Usage examples of
NVECTOR_RAJA are provided in some example programs for CVODE [61].

The names of vector operations are obtained from those in §8.2, §8.2.2, §8.2.3, and §8.2.4 by appending the suffix _Raja
(e.g. N_VDestroy_Raja). The module NVECTOR_RAJA provides the following additional user-callable routines:

N_Vector N_VNew_Raja(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a RAJA N_Vector. The memory is allocated on both the host
and the device. Its only argument is the vector length.

N_Vector N_VNewManaged_Raja(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a RAJA N_Vector. The vector data array is allocated in managed
memory.

N_Vector N_VMake_Raja(sunindextype length, sunrealtype *h_data, sunrealtype *v_data, SUNContext sunctx)
This function creates an NVECTOR_RAJA with user-supplied host and device data arrays. This function does
not allocate memory for data itself.

N_Vector N_VMakeManaged_Raja(sunindextype length, sunrealtype *vdata, SUNContext sunctx)
This function creates an NVECTOR_RAJA with a user-supplied managed memory data array. This function
does not allocate memory for data itself.

N_Vector N_VNewWithMemHelp_Raja(sunindextype length, sunbooleantype use_managed_mem,
SUNMemoryHelper helper, SUNContext sunctx)

This function creates an NVECTOR_RAJA with a user-supplied SUNMemoryHelper for allocating/freeing
memory.

8.13. The NVECTOR_RAJA Module 479

User Documentation for ARKODE, v6.3.0

N_Vector N_VNewEmpty_Raja()
This function creates a new N_Vector where the members of the content structure have not been allocated. This
utility function is used by the other constructors to create a new vector.

void N_VCopyToDevice_Raja(N_Vector v)
This function copies host vector data to the device.

void N_VCopyFromDevice_Raja(N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Raja(N_Vector v)
This function prints the content of a RAJA vector to stdout.

void N_VPrintFile_Raja(N_Vector v, FILE *outfile)
This function prints the content of a RAJA vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_RAJA module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VNew_Raja(), enable/disable the
desired operations for that vector with the functions below, and create any additional vectors from that vector using N_-
VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Raja() will
have the default settings for the NVECTOR_RAJA module.

SUNErrCode N_VEnableFusedOps_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the RAJA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the RAJA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the RAJA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the RAJA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the RAJA vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the RAJA vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the RAJA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the RAJA vector. The return value is a SUNErrCode.

Notes

480 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

• When there is a need to access components of an NVECTOR_RAJA vector, it is recommended to use func-
tions N_VGetDeviceArrayPointer_Raja() or N_VGetHostArrayPointer_Raja(). However, when using
managed memory, the function N_VGetArrayPointer() may also be used.

• To maximize efficiency, vector operations in the NVECTOR_RAJA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

8.14 The NVECTOR_KOKKOS Module

Added in version 6.4.0.

The NVECTOR_KOKKOS N_Vector implementation provides a vector data structure using Kokkos [38, 118] to
support a variety of backends including serial, OpenMP, CUDA, HIP, and SYCL. Since Kokkos is a modern C++
library, the module is also written in modern C++ (it requires C++14) as a header only library. To utilize this N_Vector
users will need to include nvector/nvector_kokkos.hpp. More instructions on building SUNDIALS with Kokkos
enabled are given in §16.3.22. For instructions on building and using Kokkos, refer to the Kokkos documentation.

8.14.1 Using NVECTOR_KOKKOS

The NVECTOR_KOKKOS module is defined by the Vector templated class in the sundials::kokkos namespace:

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace,
class MemorySpace = typename ExecutionSpace::memory_space>

class Vector : public sundials::impl::BaseNVector,
public sundials::ConvertibleTo<N_Vector>

To use the NVECTOR_KOKKOS module, we construct an instance of the Vector class e.g.,

// Vector with extent length using the default execution space
sundials::kokkos::Vector<> x{length, sunctx};

// Vector with extent length using the Cuda execution space
sundials::kokkos::Vector<Kokkos::Cuda> x{length, sunctx};

// Vector based on an existing Kokkos::View
Kokkos::View<> view{"a view", length};
sundials::kokkos::Vector<> x{view, sunctx};

// Vector based on an existing Kokkos::View for device and host
Kokkos::View<Kokkos::Cuda> device_view{"a view", length};
Kokkos::View<Kokkos::HostMirror> host_view{Kokkos::create_mirror_view(device_view)};
sundials::kokkos::Vector<> x{device_view, host_view, sunctx};

Instances of the Vector class are implicitly or explicitly (using the Convert() method) convertible to a N_Vector
e.g.,

sundials::kokkos::Vector<> x{length, sunctx};
N_Vector x2 = x; // implicit conversion to N_Vector
N_Vector x3 = x.Convert(); // explicit conversion to N_Vector

8.14. The NVECTOR_KOKKOS Module 481

https://kokkos.github.io/kokkos-core-wiki/index.html

User Documentation for ARKODE, v6.3.0

No further interaction with a Vector is required from this point, and it is possible to use the N_Vector API to operate
on x2 or x3.

Warning

N_VDestroy() should never be called on a N_Vector that was created via conversion from a sundi-
als::kokkos::Vector. Doing so may result in a double free.

The underlying Vector can be extracted from a N_Vector using GetVec() e.g.,

auto x_vec = GetVec<>(x3);

8.14.2 NVECTOR_KOKKOS API

In this section we list the public API of the sundials::kokkos::Vector class.

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = class
ExecutionSpace::memory_space>
class Vector : public sundials::impl::BaseNVector, public sundials::ConvertibleTo<N_Vector>

using view_type = Kokkos::View<sunrealtype*, MemorySpace>;

using size_type = typename view_type::size_type;

using host_view_type = typename view_type::HostMirror;

using memory_space = MemorySpace;

using exec_space = typename MemorySpace::execution_space;

using range_policy = Kokkos::RangePolicy<exec_space>;

Vector() = default
Default constructor – the vector must be copied or moved to.

Vector(size_type length, SUNContext sunctx)
Constructs a single Vector which is based on a 1D Kokkos::View with the ExecutionSpace and Memo-
rySpace provided as template arguments.

Parameters

• length – length of the vector (i.e., the extent of the View)

• sunctx – the SUNDIALS simulation context object (SUNContext)

Vector(view_type view, SUNContext sunctx)
Constructs a single Vector from an existing Kokkos::View. The View ExecutionSpace and MemoryS-
pace must match the ExecutionSpace and MemorySpace provided as template arguments.

Parameters

• view – A 1D Kokkos::View

• sunctx – the SUNDIALS simulation context object (SUNContext)

482 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

Vector(view_type view, host_view_type host_view, SUNContext sunctx)
Constructs a single Vector from an existing Kokkos::View for the device and the host. The Execution-
Space and MemorySpace of the device View must match the ExecutionSpace and MemorySpace provided
as template arguments.

Parameters

• view – A 1D Kokkos::View for the device

• host_view – A 1D Kokkos::View that is a Kokkos::HostMirrror for the device view

• sunctx – the SUNDIALS simulation context object (SUNContext)

Vector(Vector &&that_vector) noexcept
Move constructor.

Vector(const Vector &that_vector)
Copy constructor. This creates a clone of the Vector, i.e., it creates a new Vector with the same properties,
such as length, but it does not copy the data.

Vector &operator=(Vector &&rhs) noexcept
Move assignment.

Vector &operator=(const Vector &rhs)
Copy assignment. This creates a clone of the Vector, i.e., it creates a new Vector with the same properties,
such as length, but it does not copy the data.

virtual ~Vector() = default;
Default destructor.

size_type Length()
Get the vector length i.e., extent(0).

view_type View()
Get the underlying Kokkos:View for the device.

host_view_type HostView()
Get the underlying Kokkos:View for the host.

operator N_Vector() override
Implicit conversion to a N_Vector.

operator N_Vector() const override
Implicit conversion to a N_Vector.

N_Vector Convert() override
Explicit conversion to a N_Vector.

N_Vector Convert() const override
Explicit conversion to a N_Vector.

template<class VectorType>
inline VectorType *GetVec(N_Vector v)

Get the Vector wrapped by a N_Vector.

void CopyToDevice(N_Vector v)
Copy the data from the host view to the device view with Kokkos::deep_copy.

8.14. The NVECTOR_KOKKOS Module 483

User Documentation for ARKODE, v6.3.0

void CopyFromDevice(N_Vector v)
Copy the data to the host view from the device view with Kokkos::deep_copy.

template<class VectorType>
void CopyToDevice(VectorType &v)

Copy the data from the host view to the device view with Kokkos::deep_copy.

template<class VectorType>
void CopyFromDevice(VectorType &v)

Copy the data to the host view from the device view with Kokkos::deep_copy.

8.15 The NVECTOR_OPENMPDEV Module

In situations where a user has access to a device such as a GPU for offloading computation, SUNDIALS provides an
NVECTOR implementation using OpenMP device offloading, called NVECTOR_OPENMPDEV.

The NVECTOR_OPENMPDEV implementation defines the content field of the N_Vector to be a structure containing
the length of the vector, a pointer to the beginning of a contiguousdata array on the host, a pointer to the beginning of
a contiguous data array on the device, and a boolean flag own_data which specifies the ownership of host and device
data arrays.

struct _N_VectorContent_OpenMPDEV
{
sunindextype length;
sunbooleantype own_data;
sunrealtype *host_data;
sunrealtype *dev_data;

};

The header file to include when using this module is nvector_openmpdev.h. The installed module library to link to
is libsundials_nvecopenmpdev.lib where .lib is typically .so for shared libraries and .a for static libraries.

8.15.1 NVECTOR_OPENMPDEV accessor macros

The following macros are provided to access the content of an NVECTOR_OPENMPDEV vector.

NV_CONTENT_OMPDEV(v)
This macro gives access to the contents of the NVECTOR_OPENMPDEV N_Vector v.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the NVECTOR_OPENMPDEV
content structure.

Implementation:

#define NV_CONTENT_OMPDEV(v) ((N_VectorContent_OpenMPDEV)(v->content))

NV_OWN_DATA_OMPDEV(v)
Access the own_data component of the OpenMPDEV N_Vector v.

The assignment v_data = NV_DATA_HOST_OMPDEV(v) sets v_data to be a pointer to the first component of
the data on the host for the N_Vector v.

Implementation:

484 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

#define NV_OWN_DATA_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->own_data)

NV_DATA_HOST_OMPDEV(v)
The assignment NV_DATA_HOST_OMPDEV(v) = v_data sets the host component array of v to be v_data by
storing the pointer v_data.

Implementation:

#define NV_DATA_HOST_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->host_data)

NV_DATA_DEV_OMPDEV(v)
The assignment v_dev_data = NV_DATA_DEV_OMPDEV(v) sets v_dev_data to be a pointer to the first compo-
nent of the data on the device for the N_Vector v. The assignment NV_DATA_DEV_OMPDEV(v) = v_dev_data
sets the device component array of v to be v_dev_data by storing the pointer v_dev_data.

Implementation:

#define NV_DATA_DEV_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->dev_data)

NV_LENGTH_OMPDEV(V)
Access the length component of the OpenMPDEV N_Vector v.

The assignment v_len = NV_LENGTH_OMPDEV(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_OMPDEV(v) = len_v sets the length of v to be len_v.

#define NV_LENGTH_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->length)

8.15.2 NVECTOR_OPENMPDEV functions

The NVECTOR_OPENMPDEV module defines OpenMP device offloading implementations of all vector operations
listed in §8.2, §8.2.2, §8.2.3, and §8.2.4, except for N_VSetArrayPointer(). As such, this vector cannot be used with
the SUNDIALS direct solvers and preconditioners. It also provides methods for copying from the host to the device
and vice versa.

The names of the vector operations are obtained from those in §8.2, §8.2.2, §8.2.3, and §8.2.4 by appending the suf-
fix _OpenMPDEV (e.g. N_VDestroy_OpenMPDEV). The module NVECTOR_OPENMPDEV provides the following
additional user-callable routines:

N_Vector N_VNew_OpenMPDEV(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for an NVECTOR_OPENMPDEV N_Vector.

N_Vector N_VNewEmpty_OpenMPDEV(sunindextype vec_length, SUNContext sunctx)
This function creates a new NVECTOR_OPENMPDEV N_Vector with an empty (NULL) data array.

N_Vector N_VMake_OpenMPDEV(sunindextype vec_length, sunrealtype *h_vdata, sunrealtype *d_vdata, SUNContext
sunctx)

This function creates an NVECTOR_OPENMPDEV vector with user-supplied vector data arrays h_vdata and
d_vdata. This function does not allocate memory for data itself.

sunrealtype *N_VGetHostArrayPointer_OpenMPDEV(N_Vector v)
This function returns a pointer to the host data array.

sunrealtype *N_VGetDeviceArrayPointer_OpenMPDEV(N_Vector v)
This function returns a pointer to the device data array.

8.15. The NVECTOR_OPENMPDEV Module 485

User Documentation for ARKODE, v6.3.0

void N_VPrint_OpenMPDEV(N_Vector v)
This function prints the content of an NVECTOR_OPENMPDEV vector to stdout.

void N_VPrintFile_OpenMPDEV(N_Vector v, FILE *outfile)
This function prints the content of an NVECTOR_OPENMPDEV vector to outfile.

void N_VCopyToDevice_OpenMPDEV(N_Vector v)
This function copies the content of an NVECTOR_OPENMPDEV vector’s host data array to the device data
array.

void N_VCopyFromDevice_OpenMPDEV(N_Vector v)
This function copies the content of an NVECTOR_OPENMPDEV vector’s device data array to the host data
array.

By default all fused and vector array operations are disabled in the NVECTOR_OPENMPDEV module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_OpenMPDEV, enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone. This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_OpenMPDEVwill
have the default settings for the NVECTOR_OPENMPDEV module.

SUNErrCode N_VEnableFusedOps_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the NVEC-
TOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the NVEC-
TOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the NVECTOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the NVEC-
TOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the NVEC-
TOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the NVECTOR_-
OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the NVEC-
TOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
NVECTOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the NVECTOR_OPENMPDEV vector. The return value is a SUNErrCode.

486 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

SUNErrCode N_VEnableScaleAddMultiVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the NVECTOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the NVECTOR_OPENMPDEV vector. The return value is a SUNErrCode.

Notes

• When looping over the components of an N_Vector v, it is most efficient to first obtain the component array via
h_data = N_VGetArrayPointer(v) for the host array or v_data = N_VGetDeviceArrayPointer(v) for
the device array, or equivalently to use the macros h_data = NV_DATA_HOST_OMPDEV(v) for the host array or
v_data = NV_DATA_DEV_OMPDEV(v) for the device array, and then access h_data[i] or v_data[i] within
the loop.

• When accessing individual components of an N_Vector v on the host remember to first copy the array back
from the device with N_VCopyFromDevice_OpenMPDEV(v) to ensure the array is up to date.

• N_VNewEmpty_OpenMPDEV() and N_VMake_OpenMPDEV() set the field own_data to SUNFALSE. The imple-
mentation of N_VDestroy() will not attempt to free the pointer data for any N_Vector with own_data set to
SUNFALSE. In such a case, it is the user’s responsibility to deallocate the data pointers.

• To maximize efficiency, vector operations in the NVECTOR_OPENMPDEV implementation that have more
than one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same length.

8.16 The NVECTOR_TRILINOS Module

The NVECTOR_TRILINOS module is an NVECTOR wrapper around the Trilinos Tpetra vector. The interface to
Tpetra is implemented in the sundials::trilinos::nvector_tpetra::TpetraVectorInterface class. This
class simply stores a reference counting pointer to a Tpetra vector and inherits from an empty structure

struct _N_VectorContent_Trilinos {};

to interface the C++ class with the NVECTOR C code. A pointer to an instance of this class is kept in the content field
of the N_Vector object, to ensure that the Tpetra vector is not deleted for as long as the N_Vector object exists.

The Tpetra vector type in the sundials::trilinos::nvector_tpetra::TpetraVectorInterface class is de-
fined as:

typedef Tpetra::Vector<sunrealtype, int, sunindextype> vector_type;

The Tpetra vector will use the SUNDIALS-specified sunrealtype as its scalar type, int as the local ordinal type, and
sunindextype as the global ordinal type. This type definition will use Tpetra’s default node type. Available Kokkos
node types as of the Trilinos 12.14 release are serial (single thread), OpenMP, Pthread, and CUDA. The default node
type is selected when building the Kokkos package. For example, the Tpetra vector will use a CUDA node if Tpetra
was built with CUDA support and the CUDA node was selected as the default when Tpetra was built.

The header file to include when using this module is nvector_trilinos.h. The installed module library to link to
is libsundials_nvectrilinos.lib where .lib is typically .so for shared libraries and .a for static libraries.

8.16. The NVECTOR_TRILINOS Module 487

https://github.com/trilinos/Trilinos

User Documentation for ARKODE, v6.3.0

8.16.1 NVECTOR_TRILINOS functions

The NVECTOR_TRILINOS module defines implementations of all vector operations listed in §8.2, §8.2.2, §8.2.3,
and §8.2.4, except for N_VGetArrayPointer() and N_VSetArrayPointer(). As such, this vector cannot be used
with the SUNDIALS direct solvers and preconditioners. When access to raw vector data is needed, it is recommended
to extract the Trilinos Tpetra vector first, and then use Tpetra vector methods to access the data. Usage examples of
NVECTOR_TRILINOS are provided in example programs for IDA.

The names of vector operations are obtained from those in §8.2 by appending the suffice _Trilinos (e.g. N_VDe-
stroy_Trilinos). Vector operations call existing Tpetra::Vectormethods when available. Vector operations spe-
cific to SUNDIALS are implemented as standalone functions in the namespace sundials::trilinos::nvector_-
tpetra::TpetraVector, located in the file SundialsTpetraVectorKernels.hpp. The module NVECTOR_-
TRILINOS provides the following additional user-callable routines:

Teuchos::RCP<vector_type> N_VGetVector_Trilinos(N_Vector v)
This C++ function takes an N_Vector as the argument and returns a reference counting pointer to the underlying
Tpetra vector. This is a standalone function defined in the global namespace.

N_Vector N_VMake_Trilinos(Teuchos::RCP<vector_type> v)
This C++ function creates and allocates memory for an NVECTOR_TRILINOS wrapper around a user-provided
Tpetra vector. This is a standalone function defined in the global namespace.

Notes

• The template parameter vector_type should be set as:

typedef sundials::trilinos::nvector_tpetra::TpetraVectorInterface::vector_type vector_type

This will ensure that data types used in Tpetra vector match those in SUNDIALS.

• When there is a need to access components of an N_Vector_Trilinos v, it is recommended to extract the
Trilinos vector object via x_vec = N_VGetVector_Trilinos(v) and then access components using the ap-
propriate Trilinos functions.

• The function N_VDestroy_Trilinos only deletes the N_Vector wrapper. The underlying Tpetra vector object
will exist for as long as there is at least one reference to it.

8.17 The NVECTOR_MANYVECTOR Module

The NVECTOR_MANYVECTOR module is designed to facilitate problems with an inherent data partitioning within a
computational node for the solution vector. These data partitions are entirely user-defined, through construction of dis-
tinct NVECTOR modules for each component, that are then combined together to form the NVECTOR_MANYVEC-
TOR. Two potential use cases for this flexibility include:

A. Heterogeneous computational architectures: for data partitioning between different computing resources on
a node, architecture-specific subvectors may be created for each partition. For example, a user could create
one GPU-accelerated component based on NVECTOR_CUDA, and another CPU threaded component based on
NVECTOR_OPENMP.

B. Structure of arrays (SOA) data layouts: for problems that require separate subvectors for each solution compo-
nent. For example, in an incompressible Navier-Stokes simulation, separate subvectors may be used for velocities
and pressure, which are combined together into a single NVECTOR_MANYVECTOR for the overall “solution”.

The above use cases are neither exhaustive nor mutually exclusive, and the NVECTOR_MANYVECTOR implemen-
tation should support arbitrary combinations of these cases.

The NVECTOR_MANYVECTOR implementation is designed to work with any NVECTOR subvectors that imple-
ment the minimum “standard” set of operations in §8.2.1. Additionally, NVECTOR_MANYVECTOR sets no limit

488 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

on the number of subvectors that may be attached (aside from the limitations of using sunindextype for indexing,
and standard per-node memory limitations). However, while this ostensibly supports subvectors with one entry each
(i.e., one subvector for each solution entry), we anticipate that this extreme situation will hinder performance due to
non-stride-one memory accesses and increased function call overhead. We therefore recommend a relatively coarse
partitioning of the problem, although actual performance will likely be problem-dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time integration modules that
will leverage the problem partitioning enabled by NVECTOR_MANYVECTOR. However, even at present we antici-
pate that users will be able to leverage such data partitioning in their problem-defining ODE right-hand side function,
DAE or nonlinear solver residual function, preconditioners, or custom SUNLinearSolver or SUNNonlinearSolver
modules.

8.17.1 NVECTOR_MANYVECTOR structure

The NVECTOR_MANYVECTOR implementation defines the content field of N_Vector to be a structure containing
the number of subvectors comprising the ManyVector, the global length of the ManyVector (including all subvectors), a
pointer to the beginning of the array of subvectors, and a boolean flag own_data indicating ownership of the subvectors
that populate subvec_array.

struct _N_VectorContent_ManyVector {
sunindextype num_subvectors; /* number of vectors attached */
sunindextype global_length; /* overall manyvector length */
N_Vector* subvec_array; /* pointer to N_Vector array */
sunbooleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector_manyvector.h. The installed module library to link
against is libsundials_nvecmanyvector.lib where .lib is typically .so for shared libraries and .a for static
libraries.

8.17.2 NVECTOR_MANYVECTOR functions

The NVECTOR_MANYVECTOR module implements all vector operations listed in §8.2 except for N_VGetArray-
Pointer(), N_VSetArrayPointer(), N_VScaleAddMultiVectorArray(), and N_VLinearCombinationVec-
torArray(). As such, this vector cannot be used with the SUNDIALS direct solvers and preconditioners. Instead, the
NVECTOR_MANYVECTOR module provides functions to access subvectors, whose data may in turn be accessed
according to their NVECTOR implementations.

The names of vector operations are obtained from those in §8.2 by appending the suffix _ManyVector (e.g. N_-
VDestroy_ManyVector). The module NVECTOR_MANYVECTOR provides the following additional user-callable
routines:

N_Vector N_VNew_ManyVector(sunindextype num_subvectors, N_Vector *vec_array, SUNContext sunctx)
This function creates a ManyVector from a set of existing NVECTOR objects.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that pointer
array after calling this function. However, this routine does not allocate any new subvectors, so the underlying
NVECTOR objects themselves should not be destroyed before the ManyVector that contains them.

Upon successful completion, the new ManyVector is returned; otherwise this routine returns NULL (e.g., a mem-
ory allocation failure occurred).

Users of the Fortran 2003 interface to this function will first need to use the generic N_Vector utility functions
N_VNewVectorArray(), and N_VSetVecAtIndexVectorArray() to create the N_Vector* argument. This
is further explained in §4.7.2.5, and the functions are documented in §8.1.1.

8.17. The NVECTOR_MANYVECTOR Module 489

User Documentation for ARKODE, v6.3.0

N_Vector N_VGetSubvector_ManyVector(N_Vector v, sunindextype vec_num)
This function returns the vec_num subvector from the NVECTOR array.

sunindextype N_VGetSubvectorLocalLength_ManyVector(N_Vector v, sunindextype vec_num)
This function returns the local length of the vec_num subvector from the NVECTOR array.

Usage:

local_length = N_VGetSubvectorLocalLength_ManyVector(v, 0);

sunrealtype *N_VGetSubvectorArrayPointer_ManyVector(N_Vector v, sunindextype vec_num)
This function returns the data array pointer for the vec_num subvector from the NVECTOR array.

If the input vec_num is invalid, or if the subvector does not support the N_VGetArrayPointer operation, then
NULL is returned.

SUNErrCode N_VSetSubvectorArrayPointer_ManyVector(sunrealtype *v_data, N_Vector v, sunindextype
vec_num)

This function sets the data array pointer for the vec_num subvector from the NVECTOR array.

The function returns a SUNErrCode.

sunindextype N_VGetNumSubvectors_ManyVector(N_Vector v)
This function returns the overall number of subvectors in the ManyVector object.

By default all fused and vector array operations are disabled in the NVECTOR_MANYVECTOR module, except for
N_VWrmsNormVectorArray() and N_VWrmsNormMaskVectorArray(), that are enabled by default. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_ManyVector(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees that the new vectors will have the same operations enabled/disabled,
since cloned vectors inherit those configuration options from the vector they are cloned from, while vectors created
with N_VNew_ManyVector() will have the default settings for the NVECTOR_MANYVECTOR module. We note
that these routines do not call the corresponding routines on subvectors, so those should be set up as desired before
attaching them to the ManyVector in N_VNew_ManyVector().

SUNErrCode N_VEnableFusedOps_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the manyvector
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the manyvec-
tor vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the manyvector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
manyvector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
manyvector vector. The return value is a SUNErrCode.

490 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

SUNErrCode N_VEnableScaleVectorArray_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the manyvector
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the manyvector
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
manyvector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the manyvector vector. The return value is a SUNErrCode.

Notes

• N_VNew_ManyVector() sets the field own_data = SUNFALSE. The ManyVector implementation of N_VDe-
stroy() will not attempt to call N_VDestroy() on any subvectors contained in the subvector array for any
N_Vector with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the sub-
vectors.

• To maximize efficiency, arithmetic vector operations in the NVECTOR_MANYVECTOR implementation that
have more than one N_Vector argument do not check for consistent internal representation of these vectors. It
is the user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created
with the same subvector representations.

8.18 The NVECTOR_MPIMANYVECTOR Module

The NVECTOR_MPIMANYVECTOR module is designed to facilitate problems with an inherent data partitioning
for the solution vector, and when using distributed-memory parallel architectures. As such, this implementation sup-
ports all use cases allowed by the MPI-unaware NVECTOR_MANYVECTOR implementation, as well as partitioning
data between nodes in a parallel environment. These data partitions are entirely user-defined, through construction
of distinct NVECTOR modules for each component, that are then combined together to form the NVECTOR_MPI-
MANYVECTOR. Three potential use cases for this module include:

A. Heterogeneous computational architectures (single-node or multi-node): for data partitioning between different
computing resources on a node, architecture-specific subvectors may be created for each partition. For example,
a user could create one MPI-parallel component based on NVECTOR_PARALLEL, another GPU-accelerated
component based on NVECTOR_CUDA.

B. Process-based multiphysics decompositions (multi-node): for computations that combine separate MPI-based
simulations together, each subvector may reside on a different MPI communicator, and the MPIManyVector
combines these via an MPI intercommunicator that connects these distinct simulations together.

C. Structure of arrays (SOA) data layouts (single-node or multi-node): for problems that require separate subvectors
for each solution component. For example, in an incompressible Navier-Stokes simulation, separate subvectors
may be used for velocities and pressure, which are combined together into a single MPIManyVector for the overall
“solution”.

The above use cases are neither exhaustive nor mutually exclusive, and the NVECTOR_MANYVECTOR implemen-
tation should support arbitrary combinations of these cases.

The NVECTOR_MPIMANYVECTOR implementation is designed to work with any NVECTOR subvectors that im-
plement the minimum “standard” set of operations in §8.2.1, however significant performance benefits may be obtained
when subvectors additionally implement the optional local reduction operations listed in §8.2.4.

8.18. The NVECTOR_MPIMANYVECTOR Module 491

User Documentation for ARKODE, v6.3.0

Additionally, NVECTOR_MPIMANYVECTOR sets no limit on the number of subvectors that may be attached (aside
from the limitations of using sunindextype for indexing, and standard per-node memory limitations). However, while
this ostensibly supports subvectors with one entry each (i.e., one subvector for each solution entry), we anticipate that
this extreme situation will hinder performance due to non-stride-one memory accesses and increased function call
overhead. We therefore recommend a relatively coarse partitioning of the problem, although actual performance will
likely be problem-dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time integration modules that
will leverage the problem partitioning enabled by NVECTOR_MPIMANYVECTOR. However, even at present we an-
ticipate that users will be able to leverage such data partitioning in their problem-defining ODE right-hand side function,
DAE or nonlinear solver residual function, preconditioners, or custom SUNLinearSolver or SUNNonlinearSolver
modules.

8.18.1 NVECTOR_MPIMANYVECTOR structure

The NVECTOR_MPIMANYVECTOR implementation defines the content field of N_Vector to be a structure con-
taining the MPI communicator (or MPI_COMM_NULL if running on a single-node), the number of subvectors comprising
the MPIManyVector, the global length of the MPIManyVector (including all subvectors on all MPI ranks), a pointer
to the beginning of the array of subvectors, and a boolean flag own_data indicating ownership of the subvectors that
populate subvec_array.

struct _N_VectorContent_MPIManyVector {
MPI_Comm comm; /* overall MPI communicator */
sunindextype num_subvectors; /* number of vectors attached */
sunindextype global_length; /* overall mpimanyvector length */
N_Vector* subvec_array; /* pointer to N_Vector array */
sunbooleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector_mpimanyvector.h. The installed module library to
link against is libsundials_nvecmpimanyvector.lib where .lib is typically .so for shared libraries and .a for
static libraries.

Note

If SUNDIALS is configured with MPI disabled, then the MPIManyVector library will not be built. Furthermore, any
user codes that include nvector_mpimanyvector.hmust be compiled using an MPI-aware compiler (whether the
specific user code utilizes MPI or not). We note that the NVECTOR_MANYVECTOR implementation is designed
for ManyVector use cases in an MPI-unaware environment.

8.18.2 NVECTOR_MPIMANYVECTOR functions

The NVECTOR_MPIMANYVECTOR module implements all vector operations listed in §8.2, except for N_VGetAr-
rayPointer(), N_VSetArrayPointer(), N_VScaleAddMultiVectorArray(), and N_VLinearCombination-
VectorArray(). As such, this vector cannot be used with the SUNDIALS direct solvers and preconditioners. In-
stead, the NVECTOR_MPIMANYVECTOR module provides functions to access subvectors, whose data may in turn
be accessed according to their NVECTOR implementations.

The names of vector operations are obtained from those in §8.2 by appending the suffix _MPIManyVector (e.g. N_-
VDestroy_MPIManyVector). The module NVECTOR_MPIMANYVECTOR provides the following additional user-
callable routines:

492 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

N_Vector N_VNew_MPIManyVector(sunindextype num_subvectors, N_Vector *vec_array, SUNContext sunctx)
This function creates a MPIManyVector from a set of existing NVECTOR objects, under the requirement that
all MPI-aware subvectors use the same MPI communicator (this is checked internally). If none of the subvectors
are MPI-aware, then this may equivalently be used to describe data partitioning within a single node. We note
that this routine is designed to support use cases A and C above.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that pointer
array after calling this function. However, this routine does not allocate any new subvectors, so the underlying
NVECTOR objects themselves should not be destroyed before the MPIManyVector that contains them.

Upon successful completion, the new MPIManyVector is returned; otherwise this routine returns NULL (e.g., if
two MPI-aware subvectors use different MPI communicators).

Users of the Fortran 2003 interface to this function will first need to use the generic N_Vector utility functions
N_VNewVectorArray(), and N_VSetVecAtIndexVectorArray() to create the N_Vector* argument. This
is further explained in §4.7.2.5, and the functions are documented in §8.1.1.

N_Vector N_VMake_MPIManyVector(MPI_Comm comm, sunindextype num_subvectors, N_Vector *vec_array,
SUNContext sunctx)

This function creates a MPIManyVector from a set of existing NVECTOR objects, and a user-created MPI com-
municator that “connects” these subvectors. Any MPI-aware subvectors may use different MPI communicators
than the input comm. We note that this routine is designed to support any combination of the use cases above.

The input comm should be this user-created MPI communicator. This routine will internally call MPI_Comm_dup
to create a copy of the input comm, so the user-supplied comm argument need not be retained after the call to
N_VMake_MPIManyVector().

If all subvectors are MPI-unaware, then the input comm argument should be MPI_COMM_NULL, although in this
case, it would be simpler to call N_VNew_MPIManyVector() instead, or to just use the NVECTOR_MANYVEC-
TOR module.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that pointer
array after calling this function. However, this routine does not allocate any new subvectors, so the underlying
NVECTOR objects themselves should not be destroyed before the MPIManyVector that contains them.

Upon successful completion, the new MPIManyVector is returned; otherwise this routine returns NULL (e.g., if
the input vec_array is NULL).

N_Vector N_VGetSubvector_MPIManyVector(N_Vector v, sunindextype vec_num)
This function returns the vec_num subvector from the NVECTOR array.

sunindextype N_VGetSubvectorLocalLength_MPIManyVector(N_Vector v, sunindextype vec_num)
This function returns the local length of the vec_num subvector from the NVECTOR array.

Usage:

local_length = N_VGetSubvectorLocalLength_MPIManyVector(v, 0);

sunrealtype *N_VGetSubvectorArrayPointer_MPIManyVector(N_Vector v, sunindextype vec_num)
This function returns the data array pointer for the vec_num subvector from the NVECTOR array.

If the input vec_num is invalid, or if the subvector does not support the N_VGetArrayPointer operation, then
NULL is returned.

SUNErrCode N_VSetSubvectorArrayPointer_MPIManyVector(sunrealtype *v_data, N_Vector v, sunindextype
vec_num)

This function sets the data array pointer for the vec_num subvector from the NVECTOR array.

The function returns a SUNErrCode.

8.18. The NVECTOR_MPIMANYVECTOR Module 493

User Documentation for ARKODE, v6.3.0

sunindextype N_VGetNumSubvectors_MPIManyVector(N_Vector v)
This function returns the overall number of subvectors in the MPIManyVector object.

By default all fused and vector array operations are disabled in the NVECTOR_MPIMANYVECTOR module, except
for N_VWrmsNormVectorArray() and N_VWrmsNormMaskVectorArray(), that are enabled by default. The follow-
ing additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_MPIManyVec-
tor() or N_VMake_MPIManyVector(), enable/disable the desired operations for that vector with the functions below,
and create any additional vectors from that vector using N_VClone(). This guarantees that the new vectors will have
the same operations enabled/disabled, since cloned vectors inherit those configuration options from the vector they are
cloned from, while vectors created with N_VNew_MPIManyVector() and N_VMake_MPIManyVector() will have the
default settings for the NVECTOR_MPIMANYVECTOR module. We note that these routines do not call the corre-
sponding routines on subvectors, so those should be set up as desired before attaching them to the MPIManyVector in
N_VNew_MPIManyVector() or N_VMake_MPIManyVector().

SUNErrCode N_VEnableFusedOps_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the MPIManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
MPIManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the MPIManyVector vector. The return value is a SUNErrCode.

Notes

• N_VNew_MPIManyVector() and N_VMake_MPIManyVector() set the field own_data = SUNFALSE. The MPI-
ManyVector implementation of N_VDestroy() will not attempt to call N_VDestroy() on any subvectors con-
tained in the subvector array for any N_Vector with own_data set to SUNFALSE. In such a case, it is the user’s
responsibility to deallocate the subvectors.

494 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

• To maximize efficiency, arithmetic vector operations in the NVECTOR_MPIMANYVECTOR implementation
that have more than one N_Vector argument do not check for consistent internal representation of these vectors.
It is the user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created
with the same subvector representations.

8.19 The NVECTOR_MPIPLUSX Module

The NVECTOR_MPIPLUSX module is designed to facilitate the MPI+X paradigm, where X is some form of on-
node (local) parallelism (e.g. OpenMP, CUDA). This paradigm is becoming increasingly popular with the rise of
heterogeneous computing architectures.

The NVECTOR_MPIPLUSX implementation is designed to work with any NVECTOR that implements the minimum
“standard” set of operations in §8.2.1. However, it is not recommended to use the NVECTOR_PARALLEL, NVEC-
TOR_PARHYP, NVECTOR_PETSC, or NVECTOR_TRILINOS implementations underneath the NVECTOR_MPI-
PLUSX module since they already provide MPI capabilities.

8.19.1 NVECTOR_MPIPLUSX structure

The NVECTOR_MPIPLUSX implementation is a thin wrapper around the NVECTOR_MPIMANYVECTOR. Ac-
cordingly, it adopts the same content structure as defined in §8.18.1.

The header file to include when using this module is nvector_mpiplusx.h. The installed module library to link
against is libsundials_nvecmpiplusx.lib where .lib is typically .so for shared libraries and .a for static li-
braries.

Note

If SUNDIALS is configured with MPI disabled, then the mpiplusx library will not be built. Furthermore, any user
codes that include nvector_mpiplusx.h must be compiled using an MPI-aware compiler.

8.19.2 NVECTOR_MPIPLUSX functions

The NVECTOR_MPIPLUSX module adopts all vector operations listed in §8.2, from the NVECTOR_MPI-
MANYVECTOR (see §8.18) except for N_VGetArrayPointer(), and N_VSetArrayPointer(); the module pro-
vides its own implementation of these functions that call the local vector implementations. Therefore, the NVECTOR_-
MPIPLUSX module implements all of the operations listed in the referenced sections except for N_VScaleAddMul-
tiVectorArray(), and N_VLinearCombinationVectorArray(). Accordingly, it’s compatibility with the SUNDI-
ALS direct solvers and preconditioners depends on the local vector implementation.

The module NVECTOR_MPIPLUSX provides the following additional user-callable routines:

N_Vector N_VMake_MPIPlusX(MPI_Comm comm, N_Vector *local_vector, SUNContext sunctx)
This function creates a MPIPlusX vector from an existing local (i.e. on node) NVECTOR object, and a user-
created MPI communicator.

The input comm should be this user-created MPI communicator. This routine will internally call MPI_Comm_dup
to create a copy of the input comm, so the user-supplied comm argument need not be retained after the call to
N_VMake_MPIPlusX().

This routine will copy the NVECTOR pointer to the input local_vector, so the underlying local NVECTOR
object should not be destroyed before the mpiplusx that contains it.

8.19. The NVECTOR_MPIPLUSX Module 495

User Documentation for ARKODE, v6.3.0

Upon successful completion, the new MPIPlusX is returned; otherwise this routine returns NULL (e.g., if the
input local_vector is NULL).

N_Vector N_VGetLocalVector_MPIPlusX(N_Vector v)
This function returns the local vector underneath the MPIPlusX NVECTOR.

sunindextype N_VGetLocalLength_MPIPlusX(N_Vector v)
This function returns the local length of the vector underneath the MPIPlusX NVECTOR.

Usage:

local_length = N_VGetLocalLength_MPIPlusX(v);

sunrealtype *N_VGetArrayPointer_MPIPlusX(N_Vector v)
This function returns the data array pointer for the local vector.

If the local vector does not support the N_VGetArrayPointer() operation, then NULL is returned.

void N_VSetArrayPointer_MPIPlusX(sunrealtype *v_data, N_Vector v)
This function sets the data array pointer for the local vector if the local vector implements the N_VSetArray-
Pointer() operation.

The NVECTOR_MPIPLUSX module does not implement any fused or vector array operations. Instead users should
enable/disable fused operations on the local vector.

Notes

• N_VMake_MPIPlusX() sets the field own_data = SUNFALSE and the MPIPlusX implementation of N_VDe-
stroy()will not call N_VDestroy() on the local vector. In this a case, it is the user’s responsibility to deallocate
the local vector.

• To maximize efficiency, arithmetic vector operations in the NVECTOR_MPIPLUSX implementation that have
more than one N_Vector argument do not check for consistent internal representation of these vectors. It is the
user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created with
the same subvector representations.

8.20 NVECTOR Examples

There are NVECTOR examples that may be installed for eac himplementation. Each implementation makes use of the
functions in test_nvector.c. These example functions show simple usage of the NVECTOR family of functions.
The input to the examples are the vector length, number of threads (if threaded implementation), and a print timing
flag.

The following is a list of the example functions in test_nvector.c:

• Test_N_VClone: Creates clone of vector and checks validity of clone.

• Test_N_VCloneEmpty: Creates clone of empty vector and checks validity of clone.

• Test_N_VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.

• Test_N_VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned array.

• Test_N_VGetArrayPointer: Get array pointer.

• Test_N_VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check values.

• Test_N_VGetLength: Compares self-reported length to calculated length.

• Test_N_VGetCommunicator: Compares self-reported communicator to the one used in constructor; or for
MPI-unaware vectors it ensures that NULL is reported.

496 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

• Test_N_VLinearSum Case 1a: Test y = x + y

• Test_N_VLinearSum Case 1b: Test y = -x + y

• Test_N_VLinearSum Case 1c: Test y = ax + y

• Test_N_VLinearSum Case 2a: Test x = x + y

• Test_N_VLinearSum Case 2b: Test x = x - y

• Test_N_VLinearSum Case 2c: Test x = x + by

• Test_N_VLinearSum Case 3: Test z = x + y

• Test_N_VLinearSum Case 4a: Test z = x - y

• Test_N_VLinearSum Case 4b: Test z = -x + y

• Test_N_VLinearSum Case 5a: Test z = x + by

• Test_N_VLinearSum Case 5b: Test z = ax + y

• Test_N_VLinearSum Case 6a: Test z = -x + by

• Test_N_VLinearSum Case 6b: Test z = ax - y

• Test_N_VLinearSum Case 7: Test z = a(x + y)

• Test_N_VLinearSum Case 8: Test z = a(x - y)

• Test_N_VLinearSum Case 9: Test z = ax + by

• Test_N_VConst: Fill vector with constant and check result.

• Test_N_VProd: Test vector multiply: z = x * y

• Test_N_VDiv: Test vector division: z = x / y

• Test_N_VScale: Case 1: scale: x = cx

• Test_N_VScale: Case 2: copy: z = x

• Test_N_VScale: Case 3: negate: z = -x

• Test_N_VScale: Case 4: combination: z = cx

• Test_N_VAbs: Create absolute value of vector.

• Test_N_VInv: Compute z[i] = 1 / x[i]

** Test_N_VAddConst: add constant vector: z = c + x

• Test_N_VDotProd: Calculate dot product of two vectors.

• Test_N_VMaxNorm: Create vector with known values, find and validate the max norm.

• Test_N_VWrmsNorm: Create vector of known values, find and validate the weighted root mean square.

• Test_N_VWrmsNormMask: Create vector of known values, find and validate the weighted root mean square using
all elements except one.

• Test_N_VMin: Create vector, find and validate the min.

• Test_N_VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.

• Test_N_VL1Norm: Create vector, find and validate the L1 norm.

• Test_N_VCompare: Compare vector with constant returning and validating comparison vector.

• Test_N_VInvTest: Test z[i] = 1 / x[i]

8.20. NVECTOR Examples 497

User Documentation for ARKODE, v6.3.0

• Test_N_VConstrMask: Test mask of vector x with vector c.

• Test_N_VMinQuotient: Fill two vectors with known values. Calculate and validate minimum quotient.

• Test_N_VLinearCombination: Case 1a: Test x = a x

• Test_N_VLinearCombination: Case 1b: Test z = a x

• Test_N_VLinearCombination: Case 2a: Test x = a x + b y

• Test_N_VLinearCombination: Case 2b: Test z = a x + b y

• Test_N_VLinearCombination: Case 3a: Test x = x + a y + b z

• Test_N_VLinearCombination: Case 3b: Test x = a x + b y + c z

• Test_N_VLinearCombination: Case 3c: Test w = a x + b y + c z

• Test_N_VScaleAddMulti: Case 1a: y = a x + y

• Test_N_VScaleAddMulti: Case 1b: z = a x + y

• Test_N_VScaleAddMulti: Case 2a: Y[i] = c[i] x + Y[i], i = 1,2,3

• Test_N_VScaleAddMulti: Case 2b: Z[i] = c[i] x + Y[i], i = 1,2,3

• Test_N_VDotProdMulti: Case 1: Calculate the dot product of two vectors

• Test_N_VDotProdMulti: Case 2: Calculate the dot product of one vector with three other vectors in a vector
array.

• Test_N_VLinearSumVectorArray: Case 1: z = a x + b y

• Test_N_VLinearSumVectorArray: Case 2a: Z[i] = a X[i] + b Y[i]

• Test_N_VLinearSumVectorArray: Case 2b: X[i] = a X[i] + b Y[i]

• Test_N_VLinearSumVectorArray: Case 2c: Y[i] = a X[i] + b Y[i]

• Test_N_VScaleVectorArray: Case 1a: y = c y

• Test_N_VScaleVectorArray: Case 1b: z = c y

• Test_N_VScaleVectorArray: Case 2a: Y[i] = c[i] Y[i]

• Test_N_VScaleVectorArray: Case 2b: Z[i] = c[i] Y[i]

• Test_N_VConstVectorArray: Case 1a: z = c

• Test_N_VConstVectorArray: Case 1b: Z[i] = c

• Test_N_VWrmsNormVectorArray: Case 1a: Create a vector of know values, find and validate the weighted
root mean square norm.

• Test_N_VWrmsNormVectorArray: Case 1b: Create a vector array of three vectors of know values, find and
validate the weighted root mean square norm of each.

• Test_N_VWrmsNormMaskVectorArray: Case 1a: Create a vector of know values, find and validate the weighted
root mean square norm using all elements except one.

• Test_N_VWrmsNormMaskVectorArray: Case 1b: Create a vector array of three vectors of know values, find
and validate the weighted root mean square norm of each using all elements except one.

• Test_N_VScaleAddMultiVectorArray: Case 1a: y = a x + y

• Test_N_VScaleAddMultiVectorArray: Case 1b: z = a x + y

• Test_N_VScaleAddMultiVectorArray: Case 2a: Y[j][0] = a[j] X[0] + Y[j][0]

• Test_N_VScaleAddMultiVectorArray: Case 2b: Z[j][0] = a[j] X[0] + Y[j][0]

498 Chapter 8. Vector Data Structures

User Documentation for ARKODE, v6.3.0

• Test_N_VScaleAddMultiVectorArray: Case 3a: Y[0][i] = a[0] X[i] + Y[0][i]

• Test_N_VScaleAddMultiVectorArray: Case 3b: Z[0][i] = a[0] X[i] + Y[0][i]

• Test_N_VScaleAddMultiVectorArray: Case 4a: Y[j][i] = a[j] X[i] + Y[j][i]

• Test_N_VScaleAddMultiVectorArray: Case 4b: Z[j][i] = a[j] X[i] + Y[j][i]

• Test_N_VLinearCombinationVectorArray: Case 1a: x = a x

• Test_N_VLinearCombinationVectorArray: Case 1b: z = a x

• Test_N_VLinearCombinationVectorArray: Case 2a: x = a x + b y

• Test_N_VLinearCombinationVectorArray: Case 2b: z = a x + b y

• Test_N_VLinearCombinationVectorArray: Case 3a: x = a x + b y + c z

• Test_N_VLinearCombinationVectorArray: Case 3b: w = a x + b y + c z

• Test_N_VLinearCombinationVectorArray: Case 4a: X[0][i] = c[0] X[0][i]

• Test_N_VLinearCombinationVectorArray: Case 4b: Z[i] = c[0] X[0][i]

• Test_N_VLinearCombinationVectorArray: Case 5a: X[0][i] = c[0] X[0][i] + c[1] X[1][i]

• Test_N_VLinearCombinationVectorArray: Case 5b: Z[i] = c[0] X[0][i] + c[1] X[1][i]

• Test_N_VLinearCombinationVectorArray: Case 6a: X[0][i] = X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test_N_VLinearCombinationVectorArray: Case 6b: X[0][i] = c[0] X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test_N_VLinearCombinationVectorArray: Case 6c: Z[i] = c[0] X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test_N_VDotProdLocal: Calculate MPI task-local portion of the dot product of two vectors.

• Test_N_VMaxNormLocal: Create vector with known values, find and validate the MPI task-local portion of the
max norm.

• Test_N_VMinLocal: Create vector, find and validate the MPI task-local min.

• Test_N_VL1NormLocal: Create vector, find and validate the MPI task-local portion of the L1 norm.

• Test_N_VWSqrSumLocal: Create vector of known values, find and validate the MPI task-local portion of the
weighted squared sum of two vectors.

• Test_N_VWSqrSumMaskLocal: Create vector of known values, find and validate the MPI task-local portion of
the weighted squared sum of two vectors, using all elements except one.

• Test_N_VInvTestLocal: Test the MPI task-local portion of z[i] = 1 / x[i]

• Test_N_VConstrMaskLocal: Test the MPI task-local portion of the mask of vector x with vector c.

• Test_N_VMinQuotientLocal: Fill two vectors with known values. Calculate and validate the MPI task-local
minimum quotient.

• Test_N_VMBufSize: Tests for accuracy in the reported buffer size.

• Test_N_VMBufPack: Tests for accuracy in the buffer packing routine.

• Test_N_VMBufUnpack: Tests for accuracy in the buffer unpacking routine.

8.20. NVECTOR Examples 499

User Documentation for ARKODE, v6.3.0

500 Chapter 8. Vector Data Structures

Chapter 9

Matrix Data Structures

The SUNDIALS library comes packaged with a variety of SUNMatrix implementations, designed for simulations
requiring direct linear solvers for problems in serial or shared-memory parallel environments. SUNDIALS additionally
provides a simple interface for generic matrices (akin to a C++ abstract base class). All of the major SUNDIALS
packages (CVODE(s), IDA(s), KINSOL, ARKODE), are constructed to only depend on these generic matrix operations,
making them immediately extensible to new user-defined matrix objects. For each of the SUNDIALS-provided matrix
types, SUNDIALS also provides SUNLinearSolver implementations that factor these matrix objects and use them in
the solution of linear systems.

9.1 Description of the SUNMATRIX Modules

For problems that involve direct methods for solving linear systems, the SUNDIALS packages not only operate on
generic vectors, but also on generic matrices (of type SUNMatrix), through a set of operations defined by the particular
SUNMATRIX implementation. Users can provide their own specific implementation of the SUNMATRIX module,
particularly in cases where they provide their own N_Vector and/or linear solver modules, and require matrices that
are compatible with those implementations. The generic SUNMatrix operations are described below, and descriptions
of the SUNMATRIX implementations provided with SUNDIALS follow.

The generic SUNMatrix type has been modeled after the object-oriented style of the generic N_Vector type. Specif-
ically, a generic SUNMatrix is a pointer to a structure that has an implementation-dependent content field containing
the description and actual data of the matrix, and an ops field pointing to a structure with generic matrix operations.

A SUNMatrix is a pointer to the _generic_SUNMatrix structure:

typedef struct _generic_SUNMatrix *SUNMatrix

struct _generic_SUNMatrix
The structure defining the SUNDIALS matrix class.

void *content
Pointer to matrix-specific member data

struct _generic_SUNMatrix_Ops *ops
A virtual table of matrix operations provided by a specific implementation

SUNContext sunctx
The SUNDIALS simulation context

The virtual table structure is defined as

501

User Documentation for ARKODE, v6.3.0

struct _generic_SUNMatrix_Ops
The structure defining SUNMatrix operations.

SUNMatrix_ID (*getid)(SUNMatrix)
The function implementing SUNMatGetID()

SUNMatrix (*clone)(SUNMatrix)
The function implementing SUNMatClone()

void (*destroy)(SUNMatrix)
The function implementing SUNMatDestroy()

SUNErrCode (*zero)(SUNMatrix)
The function implementing SUNMatZero()

SUNErrCode (*copy)(SUNMatrix, SUNMatrix)
The function implementing SUNMatCopy()

SUNErrCode (*scaleadd)(sunrealtype, SUNMatrix, SUNMatrix)
The function implementing SUNMatScaleAdd()

SUNErrCode (*scaleaddi)(sunrealtype, SUNMatrix)
The function implementing SUNMatScaleAddI()

SUNErrCode (*matvecsetup)(SUNMatrix)
The function implementing SUNMatMatvecSetup()

SUNErrCode (*matvec)(SUNMatrix, N_Vector, N_Vector)
The function implementing SUNMatMatvec()

SUNErrCode (*mathermitiantransposevec)(SUNMatrix, N_Vector, N_Vector)
The function implementing SUNMatHermitianTransposeVec()

Added in version 7.3.0.

SUNErrCode (*space)(SUNMatrix, long int*, long int*)
The function implementing SUNMatSpace()

The generic SUNMATRIX module defines and implements the matrix operations acting on a SUNMatrix. These
routines are nothing but wrappers for the matrix operations defined by a particular SUNMATRIX implementation,
which are accessed through the ops field of the SUNMatrix structure. To illustrate this point we show below the
implementation of a typical matrix operation from the generic SUNMATRIX module, namely SUNMatZero, which
sets all values of a matrix A to zero, returning a flag denoting a successful/failed operation:

SUNErrCode SUNMatZero(SUNMatrix A)
{
return(A->ops->zero(A));

}

§9.2 contains a complete list of all matrix operations defined by the generic SUNMATRIX module. A particular
implementation of the SUNMATRIX module must:

• Specify the content field of the SUNMatrix object.

• Define and implement a minimal subset of the matrix operations. See the documentation for each SUNDIALS
package and/or linear solver to determine which SUNMATRIX operations they require.

Note that the names of these routines should be unique to that implementation in order to permit using more than
one SUNMATRIX module (each with different SUNMatrix internal data representations) in the same code.

502 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

• Define and implement user-callable constructor and destructor routines to create and free a SUNMatrix with the
new content field and with ops pointing to the new matrix operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined SUNMatrix (e.g.,
a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly defined SUNMatrix.

To aid in the creation of custom SUNMATRIX modules the generic SUNMATRIX module provides three utility func-
tions SUNMatNewEmpty(), SUNMatCopyOps(), and SUNMatFreeEmpty(). When used in custom SUNMATRIX con-
structors and clone routines these functions will ease the introduction of any new optional matrix operations to the
SUNMATRIX API by ensuring only required operations need to be set and all operations are copied when cloning a
matrix.

SUNMatrix SUNMatNewEmpty(SUNContext sunctx)
This function allocates a new generic SUNMatrix object and initializes its content pointer and the function
pointers in the operations structure to NULL.

Return value:
If successful, this function returns a SUNMatrix object. If an error occurs when allocating the object, then
this routine will return NULL.

SUNErrCode SUNMatCopyOps(SUNMatrix A, SUNMatrix B)
This function copies the function pointers in the ops structure of A into the ops structure of B.

Arguments:

• A – the matrix to copy operations from.

• B – the matrix to copy operations to.

Return value:

• A SUNErrCode

void SUNMatFreeEmpty(SUNMatrix A)
This routine frees the generic SUNMatrix object, under the assumption that any implementation-specific data
that was allocated within the underlying content structure has already been freed. It will additionally test whether
the ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:

• A – the SUNMatrix object to free

type SUNMatrix_ID
Each SUNMATRIX implementation included in SUNDIALS has a unique identifier specified in enumeration and
shown in Table 9.1. It is recommended that a user-supplied SUNMATRIX implementation use the SUNMATRIX_-
CUSTOM identifier.

9.1. Description of the SUNMATRIX Modules 503

User Documentation for ARKODE, v6.3.0

Table 9.1: Identifiers associated with matrix kernels supplied with SUN-
DIALS

Matrix ID Matrix type
SUNMATRIX_BAND Band M ×M matrix
SUNMATRIX_CUSPARSE CUDA sparse CSR matrix
SUNMATRIX_CUSTOM User-provided custom matrix
SUNMATRIX_DENSE Dense M ×N matrix
SUNMATRIX_GINKGO SUNMatrix wrapper for Ginkgo matrices
SUNMATRIX_MAGMADENSE Dense M ×N matrix
SUNMATRIX_ONEMKLDENSE oneMKL dense M ×N matrix
SUNMATRIX_SLUNRLOC SUNMatrix wrapper for SuperLU_DIST SuperMatrix
SUNMATRIX_SPARSE Sparse (CSR or CSC) M ×N matrix

9.2 Description of the SUNMATRIX operations

For each of the SUNMatrix operations, we give the name, usage of the function, and a description of its mathematical
operations below.

SUNMatrix_ID SUNMatGetID(SUNMatrix A)
Returns the type identifier for the matrix A. It is used to determine the matrix implementation type (e.g.
dense, banded, sparse,. . .) from the abstract SUNMatrix interface. This is used to assess compatibility with
SUNDIALS-provided linear solver implementations. Returned values are given in Table 9.1

Usage:

id = SUNMatGetID(A);

SUNMatrix SUNMatClone(SUNMatrix A)
Creates a new SUNMatrix of the same type as an existing matrix A and sets the ops field. It does not copy the
matrix values, but rather allocates storage for the new matrix.

Usage:

B = SUNMatClone(A);

void SUNMatDestroy(SUNMatrix A)
Destroys the SUNMatrix A and frees memory allocated for its internal data.

Usage:

SUNMatDestroy(A);

SUNErrCode SUNMatSpace(SUNMatrix A, long int *lrw, long int *liw)
Returns the storage requirements for the matrix A. lrw contains the number of sunrealtype words and liw contains
the number of integer words. The return value denotes success/failure of the operation.

This function is advisory only, for use in determining a user’s total space requirements; it could be a dummy
function in a user-supplied SUNMatrix module if that information is not of interest.

Usage:

504 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

retval = SUNMatSpace(A, &lrw, &liw);

Deprecated since version 7.3.0: Work space functions will be removed in version 8.0.0.

SUNErrCode SUNMatZero(SUNMatrix A)
Zeros all entries of the SUNMatrix A. The return value denotes the success/failure of the operation:

Ai,j = 0, i = 1, . . . ,m, j = 1, . . . , n.

Usage:

retval = SUNMatZero(A);

SUNErrCode SUNMatCopy(SUNMatrix A, SUNMatrix B)
Performs the operation B gets A for all entries of the matrices A and B. The return value denotes the success/failure
of the operation:

Bi,j = Ai,j , i = 1, . . . ,m, j = 1, . . . , n.

Usage:

retval = SUNMatCopy(A,B);

SUNErrCode SUNMatScaleAdd(sunrealtype c, SUNMatrix A, SUNMatrix B)
Performs the operation A gets cA + B. The return value denotes the success/failure of the operation:

Ai,j = cAi,j +Bi,j , i = 1, . . . ,m, j = 1, . . . , n.

Usage:

retval = SUNMatScaleAdd(c, A, B);

SUNErrCode SUNMatScaleAddI(sunrealtype c, SUNMatrix A)
Performs the operation A gets cA + I. The return value denotes the success/failure of the operation:

Ai,j = cAi,j + δi,j , i, j = 1, . . . , n.

Usage:

retval = SUNMatScaleAddI(c, A);

SUNErrCode SUNMatMatvecSetup(SUNMatrix A)
Performs any setup necessary to perform a matrix-vector product. The return value denotes the success/failure
of the operation. It is useful for SUNMatrix implementations which need to prepare the matrix itself, or com-
munication structures before performing the matrix-vector product.

Usage:

retval = SUNMatMatvecSetup(A);

SUNErrCode SUNMatMatvec(SUNMatrix A, N_Vector x, N_Vector y)
Performs the matrix-vector product y ← Ax. It should only be called with vectors x and y that are compatible
with the matrix A – both in storage type and dimensions. The return value denotes the success/failure of the
operation:

yi =

n∑
j=1

Ai,jxj , i = 1, . . . ,m.

Usage:

9.2. Description of the SUNMATRIX operations 505

User Documentation for ARKODE, v6.3.0

retval = SUNMatMatvec(A, x, y);

SUNErrCode SUNMatHermitianTransposeVec(SUNMatrix A, N_Vector x, N_Vector y)
Performs the matrix-vector product y ← A∗x where ∗ is the Hermitian (conjugate) transpose. It should only be
called with vectors x and y that are compatible with the matrix A∗ – both in storage type and dimensions. The
return value denotes the success/failure of the operation:

yi =

n∑
j=1

Āj,ixj , i = 1, . . . ,m.

where c̄ denotes the complex conjugate of c.

Usage:

retval = SUNMatHermitianTransposeVec(A, x, y);

9.3 The SUNMATRIX_DENSE Module

The dense implementation of the SUNMatrixmodule, SUNMATRIX_DENSE, defines the content field of SUNMatrix
to be the following structure:

struct _SUNMatrixContent_Dense {
sunindextype M;
sunindextype N;
sunrealtype *data;
sunindextype ldata;
sunrealtype **cols;

};

These entries of the content field contain the following information:

• M - number of rows

• N - number of columns

• data - pointer to a contiguous block of sunrealtype variables. The elements of the dense matrix are stored
columnwise, i.e. the (i, j) element of a dense SUNMatrix object (with 0 ≤ i < M and 0 ≤ j < N) may be
accessed via data[j*M+i].

• ldata - length of the data array (= M N).

• cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the array data.
The (i, j) element of a dense SUNMatrix (with 0 ≤ i < M and 0 ≤ j < N) may be accessed may be accessed
via cols[j][i].

The header file to be included when using this module is sunmatrix/sunmatrix_dense.h.

The following macros are provided to access the content of a SUNMATRIX_DENSE matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _D denotes that these are specific
to the dense version.

SM_CONTENT_D(A)
This macro gives access to the contents of the dense SUNMatrix A.

The assignment A_cont = SM_CONTENT_D(A) sets A_cont to be a pointer to the dense SUNMatrix content
structure.

Implementation:

506 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

#define SM_CONTENT_D(A) ((SUNMatrixContent_Dense)(A->content))

SM_ROWS_D(A)
Access the number of rows in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows = SM_ROWS_D(A)
sets A_rows to be the number of rows in the matrix A. Similarly, the assignment SM_ROWS_D(A) = A_rows sets
the number of columns in A to equal A_rows.

Implementation:

#define SM_ROWS_D(A) (SM_CONTENT_D(A)->M)

SM_COLUMNS_D(A)
Access the number of columns in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_columns = SM_-
COLUMNS_D(A) sets A_columns to be the number of columns in the matrix A. Similarly, the assignment SM_-
COLUMNS_D(A) = A_columns sets the number of columns in A to equal A_columns

Implementation:

#define SM_COLUMNS_D(A) (SM_CONTENT_D(A)->N)

SM_LDATA_D(A)
Access the total data length in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_ldata = SM_LDATA_-
D(A) sets A_ldata to be the length of the data array in the matrix A. Similarly, the assignment SM_LDATA_D(A)
= A_ldata sets the parameter for the length of the data array in A to equal A_ldata.

Implementation:

#define SM_LDATA_D(A) (SM_CONTENT_D(A)->ldata)

SM_DATA_D(A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_D(A) sets A_data to be a pointer to the first component of the data array
for the dense SUNMatrix A. The assignment SM_DATA_D(A) = A_data sets the data array of A to be A_data
by storing the pointer A_data.

Implementation:

#define SM_DATA_D(A) (SM_CONTENT_D(A)->data)

SM_COLS_D(A)
This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_D(A) sets A_cols to be a pointer to the array of column pointers for the
dense SUNMatrix A. The assignment SM_COLS_D(A) = A_cols sets the column pointer array of A to be A_-
cols by storing the pointer A_cols.

Implementation:

#define SM_COLS_D(A) (SM_CONTENT_D(A)->cols)

9.3. The SUNMATRIX_DENSE Module 507

User Documentation for ARKODE, v6.3.0

SM_COLUMN_D(A)
This macros gives access to the individual columns of the data array of a dense SUNMatrix.

The assignment col_j = SM_COLUMN_D(A,j) sets col_j to be a pointer to the first entry of the j-th column of
theM ×N dense matrix A (with 0 ≤ j < N). The type of the expression SM_COLUMN_D(A,j) is sunrealtype
*. The pointer returned by the call SM_COLUMN_D(A,j) can be treated as an array which is indexed from 0 to
M-1.

Implementation:

#define SM_COLUMN_D(A,j) ((SM_CONTENT_D(A)->cols)[j])

SM_ELEMENT_D(A)
This macro gives access to the individual entries of the data array of a dense SUNMatrix.

The assignments SM_ELEMENT_D(A,i,j) = a_ij and a_ij = SM_ELEMENT_D(A,i,j) reference theAi,j el-
ement of the M ×N dense matrix A (with 0 ≤ i < M and 0 ≤ j < N).

Implementation:

#define SM_ELEMENT_D(A,i,j) ((SM_CONTENT_D(A)->cols)[j][i])

The SUNMATRIX_DENSE module defines dense implementations of all matrix operations listed in §9.2. Their names
are obtained from those in that section by appending the suffix _Dense (e.g. SUNMatCopy_Dense). The module
SUNMATRIX_DENSE provides the following additional user-callable routines:

SUNMatrix SUNDenseMatrix(sunindextype M, sunindextype N, SUNContext sunctx)
This constructor function creates and allocates memory for a dense SUNMatrix. Its arguments are the number
of rows, M, and columns, N, for the dense matrix.

void SUNDenseMatrix_Print(SUNMatrix A, FILE *outfile)
This function prints the content of a dense SUNMatrix to the output stream specified by outfile. Note: std-
out or stderr may be used as arguments for outfile to print directly to standard output or standard error,
respectively.

sunindextype SUNDenseMatrix_Rows(SUNMatrix A)
This function returns the number of rows in the dense SUNMatrix.

sunindextype SUNDenseMatrix_Columns(SUNMatrix A)
This function returns the number of columns in the dense SUNMatrix.

sunindextype SUNDenseMatrix_LData(SUNMatrix A)
This function returns the length of the data array for the dense SUNMatrix.

sunrealtype *SUNDenseMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the dense SUNMatrix.

sunrealtype **SUNDenseMatrix_Cols(SUNMatrix A)
This function returns a pointer to the cols array for the dense SUNMatrix.

sunrealtype *SUNDenseMatrix_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the first entry of the jth column of the dense SUNMatrix. The resulting pointer
should be indexed over the range 0 to M-1.

Notes

• When looping over the components of a dense SUNMatrix A, the most efficient approaches are to:

– First obtain the component array via A_data = SUNDenseMatrix_Data(A), or equivalently A_data =
SM_DATA_D(A), and then access A_data[i] within the loop.

508 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

– First obtain the array of column pointers via A_cols = SUNDenseMatrix_Cols(A), or equivalently A_-
cols = SM_COLS_D(A), and then access A_cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via A_colj = SUNDenseMatrix_Column(A,
j) and then to access the entries within that column using A_colj[i] within the loop.

All three of these are more efficient than using SM_ELEMENT_D(A,i,j) within a double loop.

• Within the SUNMatMatvec_Dense routine, internal consistency checks are performed to ensure that the matrix
is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are
added to SUNDIALS, these will be included within this compatibility check.

9.4 The SUNMATRIX_MAGMADENSE Module

The SUNMATRIX_MAGMADENSE module interfaces to the MAGMA linear algebra library and can target
NVIDIA’s CUDA programming model or AMD’s HIP programming model [116]. All data stored by this matrix imple-
mentation resides on the GPU at all times. The implementation currently supports a standard LAPACK column-major
storage format as well as a low-storage format for block-diagonal matrices

A =


A0 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An−1


This matrix implementation is best paired with the SUNLinearSolver_MagmaDense SUNLinearSolver.

The header file to include when using this module is sunmatrix/sunmatrix_magmadense.h. The installed library
to link to is libsundials_sunmatrixmagmadense.lib where lib is typically .so for shared libraries and .a for
static libraries.

Warning

The SUNMATRIX_MAGMADENSE module is experimental and subject to change.

9.4.1 SUNMATRIX_MAGMADENSE Functions

The SUNMATRIX_MAGMADENSE module defines GPU-enabled implementations of all matrix operations listed in
§9.2.

• SUNMatGetID_MagmaDense – returns SUNMATRIX_MAGMADENSE

• SUNMatClone_MagmaDense

• SUNMatDestroy_MagmaDense

• SUNMatZero_MagmaDense

• SUNMatCopy_MagmaDense

• SUNMatScaleAdd_MagmaDense

• SUNMatScaleAddI_MagmaDense

• SUNMatMatvecSetup_MagmaDense

• SUNMatMatvec_MagmaDense

9.4. The SUNMATRIX_MAGMADENSE Module 509

https://icl.utk.edu/magma/index.html

User Documentation for ARKODE, v6.3.0

• SUNMatSpace_MagmaDense

In addition, the SUNMATRIX_MAGMADENSE module defines the following implementation specific functions:

SUNMatrix SUNMatrix_MagmaDense(sunindextype M, sunindextype N, SUNMemoryType memtype,
SUNMemoryHelper memhelper, void *queue, SUNContext sunctx)

This constructor function creates and allocates memory for an M ×N SUNMATRIX_MAGMADENSE SUN-
Matrix.

Arguments:

• M – the number of matrix rows.

• N – the number of matrix columns.

• memtype – the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_-
DEVICE.

• memhelper – the memory helper used for allocating data.

• queue – a cudaStream_t when using CUDA or a hipStream_t when using HIP.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

SUNMatrix SUNMatrix_MagmaDenseBlock(sunindextype nblocks, sunindextype M_block, sunindextype N_block,
SUNMemoryType memtype, SUNMemoryHelper memhelper, void
*queue, SUNContext sunctx)

This constructor function creates and allocates memory for a block diagonal SUNMATRIX_MAGMADENSE
SUNMatrix with nblocks of size M ×N .

Arguments:

• nblocks – the number of matrix rows.

• M_block – the number of matrix rows in each block.

• N_block – the number of matrix columns in each block.

• memtype – the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_-
DEVICE.

• memhelper – the memory helper used for allocating data.

• queue – a cudaStream_t when using CUDA or a hipStream_t when using HIP.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

sunindextype SUNMatrix_MagmaDense_Rows(SUNMatrix A)
This function returns the number of rows in the SUNMatrix object. For block diagonal matrices, the number of
rows is computed as Mblock × nblocks.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of rows in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

510 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

sunindextype SUNMatrix_MagmaDense_Columns(SUNMatrix A)
This function returns the number of columns in the SUNMatrix object. For block diagonal matrices, the number
of columns is computed as Nblock × nblocks.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of columns in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_BlockRows(SUNMatrix A)
This function returns the number of rows in a block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of rows in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_BlockColumns(SUNMatrix A)
This function returns the number of columns in a block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of columns in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_-
INPUT.

sunindextype SUNMatrix_MagmaDense_LData(SUNMatrix A)
This function returns the length of the SUNMatrix data array.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the length of the SUNMatrix data array otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_NumBlocks(SUNMatrix A)
This function returns the number of blocks in the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of blocks in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunrealtype *SUNMatrix_MagmaDense_Data(SUNMatrix A)
This function returns the SUNMatrix data array.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the SUNMatrix data array otherwise NULL.

9.4. The SUNMATRIX_MAGMADENSE Module 511

User Documentation for ARKODE, v6.3.0

sunrealtype **SUNMatrix_MagmaDense_BlockData(SUNMatrix A)
This function returns an array of pointers that point to the start of the data array for each block in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, an array of data pointers to each of the SUNMatrix blocks otherwise NULL.

sunrealtype *SUNMatrix_MagmaDense_Block(SUNMatrix A, sunindextype k)
This function returns a pointer to the data array for block k in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• k – the block index.

Return value:
If successful, a pointer to the data array for the SUNMatrix block otherwise NULL.

Note

No bounds-checking is performed by this function, j should be strictly less than nblocks.

sunrealtype *SUNMatrix_MagmaDense_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the data array for column j in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• j – the column index.

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note

No bounds-checking is performed by this function, j should be strictly less than nblocks ∗Nblock.

sunrealtype *SUNMatrix_MagmaDense_BlockColumn(SUNMatrix A, sunindextype k, sunindextype j)
This function returns a pointer to the data array for column j of block k in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• k – the block index.

• j – the column index.

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

512 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

Note

No bounds-checking is performed by this function, k should be strictly less than nblocks and j should be
strictly less than Nblock.

SUNErrCode SUNMatrix_MagmaDense_CopyToDevice(SUNMatrix A, sunrealtype *h_data)
This function copies the matrix data to the GPU device from the provided host array.

Arguments:

• A – a SUNMatrix object

• h_data – a host array pointer to copy data from.

Return value:

• SUN_SUCCESS – if the copy is successful.

• SUN_ERR_ARG_INCOMPATIBLE – if the SUNMatrix is not a SUNMATRIX_MAGMADENSE matrix.

• SUN_ERR_MEM_FAIL – if the copy fails.

SUNErrCode SUNMatrix_MagmaDense_CopyFromDevice(SUNMatrix A, sunrealtype *h_data)
This function copies the matrix data from the GPU device to the provided host array.

Arguments:

• A – a SUNMatrix object

• h_data – a host array pointer to copy data to.

Return value:

• SUN_SUCCESS – if the copy is successful.

• SUN_ERR_ARG_INCOMPATIBLE – if the SUNMatrix is not a SUNMATRIX_MAGMADENSE matrix.

• SUN_ERR_MEM_FAIL – if the copy fails.

9.4.2 SUNMATRIX_MAGMADENSE Usage Notes

Warning

When using the SUNMATRIX_MAGMADENSE module with a SUNDIALS package (e.g. CVODE), the stream
given to matrix should be the same stream used for the NVECTOR object that is provided to the package, and the
NVECTOR object given to the SUNMatvec operation. If different streams are utilized, synchronization issues may
occur.

9.5 The SUNMATRIX_ONEMKLDENSE Module

The SUNMATRIX_ONEMKLDENSE module is intended for interfacing with direct linear solvers from the Intel
oneAPI Math Kernel Library (oneMKL) using the SYCL (DPC++) programming model. The implementation currently

9.5. The SUNMATRIX_ONEMKLDENSE Module 513

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html

User Documentation for ARKODE, v6.3.0

supports a standard LAPACK column-major storage format as well as a low-storage format for block-diagonal matrices,

A =


A0 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An−1


This matrix implementation is best paired with the SUNLinearSolver_OneMklDense linear solver.

The header file to include when using this class is sunmatrix/sunmatrix_onemkldense.h. The installed library
to link to is libsundials_sunmatrixonemkldense.lib where lib is typically .so for shared libraries and .a for
static libraries.

Warning

The SUNMATRIX_ONEMKLDENSE class is experimental and subject to change.

9.5.1 SUNMATRIX_ONEMKLDENSE Functions

The SUNMATRIX_ONEMKLDENSE class defines implementations of the following matrix operations listed in §9.2.

• SUNMatGetID_OneMklDense – returns SUNMATRIX_ONEMKLDENSE

• SUNMatClone_OneMklDense

• SUNMatDestroy_OneMklDense

• SUNMatZero_OneMklDense

• SUNMatCopy_OneMklDense

• SUNMatScaleAdd_OneMklDense

• SUNMatScaleAddI_OneMklDense

• SUNMatMatvec_OneMklDense

• SUNMatSpace_OneMklDense

In addition, the SUNMATRIX_ONEMKLDENSE class defines the following implementation specific functions.

9.5.1.1 Constructors

SUNMatrix SUNMatrix_OneMklDense(sunindextype M, sunindextype N, SUNMemoryType memtype,
SUNMemoryHelper memhelper, sycl::queue *queue, SUNContext sunctx)

This constructor function creates and allocates memory for an M ×N SUNMATRIX_ONEMKLDENSE SUN-
Matrix.

Arguments:

• M – the number of matrix rows.

• N – the number of matrix columns.

• memtype – the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_-
DEVICE.

• memhelper – the memory helper used for allocating data.

514 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

• queue – the SYCL queue to which operations will be submitted.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

SUNMatrix SUNMatrix_OneMklDenseBlock(sunindextype nblocks, sunindextype M_block, sunindextype
N_block, SUNMemoryType memtype, SUNMemoryHelper
memhelper, sycl::queue *queue, SUNContext sunctx)

This constructor function creates and allocates memory for a block diagonal SUNMATRIX_ONEMKLDENSE
SUNMatrix with nblocks of size Mblock ×Nblock.

Arguments:

• nblocks – the number of matrix rows.

• M_block – the number of matrix rows in each block.

• N_block – the number of matrix columns in each block.

• memtype – the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_-
DEVICE.

• memhelper – the memory helper used for allocating data.

• queue – the SYCL queue to which operations will be submitted.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

9.5.1.2 Access Matrix Dimensions

sunindextype SUNMatrix_OneMklDense_Rows(SUNMatrix A)
This function returns the number of rows in the SUNMatrix object. For block diagonal matrices, the number of
rows is computed as Mblock × nblocks.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of rows in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_OneMklDense_Columns(SUNMatrix A)
This function returns the number of columns in the SUNMatrix object. For block diagonal matrices, the number
of columns is computed as Nblock × nblocks.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of columns in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

9.5. The SUNMATRIX_ONEMKLDENSE Module 515

User Documentation for ARKODE, v6.3.0

9.5.1.3 Access Matrix Block Dimensions

sunindextype SUNMatrix_OneMklDense_NumBlocks(SUNMatrix A)
This function returns the number of blocks in the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of blocks in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_OneMklDense_BlockRows(SUNMatrix A)
This function returns the number of rows in a block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of rows in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_OneMklDense_BlockColumns(SUNMatrix A)
This function returns the number of columns in a block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of columns in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_-
INPUT.

9.5.1.4 Access Matrix Data

sunindextype SUNMatrix_OneMklDense_LData(SUNMatrix A)
This function returns the length of the SUNMatrix data array.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the length of the SUNMatrix data array otherwise SUNMATRIX_ILL_INPUT.

sunrealtype *SUNMatrix_OneMklDense_Data(SUNMatrix A)
This function returns the SUNMatrix data array.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the SUNMatrix data array otherwise NULL.

sunrealtype *SUNMatrix_OneMklDense_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the data array for column j in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• j – the column index.

516 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note

No bounds-checking is performed by this function, j should be strictly less than nblocks ∗Nblock.

9.5.1.5 Access Matrix Block Data

sunindextype SUNMatrix_OneMklDense_BlockLData(SUNMatrix A)
This function returns the length of the SUNMatrix data array for each block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the length of the SUNMatrix data array for each block otherwise SUNMATRIX_ILL_INPUT.

sunrealtype **SUNMatrix_OneMklDense_BlockData(SUNMatrix A)
This function returns an array of pointers that point to the start of the data array for each block in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, an array of data pointers to each of the SUNMatrix blocks otherwise NULL.

sunrealtype *SUNMatrix_OneMklDense_Block(SUNMatrix A, sunindextype k)
This function returns a pointer to the data array for block k in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• k – the block index.

Return value:
If successful, a pointer to the data array for the SUNMatrix block otherwise NULL.

Note

No bounds-checking is performed by this function, j should be strictly less than nblocks.

sunrealtype *SUNMatrix_OneMklDense_BlockColumn(SUNMatrix A, sunindextype k, sunindextype j)
This function returns a pointer to the data array for column j of block k in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• k – the block index.

• j – the column index.

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

9.5. The SUNMATRIX_ONEMKLDENSE Module 517

User Documentation for ARKODE, v6.3.0

Note

No bounds-checking is performed by this function, k should be strictly less than nblocks and j should be
strictly less than Nblock.

9.5.1.6 Copy Data

SUNErrCode SUNMatrix_OneMklDense_CopyToDevice(SUNMatrix A, sunrealtype *h_data)
This function copies the matrix data to the GPU device from the provided host array.

Arguments:

• A – a SUNMatrix object

• h_data – a host array pointer to copy data from.

Return value:

• SUN_SUCCESS – if the copy is successful.

• SUN_ERR_ARG_INCOMPATIBLE – if the SUNMatrix is not a SUNMATRIX_ONEMKLDENSE matrix.

• SUN_ERR_MEM_FAIL – if the copy fails.

SUNErrCode SUNMatrix_OneMklDense_CopyFromDevice(SUNMatrix A, sunrealtype *h_data)
This function copies the matrix data from the GPU device to the provided host array.

Arguments:

• A – a SUNMatrix object

• h_data – a host array pointer to copy data to.

Return value:

• SUN_SUCCESS – if the copy is successful.

• SUN_ERR_ARG_INCOMPATIBLE – if the SUNMatrix is not a SUNMATRIX_ONEMKLDENSE matrix.

• SUN_ERR_MEM_FAIL – if the copy fails.

9.5.2 SUNMATRIX_ONEMKLDENSE Usage Notes

Warning

The SUNMATRIX_ONEMKLDENSE class only supports 64-bit indexing, thus SUNDIALS must be built for
64-bit indexing to use this class.

When using the SUNMATRIX_ONEMKLDENSE class with a SUNDIALS package (e.g. CVODE), the queue
given to matrix should be the same stream used for the NVECTOR object that is provided to the package, and
the NVECTOR object given to the SUNMatMatvec() operation. If different streams are utilized, synchronization
issues may occur.

9.6 The SUNMATRIX_BAND Module

The banded implementation of the SUNMatrixmodule, SUNMATRIX_BAND, defines the content field of SUNMatrix
to be the following structure:

518 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

struct _SUNMatrixContent_Band {
sunindextype M;
sunindextype N;
sunindextype mu;
sunindextype ml;
sunindextype smu;
sunindextype ldim;
sunrealtype *data;
sunindextype ldata;
sunrealtype **cols;

};

A diagram of the underlying data representation in a banded matrix is shown in Fig. 9.1. A more complete description
of the parts of this content field is given below:

• M - number of rows

• N - number of columns (N = M)

• mu - upper half-bandwidth, 0 ≤ mu < N

• ml - lower half-bandwidth, 0 ≤ ml < N

• smu - storage upper bandwidth, mu ≤ smu < N . The LU decomposition routines in the associated SUN-
LINSOL_BAND and SUNLINSOL_LAPACKBAND modules write the LU factors into the existing storage for the
band matrix. The upper triangular factorU , however, may have an upper bandwidth as big as min(N-1, mu+ml)
because of partial pivoting. The smu field holds the upper half-bandwidth allocated for the band matrix.

• ldim - leading dimension (ldim ≥ smu+ml + 1)

• data - pointer to a contiguous block of sunrealtype variables. The elements of the banded matrix are stored
columnwise (i.e. columns are stored one on top of the other in memory). Only elements within the specified
half-bandwidths are stored. data is a pointer to ldata contiguous locations which hold the elements within the
banded matrix.

• ldata - length of the data array (= ldimN)

• cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th column.
This pointer may be treated as an array indexed from smu-mu (to access the uppermost element within the
band in the j-th column) to smu+ml (to access the lowest element within the band in the j-th column). Indices
from 0 to smu-mu-1 give access to extra storage elements required by the LU decomposition function. Finally,
cols[j][i-j+smu] is the (i, j)-th element with j −mu ≤ i ≤ j + ml.

The header file to be included when using this module is sunmatrix/sunmatrix_band.h.

The following macros are provided to access the content of a SUNMATRIX_BAND matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _B denotes that these are specific
to the banded version.

SM_CONTENT_B(A)
This macro gives access to the contents of the banded SUNMatrix A.

The assignment A_cont = SM_CONTENT_B(A) sets A_cont to be a pointer to the banded SUNMatrix content
structure.

Implementation:

#define SM_CONTENT_B(A) ((SUNMatrixContent_Band)(A->content))

9.6. The SUNMATRIX_BAND Module 519

User Documentation for ARKODE, v6.3.0

Fig. 9.1: Diagram of the storage for the SUNMATRIX_BAND module. Here A is an N ×N band matrix with upper
and lower half-bandwidths mu and ml, respectively. The rows and columns of A are numbered from 0 to N-1 and the
(i, j)-th element of A is denoted A(i,j). The greyed out areas of the underlying component storage are used by the
associated SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND linear solver.

520 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

SM_ROWS_B(A)
Access the number of rows in the banded SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows = SM_ROWS_B(A)
sets A_rows to be the number of rows in the matrix A. Similarly, the assignment SM_ROWS_B(A) = A_rows sets
the number of columns in A to equal A_rows.

Implementation:

#define SM_ROWS_B(A) (SM_CONTENT_B(A)->M)

SM_COLUMNS_B(A)
Access the number of columns in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_COLUMNS_B(A) (SM_CONTENT_B(A)->N)

SM_UBAND_B(A)
Access the mu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_UBAND_B(A) (SM_CONTENT_B(A)->mu)

SM_LBAND_B(A)
Access the ml parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_LBAND_B(A) (SM_CONTENT_B(A)->ml)

SM_SUBAND_B(A)
Access the smu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_SUBAND_B(A) (SM_CONTENT_B(A)->smu)

SM_LDIM_B(A)
Access the ldim parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_LDIM_B(A) (SM_CONTENT_B(A)->ldim)

SM_LDATA_B(A)
Access the ldata parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

9.6. The SUNMATRIX_BAND Module 521

User Documentation for ARKODE, v6.3.0

#define SM_LDATA_B(A) (SM_CONTENT_B(A)->ldata)

SM_DATA_B(A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_B(A) sets A_data to be a pointer to the first component of the data array
for the banded SUNMatrix A. The assignment SM_DATA_B(A) = A_data sets the data array of A to be A_data
by storing the pointer A_data.

Implementation:

#define SM_DATA_B(A) (SM_CONTENT_B(A)->data)

SM_COLS_B(A)
This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_B(A) sets A_cols to be a pointer to the array of column pointers for the
banded SUNMatrix A. The assignment SM_COLS_B(A) = A_cols sets the column pointer array of A to be
A_cols by storing the pointer A_cols.

Implementation:

#define SM_COLS_B(A) (SM_CONTENT_B(A)->cols)

SM_COLUMN_B(A)
This macros gives access to the individual columns of the data array of a banded SUNMatrix.

The assignment col_j = SM_COLUMN_B(A,j) sets col_j to be a pointer to the diagonal element of the j-th
column of the N × N band matrix A, 0 ≤ j ≤ N − 1. The type of the expression SM_COLUMN_B(A,j) is
sunrealtype *. The pointer returned by the call SM_COLUMN_B(A,j) can be treated as an array which is
indexed from -mu to ml.

Implementation:

#define SM_COLUMN_B(A,j) (((SM_CONTENT_B(A)->cols)[j])+SM_SUBAND_B(A))

SM_ELEMENT_B(A)
This macro gives access to the individual entries of the data array of a banded SUNMatrix.

The assignments SM_ELEMENT_B(A,i,j) = a_ij and a_ij = SM_ELEMENT_B(A,i,j) reference the (i, j)-
th element of the N × N band matrix A, where 0 ≤ i, j ≤ N − 1. The location (i, j) should further satisfy
j −mu ≤ i ≤ j + ml.

Implementation:

#define SM_ELEMENT_B(A,i,j) ((SM_CONTENT_B(A)->cols)[j][(i)-(j)+SM_SUBAND_B(A)])

SM_COLUMN_ELEMENT_B(A)
This macro gives access to the individual entries of the data array of a banded SUNMatrix.

The assignments SM_COLUMN_ELEMENT_B(col_j,i,j) = a_ij and a_ij = SM_COLUMN_ELEMENT_-
B(col_j,i,j) reference the (i, j)-th entry of the band matrix A when used in conjunction with SM_COLUMN_B
to reference the j-th column through col_j. The index (i, j) should satisfy j −mu ≤ i ≤ j + ml.

Implementation:

#define SM_COLUMN_ELEMENT_B(col_j,i,j) (col_j[(i)-(j)])

522 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

The SUNMATRIX_BAND module defines banded implementations of all matrix operations listed in §9.2. Their
names are obtained from those in that section by appending the suffix _Band (e.g. SUNMatCopy_Band). The module
SUNMATRIX_BAND provides the following additional user-callable routines:

SUNMatrix SUNBandMatrix(sunindextype N, sunindextype mu, sunindextype ml, SUNContext sunctx)
This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments are the matrix
size, N, and the upper and lower half-bandwidths of the matrix, mu and ml. The stored upper bandwidth is set
to mu+ml to accommodate subsequent factorization in the SUNLINSOL_BAND and SUNLINSOL_LAPACK-
BAND modules.

SUNMatrix SUNBandMatrixStorage(sunindextype N, sunindextype mu, sunindextype ml, sunindextype smu,
SUNContext sunctx)

This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments are the matrix
size, N, the upper and lower half-bandwidths of the matrix, mu and ml, and the stored upper bandwidth, smu.
When creating a band SUNMatrix, this value should be

• at least min(N-1,mu+ml) if the matrix will be used by the SUNLinSol_Band module;

• exactly equal to mu+ml if the matrix will be used by the SUNLinSol_LapackBand module;

• at least mu if used in some other manner.

Note

It is strongly recommended that users call the default constructor, SUNBandMatrix(), in all standard use
cases. This advanced constructor is used internally within SUNDIALS solvers, and is provided to users who
require banded matrices for non-default purposes.

void SUNBandMatrix_Print(SUNMatrix A, FILE *outfile)
This function prints the content of a banded SUNMatrix to the output stream specified by outfile. Note:
stdout or stderr may be used as arguments for outfile to print directly to standard output or standard error,
respectively.

sunindextype SUNBandMatrix_Rows(SUNMatrix A)
This function returns the number of rows in the banded SUNMatrix.

sunindextype SUNBandMatrix_Columns(SUNMatrix A)
This function returns the number of columns in the banded SUNMatrix.

sunindextype SUNBandMatrix_LowerBandwidth(SUNMatrix A)
This function returns the lower half-bandwidth for the banded SUNMatrix.

sunindextype SUNBandMatrix_UpperBandwidth(SUNMatrix A)
This function returns the upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_StoredUpperBandwidth(SUNMatrix A)
This function returns the stored upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_LDim(SUNMatrix A)
This function returns the length of the leading dimension of the banded SUNMatrix.

sunindextype SUNBandMatrix_LData(SUNMatrix A)
This function returns the length of the data array for the banded SUNMatrix.

sunrealtype *SUNBandMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the banded SUNMatrix.

9.6. The SUNMATRIX_BAND Module 523

User Documentation for ARKODE, v6.3.0

sunrealtype **SUNBandMatrix_Cols(SUNMatrix A)
This function returns a pointer to the cols array for the band SUNMatrix.

sunrealtype *SUNBandMatrix_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the diagonal entry of the j-th column of the banded SUNMatrix. The resulting
pointer should be indexed over the range -mu to ml.

Warning

When calling this function from the Fortran interfaces the shape of the array that is returned is [1], and the
only element you can (legally) access is the diagonal element. Fortran users should instead work with the
data array returned by SUNBandMatrix_Data() directly.

Notes

• When looping over the components of a banded SUNMatrix A, the most efficient approaches are to:

– First obtain the component array via A_data = SUNBandMatrix_Data(A), or equivalently A_data =
SM_DATA_B(A), and then access A_data[i] within the loop.

– First obtain the array of column pointers via A_cols = SUNBandMatrix_Cols(A), or equivalently A_-
cols = SM_COLS_B(A), and then access A_cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via A_colj = SUNBandMatrix_Column(A,j)
and then to access the entries within that column using SM_COLUMN_ELEMENT_B(A_colj,i,j).

All three of these are more efficient than using SM_ELEMENT_B(A,i,j) within a double loop.

• Within the SUNMatMatvec_Band routine, internal consistency checks are performed to ensure that the matrix
is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are
added to SUNDIALS, these will be included within this compatibility check.

9.7 The SUNMATRIX_CUSPARSE Module

The SUNMATRIX_CUSPARSE module is an interface to the NVIDIA cuSPARSE matrix for use on NVIDIA GPUs
[7]. All data stored by this matrix implementation resides on the GPU at all times.

The header file to be included when using this module is sunmatrix/sunmatrix_cusparse.h. The installed library
to link to is libsundials_sunmatrixcusparse.lib where .lib is typically .so for shared libraries and .a for
static libraries.

9.7.1 SUNMATRIX_CUSPARSE Description

The implementation currently supports the cuSPARSE CSR matrix format described in the cuSPARSE documentation,
as well as a unique low-storage format for block-diagonal matrices of the form

A =


A0 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An−1

 ,
where all the block matrices Aj share the same sparsity pattern. We will refer to this format as BCSR (not to be
confused with the canonical BSR format where each block is stored as dense). In this format, the CSR column indices

524 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

and row pointers are only stored for the first block and are computed only as necessary for other blocks. This can
drastically reduce the amount of storage required compared to the regular CSR format when the number of blocks is
large. This format is well-suited for, and intended to be used with, the SUNLinearSolver_cuSolverSp_batchQR
linear solver (see §10.17).

The SUNMATRIX_CUSPARSE module is experimental and subject to change.

9.7.2 SUNMATRIX_CUSPARSE Functions

The SUNMATRIX_CUSPARSE module defines GPU-enabled sparse implementations of all matrix operations listed
in §9.2 except for the SUNMatSpace() and SUNMatMatvecSetup() operations:

• SUNMatGetID_cuSparse – returns SUNMATRIX_CUSPARSE

• SUNMatClone_cuSparse

• SUNMatDestroy_cuSparse

• SUNMatZero_cuSparse

• SUNMatCopy_cuSparse

• SUNMatScaleAdd_cuSparse – performs A = cA+B, where A and B must have the same sparsity pattern

• SUNMatScaleAddI_cuSparse – performs A = cA+ I , where the diagonal of A must be present

• SUNMatMatvec_cuSparse

In addition, the SUNMATRIX_CUSPARSE module defines the following implementation specific functions:

SUNMatrix SUNMatrix_cuSparse_NewCSR(int M, int N, int NNZ, cusparseHandle_t cusp, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNMATRIX_CUSPARSE SUNMatrix that uses
the CSR storage format. Its arguments are the number of rows and columns of the matrix, M and N, the number
of nonzeros to be stored in the matrix, NNZ, and a valid cusparseHandle_t.

SUNMatrix SUNMatrix_cuSparse_NewBlockCSR(int nblocks, int blockrows, int blockcols, int blocknnz,
cusparseHandle_t cusp, SUNContext sunctx)

This constructor function creates and allocates memory for a SUNMATRIX_CUSPARSE SUNMatrix object
that leverages the SUNMAT_CUSPARSE_BCSR storage format to store a block diagonal matrix where each block
shares the same sparsity pattern. The blocks must be square. The function arguments are the number of blocks,
nblocks, the number of rows, blockrows, the number of columns, blockcols, the number of nonzeros in each
each block, blocknnz, and a valid cusparseHandle_t.

Warning

The SUNMAT_CUSPARSE_BCSR format currently only supports square matrices, i.e., blockrows == block-
cols.

SUNMatrix SUNMatrix_cuSparse_MakeCSR(cusparseMatDescr_t mat_descr, int M, int N, int NNZ, int *rowptrs,
int *colind, sunrealtype *data, cusparseHandle_t cusp, SUNContext
sunctx)

This constructor function creates a SUNMATRIX_CUSPARSE SUNMatrix object from user provided pointers.
Its arguments are a cusparseMatDescr_t that must have index base CUSPARSE_INDEX_BASE_ZERO, the num-
ber of rows and columns of the matrix, M and N, the number of nonzeros to be stored in the matrix, NNZ, and a
valid cusparseHandle_t.

9.7. The SUNMATRIX_CUSPARSE Module 525

User Documentation for ARKODE, v6.3.0

int SUNMatrix_cuSparse_Rows(SUNMatrix A)
This function returns the number of rows in the sparse SUNMatrix.

int SUNMatrix_cuSparse_Columns(SUNMatrix A)
This function returns the number of columns in the sparse SUNMatrix.

int SUNMatrix_cuSparse_NNZ(SUNMatrix A)
This function returns the number of entries allocated for nonzero storage for the sparse SUNMatrix.

int SUNMatrix_cuSparse_SparseType(SUNMatrix A)
This function returns the storage type (SUNMAT_CUSPARSE_CSR or SUNMAT_CUSPARSE_BCSR) for the sparse
SUNMatrix.

sunrealtype *SUNMatrix_cuSparse_Data(SUNMatrix A)
This function returns a pointer to the data array for the sparse SUNMatrix.

int *SUNMatrix_cuSparse_IndexValues(SUNMatrix A)
This function returns a pointer to the index value array for the sparse SUNMatrix – for the CSR format this is an
array of column indices for each nonzero entry. For the BCSR format this is an array of the column indices for
each nonzero entry in the first block only.

int *SUNMatrix_cuSparse_IndexPointers(SUNMatrix A)
This function returns a pointer to the index pointer array for the sparse SUNMatrix – for the CSR format this is
an array of the locations of the first entry of each row in the data and indexvalues arrays, for the BCSR format
this is an array of the locations of each row in the data and indexvalues arrays in the first block only.

int SUNMatrix_cuSparse_NumBlocks(SUNMatrix A)
This function returns the number of matrix blocks.

int SUNMatrix_cuSparse_BlockRows(SUNMatrix A)
This function returns the number of rows in a matrix block.

int SUNMatrix_cuSparse_BlockColumns(SUNMatrix A)
This function returns the number of columns in a matrix block.

int SUNMatrix_cuSparse_BlockNNZ(SUNMatrix A)
This function returns the number of nonzeros in each matrix block.

sunrealtype *SUNMatrix_cuSparse_BlockData(SUNMatrix A, int blockidx)
This function returns a pointer to the location in the data array where the data for the block, blockidx, begins.
Thus, blockidx must be less than SUNMatrix_cuSparse_NumBlocks(A). The first block in the SUNMatrix
is index 0, the second block is index 1, and so on.

cusparseMatDescr_t SUNMatrix_cuSparse_MatDescr(SUNMatrix A)
This function returns the cusparseMatDescr_t object associated with the matrix.

SUNErrCode SUNMatrix_cuSparse_CopyToDevice(SUNMatrix A, sunrealtype *h_data, int *h_idxptrs, int
*h_idxvals)

This functions copies the matrix information to the GPU device from the provided host arrays. A user may
provide NULL for any of h_data, h_idxptrs, or h_idxvals to avoid copying that information.

The function returns SUN_SUCCESS if the copy operation(s) were successful, or a nonzero error code otherwise.

SUNErrCode SUNMatrix_cuSparse_CopyFromDevice(SUNMatrix A, sunrealtype *h_data, int *h_idxptrs, int
*h_idxvals)

This functions copies the matrix information from the GPU device to the provided host arrays. A user may
provide NULL for any of h_data, h_idxptrs, or h_idxvals to avoid copying that information. Otherwise:

526 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

• The h_data array must be at least SUNMatrix_cuSparse_NNZ(A)*sizeof(sunrealtype) bytes.

• The h_idxptrs array must be at least (SUNMatrix_cuSparse_BlockDim(A)+1)*sizeof(int) bytes.

• The h_idxvals array must be at least (SUNMatrix_cuSparse_BlockNNZ(A))*sizeof(int) bytes.

The function returns SUN_SUCCESS if the copy operation(s) were successful, or a nonzero error code otherwise.

SUNErrCode SUNMatrix_cuSparse_SetFixedPattern(SUNMatrix A, sunbooleantype yesno)
This function changes the behavior of the the SUNMatZero operation on the object A. By default the matrix
sparsity pattern is not considered to be fixed, thus, the SUNMatZero operation zeros out all data array as well
as the indexvalues and indexpointers arrays. Providing a value of 1 or SUNTRUE for the yesno argument
changes the behavior of SUNMatZero on A so that only the data is zeroed out, but not the indexvalues or
indexpointers arrays. Providing a value of 0 or SUNFALSE for the yesno argument is equivalent to the default
behavior.

SUNErrCode SUNMatrix_cuSparse_SetKernelExecPolicy(SUNMatrix A, SUNCudaExecPolicy *exec_policy)
This function sets the execution policies which control the kernel parameters utilized when launching the CUDA
kernels. By default the matrix is setup to use a policy which tries to leverage the structure of the matrix. See
§8.10.2 for more information about the SUNCudaExecPolicy class.

9.7.3 SUNMATRIX_CUSPARSE Usage Notes

The SUNMATRIX_CUSPARSE module only supports 32-bit indexing, thus SUNDIALS must be built for 32-bit in-
dexing to use this module.

The SUNMATRIX_CUSPARSE module can be used with CUDA streams by calling the cuSPARSE function cus-
parseSetStream on the cusparseHandle_t that is provided to the SUNMATRIX_CUSPARSE constructor.

Warning

When using the SUNMATRIX_CUSPARSE module with a SUNDIALS package (e.g. ARKODE), the stream
given to cuSPARSE should be the same stream used for the NVECTOR object that is provided to the package, and
the NVECTOR object given to the SUNMatvec operation. If different streams are utilized, synchronization issues
may occur.

9.8 The SUNMATRIX_SPARSE Module

The sparse implementation of the SUNMatrix module, SUNMATRIX_SPARSE, is designed to work with either
compressed-sparse-column (CSC) or compressed-sparse-row (CSR) sparse matrix formats. To this end, it defines
the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Sparse {
sunindextype M;
sunindextype N;
sunindextype NNZ;
sunindextype NP;
sunrealtype *data;
int sparsetype;
sunindextype *indexvals;
sunindextype *indexptrs;
/* CSC indices */

(continues on next page)

9.8. The SUNMATRIX_SPARSE Module 527

User Documentation for ARKODE, v6.3.0

(continued from previous page)

sunindextype **rowvals;
sunindextype **colptrs;
/* CSR indices */
sunindextype **colvals;
sunindextype **rowptrs;

};

A diagram of the underlying data representation in a sparse matrix is shown in Fig. 9.2. A more complete description
of the parts of this content field is given below:

• M - number of rows

• N - number of columns

• NNZ - maximum number of nonzero entries in the matrix (allocated length of data and indexvals arrays)

• NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC matrices NP=N, and
for CSR matrices NP=M. This value is set automatically at construction based the input choice for sparsetype.

• data - pointer to a contiguous block of sunrealtype variables (of length NNZ), containing the values of the
nonzero entries in the matrix

• sparsetype - type of the sparse matrix (CSC_MAT or CSR_MAT)

• indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices (if CSC)
or column indices (if CSR) of each nonzero matrix entry held in data

• indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each entry
provides the index of the first column entry into the data and indexvals arrays, e.g. if indexptr[3]=7,
then the first nonzero entry in the fourth column of the matrix is located in data[7], and is located in row
indexvals[7] of the matrix. The last entry contains the total number of nonzero values in the matrix and
hence points one past the end of the active data in the data and indexvals arrays. For CSR matrices, each
entry provides the index of the first row entry into the data and indexvals arrays.

The following pointers are added to the SUNMATRIX_SPARSE content structure for user convenience, to provide a
more intuitive interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating a
sparse SUNMatrix, based on the sparse matrix storage type.

• rowvals - pointer to indexvals when sparsetype is CSC_MAT, otherwise set to NULL.

• colptrs - pointer to indexptrs when sparsetype is CSC_MAT, otherwise set to NULL.

• colvals - pointer to indexvals when sparsetype is CSR_MAT, otherwise set to NULL.

• rowptrs - pointer to indexptrs when sparsetype is CSR_MAT, otherwise set to NULL.

For example, the 5× 4 matrix 
0 3 1 0
3 0 0 2
0 7 0 0
1 0 0 9
0 0 0 5


could be stored as a CSC matrix in this structure as either

M = 5;
N = 4;
NNZ = 8;
NP = N;

(continues on next page)

528 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

(continued from previous page)

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};
sparsetype = CSC_MAT;
indexvals = {1, 3, 0, 2, 0, 1, 3, 4};
indexptrs = {0, 2, 4, 5, 8};

or

M = 5;
N = 4;
NNZ = 10;
NP = N;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};
sparsetype = CSC_MAT;
indexvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};
indexptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with * may contain any
values). Note in both cases that the final value in indexptrs is 8, indicating the total number of nonzero entries in the
matrix.

Similarly, in CSR format, the same matrix could be stored as

M = 5;
N = 4;
NNZ = 8;
NP = M;
data = {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.0};
sparsetype = CSR_MAT;
indexvals = {1, 2, 0, 3, 1, 0, 3, 3};
indexptrs = {0, 2, 4, 5, 7, 8};

The header file to be included when using this module is sunmatrix/sunmatrix_sparse.h.

The following macros are provided to access the content of a SUNMATRIX_SPARSE matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _S denotes that these are specific
to the sparse version.

SM_CONTENT_S(A)
This macro gives access to the contents of the sparse SUNMatrix A.

The assignment A_cont = SM_CONTENT_S(A) sets A_cont to be a pointer to the sparse SUNMatrix content
structure.

Implementation:

#define SM_CONTENT_S(A) ((SUNMatrixContent_Sparse)(A->content))

SM_ROWS_S(A)
Access the number of rows in the sparse SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows = SM_ROWS_S(A)
sets A_rows to be the number of rows in the matrix A. Similarly, the assignment SM_ROWS_S(A) = A_rows sets
the number of columns in A to equal A_rows.

Implementation:

9.8. The SUNMATRIX_SPARSE Module 529

User Documentation for ARKODE, v6.3.0

Fig. 9.2: Diagram of the storage for a compressed-sparse-column matrix of type SUNMATRIX_SPARSE: Here A
is an M × N sparse CSC matrix with storage for up to NNZ nonzero entries (the allocated length of both data and
indexvals). The entries in indexvals may assume values from 0 to M-1, corresponding to the row index (zero-
based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the row i, column
j entry of A (again, zero-based) denoted as A(i,j). The indexptrs array contains N+1 entries; the first N denote the
starting index of each column within the indexvals and data arrays, while the final entry points one past the final
nonzero entry. Here, although NNZ values are allocated, only nz are actually filled in; the greyed-out portions of data
and indexvals indicate extra allocated space.

530 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

#define SM_ROWS_S(A) (SM_CONTENT_S(A)->M)

SM_COLUMNS_S(A)
Access the number of columns in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_COLUMNS_S(A) (SM_CONTENT_S(A)->N)

SM_NNZ_S(A)
Access the allocated number of nonzeros in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used
either to retrieve or to set the value.

Implementation:

#define SM_NNZ_S(A) (SM_CONTENT_S(A)->NNZ)

SM_NP_S(A)
Access the number of index pointers NP in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either
to retrieve or to set the value.

Implementation:

#define SM_NP_S(A) (SM_CONTENT_S(A)->NP)

SM_SPARSETYPE_S(A)
Access the sparsity type parameter in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_SPARSETYPE_S(A) (SM_CONTENT_S(A)->sparsetype)

SM_DATA_S(A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_S(A) sets A_data to be a pointer to the first component of the data array
for the sparse SUNMatrix A. The assignment SM_DATA_S(A) = A_data sets the data array of A to be A_data
by storing the pointer A_data.

Implementation:

#define SM_DATA_S(A) (SM_CONTENT_S(A)->data)

SM_INDEXVALS_S(A)
This macro gives access to the indexvals pointer for the matrix entries.

The assignment A_indexvals = SM_INDEXVALS_S(A) sets A_indexvals to be a pointer to the array of index
values (i.e. row indices for a CSC matrix, or column indices for a CSR matrix) for the sparse SUNMatrix A.

Implementation:

#define SM_INDEXVALS_S(A) (SM_CONTENT_S(A)->indexvals)

9.8. The SUNMATRIX_SPARSE Module 531

User Documentation for ARKODE, v6.3.0

SM_INDEXPTRS_S(A)
This macro gives access to the indexptrs pointer for the matrix entries.

The assignment A_indexptrs = SM_INDEXPTRS_S(A) sets A_indexptrs to be a pointer to the array of index
pointers (i.e. the starting indices in the data/indexvals arrays for each row or column in CSR or CSC formats,
respectively).

Implementation:

#define SM_INDEXPTRS_S(A) (SM_CONTENT_S(A)->indexptrs)

The SUNMATRIX_SPARSE module defines sparse implementations of all matrix operations listed in §9.2. Their
names are obtained from those in that section by appending the suffix _Sparse (e.g. SUNMatCopy_Sparse). The
module SUNMATRIX_SPARSE provides the following additional user-callable routines:

SUNMatrix SUNSparseMatrix(sunindextype M, sunindextype N, sunindextype NNZ, int sparsetype, SUNContext
sunctx)

This constructor function creates and allocates memory for a sparse SUNMatrix. Its arguments are the number
of rows and columns of the matrix, M and N, the maximum number of nonzeros to be stored in the matrix, NNZ,
and a flag sparsetype indicating whether to use CSR or CSC format (valid choices are CSR_MAT or CSC_MAT).

SUNMatrix SUNSparseFromDenseMatrix(SUNMatrix A, sunrealtype droptol, int sparsetype)
This constructor function creates a new sparse matrix from an existing SUNMATRIX_DENSE object by copying
all values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

• A must have type SUNMATRIX_DENSE

• droptol must be non-negative

• sparsetype must be either CSC_MAT or CSR_MAT

The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

SUNMatrix SUNSparseFromBandMatrix(SUNMatrix A, sunrealtype droptol, int sparsetype)
This constructor function creates a new sparse matrix from an existing SUNMATRIX_BAND object by copying
all values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

• A must have type SUNMATRIX_BAND

• droptol must be non-negative

• sparsetype must be either CSC_MAT or CSR_MAT.

The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

SUNErrCode SUNSparseMatrix_Realloc(SUNMatrix A)
This function reallocates internal storage arrays in a sparse matrix so that the resulting sparse matrix has no wasted
space (i.e. the space allocated for nonzero entries equals the actual number of nonzeros, indexptrs[NP]).
Returns a SUNErrCode.

SUNErrCode SUNSparseMatrix_Reallocate(SUNMatrix A, sunindextype NNZ)
Function to reallocate internal sparse matrix storage arrays so that the resulting sparse matrix has storage for a
specified number of nonzeros. Returns a SUNErrCode.

void SUNSparseMatrix_Print(SUNMatrix A, FILE *outfile)
This function prints the content of a sparse SUNMatrix to the output stream specified by outfile. Note: std-
out or stderr may be used as arguments for outfile to print directly to standard output or standard error,
respectively.

532 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

sunindextype SUNSparseMatrix_Rows(SUNMatrix A)
This function returns the number of rows in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_Columns(SUNMatrix A)
This function returns the number of columns in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_NNZ(SUNMatrix A)
This function returns the number of entries allocated for nonzero storage for the sparse SUNMatrix.

sunindextype SUNSparseMatrix_NP(SUNMatrix A)
This function returns the number of index pointers for the sparse SUNMatrix (the indexptrs array has NP+1
entries).

int SUNSparseMatrix_SparseType(SUNMatrix A)
This function returns the storage type (CSR_MAT or CSC_MAT) for the sparse SUNMatrix.

sunrealtype *SUNSparseMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the sparse SUNMatrix.

sunindextype *SUNSparseMatrix_IndexValues(SUNMatrix A)
This function returns a pointer to index value array for the sparse SUNMatrix – for CSR format this is the column
index for each nonzero entry, for CSC format this is the row index for each nonzero entry.

sunindextype *SUNSparseMatrix_IndexPointers(SUNMatrix A)
This function returns a pointer to the index pointer array for the sparse SUNMatrix – for CSR format this is the
location of the first entry of each row in the data and indexvalues arrays, for CSC format this is the location
of the first entry of each column.

Note

Within the SUNMatMatvec_Sparse routine, internal consistency checks are performed to ensure that the matrix is
called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL, NVEC-
TOR_OPENMP, NVECTOR_PTHREADS, and NVECTOR_CUDA when using managed memory. As additional
compatible vector implementations are added to SUNDIALS, these will be included within this compatibility check.

9.9 The SUNMATRIX_SLUNRLOC Module

The SUNMATRIX_SLUNRLOC module is an interface to the SuperMatrix structure provided by the SuperLU_-
DIST sparse matrix factorization and solver library written by X. Sherry Li and collaborators [8, 50, 76, 77]. It is
designed to be used with the SuperLU_DIST SUNLinearSolver module discussed in §10.15. To this end, it defines
the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_SLUNRloc {
sunbooleantype own_data;
gridinfo_t *grid;
sunindextype *row_to_proc;
pdgsmv_comm_t *gsmv_comm;
SuperMatrix *A_super;
SuperMatrix *ACS_super;

};

A more complete description of the this content field is given below:

• own_data – a flag which indicates if the SUNMatrix is responsible for freeing A_super

9.9. The SUNMATRIX_SLUNRLOC Module 533

User Documentation for ARKODE, v6.3.0

• grid – pointer to the SuperLU_DIST structure that stores the 2D process grid

• row_to_proc – a mapping between the rows in the matrix and the process it resides on; will be NULL until the
SUNMatMatvecSetup routine is called

• gsmv_comm – pointer to the SuperLU_DIST structure that stores the communication information needed for
matrix-vector multiplication; will be NULL until the SUNMatMatvecSetup routine is called

• A_super – pointer to the underlying SuperLU_DIST SuperMatrix with Stype = SLU_NR_loc, Dtype =
SLU_D, Mtype = SLU_GE; must have the full diagonal present to be used with SUNMatScaleAddI routine

• ACS_super – a column-sorted version of the matrix needed to perform matrix-vector multiplication; will be
NULL until the routine SUNMatMatvecSetup routine is called

The header file to include when using this module is sunmatrix/sunmatrix_slunrloc.h. The installed module
library to link to is libsundials_sunmatrixslunrloc .lib where .lib is typically .so for shared libraries and .a for
static libraries.

9.9.1 SUNMATRIX_SLUNRLOC Functions

The SUNMATRIX_SLUNRLOC module provides the following user-callable routines:

SUNMatrix SUNMatrix_SLUNRloc(SuperMatrix *Asuper, gridinfo_t *grid, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNMATRIX_SLUNRLOC object. Its arguments
are a fully-allocated SuperLU_DIST SuperMatrixwith Stype = SLU_NR_loc, Dtype = SLU_D, Mtype =
SLU_GE and an initialized SuperLU_DIST 2D process grid structure. It returns a SUNMatrix object if Asuper
is compatible else it returns NULL.

void SUNMatrix_SLUNRloc_Print(SUNMatrix A, FILE *fp)
This function prints the underlying SuperMatrix content. It is useful for debugging. Its arguments are the
SUNMatrix object and a FILE pointer to print to. It returns void.

SuperMatrix *SUNMatrix_SLUNRloc_SuperMatrix(SUNMatrix A)
This function returns the underlying SuperMatrix of A. Its only argument is the SUNMatrix object to access.

gridinfo_t *SUNMatrix_SLUNRloc_ProcessGrid(SUNMatrix A)
This function returns the SuperLU_DIST 2D process grid associated with A. Its only argument is the SUNMatrix
object to access.

sunbooleantype SUNMatrix_SLUNRloc_OwnData(SUNMatrix A)
This function returns true if the SUNMatrix object is responsible for freeing the underlying SuperMatrix, oth-
erwise it returns false. Its only argument is the SUNMatrix object to access.

The SUNMATRIX_SLUNRLOC module also defines implementations of all generic SUNMatrix operations listed in
§9.2:

• SUNMatGetID_SLUNRloc – returns SUNMATRIX_SLUNRLOC

• SUNMatClone_SLUNRloc

• SUNMatDestroy_SLUNRloc

• SUNMatSpace_SLUNRloc – this only returns information for the storage within the matrix interface, i.e. storage
for row_to_proc

• SUNMatZero_SLUNRloc

• SUNMatCopy_SLUNRloc

• SUNMatScaleAdd_SLUNRloc – performs A = cA+B, where A and B must have the same sparsity pattern

534 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

• SUNMatScaleAddI_SLUNRloc – performs A = cA+ I , where the diagonal of A must be present

• SUNMatMatvecSetup_SLUNRloc – initializes the SuperLU_DIST parallel communication structures needed to
perform a matrix-vector product; only needs to be called before the first call to SUNMatMatvec() or if the matrix
changed since the last setup

• SUNMatMatvec_SLUNRloc

9.10 The SUNMATRIX_GINKGO Module

Added in version 6.4.0.

The SUNMATRIX_GINKGO implementation of the SUNMatrixAPI provides an interface to the matrix data structure
for the Ginkgo linear algebra library [11]. Ginkgo provides several different matrix formats and linear solvers which
can run on a variety of hardware, such as NVIDIA, AMD, and Intel GPUs as well as multicore CPUs. Since Ginkgo is
a modern C++ library, SUNMATRIX_GINKGO is also written in modern C++ (it requires C++14). Unlike most other
SUNDIALS modules, it is a header only library. To use the SUNMATRIX_GINKGO SUNMatrix, users will need to
include sunmatrix/sunmatrix_ginkgo.hpp. More instructions on building SUNDIALS with Ginkgo enabled are
given in §16.3.18. For instructions on building and using Ginkgo itself, refer to the Ginkgo website and documentation.

Note

It is assumed that users of this module are aware of how to use Ginkgo. This module does not try to encapsulate
Ginkgo matrices, rather it provides a lightweight iteroperability layer between Ginkgo and SUNDIALS.

The SUNMATRIX_GINKGO module is defined by the sundials::ginkgo::Matrix templated class:

template<typename GkoMatType>
class Matrix : public sundials::impl::BaseMatrix, public sundials::ConvertibleTo<SUNMatrix>;

9.10.1 Compatible Vectors

The N_Vector to use with the SUNLINEARSOLVER_GINKGO module depends on the gko::Executor uti-
lized. That is, when using the gko::CudaExecutor you should use a CUDA capable N_Vector (e.g., §8.10),
gko::HipExecutor goes with a HIP capable N_Vector (e.g., §8.11), gko::DpcppExecutor goes with a
DPC++/SYCL capable N_Vector (e.g., §8.12), and gko::OmpExecutor goes with a CPU based N_Vector (e.g., §8.6).
Specifically, what makes a N_Vector compatible with different Ginkgo executors is where they store the data. The GPU
enabled Ginkgo executors need the data to reside on the GPU, so the N_Vectormust implement N_VGetDeviceArray-
Pointer() and keep the data in GPU memory. The CPU-only enabled Ginkgo executors (e.g, gko::OmpExecutor
and gko::ReferenceExecutor) need data to reside on the CPU and will use N_VGetArrayPointer() to access the
N_Vector data.

9.10. The SUNMATRIX_GINKGO Module 535

https://ginkgo-project.github.io/

User Documentation for ARKODE, v6.3.0

9.10.2 Using SUNMATRIX_GINKGO

To use the SUNMATRIX_GINKGO module, we begin by creating an instance of a Ginkgo matrix using Ginkgo’s API.
For example, below we create a Ginkgo sparse matrix that uses the CSR storage format and then fill the diagonal of the
matrix with ones to make an identity matrix:

auto gko_matrix{gko::matrix::Csr<sunrealtype, sunindextype>::create(gko_exec, matrix_dim)};
gko_matrix->read(gko::matrix_data<sunrealtype, sunindextype>::diag(matrix_dim, 1.0));

After we have a Ginkgo matrix object, we wrap it in an instance of the sundials::ginkgo::Matrix class. This
object can be provided to other SUNDIALS functions that expect a SUNMatrix object via implicit conversion, or the
Convert() method:

sundials::ginkgo::Matrix<gko::matrix::Csr> matrix{gko_matrix, sunctx};
SUNMatrix I1 = matrix.Convert(); // explicit conversion to SUNMatrix
SUNMatrix I2 = matrix; // implicit conversion to SUNMatrix

No further interaction with matrix is required from this point, and it is possible to to use the SUNMatrixAPI operating
on I1 or I2 (or if needed, via Ginkgo operations on gko_matrix).

Warning

SUNMatDestroy() should never be called on a SUNMatrix that was created via conversion from a sundi-
als::ginkgo::Matrix. Doing so may result in a double free.

9.10.3 SUNMATRIX_GINKGO API

In this section we list the public API of the sundials::ginkgo::Matrix class.

template<typename GkoMatType>
class Matrix : public sundials::impl::BaseMatrix, public sundials::ConvertibleTo<SUNMatrix>

Matrix() = default
Default constructor - means the matrix must be copied or moved to.

Matrix(std::shared_ptr<GkoMatType> gko_mat, SUNContext sunctx)
Constructs a Matrix from an existing Ginkgo matrix object.

Parameters

• gko_mat – A Ginkgo matrix object

• sunctx – The SUNDIALS simulation context object (SUNContext)

Matrix(Matrix &&that_matrix) noexcept
Move constructor.

Matrix(const Matrix &that_matrix)
Copy constructor (performs a deep copy).

Matrix &operator=(Matrix &&rhs) noexcept
Move assignment.

Matrix &operator=(const Matrix &rhs)
Copy assignment clones the gko::matrix and SUNMatrix. This is a deep copy (i.e. a new data array is
created).

536 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

virtual ~Matrix() = default;
Default destructor.

std::shared_ptr<GkoMatType> GkoMtx() const
Get the underlying Ginkgo matrix object.

std::shared_ptr<const gko::Executor> GkoExec() const
Get the gko::Executor associated with the Ginkgo matrix.

const gko::dim<2> &GkoSize() const
Get the size, i.e. gko::dim, for the Ginkgo matrix.

operator SUNMatrix() override
Implicit conversion to a SUNMatrix.

operator SUNMatrix() const override
Implicit conversion to a SUNMatrix.

SUNMatrix Convert() override
Explicit conversion to a SUNMatrix.

SUNMatrix Convert() const override
Explicit conversion to a SUNMatrix.

9.11 The SUNMATRIX_KOKKOSDENSE Module

Added in version 6.4.0.

The SUNMATRIX_KOKKOSDENSE SUNMatrix implementation provides a data structure for dense and dense
batched (block-diagonal) matrices using Kokkos [38, 118] and KokkosKernels [117] to support a variety of back-
ends including serial, OpenMP, CUDA, HIP, and SYCL. Since Kokkos is a modern C++ library, the module is also
written in modern C++ (it requires C++14) as a header only library. To utilize this SUNMatrix users will need to
include sunmatrix/sunmatrix_kokkosdense.hpp. More instructions on building SUNDIALS with Kokkos and
KokkosKernels enabled are given in §16.3.23. For instructions on building and using Kokkos and KokkosKernels,
refer to the Kokkos and KokkosKernels. documentation.

9.11.1 Using SUNMATRIX_KOKKOSDENSE

The SUNMATRIX_KOKKOSDENSE module is defined by the DenseMatrix templated class in the sundi-
als::kokkos namespace:

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace,
class MemorySpace = typename ExecutionSpace::memory_space>

class DenseMatrix : public sundials::impl::BaseMatrix,
public sundials::ConvertibleTo<SUNMatrix>

To use the SUNMATRIX_KOKKOSDENSE module, we begin by constructing an instance of the Kokkos dense matrix
e.g.,

// Single matrix using the default execution space
sundials::kokkos::DenseMatrix<> A{rows, cols, sunctx};

// Batched (block-diagonal) matrix using the default execution space
(continues on next page)

9.11. The SUNMATRIX_KOKKOSDENSE Module 537

https://kokkos.github.io/kokkos-core-wiki/index.html
https://github.com/kokkos/kokkos-kernels/wiki

User Documentation for ARKODE, v6.3.0

(continued from previous page)

sundials::kokkos::DenseMatrix<> Abatch{blocks, rows, cols, sunctx};

// Batched (block-diagonal) matrix using the Cuda execution space
sundials::kokkos::DenseMatrix<Kokkos::Cuda> Abatch{blocks, rows, cols, sunctx};

// Batched (block-diagonal) matrix using the Cuda execution space and
// a non-default execution space instance
sundials::kokkos::DenseMatrix<Kokkos::Cuda> Abatch{blocks, rows, cols,

exec_space_instance,
sunctx};

Instances of the DenseMatrix class are implicitly or explicitly (using the Convert() method) convertible to a SUN-
Matrix e.g.,

sundials::kokkos::DenseMatrix<> A{rows, cols, sunctx};
SUNMatrix B = A; // implicit conversion to SUNMatrix
SUNMatrix C = A.Convert(); // explicit conversion to SUNMatrix

No further interaction with a DenseMatrix is required from this point, and it is possible to use the SUNMatrix API to
operate on B or C.

Warning

SUNMatDestroy() should never be called on a SUNMatrix that was created via conversion from a sundi-
als::kokkos::DenseMatrix. Doing so may result in a double free.

The underlying DenseMatrix can be extracted from a SUNMatrix using GetDenseMat() e.g.,

auto A_dense_mat = GetDenseMat<>(A_sunmat);

The SUNMATRIX_KOKKOSDENSE module is compatible with the NVECTOR_KOKKOS vector module (see
§8.14) and SUNLINEARSOLVER_KOKKOSDENSE linear solver module (see §10.19).

9.11.2 SUNMATRIX_KOKKOSDENSE API

In this section we list the public API of the sundials::kokkos::DenseMatrix class.

template<class ExeccutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = typename
ExecutionSpace::memory_space>
class DenseMatrix : public sundials::impl::BaseMatrix, public sundials::ConvertibleTo<SUNMatrix>

using exec_space = ExecutionSpace;

using memory_space = MemorySpace;

using view_type = Kokkos::View<sunrealtype***, memory_space>;

using size_type = typename view_type::size_type;

using range_policy = Kokkos::MDRangePolicy<exec_space, Kokkos::Rank<3>>;

using team_policy = typename Kokkos::TeamPolicy<exec_space>;

538 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

using member_type = typename Kokkos::TeamPolicy<exec_space>::member_type;

DenseMatrix() = default
Default constructor – the matrix must be copied or moved to.

DenseMatrix(size_type rows, size_type cols, SUNContext sunctx)
Constructs a single DenseMatrix using the default execution space instance.

Parameters

• rows – number of matrix rows

• cols – number of matrix columns

• sunctx – the SUNDIALS simulation context object (SUNContext)

DenseMatrix(size_type rows, size_type cols, exec_space ex, SUNContext sunctx)
Constructs a single DenseMatrix using the provided execution space instance.

Parameters

• rows – number of matrix rows

• cols – number of matrix columns

• ex – an execution space

• sunctx – the SUNDIALS simulation context object (SUNContext)

DenseMatrix(size_type blocks, size_type block_rows, size_type block_cols, SUNContext sunctx)
Constructs a batched (block-diagonal) DenseMatrix using the default execution space instance.

Parameters

• blocks – number of matrix blocks

• block_rows – number of rows in a block

• block_cols – number of columns in a block

• sunctx – the SUNDIALS simulation context object (SUNContext)

DenseMatrix(size_type blocks, size_type block_rows, size_type block_cols, exec_space ex, SUNContext
sunctx)

Constructs a batched (block-diagonal) DenseMatrix using the provided execution space instance.

Parameters

• blocks – number of matrix blocks

• block_rows – number of rows in a block

• block_cols – number of columns in a block

• ex – an execution space

• sunctx – the SUNDIALS simulation context object (SUNContext)

DenseMatrix(DenseMatrix &&that_matrix) noexcept
Move constructor.

DenseMatrix(const DenseMatrix &that_matrix)
Copy constructor. This creates a shallow clone of the Matrix, i.e., it creates a new Matrix with the same
properties, such as size, but it does not copy the data.

9.11. The SUNMATRIX_KOKKOSDENSE Module 539

User Documentation for ARKODE, v6.3.0

DenseMatrix &operator=(DenseMatrix &&rhs) noexcept
Move assignment.

DenseMatrix &operator=(const DenseMatrix &rhs)
Copy assignment. This creates a shallow clone of the Matrix, i.e., it creates a new Matrix with the same
properties, such as size, but it does not copy the data.

virtual ~DenseMatrix() = default;
Default destructor.

exec_space ExecSpace()
Get the execution space instance used by the matrix.

view_type View()
Get the underlying Kokkos view with extents {blocks, block_rows, block_cols}.

size_type Blocks()
Get the number of blocks i.e., extent(0).

size_type BlockRows()
Get the number of rows in a block i.e., extent(1).

size_type BlockCols()
Get the number of columns in a block i.e., extent(2).

size_type Rows()
Get the number of rows in the block-diagonal matrix i.e., extent(0) * extent(1).

size_type Cols()
Get the number of columns in the block-diagonal matrix i.e., extent(0) * extent(2).

operator SUNMatrix() override
Implicit conversion to a SUNMatrix.

operator SUNMatrix() const override
Implicit conversion to a SUNMatrix.

SUNMatrix Convert() override
Explicit conversion to a SUNMatrix.

SUNMatrix Convert() const override
Explicit conversion to a SUNMatrix.

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = typename
ExecutionSpace::memory_space>
inline DenseMatrix<MatrixType> *GetDenseMat(SUNMatrix A)

Get the dense matrix wrapped by a SUNMatrix

540 Chapter 9. Matrix Data Structures

User Documentation for ARKODE, v6.3.0

9.12 SUNMATRIX Examples

There are SUNMatrix examples that may be installed for each implementation, that make use of the functions in test_-
sunmatrix.c. These example functions show simple usage of the SUNMatrix family of functions. The inputs to the
examples depend on the matrix type, and are output to stdout if the example is run without the appropriate number
of command-line arguments.

The following is a list of the example functions in test_sunmatrix.c:

• Test_SUNMatGetID: Verifies the returned matrix ID against the value that should be returned.

• Test_SUNMatClone: Creates clone of an existing matrix, copies the data, and checks that their values match.

• Test_SUNMatZero: Zeros out an existing matrix and checks that each entry equals 0.0.

• Test_SUNMatCopy: Clones an input matrix, copies its data to a clone, and verifies that all values match.

• Test_SUNMatScaleAdd: Given an input matrix A and an input identity matrix I , this test clones and copies A
to a new matrix B, computes B = −B +B, and verifies that the resulting matrix entries equal 0. Additionally,
if the matrix is square, this test clones and copies A to a new matrix D, clones and copies I to a new matrix C,
computes D = D + I and C = C +A using SUNMatScaleAdd(), and then verifies that C = D.

• Test_SUNMatScaleAddI: Given an input matrix A and an input identity matrix I , this clones and copies I to a
new matrixB, computesB = −B+I using SUNMatScaleAddI(), and verifies that the resulting matrix entries
equal 0.

• Test_SUNMatMatvecSetup: verifies that SUNMatMatvecSetup() can be called.

• Test_SUNMatMatvec Given an input matrix A and input vectors x and y such that y = Ax, this test has dif-
ferent behavior depending on whether A is square. If it is square, it clones and copies A to a new matrix B,
computes B = 3B + I using SUNMatScaleAddI(), clones y to new vectors w and z, computes z = Bx using
SUNMatMatvec(), computes w = 3y + x using N_VLinearSum, and verifies that w == z. If A is not square,
it just clones y to a new vector z, computes :math:`z=Ax using SUNMatMatvec(), and verifies that y = z.

• Test_SUNMatSpace: verifies that SUNMatSpace() can be called, and outputs the results to stdout.

9.13 SUNMATRIX functions used by ARKODE

In Table Table 9.2, we list the matrix functions in the SUNMatrixmodule used within the ARKODE package. The table
also shows, for each function, which of the code modules uses the function. The main ARKODE time step modules,
ARKStep, ERKStep, and MRIStep, do not call any SUNMatrix functions directly, so the table columns are specific
to the ARKLS interface and the ARKBANDPRE and ARKBBDPRE preconditioner modules. We further note that
the ARKLS interface only utilizes these routines when supplied with a matrix-based linear solver, i.e. the SUNMatrix
object (J or M) passed to ARKStepSetLinearSolver() or ARKStepSetMassLinearSolver() was not NULL.

At this point, we should emphasize that the ARKODE user does not need to know anything about the usage of matrix
functions by the ARKODE code modules in order to use ARKODE. The information is presented as an implementation
detail for the interested reader.

9.12. SUNMATRIX Examples 541

User Documentation for ARKODE, v6.3.0

Table 9.2: List of matrix functions usage by ARKODE code modules

ARKLS ARKBANDPRE ARKBBDPRE
SUNMatGetID() X
SUNMatClone() X
SUNMatDestroy() X X X
SUNMatZero() X X X
SUNMatCopy() X X X
SUNMatScaleAddI() X X X
SUNMatScaleAdd() 1
SUNMatMatvec() 1
SUNMatMatvecSetup() 1,2
SUNMatSpace() 2 2 2

1. These matrix functions are only used for problems involving a non-identity mass matrix.

2. These matrix functions are optionally used, in that these are only called if they are implemented in the SUNMatrix
module that is being used (i.e. their function pointers are non-NULL). If not supplied, these modules will assume
that the matrix requires no storage.

We note that both the ARKBANDPRE and ARKBBDPRE preconditioner modules are hard-coded to use the
SUNDIALS-supplied band SUNMatrix type, so the most useful information above for user-supplied SUNMatrix im-
plementations is the column relating to ARKLS requirements.

542 Chapter 9. Matrix Data Structures

Chapter 10

Linear Algebraic Solvers

For problems that require the solution of linear systems of equations, the SUNDIALS packages operate using generic
linear solver modules defined through the SUNLinearSolver, or “SUNLinSol”, API. This allows SUNDIALS pack-
ages to utilize any valid SUNLinSol implementation that provides a set of required functions. These functions can be
divided into three categories. The first are the core linear solver functions. The second group consists of “set” routines
to supply the linear solver object with functions provided by the SUNDIALS package, or for modification of solver
parameters. The last group consists of “get” routines for retrieving artifacts (statistics, residual vectors, etc.) from the
linear solver. All of these functions are defined in the header file sundials/sundials_linearsolver.h.

The implementations provided with SUNDIALS work in coordination with the SUNDIALS N_Vector, and optionally
SUNMatrix, modules to provide a set of compatible data structures and solvers for the solution of linear systems
using direct or iterative (matrix-based or matrix-free) methods. Moreover, advanced users can provide a customized
SUNLinearSolver implementation to any SUNDIALS package, particularly in cases where they provide their own
N_Vector and/or SUNMatrix modules.

Historically, the SUNDIALS packages have been designed to specifically leverage the use of either direct linear solvers
or matrix-free, scaled, preconditioned, iterative linear solvers. However, matrix-based iterative linear solvers are also
supported.

The iterative linear solvers packaged with SUNDIALS leverage scaling and preconditioning, as applicable, to balance
error between solution components and to accelerate convergence of the linear solver. To this end, instead of solving
the linear system Ax = b directly, these apply the underlying iterative algorithm to the transformed system

Ãx̃ = b̃ (10.1)

where

Ã = S1P
−1
1 AP−12 S−12 ,

b̃ = S1P
−1
1 b,

x̃ = S2P2x,

(10.2)

and where

• P1 is the left preconditioner,

• P2 is the right preconditioner,

• S1 is a diagonal matrix of scale factors for P−11 b,

• S2 is a diagonal matrix of scale factors for P2x.

543

User Documentation for ARKODE, v6.3.0

SUNDIALS solvers request that iterative linear solvers stop based on the 2-norm of the scaled preconditioned residual
meeting a prescribed tolerance, i.e., ∥∥∥b̃− Ãx̃∥∥∥

2
< tol.

When provided an iterative SUNLinSol implementation that does not support the scaling matrices S1 and S2, the
SUNDIALS packages will adjust the value of tol accordingly (see the iterative linear tolerance section that follows for
more details). In this case, they instead request that iterative linear solvers stop based on the criterion∥∥P−11 b− P−11 Ax

∥∥
2
< tol.

We note that the corresponding adjustments to tol in this case may not be optimal, in that they cannot balance error
between specific entries of the solution x, only the aggregate error in the overall solution vector.

We further note that not all of the SUNDIALS-provided iterative linear solvers support the full range of the above
options (e.g., separate left/right preconditioning), and that some of the SUNDIALS packages only utilize a subset of
these options. Further details on these exceptions are described in the documentation for each SUNLinearSolver
implementation, or for each SUNDIALS package.

For users interested in providing their own SUNLinSol module, the following section presents the SUNLinSol API
and its implementation beginning with the definition of SUNLinSol functions in §10.1.1 – §10.1.3. This is followed
by the definition of functions supplied to a linear solver implementation in §10.1.4. The linear solver return codes
are described in Table 10.1. The SUNLinearSolver type and the generic SUNLinSol module are defined in §10.1.6.
§10.1.8 lists the requirements for supplying a custom SUNLinSol module and discusses some intended use cases. Users
wishing to supply their own SUNLinSol module are encouraged to use the SUNLinSol implementations provided with
SUNDIALS as a template for supplying custom linear solver modules. The section that then follows describes the
SUNLinSol functions required by this SUNDIALS package, and provides additional package specific details. Then the
remaining sections of this chapter present the SUNLinSol modules provided with SUNDIALS.

10.1 The SUNLinearSolver API

The SUNLinSol API defines several linear solver operations that enable SUNDIALS packages to utilize this API.
These functions can be divided into three categories. The first are the core linear solver functions. The second consist
of “set” routines to supply the linear solver with functions provided by the SUNDIALS packages and to modify solver
parameters. The final group consists of “get” routines for retrieving linear solver statistics. All of these functions are
defined in the header file sundials/sundials_linearsolver.h.

10.1.1 SUNLinearSolver core functions

The core linear solver functions consist of two required functions: SUNLinSolGetType() returns the linear solver
type, and SUNLinSolSolve() solves the linear system Ax = b.

The remaining optional functions return the solver ID (SUNLinSolGetID()), initialize the linear solver object once all
solver-specific options have been set (SUNLinSolInitialize()), set up the linear solver object to utilize an updated
matrix A (SUNLinSolSetup()), and destroy a linear solver object (SUNLinSolFree()).

enum SUNLinearSolver_Type
An identifier indicating the type of linear solver.

Note

See §10.1.8.1 for more information on intended use cases corresponding to the linear solver type.

544 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

enumerator SUNLINEARSOLVER_DIRECT
The linear solver requires a matrix, and computes an “exact” solution to the linear system defined by that
matrix.

enumerator SUNLINEARSOLVER_ITERATIVE
The linear solver does not require a matrix (though one may be provided), and computes an inexact solution
to the linear system using a matrix-free iterative algorithm. That is it solves the linear system defined by the
package-supplied ATimes routine (see SUNLinSolSetATimes() below), even if that linear system differs
from the one encoded in the matrix object (if one is provided). As the solver computes the solution only
inexactly (or may diverge), the linear solver should check for solution convergence/accuracy as appropriate.

enumerator SUNLINEARSOLVER_MATRIX_ITERATIVE
The linear solver module requires a matrix, and computes an inexact solution to the linear system defined
by that matrix using an iterative algorithm. That is it solves the linear system defined by the matrix ob-
ject even if that linear system differs from that encoded by the package-supplied ATimes routine. As the
solver computes the solution only inexactly (or may diverge), the linear solver should check for solution
convergence/accuracy as appropriate.

enumerator SUNLINEARSOLVER_MATRIX_EMBEDDED
The linear solver sets up and solves the specified linear system at each linear solve call. Any matrix-related
data structures are held internally to the linear solver itself, and are not provided by the SUNDIALS package.

SUNLinearSolver_Type SUNLinSolGetType(SUNLinearSolver LS)
Returns the SUNLinearSolver_Type type identifier for the linear solver.

Usage:

type = SUNLinSolGetType(LS);

SUNLinearSolver_ID SUNLinSolGetID(SUNLinearSolver LS)
Returns a non-negative linear solver identifier (of type int) for the linear solver LS.

Return value:

Non-negative linear solver identifier (of type int), defined by the enumeration SUNLinearSolver_-
ID, with values shown in Table 10.2 and defined in the sundials_linearsolver.h header file.

Usage:

id = SUNLinSolGetID(LS);

Note

It is recommended that a user-supplied SUNLinearSolver return the SUNLINEARSOLVER_CUSTOM identifier.

SUNErrCode SUNLinSolInitialize(SUNLinearSolver LS)
Performs linear solver initialization (assuming that all solver-specific options have been set).

Return value:

A SUNErrCode.

Usage:

retval = SUNLinSolInitialize(LS);

10.1. The SUNLinearSolver API 545

User Documentation for ARKODE, v6.3.0

int SUNLinSolSetup(SUNLinearSolver LS, SUNMatrix A)
Performs any linear solver setup needed, based on an updated system SUNMatrixA. This may be called frequently
(e.g., with a full Newton method) or infrequently (for a modified Newton method), based on the type of integrator
and/or nonlinear solver requesting the solves.

Return value:

Zero for a successful call, a positive value for a recoverable failure, and a negative value for an unre-
coverable failure. Ideally this should return one of the generic error codes listed in Table 10.1.

Usage:

retval = SUNLinSolSetup(LS, A);

int SUNLinSolSolve(SUNLinearSolver LS, SUNMatrix A, N_Vector x, N_Vector b, sunrealtype tol)
This required function solves a linear system Ax = b.

Arguments:

• LS – a SUNLinSol object.

• A – a SUNMatrix object.

• x – an N_Vector object containing the initial guess for the solution of the linear system on input, and the
solution to the linear system upon return.

• b – an N_Vector object containing the linear system right-hand side.

• tol – the desired linear solver tolerance.

Return value:

Zero for a successful call, a positive value for a recoverable failure, and a negative value for an unre-
coverable failure. Ideally this should return one of the generic error codes listed in Table 10.1.

Notes:

Direct solvers: can ignore the tol argument.

Matrix-free solvers: (those that identify as SUNLINEARSOLVER_ITERATIVE) can ignore the SUN-
Matrix input A, and should rely on the matrix-vector product function supplied through the routine
SUNLinSolSetATimes().

Iterative solvers: (those that identify as SUNLINEARSOLVER_ITERATIVE or SUNLINEARSOLVER_-
MATRIX_ITERATIVE) should attempt to solve to the specified tolerance tol in a weighted 2-norm. If
the solver does not support scaling then it should just use a 2-norm.

Matrix-embedded solvers: should ignore the SUNMatrix input A as this will be NULL. It is assumed
that within this function, the solver will call interface routines from the relevant SUNDIALS package
to directly form the linear system matrix A, and then solve Ax = b before returning with the solution
x.

Usage:

retval = SUNLinSolSolve(LS, A, x, b, tol);

SUNErrCode SUNLinSolFree(SUNLinearSolver LS)
Frees memory allocated by the linear solver.

Return value:

A SUNErrCode.

Usage:

546 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

retval = SUNLinSolFree(LS);

10.1.2 SUNLinearSolver “set” functions

The following functions supply linear solver modules with functions defined by the SUNDIALS packages and modify
solver parameters. Only the routine for setting the matrix-vector product routine is required, and even then is only
required for matrix-free linear solver modules. Otherwise, all other set functions are optional. SUNLinSol implemen-
tations that do not provide the functionality for any optional routine should leave the corresponding function pointer
NULL instead of supplying a dummy routine.

SUNErrCode SUNLinSolSetATimes(SUNLinearSolver LS, void *A_data, SUNATimesFn ATimes)
Required for matrix-free linear solvers (otherwise optional).

Provides a SUNATimesFn function pointer, as well as a void* pointer to a data structure used by this routine, to
the linear solver object LS. SUNDIALS packages call this function to set the matrix-vector product function to
either a solver-provided difference-quotient via vector operations or a user-supplied solver-specific routine.

Return value:

A SUNErrCode.

Usage:

retval = SUNLinSolSetATimes(LS, A_data, ATimes);

SUNErrCode SUNLinSolSetPreconditioner(SUNLinearSolver LS, void *P_data, SUNPSetupFn Pset,
SUNPSolveFn Psol)

This optional routine provides SUNPSetupFn and SUNPSolveFn function pointers that implement the precon-
ditioner solves P−11 and P−12 from (10.2). This routine is called by a SUNDIALS package, which provides
translation between the generic Pset and Psol calls and the package- or user-supplied routines.

Return value:

A SUNErrCode.

Usage:

retval = SUNLinSolSetPreconditioner(LS, Pdata, Pset, Psol);

SUNErrCode SUNLinSolSetScalingVectors(SUNLinearSolver LS, N_Vector s1, N_Vector s2)
This optional routine provides left/right scaling vectors for the linear system solve. Here, s1 and s2 are vectors of
positive scale factors containing the diagonal of the matrices S1 and S2 from (10.2), respectively. Neither vector
needs to be tested for positivity, and a NULL argument for either indicates that the corresponding scaling matrix
is the identity.

Return value:

A SUNErrCode.

Usage:

retval = SUNLinSolSetScalingVectors(LS, s1, s2);

SUNErrCode SUNLinSolSetZeroGuess(SUNLinearSolver LS, sunbooleantype onoff)
This optional routine indicates if the upcoming SUNLinSolSolve() call will be made with a zero initial guess
(SUNTRUE) or a non-zero initial guess (SUNFALSE).

Return value:

10.1. The SUNLinearSolver API 547

User Documentation for ARKODE, v6.3.0

A SUNErrCode.

Usage:

retval = SUNLinSolSetZeroGuess(LS, onoff);

Notes:

It is assumed that the initial guess status is not retained across calls to SUNLinSolSolve(). As such,
the linear solver interfaces in each of the SUNDIALS packages call SUNLinSolSetZeroGuess()
prior to each call to SUNLinSolSolve().

10.1.3 SUNLinearSolver “get” functions

The following functions allow SUNDIALS packages to retrieve results from a linear solve. All routines are optional.

int SUNLinSolNumIters(SUNLinearSolver LS)
This optional routine should return the number of linear iterations performed in the most-recent “solve” call.

Usage:

its = SUNLinSolNumIters(LS);

sunrealtype SUNLinSolResNorm(SUNLinearSolver LS)
This optional routine should return the final residual norm from the most-recent “solve” call.

Usage:

rnorm = SUNLinSolResNorm(LS);

N_Vector SUNLinSolResid(SUNLinearSolver LS)
If an iterative method computes the preconditioned initial residual and returns with a successful solve without
performing any iterations (i.e., either the initial guess or the preconditioner is sufficiently accurate), then this
optional routine may be called by the SUNDIALS package. This routine should return the N_Vector containing
the preconditioned initial residual vector.

Usage:

rvec = SUNLinSolResid(LS);

Notes:

Since N_Vector is actually a pointer, and the results are not modified, this routine should not require
additional memory allocation. If the SUNLinSol object does not retain a vector for this purpose, then
this function pointer should be set to NULL in the implementation.

sunindextype SUNLinSolLastFlag(SUNLinearSolver LS)
This optional routine should return the last error flag encountered within the linear solver. Although not called
by the SUNDIALS packages directly, this may be called by the user to investigate linear solver issues after a
failed solve.

Usage:

lflag = SUNLinLastFlag(LS);

SUNErrCode SUNLinSolSpace(SUNLinearSolver LS, long int *lenrwLS, long int *leniwLS)
This optional routine should return the storage requirements for the linear solver LS:

548 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

• lrw is a long int containing the number of sunrealtype words

• liw is a long int containing the number of integer words.

This function is advisory only, for use by users to help determine their total space requirements.

Return value:

A SUNErrCode.

Usage:

retval = SUNLinSolSpace(LS, &lrw, &liw);

Deprecated since version 7.3.0: Work space functions will be removed in version 8.0.0.

10.1.4 Functions provided by SUNDIALS packages

To interface with SUNLinSol modules, the SUNDIALS packages supply a variety of routines for evaluating the matrix-
vector product, and setting up and applying the preconditioner. These package-provided routines translate between the
user-supplied ODE, DAE, or nonlinear systems and the generic linear solver API. The function types for these routines
are defined in the header file sundials/sundials_iterative.h, and are described below.

typedef int (*SUNATimesFn)(void *A_data, N_Vector v, N_Vector z)
Computes the action of a matrix on a vector, performing the operation z ← Av. Memory for z will already be
allocated prior to calling this function. The parameter A_data is a pointer to any information about A which the
function needs in order to do its job. The vector v should be left unchanged.

Return value:

Zero for a successful call, and non-zero upon failure.

typedef int (*SUNPSetupFn)(void *P_data)
Sets up any requisite problem data in preparation for calls to the corresponding SUNPSolveFn.

Return value:

Zero for a successful call, and non-zero upon failure.

typedef int (*SUNPSolveFn)(void *P_data, N_Vector r, N_Vector z, sunrealtype tol, int lr)
Solves the preconditioner equation Pz = r for the vector z. Memory for z will already be allocated prior to
calling this function. The parameter P_data is a pointer to any information about P which the function needs in
order to do its job (set up by the corresponding SUNPSetupFn). The parameter lr is input, and indicates whether
P is to be taken as the left or right preconditioner: lr = 1 for left and lr = 2 for right. If preconditioning is on
one side only, lr can be ignored. If the preconditioner is iterative, then it should strive to solve the preconditioner
equation so that

‖Pz − r‖wrms < tol

where the error weight vector for the WRMS norm may be accessed from the main package memory structure.
The vector r should not be modified by the SUNPSolveFn.

Return value:

Zero for a successful call, a negative value for an unrecoverable failure condition, or a positive value
for a recoverable failure condition (thus the calling routine may reattempt the solution after updating
preconditioner data).

10.1. The SUNLinearSolver API 549

User Documentation for ARKODE, v6.3.0

10.1.5 SUNLinearSolver return codes

The functions provided to SUNLinSol modules by each SUNDIALS package, and functions within the SUNDIALS-
provided SUNLinSol implementations, utilize a common set of return codes, listed in Table 10.1. These adhere to a
common pattern:

• 0 indicates success

• a positive value corresponds to a recoverable failure, and

• a negative value indicates a non-recoverable failure.

Aside from this pattern, the actual values of each error code provide additional information to the user in case of a
linear solver failure.

Table 10.1: SUNLinSol error codes

Error code Value Meaning
SUN_SUCCESS 0 successful call or converged solve
SUNLS_ATIMES_NULL -804 the Atimes function is NULL
SUNLS_ATIMES_FAIL_-
UNREC

-805 an unrecoverable failure occurred in the ATimes routine

SUNLS_PSET_FAIL_UN-
REC

-806 an unrecoverable failure occurred in the Pset routine

SUNLS_PSOLVE_NULL -807 the preconditioner solve function is NULL
SUNLS_PSOLVE_FAIL_-
UNREC

-808 an unrecoverable failure occurred in the Psolve routine

SUNLS_GS_FAIL -810 a failure occurred during Gram-Schmidt orthogonalization
(SPGMR/SPFGMR)

SUNLS_QRSOL_FAIL -811 a singular R matrix was encountered in a QR factorization
(SPGMR/SPFGMR)

SUNLS_RES_REDUCED 801 an iterative solver reduced the residual, but did not converge to the desired
tolerance

SUNLS_CONV_FAIL 802 an iterative solver did not converge (and the residual was not reduced)
SUNLS_ATIMES_FAIL_-
REC

803 a recoverable failure occurred in the ATimes routine

SUNLS_PSET_FAIL_REC 804 a recoverable failure occurred in the Pset routine
SUNLS_PSOLVE_FAIL_-
REC

805 a recoverable failure occurred in the Psolve routine

SUNLS_PACKAGE_FAIL_-
REC

806 a recoverable failure occurred in an external linear solver package

SUNLS_QRFACT_FAIL 807 a singular matrix was encountered during a QR factorization
(SPGMR/SPFGMR)

SUNLS_LUFACT_FAIL 808 a singular matrix was encountered during a LU factorization

550 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

10.1.6 The generic SUNLinearSolver module

SUNDIALS packages interact with linear solver implementations through the SUNLinearSolver class. A SUNLin-
earSolver is a pointer to the _generic_SUNLinearSolver structure:

typedef struct _generic_SUNLinearSolver *SUNLinearSolver

struct _generic_SUNLinearSolver
The structure defining the SUNDIALS linear solver class.

void *content
Pointer to the linear solver-specific member data

SUNLinearSolver_Ops ops
A virtual table of linear solver operations provided by a specific implementation

SUNContext sunctx
The SUNDIALS simulation context

The virtual table structure is defined as

typedef struct _generic_SUNLinearSolver_Ops *SUNLinearSolver_Ops

struct _generic_SUNLinearSolver_Ops
The structure defining SUNLinearSolver operations.

SUNLinearSolver_Type (*gettype)(SUNLinearSolver)
The function implementing SUNLinSolGetType()

SUNLinearSolver_ID (*getid)(SUNLinearSolver)
The function implementing SUNLinSolGetID()

SUNErrCode (*setatimes)(SUNLinearSolver, void*, SUNATimesFn)
The function implementing SUNLinSolSetATimes()

SUNErrCode (*setpreconditioner)(SUNLinearSolver, void*, SUNPSetupFn, SUNPSolveFn)
The function implementing SUNLinSolSetPreconditioner()

SUNErrCode (*setscalingvectors)(SUNLinearSolver, N_Vector, N_Vector)
The function implementing SUNLinSolSetScalingVectors()

SUNErrCode (*setzeroguess)(SUNLinearSolver, sunbooleantype)
The function implementing SUNLinSolSetZeroGuess()

SUNErrCode (*initialize)(SUNLinearSolver)
The function implementing SUNLinSolInitialize()

int (*setup)(SUNLinearSolver, SUNMatrix)
The function implementing SUNLinSolSetup()

int (*solve)(SUNLinearSolver, SUNMatrix, N_Vector, N_Vector, sunrealtype)
The function implementing SUNLinSolSolve()

int (*numiters)(SUNLinearSolver)
The function implementing SUNLinSolNumIters()

sunrealtype (*resnorm)(SUNLinearSolver)
The function implementing SUNLinSolResNorm()

10.1. The SUNLinearSolver API 551

User Documentation for ARKODE, v6.3.0

sunindextype (*lastflag)(SUNLinearSolver)
The function implementing SUNLinSolLastFlag()

SUNErrCode (*space)(SUNLinearSolver, long int*, long int*)
The function implementing SUNLinSolSpace()

N_Vector (*resid)(SUNLinearSolver)
The function implementing SUNLinSolResid()

SUNErrCode (*free)(SUNLinearSolver)
The function implementing SUNLinSolFree()

The generic SUNLinSol class defines and implements the linear solver operations defined in §10.1.1 – §10.1.3. These
routines are in fact only wrappers to the linear solver operations defined by a particular SUNLinSol implementation,
which are accessed through the ops field of the SUNLinearSolver structure. To illustrate this point we show below the
implementation of a typical linear solver operation from the SUNLinearSolver base class, namely SUNLinSolIni-
tialize(), that initializes a SUNLinearSolver object for use after it has been created and configured, and returns a
flag denoting a successful or failed operation:

int SUNLinSolInitialize(SUNLinearSolver S)
{
return ((int) S->ops->initialize(S));

}

10.1.7 Compatibility of SUNLinearSolver modules

Not all SUNLinearSolver implementations are compatible with all SUNMatrix and N_Vector implementations pro-
vided in SUNDIALS. More specifically, all of the SUNDIALS iterative linear solvers (SPGMR, SPFGMR, SPBCGS,
SPTFQMR, and PCG) are compatible with all of the SUNDIALS N_Vector modules, but the matrix-based direct
SUNLinSol modules are specifically designed to work with distinct SUNMatrix and N_Vector modules. In the list
below, we summarize the compatibility of each matrix-based SUNLinearSolvermodule with the various SUNMatrix
and N_Vector modules. For a more thorough discussion of these compatibilities, we defer to the documentation for
each individual SUNLinSol module in the sections that follow.

• Dense

– SUNMatrix: Dense or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• LapackDense

– SUNMatrix: Dense or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• Band

– SUNMatrix: Band or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• LapackBand

– SUNMatrix: Band or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• KLU

– SUNMatrix: Sparse or user-supplied

552 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• SuperLU_MT

– SUNMatrix: Sparse or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• SuperLU_Dist

– SUNMatrix: SLUNRLOC or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, Parallel, *hypre*, PETSc, or user-supplied

• Magma Dense

– SUNMatrix: Magma Dense or user-supplied

– N_Vector: HIP, RAJA, or user-supplied

• OneMKL Dense

– SUNMatrix: One MKL Dense or user-supplied

– N_Vector: SYCL, RAJA, or user-supplied

• cuSolverSp batchQR

– SUNMatrix: cuSparse or user-supplied

– N_Vector: CUDA, RAJA, or user-supplied

10.1.8 Implementing a custom SUNLinearSolver module

A particular implementation of the SUNLinearSolver module must:

• Specify the content field of the SUNLinSol module.

• Define and implement the required linear solver operations.

Note

The names of these routines should be unique to that implementation in order to permit using more than one
SUNLinSol module (each with different SUNLinearSolver internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a SUNLinearSolver
with the new content field and with ops pointing to the new linear solver operations.

We note that the function pointers for all unsupported optional routines should be set to NULL in the ops structure. This
allows the SUNDIALS package that is using the SUNLinSol object to know whether the associated functionality is
supported.

To aid in the creation of custom SUNLinearSolver modules the generic SUNLinearSolver module provides the
utility function SUNLinSolNewEmpty(). When used in custom SUNLinearSolver constructors this function will
ease the introduction of any new optional linear solver operations to the SUNLinearSolver API by ensuring that only
required operations need to be set.

SUNLinearSolver SUNLinSolNewEmpty(SUNContext sunctx)
This function allocates a new generic SUNLinearSolver object and initializes its content pointer and the func-
tion pointers in the operations structure to NULL.

Return value:

10.1. The SUNLinearSolver API 553

User Documentation for ARKODE, v6.3.0

If successful, this function returns a SUNLinearSolver object. If an error occurs when allocating
the object, then this routine will return NULL.

void SUNLinSolFreeEmpty(SUNLinearSolver LS)
This routine frees the generic SUNLinearSolver object, under the assumption that any implementation-specific
data that was allocated within the underlying content structure has already been freed. It will additionally test
whether the ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:

• LS – a SUNLinearSolver object

Additionally, a SUNLinearSolver implementation may do the following:

• Define and implement additional user-callable “set” routines acting on the SUNLinearSolver, e.g., for setting
various configuration options to tune the linear solver for a particular problem.

• Provide additional user-callable “get” routines acting on the SUNLinearSolver object, e.g., for returning various
solve statistics.

enum SUNLinearSolver_ID
Each SUNLinSol implementation included in SUNDIALS has a unique identifier specified in enumeration and
shown in Table 10.2. It is recommended that a user-supplied SUNLinSol implementation use the SUNLINEAR-
SOLVER_CUSTOM identifier.

Table 10.2: Identifiers associated with SUNLinearSolver modules sup-
plied with SUNDIALS

SUNLinSol ID Linear solver type ID
Value

SUNLINEARSOLVER_BAND Banded direct linear solver (internal) 0
SUNLINEARSOLVER_DENSE Dense direct linear solver (internal) 1
SUNLINEARSOLVER_KLU Sparse direct linear solver (KLU) 2
SUNLINEARSOLVER_LAPACKBAND Banded direct linear solver (LAPACK) 3
SUNLINEARSOLVER_LAPACKDENSE Dense direct linear solver (LAPACK) 4
SUNLINEARSOLVER_PCG Preconditioned conjugate gradient iterative solver 5
SUNLINEARSOLVER_SPBCGS Scaled-preconditioned BiCGStab iterative solver 6
SUNLINEARSOLVER_SPFGMR Scaled-preconditioned FGMRES iterative solver 7
SUNLINEARSOLVER_SPGMR Scaled-preconditioned GMRES iterative solver 8
SUNLINEARSOLVER_SPTFQMR Scaled-preconditioned TFQMR iterative solver 9
SUNLINEARSOLVER_SUPERLUDIST Parallel sparse direct linear solver (SuperLU_Dist) 10
SUNLINEARSOLVER_SUPERLUMT Threaded sparse direct linear solver (SuperLU_-

MT)
11

SUNLINEARSOLVER_CUSOLVERSP_-
BATCHQR

Sparse direct linear solver (CUDA) 12

SUNLINEARSOLVER_MAGMADENSE Dense or block-dense direct linear solver
(MAGMA)

13

SUNLINEARSOLVER_ONEMKLDENSE Dense or block-dense direct linear solver
(OneMKL)

14

SUNLINEARSOLVER_CUSTOM User-provided custom linear solver 15

554 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

10.1.8.1 Intended use cases

The SUNLinSol and SUNMATRIX APIs are designed to require a minimal set of routines to ease interfacing with
custom or third-party linear solver libraries. Many external solvers provide routines with similar functionality and thus
may require minimal effort to wrap within custom SUNMATRIX and SUNLinSol implementations. As SUNDIALS
packages utilize generic SUNLinSol modules they may naturally leverage user-supplied SUNLinearSolver imple-
mentations, thus there exist a wide range of possible linear solver combinations. Some intended use cases for both the
SUNDIALS-provided and user-supplied SUNLinSol modules are discussed in the sections below.

Direct linear solvers

Direct linear solver modules require a matrix and compute an “exact” solution to the linear system defined by the matrix.
SUNDIALS packages strive to amortize the high cost of matrix construction by reusing matrix information for multiple
nonlinear iterations or time steps. As a result, each package’s linear solver interface recomputes matrix information as
infrequently as possible.

Alternative matrix storage formats and compatible linear solvers that are not currently provided by, or interfaced with,
SUNDIALS can leverage this infrastructure with minimal effort. To do so, a user must implement custom SUNMA-
TRIX and SUNLinSol wrappers for the desired matrix format and/or linear solver following the APIs described in §9
and §10. This user-supplied SUNLinSol module must then self-identify as having SUNLINEARSOLVER_DIRECT type.

Matrix-free iterative linear solvers

Matrix-free iterative linear solver modules do not require a matrix, and instead compute an inexact solution to the linear
system defined by the package-supplied ATimes routine. SUNDIALS supplies multiple scaled, preconditioned iterative
SUNLinSol modules that support scaling, allowing packages to handle non-dimensionalization, and users to define
variables and equations as natural in their applications. However, for linear solvers that do not support left/right scaling,
SUNDIALS packages must instead adjust the tolerance supplied to the linear solver to compensate (see the iterative
linear tolerance section that follows for more details) – this strategy may be non-optimal since it cannot handle situations
where the magnitudes of different solution components or equations vary dramatically within a single application.

To utilize alternative linear solvers that are not currently provided by, or interfaced with, SUNDIALS a user must
implement a custom SUNLinSol wrapper for the linear solver following the API described in §10. This user-supplied
SUNLinSol module must then self-identify as having SUNLINEARSOLVER_ITERATIVE type.

Matrix-based iterative linear solvers (reusing A)

Matrix-based iterative linear solver modules require a matrix and compute an inexact solution to the linear system
defined by the matrix. This matrix will be updated infrequently and reused across multiple solves to amortize the cost
of matrix construction. As in the direct linear solver case, only thin SUNMATRIX and SUNLinSol wrappers for the
underlying matrix and linear solver structures need to be created to utilize such a linear solver. This user-supplied
SUNLinSol module must then self-identify as having SUNLINEARSOLVER_MATRIX_ITERATIVE type.

At present, SUNDIALS has one example problem that uses this approach for wrapping a structured-grid matrix, linear
solver, and preconditioner from the hypre library; this may be used as a template for other customized implementations
(see examples/arkode/CXX_parhyp/ark_heat2D_hypre.cpp).

10.1. The SUNLinearSolver API 555

User Documentation for ARKODE, v6.3.0

Matrix-based iterative linear solvers (current A)

For users who wish to utilize a matrix-based iterative linear solver where the matrix is purely for preconditioning and
the linear system is defined by the package-supplied ATimes routine, we envision two current possibilities.

The preferred approach is for users to employ one of the SUNDIALS scaled, preconditioned iterative linear solver
implementations (SUNLinSol_SPGMR(), SUNLinSol_SPFGMR(), SUNLinSol_SPBCGS(), SUNLinSol_SPTFQMR(),
or SUNLinSol_PCG()) as the outer solver. The creation and storage of the preconditioner matrix, and interfacing with
the corresponding matrix-based linear solver, can be handled through a package’s preconditioner “setup” and “solve”
functionality without creating SUNMATRIX and SUNLinSol implementations. This usage mode is recommended
primarily because the SUNDIALS-provided modules support variable and equation scaling as described above.

A second approach supported by the linear solver APIs is as follows. If the SUNLinSol implementation is matrix-
based, self-identifies as having SUNLINEARSOLVER_ITERATIVE type, and also provides a non-NULL SUNLinSolSe-
tATimes() routine, then each SUNDIALS package will call that routine to attach its package-specific matrix-vector
product routine to the SUNLinSol object. The SUNDIALS package will then call the SUNLinSol-provided SUNLin-
SolSetup() routine (infrequently) to update matrix information, but will provide current matrix-vector products to
the SUNLinSol implementation through the package-supplied SUNATimesFn routine.

Application-specific linear solvers with embedded matrix structure

Many applications can exploit additional linear system structure arising from to the implicit couplings in their model
equations. In certain circumstances, the linear solve Ax = b may be performed without the need for a global system
matrix A, as the unformed A may be block diagonal or block triangular, and thus the overall linear solve may be per-
formed through a sequence of smaller linear solves. In other circumstances, a linear system solve may be accomplished
via specialized fast solvers, such as the fast Fourier transform, fast multipole method, or treecode, in which case no
matrix structure may be explicitly necessary. In many of the above situations, construction and preprocessing of the
linear system matrixAmay be inexpensive, and thus increased performance may be possible if the current linear system
information is used within every solve (instead of being lagged, as occurs with matrix-based solvers that reuse A).

To support such application-specific situations, SUNDIALS supports user-provided linear solvers with the SUNLINEAR-
SOLVER_MATRIX_EMBEDDED type. For an application to leverage this support, it should define a custom SUNLinSol
implementation having this type, that only needs to implement the required SUNLinSolGetType() and SUNLin-
SolSolve() operations. Within SUNLinSolSolve(), the linear solver implementation should call package-specific
interface routines (e.g., ARKStepGetNonlinearSystemData, CVodeGetNonlinearSystemData, IDAGetNonlin-
earSystemData, ARKStepGetCurrentGamma, CVodeGetCurrentGamma, IDAGetCurrentCj, or MRIStepGetCur-
rentGamma) to construct the relevant system matrixA (or portions thereof), solve the linear systemAx = b, and return
the solution vector x.

We note that when attaching this custom SUNLinearSolver object with the relevant SUNDIALS package SetLinear-
Solver routine, the input SUNMatrix A should be set to NULL.

For templates of such user-provided “matrix-embedded” SUNLinSol implementations, see the SUNDIALS exam-
ples ark_analytic_mels.c, cvAnalytic_mels.c, cvsAnalytic_mels.c, idaAnalytic_mels.c, and idasAn-
alytic_mels.c.

556 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

10.2 ARKODE SUNLinearSolver interface

In Table 10.3, we list the SUNLinSol module functions used within the ARKLS interface. As with the SUNMATRIX
module, we emphasize that the ARKODE user does not need to know detailed usage of linear solver functions by the
ARKODE code modules in order to use ARKODE. The information is presented as an implementation detail for the
interested reader.

Table 10.3: List of SUNLinSol functions called by the ARKODE linear
solver interface, depending on the self-identified “type” reported from
SUNLinSolGetType(). Functions marked with “X” are required; func-
tions marked with “O” are only called if they are non-NULL in the SUN-
LinearSolver implementation that is being used.

Routine DI-
RECT

ITERA-
TIVE

MATRIX ITERA-
TIVE

MATRIX EMBED-
DED

SUNLinSolGetType() X X X X
SUNLinSolSetATimes() O X O
SUNLinSolSetPrecondi-
tioner()

O O O

SUNLinSolSetScalingVec-
tors()

O O O

SUNLinSolInitialize() X X X
SUNLinSolSetup() X X X
SUNLinSolSolve() X X X X
SUNLinSolNumIters()1 O O
SUNLinSolResNorm()2 O O
SUNLinSolLastFlag()3

SUNLinSolFree()4

SUNLinSolSpace() O O O O

Notes:

1. SUNLinSolNumIters() is only used to accumulate overall iterative linear solver statistics. If it is not imple-
mented by the SUNLinearSolver module, then ARKLS will consider all solves as requiring zero iterations.

2. Although SUNLinSolResNorm() is optional, if it is not implemented by the SUNLinearSolver then ARKLS
will consider all solves a being exact.

3. Although ARKLS does not call SUNLinSolLastFlag() directly, this routine is available for users to query
linear solver failure modes.

4. Although ARKLS does not call SUNLinSolFree() directly, this routine should be available for users to call
when cleaning up from a simulation.

Since there are a wide range of potential SUNLinSol use cases, the following subsections describe some details of the
ARKLS interface, in the case that interested users wish to develop custom SUNLinSol modules.

10.2. ARKODE SUNLinearSolver interface 557

User Documentation for ARKODE, v6.3.0

10.2.1 Lagged matrix information

If the SUNLinSol module identifies as having type SUNLINEARSOLVER_DIRECT or SUNLINEARSOLVER_MATRIX_IT-
ERATIVE, then it solves a linear system defined by a SUNMATRIX object. ARKLS will update the matrix information
infrequently according to the strategies outlined in §2.15.2.3. To this end, we differentiate between the desired linear
system Ax = b with A = (M − γJ) and the actual linear system

Ãx̃ = b ⇔ (M − γ̃J)x̃ = b.

Since ARKLS updates the SUNMATRIX object infrequently, it is likely that γ 6= γ̃, and in turn A 6= Ã. Therefore,
after calling the SUNLinSol-provided SUNLinSolSolve() routine, we test whether γ/γ̃ 6= 1, and if this is the case
we scale the solution x̃ to obtain the desired linear system solution x via

x =
2

1 + γ/γ̃
x̃. (10.3)

The motivation for this selection of the scaling factor c = 2/(1 + γ/γ̃) follows the derivation in [21, 59]. In short, if
we consider a stationary iteration for the linear system as consisting of a solve with Ã followed with a scaling by c, then
for a linear constant-coefficient problem, the error in the solution vector will be reduced at each iteration by the error
matrix E = I − cÃ−1A, with a convergence rate given by the spectral radius of E. Assuming that stiff systems have
a spectrum spread widely over the left half-plane, c is chosen to minimize the magnitude of the eigenvalues of E.

10.2.2 Iterative linear solver tolerance

If the SUNLinSol object self-identifies as having type SUNLINEARSOLVER_ITERATIVE or SUNLINEARSOLVER_MA-
TRIX_ITERATIVE, then ARKLS will set the input tolerance delta as described in §2.15.3.2. However, if the iterative
linear solver does not support scaling matrices (i.e., the SUNLinSolSetScalingVectors() routine is NULL), then
ARKLS will attempt to adjust the linear solver tolerance to account for this lack of functionality. To this end, the
following assumptions are made:

• All solution components have similar magnitude; hence the residual weight vector w used in the WRMS norm
(see §2.10), corresponding to the left scaling matrix S1, should satisfy the assumption

wi ≈ wmean, for i = 0, . . . , n− 1.

• The SUNLinSol object uses a standard 2-norm to measure convergence.

Under these assumptions, ARKLS adjusts the linear solver convergence requirement as follows (using the notation from
(10.2)):

‖b̃− Ãx̃‖2 < tol
⇔ ‖S1P

−1
1 b− S1P

−1
1 Ax‖2 < tol

⇔
n−1∑
i=0

[
wi
(
P−11 (b−Ax)

)
i

]2
< tol2

⇔ w2
mean

n−1∑
i=0

[(
P−11 (b−Ax)

)
i

]2
< tol2

⇔
n−1∑
i=0

[(
P−11 (b−Ax)

)
i

]2
<

(
tol

wmean

)2

⇔ ‖P−11 (b−Ax)‖2 <
tol

wmean

Therefore we compute the tolerance scaling factor

wmean = ‖w‖2/
√
n

and supply the scaled tolerance delta = tol/wmean to the SUNLinSol object.

558 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

10.2.3 Providing a custom SUNLinearSolver

In certain instances, users may wish to provide a custom SUNLinSol implementation to ARKODE in order to leverage
the structure of a problem. While the “standard” API for these routines is typically sufficient for most users, others may
need additional ARKODE-specific information on top of what is provided. For these purposes, we note the following
advanced output functions available in ARKStep and MRIStep:

ARKStep advanced outputs: when solving the Newton nonlinear system of equations in predictor-corrector form,

G(zcor) ≡ zcor − γf I
(
tIn,i, zi

)
− ãi = 0 [M = I],

G(zcor) ≡Mzcor − γf I
(
tIn,i, zi

)
− ãi = 0 [M static],

G(zcor) ≡M(tIn,i)(zcor − ãi)− γf I
(
tIn,i, zi

)
= 0 [M time-dependent].

• ARKStepGetCurrentTime() – when called within the computation of a step (i.e., within a solve) this returns
tIn,i. Otherwise the current internal solution time is returned.

• ARKStepGetCurrentState() – when called within the computation of a step (i.e., within a solve) this returns
the current stage vector zi = zcor + zpred. Otherwise the current internal solution is returned.

• ARKStepGetCurrentGamma() – returns γ.

• ARKStepGetCurrentMassMatrix() – returns M(t).

• ARKStepGetNonlinearSystemData() – returns zi, zpred, f I(tIn,i, ycur), ãi, and γ.

MRIStep advanced outputs: when solving the Newton nonlinear system of equations in predictor-corrector form,

G(zcor) ≡ zcor − γf I
(
tSn,i, zi

)
− ãi = 0

• MRIStepGetCurrentTime() – when called within the computation of a step (i.e., within a solve) this returns
tSn,i. Otherwise the current internal solution time is returned.

• MRIStepGetCurrentState() – when called within the computation of a step (i.e., within a solve) this returns
the current stage vector zi = zcor + zpred. Otherwise the current internal solution is returned.

• MRIStepGetCurrentGamma() – returns γ.

• MRIStepGetNonlinearSystemData() – returns zi, zpred, f I(tIn,i, ycur), ãi, and γ.

10.3 The SUNLinSol_Band Module

The SUNLinSol_Band implementation of the SUNLinearSolver class is designed to be used with the corresponding
SUNMATRIX_BAND matrix type, and one of the serial or shared-memory N_Vector implementations (NVECTOR_-
SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS).

10.3.1 SUNLinSol_Band Usage

The header file to be included when using this module is sunlinsol/sunlinsol_band.h. The SUNLinSol_Band
module is accessible from all SUNDIALS packages without linking to the libsundials_sunlinsolband module
library.

The SUNLinSol_Band module provides the following user-callable constructor routine:

SUNLinearSolver SUNLinSol_Band(N_Vector y, SUNMatrix A, SUNContext sunctx)
This function creates and allocates memory for a band SUNLinearSolver.

Arguments:

10.3. The SUNLinSol_Band Module 559

User Documentation for ARKODE, v6.3.0

• y – vector used to determine the linear system size

• A – matrix used to assess compatibility

• sunctx – the SUNContext object (see §4.2)

Return value:
New SUNLinSol_Band object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_BAND matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper bandwidth
storage for the LU factorization.

10.3.2 SUNLinSol_Band Description

The SUNLinSol_Band module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

• The “setup” call performs an LU factorization with partial (row) pivoting, PA = LU , where P is a permutation
matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix. This
factorization is stored in-place on the input SUNMATRIX_BAND objectA, with pivoting information encoding
P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the
LU factors held in the SUNMATRIX_BAND object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factorization. More
precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml, then the upper triangular
factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml). The lower triangular factor L has lower
bandwidth ml.

The SUNLinSol_Band module defines band implementations of all “direct” linear solver operations listed in §10.1:

• SUNLinSolGetType_Band

• SUNLinSolInitialize_Band – this does nothing, since all consistency checks are performed at solver creation.

• SUNLinSolSetup_Band – this performs the LU factorization.

• SUNLinSolSolve_Band – this uses the LU factors and pivots array to perform the solve.

560 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

• SUNLinSolLastFlag_Band

• SUNLinSolSpace_Band – this only returns information for the storage within the solver object, i.e. storage for
N, last_flag, and pivots.

• SUNLinSolFree_Band

10.4 The SUNLinSol_Dense Module

The SUNLinSol_Dense implementation of the SUNLinearSolver class is designed to be used with the corresponding
SUNMATRIX_DENSE matrix type, and one of the serial or shared-memory N_Vector implementations (NVEC-
TOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS).

10.4.1 SUNLinSol_Dense Usage

The header file to be included when using this module is sunlinsol/sunlinsol_dense.h. The SUNLinSol_Dense
module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsoldense module
library.

The module SUNLinSol_Dense provides the following user-callable constructor routine:

SUNLinearSolver SUNLinSol_Dense(N_Vector y, SUNMatrix A, SUNContext sunctx)
This function creates and allocates memory for a dense SUNLinearSolver.

Arguments:

• y – vector used to determine the linear system size.

• A – matrix used to assess compatibility.

• sunctx – the SUNContext object (see §4.2)

Return value:
New SUNLinSol_Dense object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_DENSE matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

10.4.2 SUNLinSol_Dense Description

The SUNLinSol_Dense module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

10.4. The SUNLinSol_Dense Module 561

User Documentation for ARKODE, v6.3.0

• last_flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

• The “setup” call performs anLU factorization with partial (row) pivoting (O(N3) cost), PA = LU , whereP is a
permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix.
This factorization is stored in-place on the input SUNMATRIX_DENSE object A, with pivoting information
encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the
LU factors held in the SUNMATRIX_DENSE object (O(N2) cost).

The SUNLinSol_Dense module defines dense implementations of all “direct” linear solver operations listed in §10.1:

• SUNLinSolGetType_Dense

• SUNLinSolInitialize_Dense – this does nothing, since all consistency checks are performed at solver cre-
ation.

• SUNLinSolSetup_Dense – this performs the LU factorization.

• SUNLinSolSolve_Dense – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag_Dense

• SUNLinSolSpace_Dense – this only returns information for the storage within the solver object, i.e. storage for
N, last_flag, and pivots.

• SUNLinSolFree_Dense

10.5 The SUNLinSol_KLU Module

The SUNLinSol_KLU implementation of the SUNLinearSolver class is designed to be used with the corresponding
SUNMATRIX_SPARSE matrix type, and one of the serial or shared-memory N_Vector implementations (NVEC-
TOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_PTHREADS).

10.5.1 SUNLinSol_KLU Usage

The header file to be included when using this module is sunlinsol/sunlinsol_klu.h. The installed module library
to link to is libsundials_sunlinsolklu .lib where .lib is typically .so for shared libraries and .a for static libraries.

The module SUNLinSol_KLU provides the following additional user-callable routines:

SUNLinearSolver SUNLinSol_KLU(N_Vector y, SUNMatrix A, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNLinSol_KLU object.

Arguments:

• y – vector used to determine the linear system size.

• A – matrix used to assess compatibility.

• sunctx – the SUNContext object (see §4.2)

Return value:
New SUNLinSol_KLU object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_SPARSE matrix type (using

562 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector types. As additional compatible matrix and vector implementations are added
to SUNDIALS, these will be included within this compatibility check.

SUNErrCode SUNLinSol_KLUReInit(SUNLinearSolver S, SUNMatrix A, sunindextype nnz, int reinit_type)
This function reinitializes memory and flags for a new factorization (symbolic and numeric) to be conducted at
the next solver setup call. This routine is useful in the cases where the number of nonzeroes has changed or if
the structure of the linear system has changed which would require a new symbolic (and numeric factorization).

Arguments:

• S – existing SUNLinSol_KLU object to reinitialize.

• A – sparse SUNMatrix matrix (with updated structure) to use for reinitialization.

• nnz – maximum number of nonzeros expected for Jacobian matrix.

• reinit_type – governs the level of reinitialization. The allowed values are:

1. The Jacobian matrix will be destroyed and a new one will be allocated based on the nnz value
passed to this call. New symbolic and numeric factorizations will be completed at the next solver
setup.

2. Only symbolic and numeric factorizations will be completed. It is assumed that the Jacobian size
has not exceeded the size of nnz given in the sparse matrix provided to the original constructor
routine (or the previous SUNKLUReInit call).

Return value:

• A SUNErrCode

Notes:
This routine assumes no other changes to solver use are necessary.

SUNErrCode SUNLinSol_KLUSetOrdering(SUNLinearSolver S, int ordering_choice)
This function sets the ordering used by KLU for reducing fill in the linear solve.

Arguments:

• S – existing SUNLinSol_KLU object to update.

• ordering_choice – type of ordering to use, options are:

0. AMD,

1. COLAMD, and

2. the natural ordering.

The default is 1 for COLAMD.

Return value:

• A SUNErrCode

sun_klu_symbolic *SUNLinSol_KLUGetSymbolic(SUNLinearSolver S)
This function returns a pointer to the KLU symbolic factorization stored in the SUNLinSol_KLU content
structure.

type sun_klu_symbolic
This type is an alias that depends on the SUNDIALS index size, see sunindextype and SUNDIALS_-
INDEX_SIZE. It is equivalent to:

• klu_symbolic when SUNDIALS is compiled with 32-bit indices

10.5. The SUNLinSol_KLU Module 563

User Documentation for ARKODE, v6.3.0

• klu_l_symbolic when SUNDIALS is compiled with 64-bit indices

sun_klu_numeric *SUNLinSol_KLUGetNumeric(SUNLinearSolver S)
This function returns a pointer to the KLU numeric factorization stored in the SUNLinSol_KLU content struc-
ture.

type sun_klu_numeric
This type is an alias that depends on the SUNDIALS index size, see sunindextype and SUNDIALS_-
INDEX_SIZE. It is equivalent to:

• klu_numeric when SUNDIALS is compiled with 32-bit indices

• klu_l_numeric when SUNDIALS is compiled with 64-bit indices

sun_klu_common *SUNLinSol_KLUGetCommon(SUNLinearSolver S)
This function returns a pointer to the KLU common structure stored in the SUNLinSol_KLU content structure.

type sun_klu_common
This type is an alias that depends on the SUNDIALS index size, see sunindextype and SUNDIALS_-
INDEX_SIZE. It is equivalent to:

• klu_common when SUNDIALS is compiled with 32-bit indices

• klu_l_common when SUNDIALS is compiled with 64-bit indices

10.5.2 SUNLinSol_KLU Description

The SUNLinSol_KLU module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_KLU {
int last_flag;
int first_factorize;
sun_klu_symbolic *symbolic;
sun_klu_numeric *numeric;
sun_klu_common common;
sunindextype (*klu_solver)(sun_klu_symbolic*, sun_klu_numeric*,

sunindextype, sunindextype,
double*, sun_klu_common*);

};

These entries of the content field contain the following information:

• last_flag - last error return flag from internal function evaluations,

• first_factorize - flag indicating whether the factorization has ever been performed,

• symbolic - KLU storage structure for symbolic factorization components, with underlying type klu_symbolic
or klu_l_symbolic, depending on whether SUNDIALS was installed with 32-bit versus 64-bit indices, respec-
tively,

• numeric - KLU storage structure for numeric factorization components, with underlying type klu_numeric or
klu_l_numeric, depending on whether SUNDIALS was installed with 32-bit versus 64-bit indices, respectively,

• common - storage structure for common KLU solver components, with underlying type klu_common or klu_-
l_common, depending on whether SUNDIALS was installed with 32-bit versus 64-bit indices, respectively,

• klu_solver – pointer to the appropriate KLU solver function (depending on whether it is using a CSR or CSC
sparse matrix, and on whether SUNDIALS was installed with 32-bit or 64-bit indices).

564 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

The SUNLinSol_KLU module is a SUNLinearSolver wrapper for the KLU sparse matrix factorization and solver
library written by Tim Davis and collaborators ([4, 31]). In order to use the SUNLinSol_KLU interface to KLU, it
is assumed that KLU has been installed on the system prior to installation of SUNDIALS, and that SUNDIALS has
been configured appropriately to link with KLU (see §16.3.21 for details). Additionally, this wrapper only supports
double-precision calculations, and therefore cannot be compiled if SUNDIALS is configured to have sunrealtype set
to either extended or single (see §4.1 for details). Since the KLU library supports both 32-bit and 64-bit integers,
this interface will be compiled for either of the available sunindextype options.

The KLU library has a symbolic factorization routine that computes the permutation of the linear system matrix to block
triangular form and the permutations that will pre-order the diagonal blocks (the only ones that need to be factored)
to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural, or an ordering given by the user). Of these ordering
choices, the default value in the SUNLinSol_KLU module is the COLAMD ordering.

KLU breaks the factorization into two separate parts. The first is a symbolic factorization and the second is a numeric
factorization that returns the factored matrix along with final pivot information. KLU also has a refactor routine that can
be called instead of the numeric factorization. This routine will reuse the pivot information. This routine also returns
diagnostic information that a user can examine to determine if numerical stability is being lost and a full numerical
factorization should be done instead of the refactor.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLinSol_KLU module is constructed to perform the following operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed by an initial
numerical factorization.

• On subsequent calls to the “setup” routine, it calls the appropriate KLU “refactor” routine, followed by estimates
of the numerical conditioning using the relevant “rcond”, and if necessary “condest”, routine(s). If these esti-
mates of the condition number are larger than ε−2/3 (where ε is the double-precision unit roundoff), then a new
factorization is performed.

• The module includes the routine SUNKLUReInit, that can be called by the user to force a full refactorization at
the next “setup” call.

• The “solve” call performs pivoting and forward and backward substitution using the stored KLU data structures.
We note that in this solve KLU operates on the native data arrays for the right-hand side and solution vectors,
without requiring costly data copies.

The SUNLinSol_KLU module defines implementations of all “direct” linear solver operations listed in §10.1:

• SUNLinSolGetType_KLU

• SUNLinSolInitialize_KLU – this sets the first_factorize flag to 1, forcing both symbolic and numerical
factorizations on the subsequent “setup” call.

• SUNLinSolSetup_KLU – this performs either a LU factorization or refactorization of the input matrix.

• SUNLinSolSolve_KLU – this calls the appropriate KLU solve routine to utilize the LU factors to solve the linear
system.

• SUNLinSolLastFlag_KLU

• SUNLinSolSpace_KLU – this only returns information for the storage within the solver interface, i.e. storage for
the integers last_flag and first_factorize. For additional space requirements, see the KLU documenta-
tion.

• SUNLinSolFree_KLU

10.5. The SUNLinSol_KLU Module 565

User Documentation for ARKODE, v6.3.0

10.6 The SUNLinSol_LapackBand Module

The SUNLinSol_LapackBand implementation of the SUNLinearSolver class is designed to be used with the cor-
responding SUNMATRIX_BAND matrix type, and one of the serial or shared-memory N_Vector implementations
(NVECTOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_PTHREADS). The

10.6.1 SUNLinSol_LapackBand Usage

The header file to be included when using this module is sunlinsol/sunlinsol_lapackband.h. The installed
module library to link to is libsundials_sunlinsollapackband .lib where .lib is typically .so for shared libraries
and .a for static libraries.

The module SUNLinSol_LapackBand provides the following user-callable routine:

SUNLinearSolver SUNLinSol_LapackBand(N_Vector y, SUNMatrix A, SUNContext sunctx)
This function creates and allocates memory for a LAPACK band SUNLinearSolver.

Arguments:

• y – vector used to determine the linear system size.

• A – matrix used to assess compatibility.

• sunctx – the SUNContext object (see §4.2)

Return value:
New SUNLinSol_LapackBand object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_BAND matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper bandwidth
storage for the LU factorization.

10.6.2 SUNLinSol_LapackBand Description

SUNLinSol_LapackBand module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

566 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

The SUNLinSol_LapackBand module is a SUNLinearSolver wrapper for the LAPACK band matrix factorization
and solve routines, *GBTRF and *GBTRS, where * is either D or S, depending on whether SUNDIALS was configured
to have sunrealtype set to double or single, respectively (see §4.1 for details). In order to use the SUNLinSol_-
LapackBand module it is assumed that LAPACK has been installed on the system prior to installation of SUNDIALS,
and that SUNDIALS has been configured appropriately to link with LAPACK (see §16.3.24 for details). We note
that since there do not exist 128-bit floating-point factorization and solve routines in LAPACK, this interface cannot be
compiled when using extended precision for sunrealtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the SUNLinSol_LapackBand module also cannot be compiled when using int64_t for the sunindextype.

This solver is constructed to perform the following operations:

• The “setup” call performs an LU factorization with partial (row) pivoting, PA = LU , where P is a permutation
matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix. This
factorization is stored in-place on the input SUNMATRIX_BAND objectA, with pivoting information encoding
P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the
LU factors held in the SUNMATRIX_BAND object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factorization. More
precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml, then the upper triangular
factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml). The lower triangular factor L has lower
bandwidth ml.

The SUNLinSol_LapackBand module defines band implementations of all “direct” linear solver operations listed in
§10.1:

• SUNLinSolGetType_LapackBand

• SUNLinSolInitialize_LapackBand – this does nothing, since all consistency checks are performed at solver
creation.

• SUNLinSolSetup_LapackBand – this calls either DGBTRF or SGBTRF to perform the LU factorization.

• SUNLinSolSolve_LapackBand – this calls either DGBTRS or SGBTRS to use the LU factors and pivots array
to perform the solve.

• SUNLinSolLastFlag_LapackBand

• SUNLinSolSpace_LapackBand – this only returns information for the storage within the solver object, i.e. stor-
age for N, last_flag, and pivots.

• SUNLinSolFree_LapackBand

10.7 The SUNLinSol_LapackDense Module

The SUNLinSol_LapackDense implementation of the SUNLinearSolver class is designed to be used with the cor-
responding SUNMATRIX_DENSE matrix type, and one of the serial or shared-memory N_Vector implementations
(NVECTOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_PTHREADS).

10.7. The SUNLinSol_LapackDense Module 567

User Documentation for ARKODE, v6.3.0

10.7.1 SUNLinSol_LapackDense Usage

The header file to be included when using this module is sunlinsol/sunlinsol_lapackdense.h. The installed
module library to link to is libsundials_sunlinsollapackdense .lib where .lib is typically .so for shared libraries
and .a for static libraries.

The module SUNLinSol_LapackDense provides the following additional user-callable constructor routine:

SUNLinearSolver SUNLinSol_LapackDense(N_Vector y, SUNMatrix A, SUNContext sunctx)
This function creates and allocates memory for a LAPACK dense SUNLinearSolver.

Arguments:

• y – vector used to determine the linear system size.

• A – matrix used to assess compatibility.

• sunctx – the SUNContext object (see §4.2)

Return value:
New SUNLinSol_LapackDense object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_DENSE matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

10.7.2 SUNLinSol_LapackDense Description

The SUNLinSol_LapackDense module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

The SUNLinSol_LapackDense module is a SUNLinearSolver wrapper for the LAPACK dense matrix factorization
and solve routines, *GETRF and *GETRS, where * is either D or S, depending on whether SUNDIALS was configured
to have sunrealtype set to double or single, respectively (see §4.1 for details). In order to use the SUNLinSol_-
LapackDense module it is assumed that LAPACK has been installed on the system prior to installation of SUNDIALS,
and that SUNDIALS has been configured appropriately to link with LAPACK (see §16.3.24 for details). We note
that since there do not exist 128-bit floating-point factorization and solve routines in LAPACK, this interface cannot be
compiled when using extended precision for sunrealtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the SUNLinSol_LapackDense module also cannot be compiled when using int64_t for the sunindextype.

This solver is constructed to perform the following operations:

• The “setup” call performs anLU factorization with partial (row) pivoting (O(N3) cost), PA = LU , whereP is a
permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix.

568 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

This factorization is stored in-place on the input SUNMATRIX_DENSE object A, with pivoting information
encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the
LU factors held in the SUNMATRIX_DENSE object (O(N2) cost).

The SUNLinSol_LapackDense module defines dense implementations of all “direct” linear solver operations listed in
§10.1:

• SUNLinSolGetType_LapackDense

• SUNLinSolInitialize_LapackDense – this does nothing, since all consistency checks are performed at solver
creation.

• SUNLinSolSetup_LapackDense – this calls either DGETRF or SGETRF to perform the LU factorization.

• SUNLinSolSolve_LapackDense – this calls either DGETRS or SGETRS to use the LU factors and pivots array
to perform the solve.

• SUNLinSolLastFlag_LapackDense

• SUNLinSolSpace_LapackDense – this only returns information for the storage within the solver object, i.e.
storage for N, last_flag, and pivots.

• SUNLinSolFree_LapackDense

10.8 The SUNLinSol_MagmaDense Module

The SUNLinearSolver_MagmaDense implementation of the SUNLinearSolver class is designed to be used with
the SUNMATRIX_MAGMADENSE matrix, and a GPU-enabled vector. The header file to include when us-
ing this module is sunlinsol/sunlinsol_magmadense.h. The installed library to link to is libsundials_-
sunlinsolmagmadense.lib where lib is typically .so for shared libraries and .a for static libraries.

Warning

The SUNLinearSolver_MagmaDense module is experimental and subject to change.

10.8.1 SUNLinearSolver_MagmaDense Description

The SUNLinearSolver_MagmaDense implementation provides an interface to the dense LU and dense batched LU
methods in the MAGMA linear algebra library [116]. The batched LU methods are leveraged when solving block
diagonal linear systems of the form 

A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · An−1

xj = bj .

10.8. The SUNLinSol_MagmaDense Module 569

https://icl.utk.edu/magma/index.html

User Documentation for ARKODE, v6.3.0

10.8.2 SUNLinearSolver_MagmaDense Functions

The SUNLinearSolver_MagmaDense module defines implementations of all “direct” linear solver operations listed in
§10.1:

• SUNLinSolGetType_MagmaDense

• SUNLinSolInitialize_MagmaDense

• SUNLinSolSetup_MagmaDense

• SUNLinSolSolve_MagmaDense

• SUNLinSolLastFlag_MagmaDense

• SUNLinSolFree_MagmaDense

In addition, the module provides the following user-callable routines:

SUNLinearSolver SUNLinSol_MagmaDense(N_Vector y, SUNMatrix A, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNLinearSolver object.

Arguments:

• y – a vector for checking compatibility with the solver.

• A – a SUNMATRIX_MAGMADENSE matrix for checking compatibility with the solver.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either A or y are incompatible then this routine will return
NULL. This routine analyzes the input matrix and vector to determine the linear system size and to assess
compatibility with the solver.

SUNErrCode SUNLinSol_MagmaDense_SetAsync(SUNLinearSolver LS, sunbooleantype onoff)
This function can be used to toggle the linear solver between asynchronous and synchronous modes. In asyn-
chronous mode (default), SUNLinearSolver operations are asynchronous with respect to the host. In synchronous
mode, the host and GPU device are synchronized prior to the operation returning.

Arguments:

• LS – a SUNLinSol_MagmaDense object

• onoff – 0 for synchronous mode or 1 for asynchronous mode (default 1)

Return value:

• A SUNErrCode

10.8.3 SUNLinearSolver_MagmaDense Content

The SUNLinearSolver_MagmaDense module defines the object content field of a SUNLinearSolver to be the follow-
ing structure:

struct _SUNLinearSolverContent_MagmaDense {
int last_flag;
sunbooleantype async;
sunindextype N;
SUNMemory pivots;
SUNMemory pivotsarr;

(continues on next page)

570 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

(continued from previous page)

SUNMemory dpivotsarr;
SUNMemory infoarr;
SUNMemory rhsarr;
SUNMemoryHelper memhelp;
magma_queue_t q;

};

10.9 The SUNLinSol_OneMklDense Module

The SUNLinearSolver_OneMklDense implementation of the SUNLinearSolver class interfaces to the direct linear
solvers from the Intel oneAPI Math Kernel Library (oneMKL) for solving dense systems or block-diagonal systems
with dense blocks. This linear solver is best paired with the SUNMatrix_OneMklDense matrix.

The header file to include when using this class is sunlinsol/sunlinsol_onemkldense.h. The installed library
to link to is libsundials_sunlinsolonemkldense.lib where lib is typically .so for shared libraries and .a for
static libraries.

Warning

The SUNLinearSolver_OneMklDense class is experimental and subject to change.

10.9.1 SUNLinearSolver_OneMklDense Functions

The SUNLinearSolver_OneMklDense class defines implementations of all “direct” linear solver operations listed in
§10.1:

• SUNLinSolGetType_OneMklDense – returns SUNLINEARSOLVER_ONEMKLDENSE

• SUNLinSolInitialize_OneMklDense

• SUNLinSolSetup_OneMklDense

• SUNLinSolSolve_OneMklDense

• SUNLinSolLastFlag_OneMklDense

• SUNLinSolFree_OneMklDense

In addition, the class provides the following user-callable routines:

SUNLinearSolver SUNLinSol_OneMklDense(N_Vector y, SUNMatrix A, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNLinearSolver object.

Arguments:

• y – a vector for checking compatibility with the solver.

• A – a SUNMatrix_OneMklDense matrix for checking compatibility with the solver.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either A or y are incompatible then this routine will return
NULL. This routine analyzes the input matrix and vector to determine the linear system size and to assess
compatibility with the solver.

10.9. The SUNLinSol_OneMklDense Module 571

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html

User Documentation for ARKODE, v6.3.0

10.9.2 SUNLinearSolver_OneMklDense Usage Notes

Warning

The SUNLinearSolver_OneMklDense class only supports 64-bit indexing, thus SUNDIALS must be built for 64-bit
indexing to use this class.

When using the SUNLinearSolver_OneMklDense class with a SUNDIALS package (e.g. CVODE), the queue
given to the matrix is also used for the linear solver.

10.10 The SUNLinSol_PCG Module

The SUNLinSol_PCG implementation of the SUNLinearSolver class performs the PCG (Preconditioned Conjugate
Gradient [57]) method; this is an iterative linear solver that is designed to be compatible with any N_Vector implemen-
tation that supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(), N_VLinearSum(),
N_VProd(), and N_VDestroy()). Unlike the SPGMR and SPFGMR algorithms, PCG requires a fixed amount of
memory that does not increase with the number of allowed iterations.

Unlike all of the other iterative linear solvers supplied with SUNDIALS, PCG should only be used on symmetric linear
systems (e.g. mass matrix linear systems encountered in ARKODE). As a result, the explanation of the role of scaling
and preconditioning matrices given in general must be modified in this scenario. The PCG algorithm solves a linear
system Ax = b where A is a symmetric (AT = A), real-valued matrix. Preconditioning is allowed, and is applied in
a symmetric fashion on both the right and left. Scaling is also allowed and is applied symmetrically. We denote the
preconditioner and scaling matrices as follows:

• P is the preconditioner (assumed symmetric),

• S is a diagonal matrix of scale factors.

The matrices A and P are not required explicitly; only routines that provide A and P−1 as operators are required. The
diagonal of the matrix S is held in a single N_Vector, supplied by the user.

In this notation, PCG applies the underlying CG algorithm to the equivalent transformed system

Ãx̃ = b̃ (10.4)

where

Ã = SP−1AP−1S,

b̃ = SP−1b,

x̃ = S−1Px.

(10.5)

The scaling matrix must be chosen so that the vectors SP−1b and S−1Px have dimensionless components.

The stopping test for the PCG iterations is on the L2 norm of the scaled preconditioned residual:

‖b̃− Ãx̃‖2 < δ

⇔
‖SP−1b− SP−1Ax‖2 < δ

⇔
‖P−1b− P−1Ax‖S < δ

where ‖v‖S =
√
vTSTSv, with an input tolerance δ.

572 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

10.10.1 SUNLinSol_PCG Usage

The header file to be included when using this module is sunlinsol/sunlinsol_pcg.h. The SUNLinSol_PCG
module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolpcgmodule library.

The module SUNLinSol_PCG provides the following user-callable routines:

SUNLinearSolver SUNLinSol_PCG(N_Vector y, int pretype, int maxl, SUNContext sunctx)
This constructor function creates and allocates memory for a PCG SUNLinearSolver.

Arguments:

• y – a template vector.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

• maxl – the maximum number of linear iterations to allow.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is ≤ 0 will result in the default value (5).

Since the PCG algorithm is designed to only support symmetric preconditioning, then any of the pre-
type inputs SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTH will result in use of the symmetric
preconditioner; any other integer input will result in the default (no preconditioning). Although some SUN-
DIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others with only
right preconditioning (KINSOL), PCG should only be used with these packages when the linear systems
are known to be symmetric. Since the scaling of matrix rows and columns must be identical in a symmetric
matrix, symmetric preconditioning should work appropriately even for packages designed with one-sided
preconditioning in mind.

SUNErrCode SUNLinSol_PCGSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.

Arguments:

• S – SUNLinSol_PCG object to update.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

Return value:

• A SUNErrCode

10.10. The SUNLinSol_PCG Module 573

User Documentation for ARKODE, v6.3.0

Notes:
As above, any one of the input values, SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTHwill enable
preconditioning; SUN_PREC_NONE disables preconditioning.

SUNErrCode SUNLinSol_PCGSetMaxl(SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

Arguments:

• S – SUNLinSol_PCG object to update.

• maxl – maximum number of linear iterations to allow. Any non-positive input will result in the default
value (5).

Return value:

• A SUNErrCode

10.10.2 SUNLinSol_PCG Description

The SUNLinSol_PCG module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_PCG {
int maxl;
int pretype;
sunbooleantype zeroguess;
int numiters;
sunrealtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s;
N_Vector r;
N_Vector p;
N_Vector z;
N_Vector Ap;

};

These entries of the content field contain the following information:

• maxl - number of PCG iterations to allow (default is 5),

• pretype - flag for use of preconditioning (default is none),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform Av product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

574 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

• PData - pointer to structure for Psetup and Psolve,

• s - vector pointer for supplied scaling matrix (default is NULL),

• r - a N_Vector which holds the preconditioned linear system residual,

• p, z, Ap - N_Vector used for workspace by the PCG algorithm.

This solver is constructed to perform the following operations:

• During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector that
is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_PCG to supply
the ATimes, PSetup, and Psolve function pointers and s scaling vector.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

• In the “solve” call the PCG iteration is performed. This will include scaling and preconditioning if those options
have been supplied.

The SUNLinSol_PCG module defines implementations of all “iterative” linear solver operations listed in §10.1:

• SUNLinSolGetType_PCG

• SUNLinSolInitialize_PCG

• SUNLinSolSetATimes_PCG

• SUNLinSolSetPreconditioner_PCG

• SUNLinSolSetScalingVectors_PCG – since PCG only supports symmetric scaling, the second N_Vector
argument to this function is ignored.

• SUNLinSolSetZeroGuess_PCG – note the solver assumes a non-zero guess by default and the zero guess flag
is reset to SUNFALSE after each call to SUNLinSolSolve_PCG.

• SUNLinSolSetup_PCG

• SUNLinSolSolve_PCG

• SUNLinSolNumIters_PCG

• SUNLinSolResNorm_PCG

• SUNLinSolResid_PCG

• SUNLinSolLastFlag_PCG

• SUNLinSolSpace_PCG

• SUNLinSolFree_PCG

10.10. The SUNLinSol_PCG Module 575

User Documentation for ARKODE, v6.3.0

10.11 The SUNLinSol_SPBCGS Module

The SUNLinSol_SPBCGS implementation of the SUNLinearSolver class performs a Scaled, Preconditioned, Bi-
Conjugate Gradient, Stabilized [122] method; this is an iterative linear solver that is designed to be compatible with any
N_Vector implementation that supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(),
N_VLinearSum(), N_VProd(), N_VDiv(), and N_VDestroy()). Unlike the SPGMR and SPFGMR algorithms, SP-
BCGS requires a fixed amount of memory that does not increase with the number of allowed iterations.

10.11.1 SUNLinSol_SPBCGS Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spbcgs.h. The SUNLinSol_-
SPBCGS module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolspbcgs
module library.

The module SUNLinSol_SPBCGS provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPBCGS(N_Vector y, int pretype, int maxl, SUNContext sunctx)
This constructor function creates and allocates memory for a SPBCGS SUNLinearSolver.

Arguments:

• y – a template vector.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

• maxl – the maximum number of linear iterations to allow.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is ≤ 0 will result in the default value (5).

Some SUNDIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others
with only right preconditioning (KINSOL). While it is possible to configure a SUNLinSol_SPBCGS object
to use any of the preconditioning options with these solvers, this use mode is not supported and may result
in inferior performance.

Note

With SUN_PREC_RIGHT or SUN_PREC_BOTH the initial guess must be zero (use SUNLinSolSetZe-
roGuess() to indicate the initial guess is zero).

SUNErrCode SUNLinSol_SPBCGSSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.

576 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

Arguments:

• S – SUNLinSol_SPBCGS object to update.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

Return value:

• A SUNErrCode

SUNErrCode SUNLinSol_SPBCGSSetMaxl(SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

Arguments:

• S – SUNLinSol_SPBCGS object to update.

• maxl – maximum number of linear iterations to allow. Any non-positive input will result in the default
value (5).

Return value:

• A SUNErrCode

10.11.2 SUNLinSol_SPBCGS Description

The SUNLinSol_SPBCGS module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPBCGS {
int maxl;
int pretype;
sunbooleantype zeroguess;
int numiters;
sunrealtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector r;
N_Vector r_star;
N_Vector p;
N_Vector q;
N_Vector u;
N_Vector Ap;
N_Vector vtemp;

};

These entries of the content field contain the following information:

10.11. The SUNLinSol_SPBCGS Module 577

User Documentation for ARKODE, v6.3.0

• maxl - number of SPBCGS iterations to allow (default is 5),

• pretype - flag for type of preconditioning to employ (default is none),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform Av product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• r - a N_Vector which holds the current scaled, preconditioned linear system residual,

• r_star - a N_Vector which holds the initial scaled, preconditioned linear system residual,

• p, q, u, Ap, vtemp - N_Vector used for workspace by the SPBCGS algorithm.

This solver is constructed to perform the following operations:

• During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector that
is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPBCGS to supply
the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

• In the “solve” call the SPBCGS iteration is performed. This will include scaling and preconditioning if those
options have been supplied.

The SUNLinSol_SPBCGS module defines implementations of all “iterative” linear solver operations listed in §10.1:

• SUNLinSolGetType_SPBCGS

• SUNLinSolInitialize_SPBCGS

• SUNLinSolSetATimes_SPBCGS

• SUNLinSolSetPreconditioner_SPBCGS

• SUNLinSolSetScalingVectors_SPBCGS

• SUNLinSolSetZeroGuess_SPBCGS – note the solver assumes a non-zero guess by default and the zero guess
flag is reset to SUNFALSE after each call to SUNLinSolSolve_SPBCGS.

• SUNLinSolSetup_SPBCGS

• SUNLinSolSolve_SPBCGS

• SUNLinSolNumIters_SPBCGS

• SUNLinSolResNorm_SPBCGS

578 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

• SUNLinSolResid_SPBCGS

• SUNLinSolLastFlag_SPBCGS

• SUNLinSolSpace_SPBCGS

• SUNLinSolFree_SPBCGS

10.12 The SUNLinSol_SPFGMR Module

The SUNLinSol_SPFGMR implementation of the SUNLinearSolver class performs a Scaled, Preconditioned, Flex-
ible, Generalized Minimum Residual [90] method; this is an iterative linear solver that is designed to be compatible
with any N_Vector implementation that supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_-
VScale(), N_VLinearSum(), N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()). Unlike the other Krylov
iterative linear solvers supplied with SUNDIALS, FGMRES is specifically designed to work with a changing precon-
ditioner (e.g. from an iterative method).

10.12.1 SUNLinSol_SPFGMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spfgmr.h. The SUNLinSol_-
SPFGMR module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolspfgmr
module library.

The module SUNLinSol_SPFGMR provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPFGMR(N_Vector y, int pretype, int maxl, SUNContext sunctx)
This constructor function creates and allocates memory for a SPFGMR SUNLinearSolver.

Arguments:

• y – a template vector.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

• maxl – the number of Krylov basis vectors to use.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is ≤ 0 will result in the default value (5).

Since the FGMRES algorithm is designed to only support right preconditioning, then any of the pretype
inputs SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTH will result in use of SUN_PREC_RIGHT;
any other integer input will result in the default (no preconditioning). We note that some SUNDIALS
solvers are designed to only work with left preconditioning (IDA and IDAS). While it is possible to use a

10.12. The SUNLinSol_SPFGMR Module 579

User Documentation for ARKODE, v6.3.0

right-preconditioned SUNLinSol_SPFGMR object for these packages, this use mode is not supported and
may result in inferior performance.

SUNErrCode SUNLinSol_SPFGMRSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.

Arguments:

• S – SUNLinSol_SPFGMR object to update.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

Return value:

• A SUNErrCode

Notes:
Since the FGMRES algorithm is designed to only support right preconditioning, then any of the pretype
inputs SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTH will result in use of SUN_PREC_RIGHT;
any other integer input will result in the default (no preconditioning).

SUNErrCode SUNLinSol_SPFGMRSetGSType(SUNLinearSolver S, int gstype)
This function sets the type of Gram-Schmidt orthogonalization to use.

Arguments:

• S – SUNLinSol_SPFGMR object to update.

• gstype – a flag indicating the type of orthogonalization to use:

– SUN_MODIFIED_GS

– SUN_CLASSICAL_GS

Return value:

• A SUNErrCode

SUNErrCode SUNLinSol_SPFGMRSetMaxRestarts(SUNLinearSolver S, int maxrs)
This function sets the number of FGMRES restarts to allow.

Arguments:

• S – SUNLinSol_SPFGMR object to update.

• maxrs – maximum number of restarts to allow. A negative input will result in the default of 0.

Return value:

• A SUNErrCode

580 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

10.12.2 SUNLinSol_SPFGMR Description

The SUNLinSol_SPFGMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPFGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
sunbooleantype zeroguess;
int numiters;
sunrealtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector *V;
N_Vector *Z;
sunrealtype **Hes;
sunrealtype *givens;
N_Vector xcor;
sunrealtype *yg;
N_Vector vtemp;

};

These entries of the content field contain the following information:

• maxl - number of FGMRES basis vectors to use (default is 5),

• pretype - flag for use of preconditioning (default is none),

• gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

• max_restarts - number of FGMRES restarts to allow (default is 0),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform Av product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], ..., V[maxl]. Each vi is a vector of
type N_Vector,

• Z - the array of preconditioned Krylov basis vectors z1, . . . , zmaxl+1, stored in Z[0], ..., Z[maxl]. Each zi
is a vector of type N_Vector,

10.12. The SUNLinSol_SPFGMR Module 581

User Documentation for ARKODE, v6.3.0

• Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is given by
Hes[i][j],

• givens - a length 2 maxl array which represents the Givens rotation matrices that arise in the FGMRES algo-
rithm. These matrices are F0, F1, . . . , Fj , where

Fi =



1
. . .

1
ci −si
si ci

1
. . .

1


,

are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2] = c1, givens[3]
= s1, . . ., givens[2j] = cj , givens[2j+1] = sj ,

• xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

• yg - a length (maxl + 1) array of sunrealtype values used to hold “short” vectors (e.g. y and g),

• vtemp - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template N_Vector that is input, and default
solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPFGMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg)

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

• In the “solve” call, the FGMRES iteration is performed. This will include scaling, preconditioning, and restarts
if those options have been supplied.

The SUNLinSol_SPFGMR module defines implementations of all “iterative” linear solver operations listed in §10.1:

• SUNLinSolGetType_SPFGMR

• SUNLinSolInitialize_SPFGMR

• SUNLinSolSetATimes_SPFGMR

• SUNLinSolSetPreconditioner_SPFGMR

• SUNLinSolSetScalingVectors_SPFGMR

• SUNLinSolSetZeroGuess_SPFGMR – note the solver assumes a non-zero guess by default and the zero guess
flag is reset to SUNFALSE after each call to SUNLinSolSolve_SPFGMR.

• SUNLinSolSetup_SPFGMR

• SUNLinSolSolve_SPFGMR

• SUNLinSolNumIters_SPFGMR

582 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

• SUNLinSolResNorm_SPFGMR

• SUNLinSolResid_SPFGMR

• SUNLinSolLastFlag_SPFGMR

• SUNLinSolSpace_SPFGMR

• SUNLinSolFree_SPFGMR

10.13 The SUNLinSol_SPGMR Module

The SUNLinSol_SPGMR implementation of the SUNLinearSolver class performs a Scaled, Preconditioned, Gen-
eralized Minimum Residual [91] method; this is an iterative linear solver that is designed to be compatible with any
N_Vector implementation that supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(),
N_VLinearSum(), N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()).

10.13.1 SUNLinSol_SPGMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spgmr.h. The SUNinSol_SPGMR
module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolspgmr module
library.

The module SUNLinSol_SPGMR provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPGMR(N_Vector y, int pretype, int maxl, SUNContext sunctx)
This constructor function creates and allocates memory for a SPGMR SUNLinearSolver.

Arguments:

• y – a template vector.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

• maxl – the number of Krylov basis vectors to use.

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is ≤ 0 will result in the default value (5).

Some SUNDIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others
with only right preconditioning (KINSOL). While it is possible to configure a SUNLinSol_SPGMR object
to use any of the preconditioning options with these solvers, this use mode is not supported and may result
in inferior performance.

10.13. The SUNLinSol_SPGMR Module 583

User Documentation for ARKODE, v6.3.0

SUNErrCode SUNLinSol_SPGMRSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.

Arguments:

• S – SUNLinSol_SPGMR object to update.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

Return value:

• A SUNErrCode

SUNErrCode SUNLinSol_SPGMRSetGSType(SUNLinearSolver S, int gstype)
This function sets the type of Gram-Schmidt orthogonalization to use.

Arguments:

• S – SUNLinSol_SPGMR object to update.

• gstype – a flag indicating the type of orthogonalization to use:

– SUN_MODIFIED_GS

– SUN_CLASSICAL_GS

Return value:

• A SUNErrCode

SUNErrCode SUNLinSol_SPGMRSetMaxRestarts(SUNLinearSolver S, int maxrs)
This function sets the number of GMRES restarts to allow.

Arguments:

• S – SUNLinSol_SPGMR object to update.

• maxrs – maximum number of restarts to allow. A negative input will result in the default of 0.

Return value:

• A SUNErrCode

10.13.2 SUNLinSol_SPGMR Description

The SUNLinSol_SPGMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
sunbooleantype zeroguess;
int numiters;
sunrealtype resnorm;

(continues on next page)

584 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

(continued from previous page)

int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector *V;
sunrealtype **Hes;
sunrealtype *givens;
N_Vector xcor;
sunrealtype *yg;
N_Vector vtemp;

};

These entries of the content field contain the following information:

• maxl - number of GMRES basis vectors to use (default is 5),

• pretype - flag for type of preconditioning to employ (default is none),

• gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

• max_restarts - number of GMRES restarts to allow (default is 0),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform Av product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], ... V[maxl]. Each vi is a vector of type
N_Vector,

• Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is given by
Hes[i][j],

• givens - a length 2 maxl array which represents the Givens rotation matrices that arise in the GMRES algorithm.

10.13. The SUNLinSol_SPGMR Module 585

User Documentation for ARKODE, v6.3.0

These matrices are F0, F1, . . . , Fj , where

Fi =



1
. . .

1
ci −si
si ci

1
. . .

1


,

are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2] = c1, givens[3]
= s1, . . ., givens[2j] = cj , givens[2j+1] = sj ,

• xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

• yg - a length (maxl + 1) array of sunrealtype values used to hold “short” vectors (e.g. y and g),

• vtemp - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template N_Vector that is input, and default
solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPGMR to supply
the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg)

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

• In the “solve” call, the GMRES iteration is performed. This will include scaling, preconditioning, and restarts if
those options have been supplied.

The SUNLinSol_SPGMR module defines implementations of all “iterative” linear solver operations listed in §10.1:

• SUNLinSolGetType_SPGMR

• SUNLinSolInitialize_SPGMR

• SUNLinSolSetATimes_SPGMR

• SUNLinSolSetPreconditioner_SPGMR

• SUNLinSolSetScalingVectors_SPGMR

• SUNLinSolSetZeroGuess_SPGMR – note the solver assumes a non-zero guess by default and the zero guess flag
is reset to SUNFALSE after each call to SUNLinSolSolve_SPGMR.

• SUNLinSolSetup_SPGMR

• SUNLinSolSolve_SPGMR

• SUNLinSolNumIters_SPGMR

• SUNLinSolResNorm_SPGMR

• SUNLinSolResid_SPGMR

• SUNLinSolLastFlag_SPGMR

586 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

• SUNLinSolSpace_SPGMR

• SUNLinSolFree_SPGMR

10.14 The SUNLinSol_SPTFQMR Module

The SUNLinSol_SPTFQMR implementation of the SUNLinearSolver class performs a Scaled, Preconditioned,
Transpose-Free Quasi-Minimum Residual [46] method; this is an iterative linear solver that is designed to be compat-
ible with any N_Vector implementation that supports a minimal subset of operations (N_VClone(), N_VDotProd(),
N_VScale(), N_VLinearSum(), N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()). Unlike the SPGMR
and SPFGMR algorithms, SPTFQMR requires a fixed amount of memory that does not increase with the number of
allowed iterations.

10.14.1 SUNLinSol_SPTFQMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_sptfqmr.h. The SUNLinSol_SPT-
FQMR module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolsptfqmr
module library.

The module SUNLinSol_SPTFQMR provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPTFQMR(N_Vector y, int pretype, int maxl, SUNContext sunctx)
This constructor function creates and allocates memory for a SPTFQMR SUNLinearSolver.

Arguments:

• y – a template vector.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

• maxl – the number of Krylov basis vectors to use.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is ≤ 0 will result in the default value (5).

Some SUNDIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others
with only right preconditioning (KINSOL). While it is possible to configure a SUNLinSol_SPTFQMR
object to use any of the preconditioning options with these solvers, this use mode is not supported and may
result in inferior performance.

10.14. The SUNLinSol_SPTFQMR Module 587

User Documentation for ARKODE, v6.3.0

Note

With SUN_PREC_RIGHT or SUN_PREC_BOTH the initial guess must be zero (use SUNLinSolSetZe-
roGuess() to indicate the initial guess is zero).

SUNErrCode SUNLinSol_SPTFQMRSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.

Arguments:

• S – SUNLinSol_SPGMR object to update.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

Return value:

• A SUNErrCode

SUNErrCode SUNLinSol_SPTFQMRSetMaxl(SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

Arguments:

• S – SUNLinSol_SPTFQMR object to update.

• maxl – maximum number of linear iterations to allow. Any non-positive input will result in the default
value (5).

Return value:

• A SUNErrCode

10.14.2 SUNLinSol_SPTFQMR Description

The SUNLinSol_SPTFQMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPTFQMR {
int maxl;
int pretype;
sunbooleantype zeroguess;
int numiters;
sunrealtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;

(continues on next page)

588 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

(continued from previous page)

N_Vector r_star;
N_Vector q;
N_Vector d;
N_Vector v;
N_Vector p;
N_Vector *r;
N_Vector u;
N_Vector vtemp1;
N_Vector vtemp2;
N_Vector vtemp3;

};

These entries of the content field contain the following information:

• maxl - number of TFQMR iterations to allow (default is 5),

• pretype - flag for type of preconditioning to employ (default is none),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform Av product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• r_star - a N_Vector which holds the initial scaled, preconditioned linear system residual,

• q, d, v, p, u - N_Vector used for workspace by the SPTFQMR algorithm,

• r - array of two N_Vector used for workspace within the SPTFQMR algorithm,

• vtemp1, vtemp2, vtemp3 - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector that
is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPTFQMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

• In the “solve” call the TFQMR iteration is performed. This will include scaling and preconditioning if those
options have been supplied.

The SUNLinSol_SPTFQMR module defines implementations of all “iterative” linear solver operations listed in §10.1:

10.14. The SUNLinSol_SPTFQMR Module 589

User Documentation for ARKODE, v6.3.0

• SUNLinSolGetType_SPTFQMR

• SUNLinSolInitialize_SPTFQMR

• SUNLinSolSetATimes_SPTFQMR

• SUNLinSolSetPreconditioner_SPTFQMR

• SUNLinSolSetScalingVectors_SPTFQMR

• SUNLinSolSetZeroGuess_SPTFQMR – note the solver assumes a non-zero guess by default and the zero guess
flag is reset to SUNFALSE after each call to SUNLinSolSolve_SPTFQMR.

• SUNLinSolSetup_SPTFQMR

• SUNLinSolSolve_SPTFQMR

• SUNLinSolNumIters_SPTFQMR

• SUNLinSolResNorm_SPTFQMR

• SUNLinSolResid_SPTFQMR

• SUNLinSolLastFlag_SPTFQMR

• SUNLinSolSpace_SPTFQMR

• SUNLinSolFree_SPTFQMR

10.15 The SUNLinSol_SuperLUDIST Module

The SUNLinsol_SuperLUDIST implementation of the SUNLinearSolver class interfaces with the SuperLU_DIST
library. This is designed to be used with the SUNMatrix_SLUNRloc SUNMatrix, and one of the serial, threaded or
parallel N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, NVECTOR_PTHREADS, NVEC-
TOR_PARALLEL, NVECTOR_PARHYP).

10.15.1 SUNLinSol_SuperLUDIST Usage

The header file to be included when using this module is sunlinsol/sunlinsol_superludist.h. The installed
module library to link to is libsundials_sunlinsolsuperludist .lib where .lib is typically .so for shared libraries
and .a for static libraries.

The module SUNLinSol_SuperLUDIST provides the following user-callable routines:

Warning

Starting with SuperLU_DIST version 6.3.0, some structures were renamed to have a prefix for the floating point
type. The double precision API functions have the prefix ‘d’. To maintain backwards compatibility with the un-
prefixed types, SUNDIALS provides macros to these SuperLU_DIST types with an ‘x’ prefix that expand to the
correct prefix. E.g., the SUNDIALS macro xLUstruct_t expands to dLUstruct_t or LUstruct_t based on the
SuperLU_DIST version.

SUNLinearSolver SUNLinSol_SuperLUDIST(N_Vector y, SuperMatrix *A, gridinfo_t *grid, xLUstruct_t *lu,
xScalePermstruct_t *scaleperm, xSOLVEstruct_t *solve,
SuperLUStat_t *stat, superlu_dist_options_t *options, SUNContext
sunctx)

This constructor function creates and allocates memory for a SUNLinSol_SuperLUDIST object.

590 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

Arguments:

• y – a template vector.

• A – a template matrix

• grid, lu, scaleperm, solve, stat, options – SuperLU_DIST object pointers.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object; otherwise this routine will return NULL.

Notes:
This routine analyzes the input matrix and vector to determine the linear system size and to assess the
compatibility with the SuperLU_DIST library.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMatrix_SLUNRloc matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, NVECTOR_PTHREADS, NVECTOR_PARALLEL, and
NVECTOR_PARHYP vector types. As additional compatible matrix and vector implementations are added
to SUNDIALS, these will be included within this compatibility check.

The grid, lu, scaleperm, solve, and options arguments are not checked and are passed directly to
SuperLU_DIST routines.

Some struct members of the options argument are modified internally by the SUNLinSol_SuperLUDIST
solver. Specifically, the member Fact is modified in the setup and solve routines.

sunrealtype SUNLinSol_SuperLUDIST_GetBerr(SUNLinearSolver LS)
This function returns the componentwise relative backward error of the computed solution. It takes one argument,
the SUNLinearSolver object. The return type is sunrealtype.

gridinfo_t *SUNLinSol_SuperLUDIST_GetGridinfo(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the 2D process grid. It takes one
argument, the SUNLinearSolver object.

xLUstruct_t *SUNLinSol_SuperLUDIST_GetLUstruct(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the distributed L and U structures.
It takes one argument, the SUNLinearSolver object.

superlu_dist_options_t *SUNLinSol_SuperLUDIST_GetSuperLUOptions(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the options which control how the
linear system is factorized and solved. It takes one argument, the SUNLinearSolver object.

xScalePermstruct_t *SUNLinSol_SuperLUDIST_GetScalePermstruct(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the vectors that describe the trans-
formations done to the matrix A. It takes one argument, the SUNLinearSolver object.

xSOLVEstruct_t *SUNLinSol_SuperLUDIST_GetSOLVEstruct(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains information for communication
during the solution phase. It takes one argument the SUNLinearSolver object.

SuperLUStat_t *SUNLinSol_SuperLUDIST_GetSuperLUStat(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that stores information about runtime and flop
count. It takes one argument, the SUNLinearSolver object.

10.15. The SUNLinSol_SuperLUDIST Module 591

User Documentation for ARKODE, v6.3.0

10.15.2 SUNLinSol_SuperLUDIST Description

The SUNLinSol_SuperLUDIST module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SuperLUDIST {
sunbooleantype first_factorize;
int last_flag;
sunrealtype berr;
gridinfo_t *grid;
xLUstruct_t *lu;
superlu_dist_options_t *options;
xScalePermstruct_t *scaleperm;
xSOLVEstruct_t *solve;
SuperLUStat_t *stat;
sunindextype N;

};

These entries of the content field contain the following information:

• first_factorize – flag indicating whether the factorization has ever been performed,

• last_flag – last error return flag from internal function evaluations,

• berr – the componentwise relative backward error of the computed solution,

• grid – pointer to the SuperLU_DIST structure that stores the 2D process grid

• lu – pointer to the SuperLU_DIST structure that stores the distributed L and U factors,

• scaleperm – pointer to the SuperLU_DIST structure that stores vectors describing the transformations done to
the matrix A,

• options – pointer to the SuperLU_DIST structure which contains options that control how the linear system is
factorized and solved,

• solve – pointer to the SuperLU_DIST solve structure,

• stat – pointer to the SuperLU_DIST structure that stores information about runtime and flop count,

• N – the number of equations in the system.

The SUNLinSol_SuperLUDIST module is a SUNLinearSolver adapter for the SuperLU_DIST sparse matrix factor-
ization and solver library written by X. Sherry Li and collaborators [8, 50, 76, 77]. The package uses a SPMD parallel
programming model and multithreading to enhance efficiency in distributed-memory parallel environments with multi-
core nodes and possibly GPU accelerators. It uses MPI for communication, OpenMP for threading, and CUDA for GPU
support. In order to use the SUNLinSol_SuperLUDIST interface to SuperLU_DIST, it is assumed that SuperLU_DIST
has been installed on the system prior to installation of SUNDIALS, and that SUNDIALS has been configured appropri-
ately to link with SuperLU_DIST (see §16.3.33 for details). Additionally, the wrapper only supports double-precision
calculations, and therefore cannot be compiled if SUNDIALS is configured to use single or extended precision. More-
over, since the SuperLU_DIST library may be installed to support either 32-bit or 64-bit integers, it is assumed that the
SuperLU_DIST library is installed using the same integer size as SUNDIALS.

The SuperLU_DIST library provides many options to control how a linear system will be factorized and solved. These
options may be set by a user on an instance of the superlu_dist_options_t struct, and then it may be provided as
an argument to the SUNLinSol_SuperLUDIST constructor. The SUNLinSol_SuperLUDIST module will respect all
options set except for Fact – this option is necessarily modified by the SUNLinSol_SuperLUDIST module in the setup
and solve routines.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLinSol_SuperLUDIST module is constructed to perform the following operations:

592 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

• The first time that the “setup” routine is called, it sets the SuperLU_DIST option Fact to DOFACT so that a
subsequent call to the “solve” routine will perform a symbolic factorization, followed by an initial numerical
factorization before continuing to solve the system.

• On subsequent calls to the “setup” routine, it sets the SuperLU_DIST option Fact to SamePattern so that a
subsequent call to “solve” will perform factorization assuming the same sparsity pattern as prior, i.e. it will reuse
the column permutation vector.

• If “setup” is called prior to the “solve” routine, then the “solve” routine will perform a symbolic factorization,
followed by an initial numerical factorization before continuing to the sparse triangular solves, and, potentially,
iterative refinement. If “setup” is not called prior, “solve” will skip to the triangular solve step. We note that in
this solve SuperLU_DIST operates on the native data arrays for the right-hand side and solution vectors, without
requiring costly data copies.

The SUNLinSol_SuperLUDIST module defines implementations of all “direct” linear solver operations listed in §10.1:

• SUNLinSolGetType_SuperLUDIST

• SUNLinSolInitialize_SuperLUDIST – this sets the first_factorize flag to 1 and resets the internal Su-
perLU_DIST statistics variables.

• SUNLinSolSetup_SuperLUDIST – this sets the appropriate SuperLU_DIST options so that a subsequent solve
will perform a symbolic and numerical factorization before proceeding with the triangular solves

• SUNLinSolSolve_SuperLUDIST – this calls the SuperLU_DIST solve routine to perform factorization (if the
setup routine was called prior) and then use the LU factors to solve the linear system.

• SUNLinSolLastFlag_SuperLUDIST

• SUNLinSolSpace_SuperLUDIST – this only returns information for the storage within the solver interface,
i.e. storage for the integers last_flag and first_factorize. For additional space requirements, see the
SuperLU_DIST documentation.

• SUNLinSolFree_SuperLUDIST

10.16 The SUNLinSol_SuperLUMT Module

The SUNLinSol_SuperLUMT implementation of the SUNLinearSolver class interfaces with the SuperLU_MT li-
brary. This is designed to be used with the corresponding SUNMATRIX_SPARSE matrix type, and one of the se-
rial or shared-memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_-
PTHREADS). While these are compatible, it is not recommended to use a threaded vector module with SUNLinSol_-
SuperLUMT unless it is the NVECTOR_OPENMP module and the SuperLU_MT library has also been compiled with
OpenMP.

10.16.1 SUNLinSol_SuperLUMT Usage

The header file to be included when using this module is sunlinsol/sunlinsol.SuperLUMT.h. The installed mod-
ule library to link to is libsundials_sunlinsolsuperlumt .lib where .lib is typically .so for shared libraries and
.a for static libraries.

The module SUNLinSol_SuperLUMT provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SuperLUMT(N_Vector y, SUNMatrix A, int num_threads, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNLinSol_SuperLUMT object.

Arguments:

• y – a template vector.

10.16. The SUNLinSol_SuperLUMT Module 593

User Documentation for ARKODE, v6.3.0

• A – a template matrix

• num_threads – desired number of threads (OpenMP or Pthreads, depending on how SuperLU_MT was
installed) to use during the factorization steps.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object; otherwise this routine will return NULL.

Notes:
This routine analyzes the input matrix and vector to determine the linear system size and to assess compat-
ibility with the SuperLU_MT library.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_SPARSE matrix type (using
either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector types. As additional compatible matrix and vector implementations are added
to SUNDIALS, these will be included within this compatibility check.

The num_threads argument is not checked and is passed directly to SuperLU_MT routines.

SUNErrCode SUNLinSol_SuperLUMTSetOrdering(SUNLinearSolver S, int ordering_choice)
This function sets the ordering used by SuperLU_MT for reducing fill in the linear solve.

Arguments:

• S – the SUNLinSol_SuperLUMT object to update.

• ordering_choice:

0. natural ordering

1. minimal degree ordering on ATA

2. minimal degree ordering on AT +A

3. COLAMD ordering for unsymmetric matrices

The default is 3 for COLAMD.

Return value:

• A SUNErrCode

10.16.2 SUNLinSol_SuperLUMT Description

The SUNLinSol_SuperLUMT module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SuperLUMT {
int last_flag;
int first_factorize;
SuperMatrix *A, *AC, *L, *U, *B;
Gstat_t *Gstat;
sunindextype *perm_r, *perm_c;
sunindextype N;
int num_threads;
sunrealtype diag_pivot_thresh;
int ordering;
superlumt_options_t *options;

};

594 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

These entries of the content field contain the following information:

• last_flag - last error return flag from internal function evaluations,

• first_factorize - flag indicating whether the factorization has ever been performed,

• A, AC, L, U, B - SuperMatrix pointers used in solve,

• Gstat - GStat_t object used in solve,

• perm_r, perm_c - permutation arrays used in solve,

• N - size of the linear system,

• num_threads - number of OpenMP/Pthreads threads to use,

• diag_pivot_thresh - threshold on diagonal pivoting,

• ordering - flag for which reordering algorithm to use,

• options - pointer to SuperLU_MT options structure.

The SUNLinSol_SuperLUMT module is a SUNLinearSolver wrapper for the SuperLU_MT sparse matrix factoriza-
tion and solver library written by X. Sherry Li and collaborators [9, 33, 75]. The package performs matrix factorization
using threads to enhance efficiency in shared memory parallel environments. It should be noted that threads are only
used in the factorization step. In order to use the SUNLinSol_SuperLUMT interface to SuperLU_MT, it is assumed
that SuperLU_MT has been installed on the system prior to installation of SUNDIALS, and that SUNDIALS has been
configured appropriately to link with SuperLU_MT (see §16.3.34 for details). Additionally, this wrapper only sup-
ports single- and double-precision calculations, and therefore cannot be compiled if SUNDIALS is configured to have
sunrealtype set to extended (see §4.1 for details). Moreover, since the SuperLU_MT library may be installed to
support either 32-bit or 64-bit integers, it is assumed that the SuperLU_MT library is installed using the same integer
precision as the SUNDIALS sunindextype option.

The SuperLU_MT library has a symbolic factorization routine that computes the permutation of the linear system
matrix to reduce fill-in on subsequentLU factorizations (using COLAMD, minimal degree ordering onAT ∗A, minimal
degree ordering on AT + A, or natural ordering). Of these ordering choices, the default value in the SUNLinSol_-
SuperLUMT module is the COLAMD ordering.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLinSol_SuperLUMT module is constructed to perform the following operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed by an initial
numerical factorization.

• On subsequent calls to the “setup” routine, it skips the symbolic factorization, and only refactors the input matrix.

• The “solve” call performs pivoting and forward and backward substitution using the stored SuperLU_MT data
structures. We note that in this solve SuperLU_MT operates on the native data arrays for the right-hand side and
solution vectors, without requiring costly data copies.

The SUNLinSol_SuperLUMT module defines implementations of all “direct” linear solver operations listed in §10.1:

• SUNLinSolGetType_SuperLUMT

• SUNLinSolInitialize_SuperLUMT – this sets the first_factorize flag to 1 and resets the internal Su-
perLU_MT statistics variables.

• SUNLinSolSetup_SuperLUMT – this performs either a LU factorization or refactorization of the input matrix.

• SUNLinSolSolve_SuperLUMT – this calls the appropriate SuperLU_MT solve routine to utilize the LU factors
to solve the linear system.

• SUNLinSolLastFlag_SuperLUMT

10.16. The SUNLinSol_SuperLUMT Module 595

User Documentation for ARKODE, v6.3.0

• SUNLinSolSpace_SuperLUMT – this only returns information for the storage within the solver interface, i.e.
storage for the integers last_flag and first_factorize. For additional space requirements, see the Su-
perLU_MT documentation.

• SUNLinSolFree_SuperLUMT

10.17 The SUNLinSol_cuSolverSp_batchQR Module

The SUNLinSol_cuSolverSp_batchQR implementation of the SUNLinearSolver class is designed to be used with
the SUNMATRIX_CUSPARSE matrix, and the NVECTOR_CUDA vector. The header file to include when using this
module is sunlinsol/sunlinsol_cusolversp_batchqr.h. The installed library to link to is libsundials_-
sunlinsolcusolversp.lib where .lib is typically .so for shared libraries and .a for static libraries.

Warning

The SUNLinearSolver_cuSolverSp_batchQR module is experimental and subject to change.

10.17.1 SUNLinSol_cuSolverSp_batchQR description

The SUNLinearSolver_cuSolverSp_batchQR implementation provides an interface to the batched sparse QR factor-
ization method provided by the NVIDIA cuSOLVER library [6]. The module is designed for solving block diagonal
linear systems of the form 

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An

xj = bj

where all block matrices Aj share the same sparsity pattern. The matrix must be the SUNMatrix.cuSparse.

10.17.2 SUNLinSol_cuSolverSp_batchQR functions

The SUNLinearSolver_cuSolverSp_batchQR module defines implementations of all “direct” linear solver opera-
tions listed in §10.1:

• SUNLinSolGetType_cuSolverSp_batchQR

• SUNLinSolInitialize_cuSolverSp_batchQR – this sets the first_factorize flag to 1

• SUNLinSolSetup_cuSolverSp_batchQR – this always copies the relevant SUNMATRIX_SPARSE data to the
GPU; if this is the first setup it will perform symbolic analysis on the system

• SUNLinSolSolve_cuSolverSp_batchQR – this calls the cusolverSpXcsrqrsvBatched routine to perform
factorization

• SUNLinSolLastFlag_cuSolverSp_batchQR

• SUNLinSolFree_cuSolverSp_batchQR

In addition, the module provides the following user-callable routines:

596 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

SUNLinearSolver SUNLinSol_cuSolverSp_batchQR(N_Vector y, SUNMatrix A, cusolverHandle_t cusol,
SUNContext sunctx)

The function SUNLinSol_cuSolverSp_batchQR creates and allocates memory for a SUNLinearSolver object.

Arguments:

• y – a vector for checking compatibility with the solver.

• A – a SUNMATRIX_cuSparse matrix for checking compatibility with the solver.

• cusol – cuSolverSp object to use.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either A or y are incompatible then this routine will return
NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_CUSPARSE matrix type and
the NVECTOR_CUDA vector type. Since the SUNMATRIX_CUSPARSE matrix type is only compatible
with the NVECTOR_CUDA the restriction is also in place for the linear solver. As additional compatible
matrix and vector implementations are added to SUNDIALS, these will be included within this compati-
bility check.

void SUNLinSol_cuSolverSp_batchQR_GetDescription(SUNLinearSolver LS, char **desc)
The function SUNLinSol_cuSolverSp_batchQR_GetDescription accesses the string description of the ob-
ject (empty by default).

void SUNLinSol_cuSolverSp_batchQR_SetDescription(SUNLinearSolver LS, const char *desc)
The function SUNLinSol_cuSolverSp_batchQR_SetDescription sets the string description of the object
(empty by default).

void SUNLinSol_cuSolverSp_batchQR_GetDeviceSpace(SUNLinearSolver S, size_t *cuSolverInternal, size_t
*cuSolverWorkspace)

The function SUNLinSol_cuSolverSp_batchQR_GetDeviceSpace returns the cuSOLVER batch QR method
internal buffer size, in bytes, in the argument cuSolverInternal and the cuSOLVER batch QR workspace
buffer size, in bytes, in the argument cuSolverWorkspace. The size of the internal buffer is proportional to the
number of matrix blocks while the size of the workspace is almost independent of the number of blocks.

10.17.3 SUNLinSol_cuSolverSp_batchQR content

The SUNLinSol_cuSolverSp_batchQR module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_cuSolverSp_batchQR {
int last_flag; /* last return flag */
sunbooleantype first_factorize; /* is this the first factorization? */
size_t internal_size; /* size of cusolver buffer for Q and R */
size_t workspace_size; /* size of cusolver memory for factorization */
cusolverSpHandle_t cusolver_handle; /* cuSolverSp context */
csrqrInfo_t info; /* opaque cusolver data structure */
void* workspace; /* memory block used by cusolver */
const char* desc; /* description of this linear solver */

};

10.17. The SUNLinSol_cuSolverSp_batchQR Module 597

User Documentation for ARKODE, v6.3.0

10.18 The SUNLINEARSOLVER_GINKGO Module

Added in version 6.4.0.

The SUNLINEARSOLVER_GINKGO implementation of the SUNLinearSolver API provides an interface to the
linear solvers from the Ginkgo linear algebra library [11]. Since Ginkgo is a modern C++ library, SUNLINEAR-
SOLVER_GINKGO is also written in modern C++ (specifically, C++14). Unlike most other SUNDIALS modules, it
is a header only library. To use the SUNLINEARSOLVER_GINKGO SUNLinearSolver, users will need to include
sunlinsol/sunlinsol_ginkgo.hpp. The module is meant to be used with the SUNMATRIX_GINKGO module
described in §9.10. Instructions on building SUNDIALS with Ginkgo enabled are given in §16.3.18. For instructions
on building and using Ginkgo itself, refer to the Ginkgo website and documentation.

Note

It is assumed that users of this module are aware of how to use Ginkgo. This module does not try to encapsulate
Ginkgo linear solvers, rather it provides a lightweight iteroperability layer between Ginkgo and SUNDIALS. Most,
if not all, of the Ginkgo linear solver should work with this interface.

10.18.1 Using SUNLINEARSOLVER_GINKGO

After choosing a compatible N_Vector (see §9.10.1) and creating a Ginkgo-enabled SUNMatrix (see §9.10) to use the
SUNLINEARSOLVER_GINKGO module, we first create a Ginkgo stopping criteria object. Importantly, the sundi-
als::ginkgo::DefaultStop class provided by SUNDIALS implements a stopping criterion that matches the default
SUNDIALS stopping criterion. Namely, it checks if the max iterations (5 by default) were reached or if the absolute
residual norm was below a specified tolerance. The criterion can be created just like any other Ginkgo stopping criteria:

auto crit{sundials::ginkgo::DefaultStop::build().with_max_iters(max_iters).on(gko_exec)};

Warning

It is highly recommended to employ this criterion when using Ginkgo solvers with SUNDIALS, but it is optional.
However, to use the Ginkgo multigrid or cbgmres linear solvers, different Ginkgo criterion must be used.

Once we have created our stopping criterion, we create a Ginkgo solver factory object and wrap it in a sundi-
als::ginkgo::LinearSolver object. In this example, we create a Ginkgo conjugate gradient solver:

using GkoMatrixType = gko::matrix::Csr<sunrealtype, sunindextype>;
using GkoSolverType = gko::solver::Cg<sunrealtype>;

auto gko_solver_factory = gko::share(
GkoSolverType::build().with_criteria(std::move(crit)).on(gko_exec));

sundials::ginkgo::LinearSolver<GkoSolverType, GkoMatrixType> LS{
gko_solver_factory, sunctx};

Finally, we can pass the instance of sundials::ginkgo::LinearSolver to any function expecting a SUNLinear-
Solver object through the implicit conversion operator or explicit conversion function.

// Attach linear solver and matrix to CVODE.
//

(continues on next page)

598 Chapter 10. Linear Algebraic Solvers

https://ginkgo-project.github.io/

User Documentation for ARKODE, v6.3.0

(continued from previous page)

// Implicit conversion from sundials::ginkgo::LinearSolver<GkoSolverType, GkoMatrixType>
// to a SUNLinearSolver object is done.
//
// For details about creating A see the SUNMATRIX_GINKGO module.
CVodeSetLinearSolver(cvode_mem, LS, A);

// Alternatively with explicit conversion of LS to a SUNLinearSolver
// and A to a SUNMatrix:
CVodeSetLinearSolver(cvode_mem, LS->Convert(), A->Convert());

Warning

SUNLinSolFree() should never be called on a SUNLinearSolver that was created via conversion from a sun-
dials::ginkgo::LinearSolver. Doing so may result in a double free.

10.18.2 SUNLINEARSOLVER_GINKGO API

In this section we list the public API of the sundials::ginkgo::LinearSolver class.

template<class GkoSolverType, class GkoMatrixType>
class sundials::ginkgo::LinearSolver : public sundials::ConvertibleTo<SUNLinearSolver>

LinearSolver() = default;
Default constructor - means the solver must be moved to.

LinearSolver(std::shared_ptr<typename GkoSolverType::Factory> gko_solver_factory, SUNContext sunctx)
Constructs a new LinearSolver from a Ginkgo solver factory.

Parameters

• gko_solver_factory – The Ginkgo solver factory (typically
gko::matrix::<type>::Factory`)

• sunctx – The SUNDIALS simulation context (SUNContext)

LinearSolver(LinearSolver &&that_solver) noexcept
Move constructor.

LinearSolver &operator=(LinearSolver &&rhs)
Move assignment.

~LinearSolver() override = default
Default destructor.

operator SUNLinearSolver() override
Implicit conversion to a SUNLinearSolver.

operator SUNLinearSolver() const override
Implicit conversion to a SUNLinearSolver.

SUNLinearSolver Convert() override
Explicit conversion to a SUNLinearSolver.

10.18. The SUNLINEARSOLVER_GINKGO Module 599

User Documentation for ARKODE, v6.3.0

SUNLinearSolver Convert() const override
Explicit conversion to a SUNLinearSolver.

std::shared_ptr<const gko::Executor> GkoExec() const
Get the gko::Executor associated with the Ginkgo solver.

std::shared_ptr<typename GkoSolverType::Factory> GkoFactory()
Get the underlying Ginkgo solver factory.

GkoSolverType *GkoSolver()
Get the underlying Ginkgo solver.

Note

This will be nullptr until the linear solver setup phase.

int NumIters() const
Get the number of linear solver iterations in the most recent solve.

sunrealtype ResNorm() const
Get the residual norm of the solution at the end of the last solve.

The type of residual norm depends on the Ginkgo stopping criteria used with the solver. With the De-
faultStop criteria this would be the absolute residual 2-norm.

GkoSolverType *Setup(Matrix<GkoMatrixType> *A)
Setup the linear system.

Parameters
A – the linear system matrix

Returns
Pointer to the Ginkgo solver generated from the factory

gko::LinOp *Solve(N_Vector b, N_Vector x, sunrealtype tol)
Solve the linear system Ax = b to the specified tolerance.

Parameters

• b – the right-hand side vector

• x – the solution vector

• tol – the tolerance to solve the system to

Returns
gko::LinOp* the solution

600 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

10.19 The SUNLINEARSOLVER_KOKKOSDENSE Module

Added in version 6.4.0.

The SUNLINEARSOLVER_KOKKOSDENSE SUNLinearSolver implementation provides an interface to
KokkosKernels [117] linear solvers for dense and batched dense (block-diagonal) systems. Since Kokkos is a mod-
ern C++ library, the module is also written in modern C++ (it requires C++14) as a header only library. To utilize
this SUNLinearSolver user will need to include sunlinsol/sunlinsol_kokkosdense.hpp. More instructions on
building SUNDIALS with Kokkos and KokkosKernels enabled are given in §16.3.23. For instructions on building and
using Kokkos and KokkosKernels, refer to the Kokkos and KokkosKernels. documentation.

10.19.1 Using SUNLINEARSOLVER_KOKKOSDENSE

The SUNLINEARSOLVER_KOKKOSDENSE module is defined by the DenseLinearSolver templated class in the
sundials::kokkos namespace:

template<class ExecSpace = Kokkos::DefaultExecutionSpace,
class MemSpace = typename ExecSpace::memory_space>

class DenseLinearSolver : public sundials::impl::BaseLinearSolver,
public sundials::ConvertibleTo<SUNLinearSolver>

To use the SUNLINEARSOLVER_KOKKOSDENSE module, we begin by constructing an instance of a dense linear
solver e.g.,

// Create a dense linear solver
sundials::kokkos::DenseLinearSolver<> LS{sunctx};

Instances of the DenseLinearSolver class are implicitly or explicitly (using the Convert() method) convertible to
a SUNLinearSolver e.g.,

sundials::kokkos::DenseLinearSolver<> LS{sunctx};
SUNLinearSolver LSA = LS; // implicit conversion to SUNLinearSolver
SUNLinearSolver LSB = LS.Convert(); // explicit conversion to SUNLinearSolver

Warning

SUNLinSolFree() should never be called on a SUNLinearSolver that was created via conversion from a sun-
dials::kokkos::DenseLinearSolver. Doing so may result in a double free.

The SUNLINEARSOLVER_KOKKOSDENSE module is compatible with the NVECTOR_KOKKOS vector module
(see §8.14) and SUNMATRIX_KOKKOSDENSE matrix module (see §9.11).

10.19. The SUNLINEARSOLVER_KOKKOSDENSE Module 601

https://kokkos.github.io/kokkos-core-wiki/index.html
https://github.com/kokkos/kokkos-kernels/wiki

User Documentation for ARKODE, v6.3.0

10.19.2 SUNLINEARSOLVER_KOKKOSDENSE API

In this section we list the public API of the sundials::kokkos::DenseLinearSolver class.

template<class ExecSpace = Kokkos::DefaultExecutionSpace, class MemSpace = typename
ExecSpace::memory_space>
class DenseLinearSolver : public sundials::impl::BaseLinearSolver, public
sundials::ConvertibleTo<SUNLinearSolver>

DenseLinearSolver() = default;
Default constructor - means the solver must be moved to.

DenseLinearSolver(SUNContext sunctx)
Constructs a new DenseLinearSolver.

Parameters
sunctx – The SUNDIALS simulation context (SUNContext)

DenseLinearSolver(DenseLinearSolver &&that_solver) noexcept
Move constructor.

DenseLinearSolver &operator=(DenseLinearSolver &&rhs)
Move assignment.

~DenseLinearSolver() override = default
Default destructor.

operator SUNLinearSolver() override
Implicit conversion to a SUNLinearSolver.

operator SUNLinearSolver() const override
Implicit conversion to a SUNLinearSolver.

SUNLinearSolver Convert() override
Explicit conversion to a SUNLinearSolver.

SUNLinearSolver Convert() const override
Explicit conversion to a SUNLinearSolver.

10.20 SUNLinearSolver Examples

There are SUNLinearSolver examples that may be installed for each implementation; these make use of the functions
in test_sunlinsol.c. These example functions show simple usage of the SUNLinearSolver family of modules.
The inputs to the examples depend on the linear solver type, and are output to stdout if the example is run without
the appropriate number of command-line arguments.

The following is a list of the example functions in test_sunlinsol.c:

• Test_SUNLinSolGetType: Verifies the returned solver type against the value that should be returned.

• Test_SUNLinSolGetID: Verifies the returned solver identifier against the value that should be returned.

• Test_SUNLinSolInitialize: Verifies that SUNLinSolInitialize can be called and returns successfully.

• Test_SUNLinSolSetup: Verifies that SUNLinSolSetup can be called and returns successfully.

602 Chapter 10. Linear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

• Test_SUNLinSolSolve: Given a SUNMatrix object A, N_Vector objects x and b (where Ax = b) and a
desired solution tolerance tol, this routine clones x into a new vector y, calls SUNLinSolSolve to fill y as the
solution to Ay = b (to the input tolerance), verifies that each entry in x and y match to within 10*tol, and
overwrites x with y prior to returning (in case the calling routine would like to investigate further).

• Test_SUNLinSolSetATimes (iterative solvers only): Verifies that SUNLinSolSetATimes can be called and
returns successfully.

• Test_SUNLinSolSetPreconditioner (iterative solvers only): Verifies that SUNLinSolSetPreconditioner
can be called and returns successfully.

• Test_SUNLinSolSetScalingVectors (iterative solvers only): Verifies that SUNLinSolSetScalingVectors
can be called and returns successfully.

• Test_SUNLinSolSetZeroGuess (iterative solvers only): Verifies that SUNLinSolSetZeroGuess can be called
and returns successfully.

• Test_SUNLinSolLastFlag: Verifies that SUNLinSolLastFlag can be called, and outputs the result to std-
out.

• Test_SUNLinSolNumIters (iterative solvers only): Verifies that SUNLinSolNumIters can be called, and out-
puts the result to stdout.

• Test_SUNLinSolResNorm (iterative solvers only): Verifies that SUNLinSolResNorm can be called, and that the
result is non-negative.

• Test_SUNLinSolResid (iterative solvers only): Verifies that SUNLinSolResid can be called.

• Test_SUNLinSolSpace verifies that SUNLinSolSpace can be called, and outputs the results to stdout.

We’ll note that these tests should be performed in a particular order. For either direct or iterative linear solvers, Test_-
SUNLinSolInitializemust be called before Test_SUNLinSolSetup, which must be called before Test_SUNLin-
SolSolve. Additionally, for iterative linear solvers Test_SUNLinSolSetATimes, Test_SUNLinSolSetPrecondi-
tioner and Test_SUNLinSolSetScalingVectors should be called before Test_SUNLinSolInitialize; sim-
ilarly Test_SUNLinSolNumIters, Test_SUNLinSolResNorm and Test_SUNLinSolResid should be called after
Test_SUNLinSolSolve. These are called in the appropriate order in all of the example problems.

10.20. SUNLinearSolver Examples 603

User Documentation for ARKODE, v6.3.0

604 Chapter 10. Linear Algebraic Solvers

Chapter 11

Nonlinear Algebraic Solvers

SUNDIALS time integration packages are written in terms of generic nonlinear solver operations defined by the SUN-
NonlinSol API and implemented by a particular SUNNonlinSol module of type SUNNonlinearSolver. Users can
supply their own SUNNonlinSol module, or use one of the modules provided with SUNDIALS. Depending on the
package, nonlinear solver modules can either target systems presented in a rootfinding (F (y) = 0) or fixed-point
(G(y) = y) formulation. For more information on the formulation of the nonlinear system(s) in ARKODE, see §11.2.

The time integrators in SUNDIALS specify a default nonlinear solver module and as such this chapter is intended
for users that wish to use a non-default nonlinear solver module or would like to provide their own nonlinear solver
implementation. Users interested in using a non-default solver module may skip the description of the SUNNonlinSol
API in section §11.1 and proceeded to the subsequent sections in this chapter that describe the SUNNonlinSol modules
provided with SUNDIALS.

For users interested in providing their own SUNNonlinSol module, the following section presents the SUNNonlinSol
API and its implementation beginning with the definition of SUNNonlinSol functions in the sections §11.1.1, §11.1.2
and §11.1.3. This is followed by the definition of functions supplied to a nonlinear solver implementation in the section
§11.1.4. The nonlinear solver return codes are given in the section §11.1.5. The SUNNonlinearSolver type and the
generic SUNNonlinSol module are defined in the section §11.1.6. Finally, the section §11.1.7 lists the requirements for
supplying a custom SUNNonlinSol module. Users wishing to supply their own SUNNonlinSol module are encouraged
to use the SUNNonlinSol implementations provided with SUNDIALS as templates for supplying custom nonlinear
solver modules.

11.1 The SUNNonlinearSolver API

The SUNNonlinSol API defines several nonlinear solver operations that enable SUNDIALS integrators to utilize any
SUNNonlinSol implementation that provides the required functions. These functions can be divided into three cate-
gories. The first are the core nonlinear solver functions. The second consists of “set” routines to supply the nonlinear
solver with functions provided by the SUNDIALS time integrators and to modify solver parameters. The final group
consists of “get” routines for retrieving nonlinear solver statistics. All of these functions are defined in the header file
sundials/sundials_nonlinearsolver.h.

605

User Documentation for ARKODE, v6.3.0

11.1.1 SUNNonlinearSolver core functions

The core nonlinear solver functions consist of two required functions to get the nonlinear solver type (SUNNonlinSol-
GetType()) and solve the nonlinear system (SUNNonlinSolSolve()). The remaining three functions for nonlinear
solver initialization (SUNNonlinSolInitialize()), setup (SUNNonlinSolSetup()), and destruction (SUNNonlin-
SolFree()) are optional.

enum SUNNonlinearSolver_Type
An identifier indicating the form of the nonlinear system expected by the nonlinear solver.

enumerator SUNNONLINEARSOLVER_ROOTFIND
The nonlinear solver expects systems in rootfinding form F (y) = 0

enumerator SUNNONLINEARSOLVER_FIXEDPOINT
The nonlinear solver expects systems in fixed-point form G(y) = y.

SUNNonlinearSolver_Type SUNNonlinSolGetType(SUNNonlinearSolver NLS)
This required function returns the nonlinear solver type.

Arguments:

• NLS – a SUNNonlinSol object.

Return value:
The SUNNonlinearSolver_Type type identifier for the nonlinear solver.

SUNErrCode SUNNonlinSolInitialize(SUNNonlinearSolver NLS)
This optional function handles nonlinear solver initialization and may perform any necessary memory alloca-
tions.

Arguments:

• NLS – a SUNNonlinSol object.

Return value:
A SUNErrCode.

Notes:
It is assumed all solver-specific options have been set prior to calling SUNNonlinSolInitialize(). SUN-
NonlinSol implementations that do not require initialization may set this operation to NULL.

SUNErrCode SUNNonlinSolSetup(SUNNonlinearSolver NLS, N_Vector y, void *mem)
This optional function performs any solver setup needed for a nonlinear solve.

Arguments:

• NLS – a SUNNonlinSol object.

• y – the initial guess passed to the nonlinear solver.

• mem – the SUNDIALS integrator memory structure.

Return value:
A SUNErrCode.

Notes:
SUNDIALS integrators call SUNNonlinSolSetup() before each step attempt. SUNNonlinSol implemen-
tations that do not require setup may set this operation to NULL.

int SUNNonlinSolSolve(SUNNonlinearSolver NLS, N_Vector y0, N_Vector ycor, N_Vector w, sunrealtype tol,
sunbooleantype callLSetup, void *mem)

This required function solves the nonlinear system F (y) = 0 or G(y) = y.

606 Chapter 11. Nonlinear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

Arguments:

• NLS – a SUNNonlinSol object.

• y0 – the predicted value for the new solution state. This must remain unchanged throughout the solution
process.

• ycor – on input the initial guess for the correction to the predicted state (zero) and on output the final
correction to the predicted state.

• w – the solution error weight vector used for computing weighted error norms.

• tol – the requested solution tolerance in the weighted root-mean-squared norm.

• callLSetup – a flag indicating that the integrator recommends for the linear solver setup function to be
called.

• mem – the SUNDIALS integrator memory structure.

Return value:
The return value is zero for a successful solve, a positive value for a recoverable error (i.e., the solve failed
and the integrator should reduce the step size and reattempt the step), and a negative value for an unrecov-
erable error (i.e., the solve failed the and the integrator should halt and return an error to the user).

SUNErrCode SUNNonlinSolFree(SUNNonlinearSolver NLS)
This optional function frees any memory allocated by the nonlinear solver.

Arguments:

• NLS – a SUNNonlinSol object.

Return value:

• A SUNErrCode

11.1.2 SUNNonlinearSolver “set” functions

The following functions are used to supply nonlinear solver modules with functions defined by the SUNDIALS inte-
grators and to modify solver parameters. Only the routine for setting the nonlinear system defining function (SUNNon-
linSolSetSysFn()) is required. All other set functions are optional.

SUNErrCode SUNNonlinSolSetSysFn(SUNNonlinearSolver NLS, SUNNonlinSolSysFn SysFn)
This required function is used to provide the nonlinear solver with the function defining the nonlinear system.
This is the function F (y) in F (y) = 0 for SUNNONLINEARSOLVER_ROOTFINDmodules orG(y) inG(y) = y for
SUNNONLINEARSOLVER_FIXEDPOINT modules.

Arguments:

• NLS – a SUNNonlinSol object.

• SysFn – the function defining the nonlinear system. See §11.1.4 for the definition of SUNNonlinSol-
SysFn.

Return value:

• A SUNErrCode

SUNErrCode SUNNonlinSolSetLSetupFn(SUNNonlinearSolver NLS, SUNNonlinSolLSetupFn SetupFn)
This optional function is called by SUNDIALS integrators to provide the nonlinear solver with access to its linear
solver setup function.

Arguments:

11.1. The SUNNonlinearSolver API 607

User Documentation for ARKODE, v6.3.0

• NLS – a SUNNonlinSol object.

• SetupFn – a wrapper function to the SUNDIALS integrator’s linear solver setup function. See §11.1.4
for the definition of SUNNonlinSolLSetupFn.

Return value:

• A SUNErrCode

Notes:
The SUNNonlinSolLSetupFn function sets up the linear systemAx = bwhereA = ∂F

∂y is the linearization
of the nonlinear residual function F (y) = 0 (when using SUNLinSol direct linear solvers) or calls the user-
defined preconditioner setup function (when using SUNLinSol iterative linear solvers). SUNNonlinSol
implementations that do not require solving this system, do not utilize SUNLinSol linear solvers, or use
SUNLinSol linear solvers that do not require setup may set this operation to NULL.

SUNErrCode SUNNonlinSolSetLSolveFn(SUNNonlinearSolver NLS, SUNNonlinSolLSolveFn SolveFn)
This optional function is called by SUNDIALS integrators to provide the nonlinear solver with access to its linear
solver solve function.

Arguments:

• NLS – a SUNNonlinSol object.

• SolveFn – a wrapper function to the SUNDIALS integrator’s linear solver solve function. See §11.1.4
for the definition of SUNNonlinSolLSolveFn.

Return value:

• A SUNErrCode

Notes:
The SUNNonlinSolLSolveFn function solves the linear systemAx = bwhereA = ∂F

∂y is the linearization
of the nonlinear residual function F (y) = 0. SUNNonlinSol implementations that do not require solving
this system or do not use SUNLinSol linear solvers may set this operation to NULL.

SUNErrCode SUNNonlinSolSetConvTestFn(SUNNonlinearSolver NLS, SUNNonlinSolConvTestFn CTestFn, void
*ctest_data)

This optional function is used to provide the nonlinear solver with a function for determining if the nonlinear
solver iteration has converged. This is typically called by SUNDIALS integrators to define their nonlinear con-
vergence criteria, but may be replaced by the user.

Arguments:

• NLS – a SUNNonlinSol object.

• CTestFn – a SUNDIALS integrator’s nonlinear solver convergence test function. See §11.1.4 for the
definition of SUNNonlinSolConvTestFn.

• ctest_data – is a data pointer passed to CTestFn every time it is called.

Return value:

• A SUNErrCode

Notes:
SUNNonlinSol implementations utilizing their own convergence test criteria may set this function to NULL.

SUNErrCode SUNNonlinSolSetMaxIters(SUNNonlinearSolver NLS, int maxiters)
This optional function sets the maximum number of nonlinear solver iterations. This is typically called by
SUNDIALS integrators to define their default iteration limit, but may be adjusted by the user.

Arguments:

608 Chapter 11. Nonlinear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

• NLS – a SUNNonlinSol object.

• maxiters – the maximum number of nonlinear iterations.

Return value:

• A SUNErrCode

11.1.3 SUNNonlinearSolver “get” functions

The following functions allow SUNDIALS integrators to retrieve nonlinear solver statistics. The routines to get the
number of iterations in the most recent solve (SUNNonlinSolGetNumIters()) and number of convergence failures
are optional. The routine to get the current nonlinear solver iteration (SUNNonlinSolGetCurIter()) is required when
using the convergence test provided by the SUNDIALS integrator or when using an iterative SUNLinSol linear solver
module; otherwise SUNNonlinSolGetCurIter() is optional.

SUNErrCode SUNNonlinSolGetNumIters(SUNNonlinearSolver NLS, long int *niters)
This optional function returns the number of nonlinear solver iterations in the most recent solve. This is typically
called by the SUNDIALS integrator to store the nonlinear solver statistics, but may also be called by the user.

Arguments:

• NLS – a SUNNonlinSol object.

• niters – the total number of nonlinear solver iterations.

Return value:

• A SUNErrCode

SUNErrCode SUNNonlinSolGetCurIter(SUNNonlinearSolver NLS, int *iter)
This function returns the iteration index of the current nonlinear solve. This function is required when using
SUNDIALS integrator-provided convergence tests or when using an iterative SUNLinSol linear solver module;
otherwise it is optional.

Arguments:

• NLS – a SUNNonlinSol object.

• iter – the nonlinear solver iteration in the current solve starting from zero.

Return value:

• A SUNErrCode

SUNErrCode SUNNonlinSolGetNumConvFails(SUNNonlinearSolver NLS, long int *nconvfails)
This optional function returns the number of nonlinear solver convergence failures in the most recent solve. This
is typically called by the SUNDIALS integrator to store the nonlinear solver statistics, but may also be called by
the user.

Arguments:

• NLS – a SUNNonlinSol object.

• nconvfails – the total number of nonlinear solver convergence failures.

Return value:

• A SUNErrCode

11.1. The SUNNonlinearSolver API 609

User Documentation for ARKODE, v6.3.0

11.1.4 Functions provided by SUNDIALS integrators

To interface with SUNNonlinSol modules, the SUNDIALS integrators supply a variety of routines for evaluating the
nonlinear system, calling the SUNLinSol setup and solve functions, and testing the nonlinear iteration for convergence.
These integrator-provided routines translate between the user-supplied ODE or DAE systems and the generic interfaces
to the nonlinear or linear systems of equations that result in their solution. The functions provided to a SUNNonlinSol
module have types defined in the header file sundials/sundials_nonlinearsolver.h; these are also described
below.

typedef int (*SUNNonlinSolSysFn)(N_Vector ycor, N_Vector F, void *mem)
These functions evaluate the nonlinear system F (y) for SUNNONLINEARSOLVER_ROOTFIND type modules or
G(y) for SUNNONLINEARSOLVER_FIXEDPOINT type modules. Memory for F must by be allocated prior to
calling this function. The vector ycor will be left unchanged.

Arguments:

• ycor – is the current correction to the predicted state at which the nonlinear system should be evaluated.

• F – is the output vector containing F (y) or G(y), depending on the solver type.

• mem – is the SUNDIALS integrator memory structure.

Return value:
The return value is zero for a successful solve, a positive value for a recoverable error, and a negative value
for an unrecoverable error.

Notes:
SUNDIALS integrators formulate nonlinear systems as a function of the correction to the predicted solu-
tion. On each call to the nonlinear system function the integrator will compute and store the current solution
based on the input correction. Additionally, the residual will store the value of the ODE right-hand side
function or DAE residual used in computing the nonlinear system. These stored values are then directly
used in the integrator-supplied linear solver setup and solve functions as applicable.

typedef int (*SUNNonlinSolLSetupFn)(sunbooleantype jbad, sunbooleantype *jcur, void *mem)
These functions are wrappers to the SUNDIALS integrator’s function for setting up linear solves with SUNLinSol
modules.

Arguments:

• jbad – is an input indicating whether the nonlinear solver believes that A has gone stale (SUNTRUE) or
not (SUNFALSE).

• jcur – is an output indicating whether the routine has updated the Jacobian A (SUNTRUE) or not
(SUNFALSE).

• mem – is the SUNDIALS integrator memory structure.

Return value:
The return value is zero for a successful solve, a positive value for a recoverable error, and a negative value
for an unrecoverable error.

Notes:
The SUNNonlinSolLSetupFn function sets up the linear systemAx = bwhereA = ∂F

∂y is the linearization
of the nonlinear residual function F (y) = 0 (when using SUNLinSol direct linear solvers) or calls the user-
defined preconditioner setup function (when using SUNLinSol iterative linear solvers). SUNNonlinSol
implementations that do not require solving this system, do not utilize SUNLinSol linear solvers, or use
SUNLinSol linear solvers that do not require setup may ignore these functions.

As discussed in the description of SUNNonlinSolSysFn, the linear solver setup function assumes that the
nonlinear system function has been called prior to the linear solver setup function as the setup will utilize
saved values from the nonlinear system evaluation (e.g., the updated solution).

610 Chapter 11. Nonlinear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

typedef int (*SUNNonlinSolLSolveFn)(N_Vector b, void *mem)
These functions are wrappers to the SUNDIALS integrator’s function for solving linear systems with SUNLinSol
modules.

Arguments:

• b – contains the right-hand side vector for the linear solve on input and the solution to the linear system
on output.

• mem – is the SUNDIALS integrator memory structure.

Return value:
The return value is zero for a successful solve, a positive value for a recoverable error, and a negative value
for an unrecoverable error.

Notes:
The SUNNonlinSolLSolveFn function solves the linear systemAx = bwhereA = ∂F

∂y is the linearization
of the nonlinear residual function F (y) = 0. SUNNonlinSol implementations that do not require solving
this system or do not use SUNLinSol linear solvers may ignore these functions.

As discussed in the description of SUNNonlinSolSysFn, the linear solver solve function assumes that the
nonlinear system function has been called prior to the linear solver solve function as the setup may utilize
saved values from the nonlinear system evaluation (e.g., the updated solution).

typedef int (*SUNNonlinSolConvTestFn)(SUNNonlinearSolver NLS, N_Vector ycor, N_Vector del, sunrealtype tol,
N_Vector ewt, void *ctest_data)

These functions are SUNDIALS integrator-specific convergence tests for nonlinear solvers and are typically
supplied by each SUNDIALS integrator, but users may supply custom problem-specific versions as desired.

Arguments:

• NLS – is the SUNNonlinSol object.

• ycor – is the current correction (nonlinear iterate).

• del – is the difference between the current and prior nonlinear iterates.

• tol – is the nonlinear solver tolerance.

• ewt – is the weight vector used in computing weighted norms.

• ctest_data – is the data pointer provided to SUNNonlinSolSetConvTestFn().

Return value:
The return value of this routine will be a negative value if an unrecoverable error occurred or one of the
following:

• SUN_SUCCESS – the iteration is converged.

• SUN_NLS_CONTINUE – the iteration has not converged, keep iterating.

• SUN_NLS_CONV_RECVR – the iteration appears to be diverging, try to recover.

Notes:
The tolerance passed to this routine by SUNDIALS integrators is the tolerance in a weighted root-mean-
squared norm with error weight vector ewt. SUNNonlinSol modules utilizing their own convergence cri-
teria may ignore these functions.

11.1. The SUNNonlinearSolver API 611

User Documentation for ARKODE, v6.3.0

11.1.5 SUNNonlinearSolver return codes

The functions provided to SUNNonlinSol modules by each SUNDIALS integrator, and functions within the
SUNDIALS-provided SUNNonlinSol implementations, utilize a common set of return codes shown in Table 11.1.
Here, negative values correspond to non-recoverable failures, positive values to recoverable failures, and zero to a
successful call.

Table 11.1: Description of the SUNNonlinearSolver return codes.

Name Value Description
SUN_SUCCESS 0 successful call or converged solve
SUN_NLS_CONTINUE 901 the nonlinear solver is not converged, keep iterating
SUN_NLS_CONV_RECVR 902 the nonlinear solver appears to be diverging, try to recover

11.1.6 The generic SUNNonlinearSolver module

SUNDIALS integrators interact with specific SUNNonlinSol implementations through the generic SUNNonlinSol
module on which all other SUNNonlinSol implementations are built. The SUNNonlinearSolver type is a pointer
to a structure containing an implementation-dependent content field and an ops field.

A SUNNonlinearSolver is a pointer to the _generic_SUNNonlinearSolver structure:

typedef struct _generic_SUNNonlinearSolver *SUNNonlinearSolver

struct _generic_SUNNonlinearSolver
The structure defining the SUNDIALS nonlinear solver class.

void *content
Pointer to nonlinear solver-specific member data

SUNNonlinearSolver_Ops ops
A virtual table of nonlinear solver operations provided by a specific implementation

SUNContext sunctx
The SUNDIALS simulation context

The virtual table structure is defined as

typedef struct _generic_SUNNonlinearSolver_Ops *SUNNonlinearSolver_Ops

struct _generic_SUNNonlinearSolver_Ops
The structure defining SUNNonlinearSolver operations.

SUNNonlinearSolver_Type (*gettype)(SUNNonlinearSolver)
The function implementing SUNNonlinSolGetType()

int (*initialize)(SUNNonlinearSolver)
The function implementing SUNNonlinSolInitialize()

int (*setup)(SUNNonlinearSolver, N_Vector, void*)
The function implementing SUNNonlinSolSetup()

int (*solve)(SUNNonlinearSolver, N_Vector, N_Vector, N_Vector, sunrealtype, sunbooleantype, void*)
The function implementing SUNNonlinSolSolve()

612 Chapter 11. Nonlinear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

int (*free)(SUNNonlinearSolver)
The function implementing SUNNonlinSolFree()

int (*setsysfn)(SUNNonlinearSolver, SUNNonlinSolSysFn)
The function implementing SUNNonlinSolSetSysFn()

int (*setlsetupfn)(SUNNonlinearSolver, SUNNonlinSolLSetupFn)
The function implementing SUNNonlinSolSetLSetupFn()

int (*setlsolvefn)(SUNNonlinearSolver, SUNNonlinSolLSolveFn)
The function implementing SUNNonlinSolSetLSolveFn()

int (*setctestfn)(SUNNonlinearSolver, SUNNonlinSolConvTestFn, void*)
The function implementing SUNNonlinSolSetConvTestFn()

int (*setmaxiters)(SUNNonlinearSolver, int)
The function implementing SUNNonlinSolSetMaxIters()

int (*getnumiters)(SUNNonlinearSolver, long int*)
The function implementing SUNNonlinSolGetNumIters()

int (*getcuriter)(SUNNonlinearSolver, int*)
The function implementing SUNNonlinSolGetCurIter()

int (*getnumconvfails)(SUNNonlinearSolver, long int*)
The function implementing SUNNonlinSolGetNumConvFails()

The generic SUNNonlinSol module defines and implements the nonlinear solver operations defined in §11.1.1–§11.1.3.
These routines are in fact only wrappers to the nonlinear solver operations provided by a particular SUNNonlinSol im-
plementation, which are accessed through the ops field of the SUNNonlinearSolver structure. To illustrate this point
we show below the implementation of a typical nonlinear solver operation from the generic SUNNonlinSol module,
namely SUNNonlinSolSolve(), which solves the nonlinear system and returns a flag denoting a successful or failed
solve:

int SUNNonlinSolSolve(SUNNonlinearSolver NLS,
N_Vector y0, N_Vector y,
N_Vector w, sunrealtype tol,
sunbooleantype callLSetup, void* mem)

{
return((int) NLS->ops->solve(NLS, y0, y, w, tol, callLSetup, mem));

}

11.1.7 Implementing a Custom SUNNonlinearSolver Module

A SUNNonlinSol implementation must do the following:

• Specify the content of the SUNNonlinSol module.

• Define and implement the required nonlinear solver operations defined in §11.1.1–§11.1.3. Note that the names
of the module routines should be unique to that implementation in order to permit using more than one SUN-
NonlinSol module (each with different SUNNonlinearSolver internal data representations) in the same code.

• Define and implement a user-callable constructor to create a SUNNonlinearSolver object.

To aid in the creation of custom SUNNonlinearSolvermodules, the generic SUNNonlinearSolvermodule provides
the utility functions SUNNonlinSolNewEmpty() and SUNNonlinSolFreeEmpty(). When used in custom SUNNon-
linearSolver constructors these functions will ease the introduction of any new optional nonlinear solver operations
to the SUNNonlinearSolver API by ensuring that only required operations need to be set.

11.1. The SUNNonlinearSolver API 613

User Documentation for ARKODE, v6.3.0

SUNNonlinearSolver SUNNonlinSolNewEmpty(SUNContext sunctx)
This function allocates a new generic SUNNonlinearSolver object and initializes its content pointer and the
function pointers in the operations structure to NULL.

Return value:
If successful, this function returns a SUNNonlinearSolver object. If an error occurs when allocating the
object, then this routine will return NULL.

void SUNNonlinSolFreeEmpty(SUNNonlinearSolver NLS)
This routine frees the generic SUNNonlinearSolver object, under the assumption that any implementation-
specific data that was allocated within the underlying content structure has already been freed. It will additionally
test whether the ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:

• NLS – a SUNNonlinearSolver object

Additionally, a SUNNonlinearSolver implementation may do the following:

• Define and implement additional user-callable “set” routines acting on the SUNNonlinearSolver object, e.g.,
for setting various configuration options to tune the performance of the nonlinear solve algorithm.

• Provide additional user-callable “get” routines acting on the SUNNonlinearSolver object, e.g., for returning
various solve statistics.

11.2 ARKODE SUNNonlinearSolver interface

As discussed in §2 integration steps often require the (approximate) solution of nonlinear systems. These systems can
be formulated as the rootfinding problem

G(zi) ≡ zi − γf I
(
tIn,i, zi

)
− ai = 0 [M = I],

G(zi) ≡Mzi − γf I
(
tIn,i, zi

)
− ai = 0 [M static],

G(zi) ≡M(tIn,i)(zi − ai)− γf I
(
tIn,i, zi

)
= 0 [M time-dependent],

where zi is the i-th stage at time ti and ai is known data that depends on the integration method.

Alternately, the nonlinear system above may be formulated as the fixed-point problem

zi = zi −M(tIn,i)
−1G(zi),

whereG(zi) is the variant of the rootfinding problem listed above, andM(tIn,i) may equal eitherM or I , as applicable.

Rather than solving the above nonlinear systems for the stage value zi directly, ARKODE modules solve for the correc-
tion zcor to the predicted stage value zpred so that zi = zpred + zcor. Thus these nonlinear systems rewritten in terms
of zcor are

G(zcor) ≡ zcor − γf I
(
tIn,i, zi

)
− ãi = 0 [M = I],

G(zcor) ≡Mzcor − γf I
(
tIn,i, zi

)
− ãi = 0 [M static],

G(zcor) ≡M(tIn,i)(zcor − ãi)− γf I
(
tIn,i, zi

)
= 0 [M time-dependent],

(11.1)

for the rootfinding problem and

zcor = zcor −M(tIn,i)
−1G(zi), (11.2)

for the fixed-point problem.

The nonlinear system functions provided by ARKODE modules to the nonlinear solver module internally update the
current value of the stage based on the input correction vector i.e., zi = zpred + zcor. The updated vector zi is

614 Chapter 11. Nonlinear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

used when calling the ODE right-hand side function and when setting up linear solves (e.g., updating the Jacobian or
preconditioner).

ARKODE modules also provide several advanced functions that will not be needed by most users, but might be useful
for users who choose to provide their own SUNNonlinSol implementation for use by ARKODE. These routines provide
access to the internal integrator data required to evaluate (11.1) or (11.2).

11.2.1 ARKODE advanced output functions

Two notable functions were already listed in §5.3.10.1:

• ARKodeGetCurrentState() – returns the current state vector. When called within the computation of a step
(i.e., during a nonlinear solve) this is the current stage state vector zi = zpred+zcor. Otherwise this is the current
internal solution state vector y(t). In either case the corresponding stage or solution time can be obtained from
ARKodeGetCurrentTime().

• ARKodeGetCurrentGamma() – returns the current value of the scalar γ.

Additional advanced output functions that are provided to aid in the construction of user-supplied SUNNonlinSol
modules are as follows.

int ARKodeGetCurrentMassMatrix(void *arkode_mem, SUNMatrix *M)
Returns the current mass matrix. For a time dependent mass matrix the corresponding time can be obtained from
ARKodeGetCurrentTime().

Arguments:

• arkode_mem – pointer to the ARKODE memory block.

• M – SUNMatrix pointer that will get set to the current mass matrix M(t). If a matrix-free method is
used the output is NULL.

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the ARKStep memory was NULL.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

int ARKodeGetNonlinearSystemData(void *arkode_mem, sunrealtype *tcur, N_Vector *zpred, N_Vector *z,
N_Vector *Fi, sunrealtype *gamma, N_Vector *sdata, void **user_data)

Returns all internal data required to construct the current nonlinear implicit system (11.1) or (11.2):

Arguments:

• arkode_mem – pointer to the ARKODE memory block.

• tcur – value of the independent variable corresponding to implicit stage, tIn,i.

• zpred – the predicted stage vector zpred at tIn,i. This vector must not be changed.

• z – the stage vector zi above. This vector may be not current and may need to be filled (see the note
below).

• Fi – the implicit function evaluated at the current time and state, f I(tIn,i, zi). This vector may be not
current and may need to be filled (see the note below).

11.2. ARKODE SUNNonlinearSolver interface 615

User Documentation for ARKODE, v6.3.0

• gamma – current γ for implicit stage calculation.

• sdata – accumulated data from previous solution and stages, ãi. This vector must not be changed.

• user_data – pointer to the user-defined data structure (as specified through ARKodeSetUserData(),
or NULL otherwise)

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the ARKODE memory was NULL.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This routine is intended for users who wish to attach a custom SUNNonlinSolSysFn to an existing SUN-
NonlinearSolver object (through a call to SUNNonlinSolSetSysFn()) or who need access to nonlinear
system data to compute the nonlinear system function as part of a custom SUNNonlinearSolver object.

When supplying a custom SUNNonlinSolSysFn to an existing SUNNonlinearSolver object, the user
should call ARKodeGetNonlinearSystemData() inside the nonlinear system function to access the req-
uisite data for evaluating the nonlinear system function of their choosing. Additionlly, if the SUNNonlin-
earSolver object (existing or custom) leverages the SUNNonlinSolLSetupFn and/or SUNNonlinSolL-
SolveFn functions supplied by ARKODE (through calls to SUNNonlinSolSetLSetupFn() and SUNNon-
linSolSetLSolveFn() respectively) the vectors z and Fi must be filled in by the user’s SUNNonlinSol-
SysFn with the current state and corresponding evaluation of the right-hand side function respectively i.e.,

z = zpred + zcor,

F i = f I
(
tIn,i, zi

)
,

where zcor was the first argument supplied to the SUNNonlinSolSysFn.

If this function is called as part of a custom linear solver (i.e., the default SUNNonlinSolSysFn is used)
then the vectors z and Fi are only current when ARKodeGetNonlinearSystemData() is called after an
evaluation of the nonlinear system function.

int ARKodeComputeState(void *arkode_mem, N_Vector zcor, N_Vector z)
Computes the current stage state vector using the stored prediction and the supplied correction from the nonlinear
solver i.e., zi(t) = zpred + zcor.

Arguments:

• arkode_mem – pointer to the ARKODE memory block.

• zcor – the correction from the nonlinear solver.

• z – on output, the current stage state vector zi.

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the ARKODE memory was NULL.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

616 Chapter 11. Nonlinear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

11.2.2 ARKStep advanced output functions (deprecated)

Two notable functions were already listed in §5.7.1.10:

• ARKStepGetCurrentState() – returns the current state vector. When called within the computation of a step
(i.e., during a nonlinear solve) this is the current stage state vector zi = zpred+zcor. Otherwise this is the current
internal solution state vector y(t). In either case the corresponding stage or solution time can be obtained from
ARKStepGetCurrentTime().

• ARKStepGetCurrentGamma() – returns the current value of the scalar γ.

Additional advanced output functions that are provided to aid in the construction of user-supplied SUNNonlinSol
modules are as follows.

int ARKStepGetCurrentMassMatrix(void *arkode_mem, SUNMatrix *M)
Returns the current mass matrix. For a time dependent mass matrix the corresponding time can be obtained from
ARKStepGetCurrentTime().

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• M – SUNMatrix pointer that will get set to the current mass matrix M(t). If a matrix-free method is
used the output is NULL.

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the ARKStep memory was NULL.

Deprecated since version 6.1.0: Use ARKodeGetCurrentMassMatrix() instead.

int ARKStepGetNonlinearSystemData(void *arkode_mem, sunrealtype *tcur, N_Vector *zpred, N_Vector *z,
N_Vector *Fi, sunrealtype *gamma, N_Vector *sdata, void **user_data)

Returns all internal data required to construct the current nonlinear implicit system (11.1) or (11.2):

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• tcur – value of the independent variable corresponding to implicit stage, tIn,i.

• zpred – the predicted stage vector zpred at tIn,i. This vector must not be changed.

• z – the stage vector zi above. This vector may be not current and may need to be filled (see the note
below).

• Fi – the implicit function evaluated at the current time and state, f I(tIn,i, zi). This vector may be not
current and may need to be filled (see the note below).

• gamma – current γ for implicit stage calculation.

• sdata – accumulated data from previous solution and stages, ãi. This vector must not be changed.

• user_data – pointer to the user-defined data structure (as specified through ARKStepSetUserData(),
or NULL otherwise)

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the ARKStep memory was NULL.

11.2. ARKODE SUNNonlinearSolver interface 617

User Documentation for ARKODE, v6.3.0

Note

This routine is intended for users who wish to attach a custom SUNNonlinSolSysFn to an existing SUN-
NonlinearSolver object (through a call to SUNNonlinSolSetSysFn()) or who need access to nonlinear
system data to compute the nonlinear system function as part of a custom SUNNonlinearSolver object.

When supplying a custom SUNNonlinSolSysFn to an existing SUNNonlinearSolver object, the user
should call ARKStepGetNonlinearSystemData() inside the nonlinear system function to access the req-
uisite data for evaluating the nonlinear system function of their choosing. Additionlly, if the SUNNonlin-
earSolver object (existing or custom) leverages the SUNNonlinSolLSetupFn and/or SUNNonlinSolL-
SolveFn functions supplied by ARKStep (through calls to SUNNonlinSolSetLSetupFn() and SUNNon-
linSolSetLSolveFn() respectively) the vectors z and Fi must be filled in by the user’s SUNNonlinSol-
SysFn with the current state and corresponding evaluation of the right-hand side function respectively i.e.,

z = zpred + zcor,

F i = f I
(
tIn,i, zi

)
,

where zcor was the first argument supplied to the SUNNonlinSolSysFn.

If this function is called as part of a custom linear solver (i.e., the default SUNNonlinSolSysFn is used)
then the vectors z and Fi are only current when ARKStepGetNonlinearSystemData() is called after an
evaluation of the nonlinear system function.

Deprecated since version 6.1.0: Use ARKodeGetNonlinearSystemData() instead.

int ARKStepComputeState(void *arkode_mem, N_Vector zcor, N_Vector z)
Computes the current stage state vector using the stored prediction and the supplied correction from the nonlinear
solver i.e., zi(t) = zpred + zcor.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• zcor – the correction from the nonlinear solver.

• z – on output, the current stage state vector zi.

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the ARKStep memory was NULL.

Deprecated since version 6.1.0: Use ARKodeComputeState() instead.

11.2.3 MRIStep advanced output functions (deprecated)

Two notable functions were already listed in §5.11.2.9:

• MRIStepGetCurrentState() – returns the current state vector. When called within the computation of a step
(i.e., during a nonlinear solve) this is the current stage state vector zi = zpred+zcor. Otherwise this is the current
internal solution state vector y(t). In either case the corresponding stage or solution time can be obtained from
MRIStepGetCurrentTime().

• MRIStepGetCurrentGamma() – returns the current value of the scalar γ.

Additional advanced output functions that are provided to aid in the construction of user-supplied SUNNonlinSol
modules are as follows.

618 Chapter 11. Nonlinear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

int MRIStepGetNonlinearSystemData(void *arkode_mem, sunrealtype *tcur, N_Vector *zpred, N_Vector *z,
N_Vector *Fi, sunrealtype *gamma, N_Vector *sdata, void **user_data)

Returns all internal data required to construct the current nonlinear implicit system (11.1) or (11.2):

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• tcur – value of independent variable corresponding to slow stage (tSn,i above).

• zpred – predicted nonlinear solution (zpred above). This vector must not be changed.

• z – stage vector (zi above). This vector may be not current and may need to be filled (see the note
below).

• Fi – memory available for evaluating the slow implicit RHS (f I(tSn,i, zi) above). This vector may be
not current and may need to be filled (see the note below).

• gamma – current γ for slow stage calculation.

• sdata – accumulated data from previous solution and stages (ãi above). This vector must not be
changed.

• user_data – pointer to the user-defined data structure (as specified through MRIStepSetUserData(),
or NULL otherwise).

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the MRIStep memory was NULL.

Note

This routine is intended for users who wish to attach a custom SUNNonlinSolSysFn to an existing SUN-
NonlinearSolver object (through a call to SUNNonlinSolSetSysFn()) or who need access to nonlinear
system data to compute the nonlinear system function as part of a custom SUNNonlinearSolver object.

When supplying a custom SUNNonlinSolSysFn to an existing SUNNonlinearSolver object, the user
should call MRIStepGetNonlinearSystemData() inside the nonlinear system function to access the req-
uisite data for evaluating the nonlinear system function of their choosing. Additionlly, if the SUNNonlin-
earSolver object (existing or custom) leverages the SUNNonlinSolLSetupFn and/or SUNNonlinSolL-
SolveFn functions supplied by MRIStep (through calls to SUNNonlinSolSetLSetupFn() and SUNNon-
linSolSetLSolveFn() respectively) the vectors z and F must be filled in by the user’s SUNNonlinSol-
SysFn with the current state and corresponding evaluation of the right-hand side function respectively i.e.,

z = zpred + zcor,

F i = f I
(
tSn,i, zi

)
,

where zcor was the first argument supplied to the SUNNonlinSolSysFn.

If this function is called as part of a custom linear solver (i.e., the default SUNNonlinSolSysFn is used)
then the vectors z and Fi are only current when MRIStepGetNonlinearSystemData() is called after an
evaluation of the nonlinear system function.

Deprecated since version 6.1.0: Use ARKodeGetNonlinearSystemData() instead.

int MRIStepComputeState(void *arkode_mem, N_Vector zcor, N_Vector z)
Computes the current stage state vector using the stored prediction and the supplied correction from the nonlinear
solver i.e., zi = zpred + zcor.

11.2. ARKODE SUNNonlinearSolver interface 619

User Documentation for ARKODE, v6.3.0

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• zcor – the correction from the nonlinear solver.

• z – on output, the current stage state vector zi.

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the MRIStep memory was NULL.

Deprecated since version 6.1.0: Use ARKodeComputeState() instead.

11.3 The SUNNonlinSol_Newton implementation

This section describes the SUNNonlinSol implementation of Newton’s method. To access the SUNNonlinSol_Newton
module, include the header file sunnonlinsol/sunnonlinsol_newton.h. We note that the SUNNonlinSol_Newton
module is accessible from SUNDIALS integrators without separately linking to the libsundials_sunnonlinsol-
newton module library.

11.3.1 SUNNonlinSol_Newton description

To find the solution to

F (y) = 0 (11.3)

given an initial guess y(0), Newton’s method computes a series of approximate solutions

y(m+1) = y(m) + δ(m+1)

where m is the Newton iteration index, and the Newton update δ(m+1) is the solution of the linear system

A(y(m))δ(m+1) = −F (y(m)) , (11.4)

in which A is the Jacobian matrix

A ≡ ∂F/∂y . (11.5)

Depending on the linear solver used, the SUNNonlinSol_Newton module will employ either a Modified Newton method
or an Inexact Newton method [20, 23, 32, 34, 66]. When used with a direct linear solver, the Jacobian matrix A is held
constant during the Newton iteration, resulting in a Modified Newton method. With a matrix-free iterative linear solver,
the iteration is an Inexact Newton method.

In both cases, calls to the integrator-supplied SUNNonlinSolLSetupFn function are made infrequently to amortize the
increased cost of matrix operations (updatingA and its factorization within direct linear solvers, or updating the precon-
ditioner within iterative linear solvers). Specifically, SUNNonlinSol_Newton will call the SUNNonlinSolLSetupFn
function in two instances:

(a) when requested by the integrator (the input callLSetSetup is SUNTRUE) before attempting the Newton iteration,
or

(b) when reattempting the nonlinear solve after a recoverable failure occurs in the Newton iteration with stale Ja-
cobian information (jcur is SUNFALSE). In this case, SUNNonlinSol_Newton will set jbad to SUNTRUE before
calling the SUNNonlinSolLSetupFn() function.

620 Chapter 11. Nonlinear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

Whether the Jacobian matrix A is fully or partially updated depends on logic unique to each integrator-supplied SUN-
NonlinSolLSetupFn routine. We refer to the discussion of nonlinear solver strategies provided in the package-specific
Mathematics section of the documentation for details.

The default maximum number of iterations and the stopping criteria for the Newton iteration are supplied by the SUN-
DIALS integrator when SUNNonlinSol_Newton is attached to it. Both the maximum number of iterations and the
convergence test function may be modified by the user by calling the SUNNonlinSolSetMaxIters() and/or SUNNon-
linSolSetConvTestFn() functions after attaching the SUNNonlinSol_Newton object to the integrator.

11.3.2 SUNNonlinSol_Newton functions

The SUNNonlinSol_Newton module provides the following constructor for creating the SUNNonlinearSolver object.

SUNNonlinearSolver SUNNonlinSol_Newton(N_Vector y, SUNContext sunctx)
This creates a SUNNonlinearSolver object for use with SUNDIALS integrators to solve nonlinear systems of
the form F (y) = 0 using Newton’s method.

Arguments:

• y – a template for cloning vectors needed within the solver.

• sunctx – the SUNContext object (see §4.2)

Return value:
A SUNNonlinSol object if the constructor exits successfully, otherwise it will be NULL.

The SUNNonlinSol_Newton module implements all of the functions defined in §11.1.1–§11.1.3 except for SUNNon-
linSolSetup(). The SUNNonlinSol_Newton functions have the same names as those defined by the generic SUN-
NonlinSol API with _Newton appended to the function name. Unless using the SUNNonlinSol_Newton module as a
standalone nonlinear solver the generic functions defined in §11.1.1–§11.1.3 should be called in favor of the SUNNon-
linSol_Newton-specific implementations.

The SUNNonlinSol_Newton module also defines the following user-callable function.

SUNErrCode SUNNonlinSolGetSysFn_Newton(SUNNonlinearSolver NLS, SUNNonlinSolSysFn *SysFn)
This returns the residual function that defines the nonlinear system.

Arguments:

• NLS – a SUNNonlinSol object.

• SysFn – the function defining the nonlinear system.

Return value:

• A SUNErrCode

Notes:
This function is intended for users that wish to evaluate the nonlinear residual in a custom convergence test
function for the SUNNonlinSol_Newton module. We note that SUNNonlinSol_Newton will not leverage
the results from any user calls to SysFn.

11.3. The SUNNonlinSol_Newton implementation 621

User Documentation for ARKODE, v6.3.0

11.3.3 SUNNonlinSol_Newton content

The content field of the SUNNonlinSol_Newton module is the following structure.

struct _SUNNonlinearSolverContent_Newton {

SUNNonlinSolSysFn Sys;
SUNNonlinSolLSetupFn LSetup;
SUNNonlinSolLSolveFn LSolve;
SUNNonlinSolConvTestFn CTest;

N_Vector delta;
sunbooleantype jcur;
int curiter;
int maxiters;
long int niters;
long int nconvfails;
void* ctest_data;

};

These entries of the content field contain the following information:

• Sys – the function for evaluating the nonlinear system,

• LSetup – the package-supplied function for setting up the linear solver,

• LSolve – the package-supplied function for performing a linear solve,

• CTest – the function for checking convergence of the Newton iteration,

• delta – the Newton iteration update vector,

• jcur – the Jacobian status (SUNTRUE = current, SUNFALSE = stale),

• curiter – the current number of iterations in the solve attempt,

• maxiters – the maximum number of Newton iterations allowed in a solve,

• niters – the total number of nonlinear iterations across all solves,

• nconvfails – the total number of nonlinear convergence failures across all solves,

• ctest_data – the data pointer passed to the convergence test function,

11.4 The SUNNonlinSol_FixedPoint implementation

This section describes the SUNNonlinSol implementation of a fixed point (functional) iteration with optional An-
derson acceleration. To access the SUNNonlinSol_FixedPoint module, include the header file sunnonlinsol/
sunnonlinsol_fixedpoint.h. We note that the SUNNonlinSol_FixedPoint module is accessible from SUNDIALS
integrators without separately linking to the libsundials_sunnonlinsolfixedpoint module library.

622 Chapter 11. Nonlinear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

11.4.1 SUNNonlinSol_FixedPoint description

To find the solution to

G(y) = y (11.6)

given an initial guess y(0), the fixed point iteration computes a series of approximate solutions

y(n+1) = G(y(n)) (11.7)

where n is the iteration index. The convergence of this iteration may be accelerated using Anderson’s method [10, 41,
78, 123]. With Anderson acceleration using subspace sizem, the series of approximate solutions can be formulated as
the linear combination

y(n+1) = β

mn∑
i=0

α
(n)
i G(y(n−mn+i)) + (1− β)

mn∑
i=0

α
(n)
i yn−mn+i (11.8)

where mn = min {m,n} and the factors

α(n) = (α
(n)
0 , . . . , α(n)

mn
)

solve the minimization problem min
α
‖FnαT ‖2 under the constraint that

mn∑
i=0

αi = 1 where

Fn = (fn−mn , . . . , fn)

with fi = G(y(i)) − y(i). Due to this constraint, in the limit of m = 0 the accelerated fixed point iteration formula
(11.8) simplifies to the standard fixed point iteration (11.7).

Following the recommendations made in [123], the SUNNonlinSol_FixedPoint implementation computes the series of
approximate solutions as

y(n+1) = G(y(n))−
mn−1∑
i=0

γ
(n)
i ∆gn−mn+i − (1− β)(f(y(n))−

mn−1∑
i=0

γ
(n)
i ∆fn−mn+i) (11.9)

with ∆gi = G(y(i+1))−G(y(i)) and where the factors

γ(n) = (γ
(n)
0 , . . . , γ

(n)
mn−1)

solve the unconstrained minimization problem min
γ
‖fn −∆Fnγ

T ‖2 where

∆Fn = (∆fn−mn
, . . . ,∆fn−1),

with ∆fi = fi+1 − fi. The least-squares problem is solved by applying a QR factorization to ∆Fn = QnRn and
solving Rnγ = QTnfn.

The acceleration subspace size m is required when constructing the SUNNonlinSol_FixedPoint object. The default
maximum number of iterations and the stopping criteria for the fixed point iteration are supplied by the SUNDIALS
integrator when SUNNonlinSol_FixedPoint is attached to it. Both the maximum number of iterations and the conver-
gence test function may be modified by the user by calling SUNNonlinSolSetMaxIters() and SUNNonlinSolSet-
ConvTestFn() after attaching the SUNNonlinSol_FixedPoint object to the integrator.

11.4. The SUNNonlinSol_FixedPoint implementation 623

User Documentation for ARKODE, v6.3.0

11.4.2 SUNNonlinSol_FixedPoint functions

The SUNNonlinSol_FixedPoint module provides the following constructor for creating the SUNNonlinearSolver
object.

SUNNonlinearSolver SUNNonlinSol_FixedPoint(N_Vector y, int m, SUNContext sunctx)
This creates a SUNNonlinearSolver object for use with SUNDIALS integrators to solve nonlinear systems of
the form G(y) = y.

Arguments:

• y – a template for cloning vectors needed within the solver.

• m – the number of acceleration vectors to use.

• sunctx – the SUNContext object (see §4.2)

Return value:
A SUNNonlinSol object if the constructor exits successfully, otherwise it will be NULL.

Since the accelerated fixed point iteration (11.7) does not require the setup or solution of any linear systems, the SUN-
NonlinSol_FixedPoint module implements all of the functions defined in §11.1.1–§11.1.3 except for the SUNNonlin-
SolSetup(), SUNNonlinSolSetLSetupFn(), and SUNNonlinSolSetLSolveFn() functions, that are set to NULL.
The SUNNonlinSol_FixedPoint functions have the same names as those defined by the generic SUNNonlinSol API with
_FixedPoint appended to the function name. Unless using the SUNNonlinSol_FixedPoint module as a standalone
nonlinear solver the generic functions defined in §11.1.1–§11.1.3 should be called in favor of the SUNNonlinSol_-
FixedPoint-specific implementations.

The SUNNonlinSol_FixedPoint module also defines the following user-callable functions.

SUNErrCode SUNNonlinSolGetSysFn_FixedPoint(SUNNonlinearSolver NLS, SUNNonlinSolSysFn *SysFn)
This returns the fixed-point function that defines the nonlinear system.

Arguments:

• NLS – a SUNNonlinSol object.

• SysFn – the function defining the nonlinear system.

Return value:

• A SUNErrCode

Notes:
This function is intended for users that wish to evaluate the fixed-point function in a custom convergence
test function for the SUNNonlinSol_FixedPoint module. We note that SUNNonlinSol_FixedPoint will not
leverage the results from any user calls to SysFn.

SUNErrCode SUNNonlinSolSetDamping_FixedPoint(SUNNonlinearSolver NLS, sunrealtype beta)
This sets the damping parameter β to use with Anderson acceleration. By default damping is disabled i.e.,
β = 1.0.

Arguments:

• NLS – a SUNNonlinSol object.

• beta – the damping parameter 0 < β ≤ 1.

Return value:

• A SUNErrCode

624 Chapter 11. Nonlinear Algebraic Solvers

User Documentation for ARKODE, v6.3.0

Notes:
A beta value should satisfy 0 < β < 1 if damping is to be used. A value of one or more will disable
damping.

11.4.3 SUNNonlinSol_FixedPoint content

The content field of the SUNNonlinSol_FixedPoint module is the following structure.

struct _SUNNonlinearSolverContent_FixedPoint {

SUNNonlinSolSysFn Sys;
SUNNonlinSolConvTestFn CTest;

int m;
int *imap;
sunrealtype *R;
sunbooleantype damping
sunrealtype beta
sunrealtype *gamma;
sunrealtype *cvals;
N_Vector *df;
N_Vector *dg;
N_Vector *q;
N_Vector *Xvecs;
N_Vector yprev;
N_Vector gy;
N_Vector fold;
N_Vector gold;
N_Vector delta;
int curiter;
int maxiters;
long int niters;
long int nconvfails;
void *ctest_data;

};

The following entries of the content field are always allocated:

• Sys – function for evaluating the nonlinear system,

• CTest – function for checking convergence of the fixed point iteration,

• yprev – N_Vector used to store previous fixed-point iterate,

• gy – N_Vector used to store G(y) in fixed-point algorithm,

• delta – N_Vector used to store difference between successive fixed-point iterates,

• curiter – the current number of iterations in the solve attempt,

• maxiters – the maximum number of fixed-point iterations allowed in a solve,

• niters – the total number of nonlinear iterations across all solves,

• nconvfails – the total number of nonlinear convergence failures across all solves,

• ctest_data – the data pointer passed to the convergence test function,

• m – number of acceleration vectors,

11.4. The SUNNonlinSol_FixedPoint implementation 625

User Documentation for ARKODE, v6.3.0

If Anderson acceleration is requested (i.e., m > 0 in the call to SUNNonlinSol_FixedPoint()), then the following
items are also allocated within the content field:

• imap – index array used in acceleration algorithm (length m),

• damping – a flag indicating if damping is enabled,

• beta – the damping parameter,

• R – small matrix used in acceleration algorithm (length m*m),

• gamma – small vector used in acceleration algorithm (length m),

• cvals – small vector used in acceleration algorithm (length m+1),

• df – array of vectors used in acceleration algorithm (length m),

• dg – array of vectors used in acceleration algorithm (length m),

• q – array of vectors used in acceleration algorithm (length m),

• Xvecs – vector pointer array used in acceleration algorithm (length m+1),

• fold – vector used in acceleration algorithm, and

• gold – vector used in acceleration algorithm.

11.5 The SUNNonlinSol_PetscSNES implementation

This section describes the SUNNonlinSol interface to the PETSc SNES nonlinear solver(s). To enable the SUNon-
linSol_PetscSNES module, SUNDIALS must be configured to use PETSc. Instructions on how to do this are
given in §16.3.30. To access the SUNNonlinSol_PetscSNES module, include the header file sunnonlinsol/
sunnonlinsol_petscsnes.h. The library to link to is libsundials_sunnonlinsolpetsc.lib where .lib is
typically .so for shared libraries and .a for static libraries. Users of the SUNNonlinSol_PetscSNES module should
also see §8.9 which discusses the NVECTOR interface to the PETSc Vec API.

11.5.1 SUNNonlinSol_PetscSNES description

The SUNNonlinSol_PetscSNES implementation allows users to utilize a PETSc SNES nonlinear solver to solve the
nonlinear systems that arise in the SUNDIALS integrators. Since SNES uses the KSP linear solver interface underneath
it, the SUNNonlinSol_PetscSNES implementation does not interface with SUNDIALS linear solvers. Instead, users
should set nonlinear solver options, linear solver options, and preconditioner options through the PETSc SNES, KSP,
and PC APIs.

Important usage notes for the SUNNonlinSol_PetscSNES implementation:

• The SUNNonlinSol_PetscSNES implementation handles calling SNESSetFunction at construction. The ac-
tual residual function F (y) is set by the SUNDIALS integrator when the SUNNonlinSol_PetscSNES object is
attached to it. Therefore, a user should not call SNESSetFunction on a SNES object that is being used with
SUNNonlinSol_PetscSNES. For these reasons it is recommended, although not always necessary, that the user
calls SUNNonlinSol_PetscSNES() with the new SNES object immediately after calling SNESCreate.

• The number of nonlinear iterations is tracked by SUNDIALS separately from the count kept by SNES. As such,
the function SUNNonlinSolGetNumIters() reports the cumulative number of iterations across the lifetime of
the SUNNonlinearSolver object.

626 Chapter 11. Nonlinear Algebraic Solvers

https://petsc.org/release/docs/manual/snes/

User Documentation for ARKODE, v6.3.0

• Some “converged” and “diverged” convergence reasons returned by SNES are treated as recoverable convergence
failures by SUNDIALS. Therefore, the count of convergence failures returned by SUNNonlinSolGetNumCon-
vFails() will reflect the number of recoverable convergence failures as determined by SUNDIALS, and may
differ from the count returned by SNESGetNonlinearStepFailures.

• The SUNNonlinSol_PetscSNES module is not currently compatible with the CVODES or IDAS staggered or
simultaneous sensitivity strategies.

11.5.2 SUNNonlinearSolver_PetscSNES functions

The SUNNonlinSol_PetscSNES module provides the following constructor for creating a SUNNonlinearSolver ob-
ject.

SUNNonlinearSolver SUNNonlinSol_PetscSNES(N_Vector y, SNES snes, SUNContext sunctx)
This creates a SUNNonlinSol object that wraps a PETSc SNES object for use with SUNDIALS. This will call
SNESSetFunction on the provided SNES object.

Arguments:

• snes – a PETSc SNES object.

• y – a N_Vector object of type NVECTOR_PETSC that is used as a template for the residual vector.

• sunctx – the SUNContext object (see §4.2)

Return value:
A SUNNonlinSol object if the constructor exits successfully, otherwise it will be NULL.

Warning

This function calls SNESSetFunction and will overwrite whatever function was previously set. Users should
not call SNESSetFunction on the SNES object provided to the constructor.

The SUNNonlinSol_PetscSNES module implements all of the functions defined in §11.1.1–§11.1.3 except for SUN-
NonlinSolSetup(), SUNNonlinSolSetLSetupFn(), SUNNonlinSolSetLSolveFn(), SUNNonlinSolSetCon-
vTestFn(), and SUNNonlinSolSetMaxIters().

The SUNNonlinSol_PetscSNES functions have the same names as those defined by the generic SUNNonlinSol API
with _PetscSNES appended to the function name. Unless using the SUNNonlinSol_PetscSNES module as a standalone
nonlinear solver the generic functions defined in §11.1.1–§11.1.3 should be called in favor of the SUNNonlinSol_-
PetscSNES specific implementations.

The SUNNonlinSol_PetscSNES module also defines the following user-callable functions.

SUNErrCode SUNNonlinSolGetSNES_PetscSNES(SUNNonlinearSolver NLS, SNES *snes)
This gets the SNES object that was wrapped.

Arguments:

• NLS – a SUNNonlinSol object.

• snes – a pointer to a PETSc SNES object that will be set upon return.

Return value:
A SUNErrCode

SUNErrCode SUNNonlinSolGetPetscError_PetscSNES(SUNNonlinearSolver NLS, PetscErrorCode *error)
This gets the last error code returned by the last internal call to a PETSc API function.

11.5. The SUNNonlinSol_PetscSNES implementation 627

User Documentation for ARKODE, v6.3.0

Arguments:

• NLS – a SUNNonlinSol object.

• error – a pointer to a PETSc error integer that will be set upon return.

Return value:
A SUNErrCode

SUNErrCode SUNNonlinSolGetSysFn_PetscSNES(SUNNonlinearSolver NLS, SUNNonlinSolSysFn *SysFn)
This returns the residual function that defines the nonlinear system.

Arguments:

• NLS – a SUNNonlinSol object.

• SysFn – the function defining the nonlinear system.

Return value:
A SUNErrCode

11.5.3 SUNNonlinearSolver_PetscSNES content

The content field of the SUNNonlinSol_PetscSNES module is the following structure.

struct _SUNNonlinearSolverContent_PetscSNES {
int sysfn_last_err;
PetscErrorCode petsc_last_err;
long int nconvfails;
long int nni;
void *imem;
SNES snes;
Vec r;
N_Vector y, f;
SUNNonlinSolSysFn Sys;

};

These entries of the content field contain the following information:

• sysfn_last_err – last error returned by the system defining function,

• petsc_last_err – last error returned by PETSc,

• nconvfails – number of nonlinear converge failures (recoverable or not),

• nni – number of nonlinear iterations,

• imem – SUNDIALS integrator memory,

• snes – PETSc SNES object,

• r – the nonlinear residual,

• y – wrapper for PETSc vectors used in the system function,

• f – wrapper for PETSc vectors used in the system function,

• Sys – nonlinear system defining function.

628 Chapter 11. Nonlinear Algebraic Solvers

Chapter 12

Time Step Adaptivity Controllers

The SUNDIALS library comes packaged with a variety of SUNAdaptController implementations, designed to sup-
port various forms of error-based time step adaptivity within SUNDIALS time integrators. To support applications that
may want to adjust the controller parameters or provide their own implementations, SUNDIALS defines the SUNAdapt-
Controller base class, along with a variety of default implementations.

12.1 The SUNAdaptController API

Added in version 6.7.0.

Changed in version 7.2.0: Added support multirate time step adaptivity controllers

The SUNAdaptController base class provides a common API for accuracy-based adaptivity controllers to be used by
SUNDIALS integrators. These controllers estimate step sizes (among other things) such that the next step solution
satisfies a desired temporal accuracy, while striving to maximize computational efficiency. We note that in the descrip-
tions below, we frequently use dsm to represent temporal error. This is not the raw temporal error estimate; instead, it
is a norm of the temporal error estimate after scaling by the user-supplied accuracy tolerances (see (2.24)),

dsm =

(
1

N

N∑
i=1

(
errori

rtol · |yn−1,i|+ atoli

)2
)1/2

.

Thus dsm values below one represent errors estimated to be more accurate than needed, whereas errors above one are
considered to be larger than allowable.

The SUNAdaptController class is modeled after SUNDIALS’ other object-oriented classes, in that this class contains
a pointer to an implementation-specific content, an ops structure with generic controller operations, and a SUNContext
object.

A SUNAdaptController is a pointer to the _generic_SUNAdaptController structure:

typedef struct _generic_SUNAdaptController *SUNAdaptController

struct _generic_SUNAdaptController

void *content
Pointer to the controller-specific member data

SUNAdaptController_Ops ops;
A virtual table of controller operations provided by a specific implementation

629

User Documentation for ARKODE, v6.3.0

SUNContext sunctx
The SUNDIALS simulation context

The virtual table structure is defined as

typedef struct _generic_SUNAdaptController_Ops *SUNAdaptController_Ops

struct _generic_SUNAdaptController_Ops
The structure defining SUNAdaptController operations.

SUNAdaptController_Type (*gettype)(SUNAdaptController C)
The function implementing SUNAdaptController_GetType()

SUNErrCode (*destroy)(SUNAdaptController C)
The function implementing SUNAdaptController_Destroy()

SUNErrCode (*estimatestep)(SUNAdaptController C, sunrealtype h, int p, sunrealtype dsm, sunrealtype
*hnew)

The function implementing SUNAdaptController_EstimateStep()

SUNErrCode (*estimatesteptol)(SUNAdaptController C, sunrealtype H, sunrealtype tolfac, int P,
sunrealtype DSM, sunrealtype dsm, sunrealtype *Hnew, sunrealtype *tolfacnew)

The function implementing SUNAdaptController_EstimateStepTol()

Added in version 7.2.0.

SUNErrCode (*reset)(SUNAdaptController C)
The function implementing SUNAdaptController_Reset()

SUNErrCode (*setdefaults)(SUNAdaptController C)
The function implementing SUNAdaptController_SetDefaults()

SUNErrCode (*write)(SUNAdaptController C, FILE *fptr)
The function implementing SUNAdaptController_Write()

SUNErrCode (*seterrorbias)(SUNAdaptController C, sunrealtype bias)
The function implementing SUNAdaptController_SetErrorBias()

SUNErrCode (*updateh)(SUNAdaptController C, sunrealtype h, sunrealtype dsm)
The function implementing SUNAdaptController_UpdateH()

SUNErrCode (*updatemritol)(SUNAdaptController C, sunrealtype H, sunrealtype tolfac, sunrealtype DSM,
sunrealtype dsm)

The function implementing SUNAdaptController_UpdateMRIHTol()

Added in version 7.2.0.

SUNErrCode (*space)(SUNAdaptController C, long int *lenrw, long int *leniw)
The function implementing SUNAdaptController_Space()

630 Chapter 12. Time Step Adaptivity Controllers

User Documentation for ARKODE, v6.3.0

12.1.1 SUNAdaptController Types

The time integrators in SUNDIALS adapt a variety of parameters to achieve accurate and efficient computations. To
this end, each SUNAdaptController implementation should note its type, so that integrators will understand the types
of adaptivity that the controller is designed to perform. These are encoded in the following set of SUNAdaptController
types:

enum SUNAdaptController_Type
The enumerated type SUNAdaptController_Type defines the enumeration constants for SUNDIALS error
controller types

enumerator SUN_ADAPTCONTROLLER_NONE
Empty object that performs no control.

enumerator SUN_ADAPTCONTROLLER_H
Controls a single-rate step size.

enumerator SUN_ADAPTCONTROLLER_MRI_H_TOL
Controls both a slow time step and a tolerance factor to apply on the next-faster time scale within a multirate
simulation that has an arbitrary number of time scales.

Added in version 7.2.0.

12.1.2 SUNAdaptController Operations

The base SUNAdaptController class defines and implements all SUNAdaptController functions. Most of these rou-
tines are merely wrappers for the operations defined by a particular SUNAdaptController implementation, which are
accessed through the ops field of the SUNAdaptController structure. The base SUNAdaptController class provides
the constructor

SUNAdaptController SUNAdaptController_NewEmpty(SUNContext sunctx)
This function allocates a new generic SUNAdaptController object and initializes its content pointer and the
function pointers in the operations structure to NULL.

Parameters

• sunctx – the SUNContext object (see §4.2)

Returns
If successful, a generic SUNAdaptController object. If unsuccessful, a NULL pointer will be
returned.

Each of the following methods are optional for any specific SUNAdaptController implementation, however some may
be required based on the implementation’s SUNAdaptController_Type (see Section §12.1.1). We note these re-
quirements below. Additionally, we note the behavior of the base SUNAdaptController methods when they perform an
action other than only a successful return.

void SUNAdaptController_DestroyEmpty(SUNAdaptController C)
This routine frees the generic SUNAdaptController object, under the assumption that any implementation-
specific data that was allocated within the underlying content structure has already been freed. It will additionally
test whether the ops pointer is NULL, and, if it is not, it will free it as well.

Parameters

• C – the SUNAdaptController object.

Returns
SUNErrCode indicating success or failure.

12.1. The SUNAdaptController API 631

User Documentation for ARKODE, v6.3.0

SUNAdaptController_Type SUNAdaptController_GetType(SUNAdaptController C)
Returns the type identifier for the controller C. Returned values are given in Section §12.1.1

Parameters

• C – the SUNAdaptController object.

Returns
SUNAdaptController_Type type identifier.

SUNErrCode SUNAdaptController_Destroy(SUNAdaptController C)
Deallocates the controller C. If this method is not provided by the implementation, the base class method will free
both the content and ops objects – this should be sufficient unless a controller implementation performs dynamic
memory allocation of its own (note that the SUNDIALS-provided SUNAdaptController implementations do not
need to supply this routine).

Parameters

• C – the SUNAdaptController object.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNAdaptController_EstimateStep(SUNAdaptController C, sunrealtype h, int p, sunrealtype
dsm, sunrealtype *hnew)

Estimates a single-rate step size. This routine is required for controllers of type SUN_ADAPTCONTROLLER_H. If
this is not provided by the implementation, the base class method will set *hnew = h and return.

Parameters

• C – the SUNAdaptController object.

• h – the step size from the previous step attempt.

• p – the current order of accuracy for the time integration method.

• dsm – the local temporal estimate from the previous step attempt.

• hnew – (output) the estimated step size.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNAdaptController_EstimateStepTol(SUNAdaptController C, sunrealtype H, sunrealtype
tolfac, int P, sunrealtype DSM, sunrealtype dsm,
sunrealtype *Hnew, sunrealtype *tolfacnew)

Estimates a slow step size and a fast tolerance multiplication factor for two adjacent time scales within a multirate
application.

This routine is required for controllers of type :c:enumerator`SUN_ADAPTCONTROLLER_MRI_H_TOL`. If
the current time scale has relative tolerance rtol, then the next-faster time scale will be called with relative
tolerance tolfac * rtol. If this is not provided by the implementation, the base class method will set *Hnew
= H and *tolfacnew = tolfac and return.

Parameters

• C – the SUNAdaptController object.

• H – the slow step size from the previous step attempt.

• tolfac – the current relative tolerance factor for the next-faster time scale.

• P – the current order of accuracy for the slow time scale integration method.

632 Chapter 12. Time Step Adaptivity Controllers

User Documentation for ARKODE, v6.3.0

• DSM – the slow time scale local temporal estimate from the previous step attempt.

• dsm – the fast time scale local temporal estimate from the previous step attempt.

• Hnew – (output) the estimated slow step size.

• tolfacnew – (output) the estimated relative tolerance factor.

Returns
SUNErrCode indicating success or failure.

Added in version 7.2.0.

SUNErrCode SUNAdaptController_Reset(SUNAdaptController C)
Resets the controller to its initial state, e.g., if it stores a small number of previous dsm or h values.

Parameters

• C – the SUNAdaptController object.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNAdaptController_SetDefaults(SUNAdaptController C)
Sets the controller parameters to their default values.

Parameters

• C – the SUNAdaptController object.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNAdaptController_Write(SUNAdaptController C, FILE *fptr)
Writes all controller parameters to the indicated file pointer.

Parameters

• C – the SUNAdaptController object.

• fptr – the output stream to write the parameters to.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNAdaptController_SetErrorBias(SUNAdaptController C, sunrealtype bias)
Sets an error bias factor for scaling the local error factors. This is typically used to slightly exaggerate the temporal
error during the estimation process, leading to a more conservative estimated step size.

Parameters

• C – the SUNAdaptController object.

• bias – the error bias factor – an input≤ 0 indicates to use the default value for the controller.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNAdaptController_UpdateH(SUNAdaptController C, sunrealtype h, sunrealtype dsm)
Notifies a controller of type SUN_ADAPTCONTROLLER_H that a successful time step was taken with stepsize h and
local error factor dsm, indicating that these can be saved for subsequent controller functions. This is typically
relevant for controllers that store a history of either step sizes or error estimates for performing the estimation
process.

Parameters

12.1. The SUNAdaptController API 633

User Documentation for ARKODE, v6.3.0

• C – the SUNAdaptController object.

• h – the successful step size.

• dsm – the successful temporal error estimate.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNAdaptController_UpdateMRIHTol(SUNAdaptController C, sunrealtype H, sunrealtype tolfac,
sunrealtype DSM, sunrealtype dsm)

Notifies a controller of type SUN_ADAPTCONTROLLER_MRI_H_TOL that a successful time step was taken with
slow stepsize H and fast relative tolerance factor tolfac, and that the step had slow and fast local error factors
DSM and dsm, indicating that these can be saved for subsequent controller functions. This is typically relevant for
controllers that store a history of either step sizes or error estimates for performing the estimation process.

Parameters

• C – the SUNAdaptController object.

• H – the successful slow step size.

• tolfac – the successful fast time scale relative tolerance factor.

• DSM – the successful slow temporal error estimate.

• dsm – the successful fast temporal error estimate.

Returns
SUNErrCode indicating success or failure.

Added in version 7.2.0.

SUNErrCode SUNAdaptController_Space(SUNAdaptController C, long int *lenrw, long int *leniw)
Informative routine that returns the memory requirements of the SUNAdaptController object.

Parameters

• C – the SUNAdaptController object..

• lenrw – (output) number of sunsunrealtype words stored in the controller.

• leniw – (output) number of sunindextype words stored in the controller. This may also
include pointers, int and long int words.

Returns
SUNErrCode indicating success or failure.

Deprecated since version 7.3.0: Work space functions will be removed in version 8.0.0.

12.1.3 C/C++ API Usage

Specific SUNDIALS adaptivity controller modules can be used in C and C++ programs by including the corresponding
header file for that module, e.g. sunadaptcontroller/sunadaptcontroller_XYZ.h.

Example usage (here SUNAdaptController_XYZ is a placeholder for an actual SUNAdaptController constructor):

#include <stdio.h>
#include <stdlib.h>
#include <sundials/sundials_context.h>
#include <sundials/sundials_types.h>
#include <sunadaptcontroller/sunadaptcontroller_XYZ.h>

(continues on next page)

634 Chapter 12. Time Step Adaptivity Controllers

User Documentation for ARKODE, v6.3.0

(continued from previous page)

int main()
{

/* Create a SUNContext object */
SUNContext sunctx = ...;

/* Create a SUNAdaptController object */
SUNAdaptController C = SUNAdaptController_XYZ(sunctx);

/* Use the control object */

/* Destroy the control object */
retval = SUNAdaptController_Destroy(C);

return 0;
}

12.2 The SUNAdaptController_Soderlind Module

The Soderlind implementation of the SUNAdaptController class, SUNAdaptController_Soderlind, implements a gen-
eral structure for temporal control proposed by G. Soderlind in [102], [103], and [104]. This controller has the form

h′ = hnε
−k1/(p+1)
n ε

−k2/(p+1)
n−1 ε

−k3/(p+1)
n−2

(
hn
hn−1

)k4 (hn−1
hn−2

)k5
with default parameter values k1 = 1.25, k2 = 0.5, k3 = −0.75, k4 = 0.25, and k5 = 0.75, where p is the global
order of the time integration method. If there is insufficient history of past time steps and errors, i.e., on the first or
second time step, an I controller is used.

The SUNAdaptController_Soderlind controller is implemented as a derived SUNAdaptController class, and defines its
content field as:

struct _SUNAdaptControllerContent_Soderlind {
sunrealtype k1;
sunrealtype k2;
sunrealtype k3;
sunrealtype k4;
sunrealtype k5;
sunrealtype bias;
sunrealtype ep;
sunrealtype epp;
sunrealtype hp;
sunrealtype hpp;
int firststeps;
int historysize;

};

These entries of the content field contain the following information:

• k1, k2, k3, k4, k5 - controller parameters above.

• bias - error bias factor, that converts from an input temporal error estimate via ε = bias ∗ dsm.

12.2. The SUNAdaptController_Soderlind Module 635

User Documentation for ARKODE, v6.3.0

• ep, epp - storage for the two previous error estimates, εn−1 and εn−2.

• hp, hpp - storage for the previous two step sizes, hn−1 and hn−2.

• firststeps - counter to handle first two steps (where previous step sizes and errors are unavailable).

• historysize - number of past step sizes or errors needed.

The header file to be included when using this module is sunadaptcontroller/sunadaptcontroller_-
soderlind.h.

We note that through appropriate selection of the parameters k∗, this controller may create a wide range of proposed
temporal adaptivity controllers, including theH0321, I, PI, PID, as well as Gustafsson’s explicit and implicit controllers,
[51] and [52], among others. As a convenience, utility routines to create a variety of these controllers and set their
parameters (as special cases of SUNAdaptController_Soderlind) are provided.

The SUNAdaptController_Soderlind class provides implementations of all operations relevant to a SUN_ADAPTCON-
TROLLER_H controller listed in §12.1.2. This class also provides the following additional user-callable routines:

SUNAdaptController SUNAdaptController_Soderlind(SUNContext sunctx)
This constructor creates and allocates memory for a SUNAdaptController_Soderlind object, and inserts its default
parameters.

Parameters

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNAdaptController object; otherwise it will return NULL.

Usage:

SUNAdaptController C = SUNAdaptController_Soderlind(sunctx);

SUNErrCode SUNAdaptController_SetParams_Soderlind(SUNAdaptController C, sunrealtype k1, sunrealtype
k2, sunrealtype k3, sunrealtype k4, sunrealtype k5)

This user-callable function provides control over the relevant parameters above. This should be called before the
time integrator is called to evolve the problem.

Parameters

• C – the SUNAdaptController_Soderlind object.

• k1 – parameter used within the controller time step estimate.

• k2 – parameter used within the controller time step estimate.

• k3 – parameter used within the controller time step estimate.

• k4 – parameter used within the controller time step estimate.

• k5 – parameter used within the controller time step estimate.

Returns
SUNErrCode indicating success or failure.

Usage:

/* Specify parameters for Soderlind's H_{0}312 controller */
retval = SUNAdaptController_SetParams_Soderlind(C, 0.25, 0.5, 0.25, -0.75, -0.25);

SUNAdaptController SUNAdaptController_PID(SUNContext sunctx)
This constructor creates and allocates memory for a SUNAdaptController_Soderlind object, set up to replicate a
PID controller, and inserts its default parameters k1 = 0.58, k2 = −0.21, k3 = 0.1, and k4 = k5 = 0.

636 Chapter 12. Time Step Adaptivity Controllers

User Documentation for ARKODE, v6.3.0

Parameters

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNAdaptController object; otherwise it will return NULL.

Usage:

SUNAdaptController C = SUNAdaptController_PID(sunctx);

SUNErrCode SUNAdaptController_SetParams_PID(SUNAdaptController C, sunrealtype k1, sunrealtype k2,
sunrealtype k3)

This user-callable function provides control over the relevant parameters above for a PID controller, setting k4 =
k5 = 0. This should be called before the time integrator is called to evolve the problem.

Parameters

• C – the SUNAdaptController_Soderlind object.

• k1 – parameter used within the controller time step estimate.

• k2 – parameter used within the controller time step estimate.

• k3 – parameter used within the controller time step estimate.

Returns
SUNErrCode indicating success or failure.

Usage:

retval = SUNAdaptController_SetParams_PID(C, 0.58, -0.21, 0.1);

SUNAdaptController SUNAdaptController_PI(SUNContext sunctx)
This constructor creates and allocates memory for a SUNAdaptController_Soderlind object, set up to replicate a
PI controller, and inserts its default parameters k1 = 0.8, k2 = −0.31, and k3 = k4 = k5 = 0.

Parameters

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNAdaptController object; otherwise it will return NULL.

Usage:

SUNAdaptController C = SUNAdaptController_PI(sunctx);

SUNErrCode SUNAdaptController_SetParams_PI(SUNAdaptController C, sunrealtype k1, sunrealtype k2)
This user-callable function provides control over the relevant parameters above for a PI controller, setting k3 =
k4 = k5 = 0. This should be called before the time integrator is called to evolve the problem.

Parameters

• C – the SUNAdaptController_Soderlind object.

• k1 – parameter used within the controller time step estimate.

• k2 – parameter used within the controller time step estimate.

Returns
SUNErrCode indicating success or failure.

Usage:

12.2. The SUNAdaptController_Soderlind Module 637

User Documentation for ARKODE, v6.3.0

retval = SUNAdaptController_SetParams_PI(C, 0.8, -0.31);

SUNAdaptController SUNAdaptController_I(SUNContext sunctx)
This constructor creates and allocates memory for a SUNAdaptController_Soderlind object, set up to replicate
an I controller, and inserts its default parameters k1 = 1.0 and k2 = k3 = k4 = k5 = 0.

Parameters

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNAdaptController object; otherwise it will return NULL.

Usage:

SUNAdaptController C = SUNAdaptController_I(sunctx);

SUNErrCode SUNAdaptController_SetParams_I(SUNAdaptController C, sunrealtype k1)
This user-callable function provides control over the relevant parameters above for an I controller, setting k2 =
k3 = k4 = k5 = 0. This should be called before the time integrator is called to evolve the problem.

Parameters

• C – the SUNAdaptController_Soderlind object.

• k1 – parameter used within the controller time step estimate.

Returns
SUNErrCode indicating success or failure.

Usage:

retval = SUNAdaptController_SetParams_I(C, 1.0);

SUNAdaptController SUNAdaptController_ExpGus(SUNContext sunctx)
This constructor creates and allocates memory for a SUNAdaptController_Soderlind object, set up to replicate
Gustafsson’s explicit controller [51], and inserts its default parameters k1 = 0.635, k2 = −0.268, and k3 =
k4 = k5 = 0.

Parameters

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNAdaptController object; otherwise it will return NULL.

Usage:

SUNAdaptController C = SUNAdaptController_ExpGus(sunctx);

SUNErrCode SUNAdaptController_SetParams_ExpGus(SUNAdaptController C, sunrealtype k1_hat,
sunrealtype k2_hat)

This user-callable function provides control over the relevant parameters above for the explicit Gustafsson con-
troller, setting k3 = k4 = k5 = 0. This should be called before the time integrator is called to evolve the
problem.

638 Chapter 12. Time Step Adaptivity Controllers

User Documentation for ARKODE, v6.3.0

Note

Gustafsson’s explicit controller has the form

h′ = hnε
−k̂1/(p+1)
n

(
εn
εn−1

)−k̂2/(p+1)

.

The inputs to this function correspond to the values of k̂1 and k̂2, which are internally transformed into the
Soderlind coefficients k1 = k̂1 + k̂2 and k2 = −k̂2.

Parameters

• C – the SUNAdaptController_Soderlind object.

• k1_hat – parameter used within the explicit Gustafsson controller time step estimate.

• k2_hat – parameter used within the explicit Gustafsson controller time step estimate.

Returns
SUNErrCode indicating success or failure.

Usage:

retval = SUNAdaptController_SetParams_ExpGus(C, 0.367, 0.268);

SUNAdaptController SUNAdaptController_ImpGus(SUNContext sunctx)
This constructor creates and allocates memory for a SUNAdaptController_Soderlind object, set up to replicate
Gustafsson’s implicit controller [52], and inserts its default parameters k1 = 1.93, k2 = −0.95, k4 = 1, and
k3 = k5 = 0.

Parameters

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNAdaptController object; otherwise it will return NULL.

Usage:

SUNAdaptController C = SUNAdaptController_ImpGus(sunctx);

SUNErrCode SUNAdaptController_SetParams_ImpGus(SUNAdaptController C, sunrealtype k1_hat,
sunrealtype k2_hat)

This user-callable function provides control over the relevant parameters above for the implicit Gustafsson con-
troller, setting k3 = k4 = k5 = 0. This should be called before the time integrator is called to evolve the
problem.

Note

Gustafsson’s implicit controller has the form

h′ = hnε
−k̂1/(p+1)
n

(
εn
εn−1

)−k̂2/(p+1)(
hn
hn−1

)
.

The inputs to this function correspond to the values of k̂1 and k̂2, which are internally transformed into the
Soderlind coefficients k1 = k̂1 + k̂2, k2 = −k̂2, and k4 = 1.

12.2. The SUNAdaptController_Soderlind Module 639

User Documentation for ARKODE, v6.3.0

Parameters

• C – the SUNAdaptController_Soderlind object.

• k1_hat – parameter used within the implicit Gustafsson controller time step estimate.

• k2_hat – parameter used within the implicit Gustafsson controller time step estimate.

Returns
SUNErrCode indicating success or failure.

Usage:

retval = SUNAdaptController_SetParams_ImpGus(C, 0.98, 0.95);

SUNAdaptController SUNAdaptController_H0211(SUNContext sunctx)
This constructor creates and allocates memory for a SUNAdaptController_Soderlind object, set up to repli-
cate the H0211 controller from [103], corresponding with the parameters k1 = 0.5, k2 = 0.5, k4 = −0.5, and
k3 = k5 = 0.

Parameters

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNAdaptController object; otherwise it will return NULL.

Added in version 7.3.0.

Usage:

SUNAdaptController C = SUNAdaptController_H0211(sunctx);

SUNAdaptController SUNAdaptController_H0321(SUNContext sunctx)
This constructor creates and allocates memory for a SUNAdaptController_Soderlind object, set up to repli-
cate the H0321 controller from [103], corresponding with the parameters k1 = 1.25, k2 = 0.5, k3 = −0.75,
k4 = 0.25, and k5 = 0.75.

Parameters

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNAdaptController object; otherwise it will return NULL.

Added in version 7.3.0.

Usage:

SUNAdaptController C = SUNAdaptController_H0321(sunctx);

SUNAdaptController SUNAdaptController_H211(SUNContext sunctx)
This constructor creates and allocates memory for a SUNAdaptController_Soderlind object, set up to repli-
cate the H211 controller from [103], corresponding with the parameters k1 = 0.25, k2 = 0.25, k4 = −0.25,
and k3 = k5 = 0.

Parameters

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNAdaptController object; otherwise it will return NULL.

640 Chapter 12. Time Step Adaptivity Controllers

User Documentation for ARKODE, v6.3.0

Added in version 7.3.0.

Usage:

SUNAdaptController C = SUNAdaptController_H211(sunctx);

SUNAdaptController SUNAdaptController_H312(SUNContext sunctx)
This constructor creates and allocates memory for a SUNAdaptController_Soderlind object, set up to replicate
the H312 controller from [103], corresponding with the parameters k1 = 0.125, k2 = 0.25, k3 = 0.125,
k4 = −0.375, and k5 = −0.125.

Parameters

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNAdaptController object; otherwise it will return NULL.

Added in version 7.3.0.

Usage:

SUNAdaptController C = SUNAdaptController_H312(sunctx);

12.3 The SUNAdaptController_ImExGus Module

The ImEx Gustafsson implementation of the SUNAdaptController class, SUNAdaptController_ImExGus, implements
a combination of two adaptivity controllers proposed by K. Gustafsson. His “explicit” controller was proposed in [51],
is primarily useful with explicit Runge–Kutta methods, and has the form

h′ =


h1 ε

−1/(p+1)
1 , on the first step,

hn ε
−kE1 /(p+1)
n

(
εn
εn−1

)kE2 /(p+1)

, on subsequent steps.
(12.1)

Similarly, Gustafsson’s “implicit” controller was proposed in [52] with the form

h′ =


h1ε
−1/(p+1)
1 , on the first step,

hn

(
hn
hn−1

)
ε
−kI1/(p+1)
n

(
εn
εn−1

)−kI2/(p+1)

, on subsequent steps.
(12.2)

In the above formulas, the default values of kE1 , kE2 , kI1 , and kI2 are 0.367, 0.268, 0.98, and 0.95, respectively, and p is
the global order of the time integration method.

The SUNAdaptController_ImExGus controller implements both formulas (12.1) and (12.2), and sets its recommended
step size as the minimum of these two. It is implemented as a derived SUNAdaptController class, and defines its content
field as:

struct _SUNAdaptControllerContent_ImExGus {
sunrealtype k1e;
sunrealtype k2e;
sunrealtype k1i;
sunrealtype k2i;
sunrealtype bias;
sunrealtype ep;
sunrealtype hp;

(continues on next page)

12.3. The SUNAdaptController_ImExGus Module 641

User Documentation for ARKODE, v6.3.0

(continued from previous page)

sunbooleantype firststep;
};

These entries of the content field contain the following information:

• k1e, k2e - explicit controller parameters used in (12.1).

• k1i, k2i - implicit controller parameters used in (12.2).

• bias - error bias factor, that converts from an input temporal error estimate via ε = bias ∗ dsm.

• ep - storage for the previous error estimate, εn−1.

• hp - storage for the previous step size, hn−1.

• firststep - flag indicating whether a step has completed successfully, allowing the formulas above to transition
between h1 and hn.

The header file to be included when using this module is sunadaptcontroller/sunadaptcontroller_imexgus.h.

The SUNAdaptController_ImExGus class provides implementations of all operations relevant to a SUN_ADAPTCON-
TROLLER_H controller listed in §12.1.2. The SUNAdaptController_ImExGus class also provides the following addi-
tional user-callable routines:

SUNAdaptController SUNAdaptController_ImExGus(SUNContext sunctx)
This constructor creates and allocates memory for a SUNAdaptController_ImExGus object, and inserts its default
parameters.

Parameters

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNAdaptController object; otherwise it will return NULL.

Usage:

SUNAdaptController C = SUNAdaptController_ImExGus(sunctx);

SUNErrCode SUNAdaptController_SetParams_ImExGus(SUNAdaptController C, sunrealtype k1e, sunrealtype
k2e, sunrealtype k1i, sunrealtype k2i)

This user-callable function provides control over the relevant parameters above. This should be called before the
time integrator is called to evolve the problem.

Parameters

• C – the SUNAdaptController_ImExGus object.

• k1e – parameter used within the controller time step estimate.

• k2e – parameter used within the controller time step estimate.

• k1i – parameter used within the controller time step estimate.

• k2i – parameter used within the controller time step estimate.

Returns
SUNErrCode indicating success or failure.

Usage:

retval = SUNAdaptController_SetParams_ImExGus(C, 0.4, 0.3, -1.0, 1.0);

642 Chapter 12. Time Step Adaptivity Controllers

User Documentation for ARKODE, v6.3.0

12.4 The SUNAdaptController_MRIHTol Module

Added in version 7.2.0.

12.4.1 Mathematical motivation

The MRIHTol implementation of the SUNAdaptController class, SUNAdaptController_MRIHTol, implements a gen-
eral structure for telescopic multirate temporal control. A SUNAdaptController_MRIHTol object is constructed using
two single-rate controller objects, HControl and TolControl. The MRIHTol controller assumes that overall solution
error at a given time scale results from two types of error:

1. “Slow” temporal errors introduced at the current time scale,

εSn = C(tn)
(
hSn
)P+1

, (12.3)

where C(t) is independent of the current time scale step size hSn but may vary in time.

2. “Fast” errors introduced through calls to the next-fastest (“inner”) solver, εFn . If this inner solver is called to
evolve IVPs over time intervals [t0,i, tF,i] with a relative tolerance RTOLFn , then it will result in accumulated
errors over these intervals of the form

εFn = c(tn)hSn
(
RTOLFn

)
,

where c(t) is independent of the tolerance or subinterval width but may vary in time, or equivalently,

εFn = κ(tn)
(
tolfacFn

)
, (12.4)

where RTOLFn = RTOLS tolfacFn , the relative tolerance that was supplied to the current time scale solver is
RTOLS , and κ(tn) = c(tn)hSnRTOLS is independent of the relative tolerance factor, tolfacFn .

Single-rate controllers are constructed to adapt a single parameter, e.g., δ, under an assumption that solution error ε
depends asymptotically on this parameter via the form

ε = O(δq+1).

Both (12.3) and (12.4) fit this form, with control parameters hSn and tolfacFn , and “orders”P and 0, respectively. Thus an
MRIHTol controller employs HControl to adapt hSn to control the current time scale error εSn , and it employs TolControl
to adapt tolfacFn to control the accumulated inner solver error εFn .

To avoid overly large changes in calls to the inner solver, we apply bounds on the results from TolControl. If TolControl
predicts a control parameter tolfac′, we obtain the eventual tolerance factor via enforcing the following bounds:

tolfacFn
tolfac′

≤ relchmax,

tolfac′

tolfacFn
≤ relchmax,

tolfacmin ≤ tolfac′ ≤ tolfacmax.

The default values for these bounds are relchmax = 20, tolfacmin = 10−5, and tolfacmax = 1.

12.4. The SUNAdaptController_MRIHTol Module 643

User Documentation for ARKODE, v6.3.0

12.4.2 Implementation

The SUNAdaptController_MRIHTol controller is implemented as a derived SUNAdaptController class, and its con-
tent field is defined by the SUNAdaptControllerContent_MRIHTol_ structure:

struct SUNAdaptControllerContent_MRIHTol_
The member data structure for an MRIHTol controller

SUNAdaptController HControl
A single time-scale controller to adapt the current step size, hSn .

SUNAdaptController TolControl
A single time-scale controller to adapt the inner solver relative tolerance factor, reltolFn .

sunrealtype inner_max_relch
The parameter relchmax above.

sunrealtype inner_min_tolfac
The parameter tolfacmin above.

sunrealtype inner_max_tolfac
The parameter tolfacmax above.

The header file to be included when using this module is sunadaptcontroller/sunadaptcontroller_mrihtol.h.

The SUNAdaptController_MRIHTol class provides implementations of all operations relevant to a SUN_ADAPTCON-
TROLLER_MRI_H_TOL controller listed in §12.1.2. This class also provides the following additional user-callable rou-
tines:

SUNAdaptController SUNAdaptController_MRIHTol(SUNAdaptController HControl, SUNAdaptController
TolControl, SUNContext sunctx)

This constructor creates and allocates memory for a SUNAdaptController_MRIHTol object, and inserts its de-
fault parameters.

Parameters

• HControl – the slow time step adaptivity controller object.

• TolControl – the inner solver tolerance factor adaptivity controller object.

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNAdaptController object; otherwise it will return NULL.

SUNErrCode SUNAdaptController_SetParams_MRIHTol(SUNAdaptController C, sunrealtype inner_max_relch,
sunrealtype inner_min_tolfac, sunrealtype
inner_max_tolfac)

This user-callable function provides control over the relevant parameters above. This should be called before the
time integrator is called to evolve the problem. If any argument is outside the allowable range, that parameter
will be reset to its default value.

Parameters

• C – the SUNAdaptController_MRIHTol object.

• inner_max_relch – the parameter relchmax (must be ≥ 1).

• inner_min_tolfac – the parameter tolfacmin (must be > 0).

• inner_max_tolfac – the parameter tolfacmax (must be > 0 and ≤ 1).

644 Chapter 12. Time Step Adaptivity Controllers

User Documentation for ARKODE, v6.3.0

Returns
SUNErrCode indicating success or failure.

12.4.3 Usage

Since this adaptivity controller is constructed using multiple single-rate adaptivity controllers, there are a few steps
required when setting this up in an application (the steps below in italics correspond to the surrounding steps described
in the MRIStep usage skeleton.

1. Create an inner stepper object to solve the fast (inner) IVP

2. Configure the inner stepper to use temporal adaptivity. For example, when using an ARKODE inner stepper and
the ARKodeCreateMRIStepInnerStepper() function, then either use its default adaptivity approach or supply
a single-rate SUNAdaptController object, e.g.

void* inner_arkode_mem = ERKStepCreate(f_f, T0, y, sunctx);
MRIStepInnerStepper inner_stepper = nullptr;
retval = ARKodeCreateMRIStepInnerStepper(inner_arkode_mem, &inner_stepper);
SUNAdaptController fcontrol = SUNAdaptController_PID(sunctx);
retval = ARKodeSetAdaptController(inner_arkode_mem, fcontrol);

3. If using an ARKODE inner stepper, then set the desired temporal error accumulation estimation strategy via a
call to ARKodeSetAccumulatedErrorType(), e.g.,

retval = ARKodeSetAccumulatedErrorType(inner_arkode_mem, ARK_ACCUMERROR_MAX);

4. Create an MRIStep object for the slow (outer) integration

5. Create single-rate controllers for both the slow step size and inner solver tolerance, e.g.,

SUNAdaptController scontrol_H = SUNAdaptController_PI(sunctx);
SUNAdaptController scontrol_Tol = SUNAdaptController_I(sunctx);

6. Create the multirate controller object, e.g.,

SUNAdaptController scontrol = SUNAdaptController_MRIHTol(scontrol_H, scontrol_Tol, sunctx);

7. Attach the multirate controller object to MRIStep, e.g.,

retval = ARKodeSetAdaptController(arkode_mem, scontrol);

An example showing the above steps is provided in examples/arkode/CXX_serial/ark_kpr_nestedmri.cpp,
where multirate controller objects are used for both the slow and intermediate time scales in a 3-time-scale simulation.

12.4. The SUNAdaptController_MRIHTol Module 645

User Documentation for ARKODE, v6.3.0

646 Chapter 12. Time Step Adaptivity Controllers

Chapter 13

Stepper Data Structure

This section presents the SUNStepper base class which represents a generic solution procedure for IVPs of the form

v̇(t) = f(t, v) + r(t), v(t0) = v0, (13.1)

on an interval t ∈ [t0, tf]. The time dependent forcing term, ri(t), is given by

r(t) =

nforcing−1∑
k=0

(
t− tshift

tscale

)k
f̂k. (13.2)

SUNStepper provides an abstraction over SUNDIALS integrators, custom integrators, exact solution procedures, or
other approaches for solving (13.1). These are used, for example, in operator splitting and forcing methods to solve
inner IVPs in a flexible way.

13.1 The SUNStepper API

Added in version 7.2.0.

As with other SUNDIALS classes, the SUNStepper abstract base class is implemented using a C structure containing
a content pointer to the derived class member data and a structure of function pointers to the derived class implemen-
tations of the virtual methods.

type SUNStepper
An object for solving the IVP (13.1).

The actual definition of the SUNStepper structure is kept private to allow for the object internals to change
without impacting user code. The following sections describe the base class methods and the virtual methods
that a must be provided by a derived class.

13.1.1 Base Class Methods

This section describes methods provided by the SUNStepper abstract base class that aid the user in implementing
derived classes. This includes functions for creating and destroying a generic base class object, attaching and retrieving
the derived class content pointer, and setting function pointers to derived class method implementations.

647

User Documentation for ARKODE, v6.3.0

13.1.1.1 Creating and Destroying an Object

In addition to creating an empty SUNStepper using SUNStepper_Create() described below, there is the ARKode-
CreateSUNStepper() function to construct a SUNStepper from an ARKODE integrator.

SUNErrCode SUNStepper_Create(SUNContext sunctx, SUNStepper *stepper)
This function creates a SUNStepper object to which a user should attach the member data (content) pointer and
method function pointers.

Parameters

• sunctx – the SUNDIALS simulation context.

• stepper – a pointer to a stepper object.

Returns
A SUNErrCode indicating success or failure.

Example usage:

/* create an instance of the base class */
SUNStepper stepper = NULL;
SUNErrCode err = SUNStepper_Create(sunctx, &stepper);

Note

See §13.1.1.4 and §13.1.1.6 for details on how to attach member data and method function pointers.

SUNErrCode SUNStepper_Destroy(SUNStepper *stepper)
This function frees memory allocated by the SUNStepper base class and uses the function pointer optionally
specified with SUNStepper_SetDestroyFn() to free the content.

Parameters

• stepper – a pointer to a stepper object.

Returns
A SUNErrCode indicating success or failure.

Note

This function only frees memory allocated within the base class and the base class structure itself. The user
is responsible for freeing any memory allocated for the member data (content).

13.1.1.2 Stepping Functions

SUNErrCode SUNStepper_Evolve(SUNStepper stepper, sunrealtype tout, N_Vector vret, sunrealtype *tret)
This function evolves the ODE (13.1) towards the time tout and stores the solution at time tret in vret.

Parameters

• stepper – the stepper object.

• tout – the time to evolve towards.

• vret – on output, the state at time tret.

648 Chapter 13. Stepper Data Structure

User Documentation for ARKODE, v6.3.0

• tret – the time corresponding to the output value vret.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNStepper_OneStep(SUNStepper stepper, sunrealtype tout, N_Vector vret, sunrealtype *tret)
This function evolves the ODE (13.1) one timestep towards the time tout and stores the solution at time tret
in vret.

Parameters

• stepper – the stepper object.

• tout – the time to evolve towards.

• vret – on output, the state at time tret.

• tret – the time corresponding to the output value vret.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNStepper_FullRhs(SUNStepper stepper, sunrealtype t, N_Vector v, N_Vector f, SUNFullRhsMode
mode)

This function computes the full right-hand side function of the ODE, f(t, v) + r(t) in (13.1) for a given value
of the independent variable t and state vector v.

Parameters

• stepper – the stepper object.

• t – the current value of the independent variable.

• v – the current value of the dependent variable vector.

• f – the output vector for the ODE right-hand side, f(t, v) + r(t), in (13.1).

• mode – the purpose of the right-hand side evaluation.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNStepper_ReInit(SUNStepper stepper, sunrealtype t0, N_Vector v0)
This function reinitalizes the stepper to solve a new problem with the given initial condition and clears all coun-
ters.

Parameters

• stepper – the stepper object.

• t0 – the value of the independent variable t0.

• v0 – the value of the dependent variable vector v(t0).

Returns
A SUNErrCode indicating success or failure.

Added in version 7.3.0.

SUNErrCode SUNStepper_Reset(SUNStepper stepper, sunrealtype tR, N_Vector vR)
This function resets the stepper state to the provided independent variable value and dependent variable vector.

Parameters

• stepper – the stepper object.

13.1. The SUNStepper API 649

User Documentation for ARKODE, v6.3.0

• tR – the value of the independent variable tR.

• vR – the value of the dependent variable vector v(tR).

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNStepper_ResetCheckpointIndex(SUNStepper stepper, suncountertype ckptIdxR)
This function resets the index at which new checkpoints will be inserted to ckptIdxR.

Parameters

• stepper – the stepper object.

• ckptIdxR – the step index to begin checkpointing from

Returns
A SUNErrCode indicating success or failure.

Added in version 7.3.0.

SUNErrCode SUNStepper_SetStopTime(SUNStepper stepper, sunrealtype tstop)
This function specifies the value of the independent variable t past which the solution is not to proceed.

Parameters

• stepper – the stepper object.

• tstop – stopping time for the stepper.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNStepper_SetStepDirection(SUNStepper stepper, sunrealtype stepdir)
This function specifies the direction of integration (forward or backward).

Parameters

• stepper – the stepper object.

• stepdir – value whose sign determines the direction. A positive value selects forward inte-
gration, a negative value selects backward integration, and zero leaves the current direction
unchanged.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNStepper_SetForcing(SUNStepper stepper, sunrealtype tshift, sunrealtype tscale, N_Vector
*forcing, int nforcing)

This function sets the data necessary to compute the forcing term (13.2). This includes the shift and scaling
factors for the normalized time t−tshift

tscale
and the array of polynomial coefficient vectors f̂k.

Parameters

• stepper – a stepper object.

• tshift – the time shift to apply to the current time when computing the forcing, tshift.

• tscale – the time scaling to apply to the current time when computing the forcing, tscale.

• forcing – a pointer to an array of forcing vectors, f̂k.

• nforcing – the number of forcing vectors, nforcing. A value of 0 effectively eliminates the
forcing term.

650 Chapter 13. Stepper Data Structure

User Documentation for ARKODE, v6.3.0

Returns
A SUNErrCode indicating success or failure.

Note

When integrating the ODE (13.1) the SUNStepper is responsible for evaluating ODE right-hand side function
f(t, v) as well as computing and applying the forcing term (13.2) to obtain the full right-hand side of the
ODE (13.1).

SUNErrCode SUNStepper_GetNumSteps(SUNStepper stepper, suncountertype *nst)
This function gets the number of successful time steps taken by the stepper since it was last initialized.

Parameters

• stepper – the stepper object.

• nst – on output, the number of time steps.

Returns
A SUNErrCode indicating success or failure.

Added in version 7.3.0.

13.1.1.3 The Right-Hand Side Evaluation Mode

enum SUNFullRhsMode
A flag indicating the purpose of a right-hand side function evaluation.

enumerator SUN_FULLRHS_START
Evaluate at the beginning of the simulation.

enumerator SUN_FULLRHS_END
Evaluate at the end of a successful step.

enumerator SUN_FULLRHS_OTHER
Evaluate elsewhere, e.g., for dense output.

13.1.1.4 Attaching and Accessing the Content Pointer

SUNErrCode SUNStepper_SetContent(SUNStepper stepper, void *content)
This function attaches a member data (content) pointer to a SUNStepper object.

Parameters

• stepper – a stepper object.

• content – a pointer to the stepper member data.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNStepper_GetContent(SUNStepper stepper, void **content)
This function retrieves the member data (content) pointer from a SUNStepper object.

Parameters

• stepper – a stepper object.

13.1. The SUNStepper API 651

User Documentation for ARKODE, v6.3.0

• content – a pointer to set to the stepper member data pointer.

Returns
A SUNErrCode indicating success or failure.

13.1.1.5 Handling Warnings and Errors

An implementation of a SUNStepper may have a system of warning and error handling that cannot be encoded as a
SUNErrCode which is the return type of all SUNStepper functions. Therefore, we provide the following function to
get and set a separate flag associated with a stepper.

SUNErrCode SUNStepper_SetLastFlag(SUNStepper stepper, int last_flag)
This function sets a flag that can be used by SUNStepper implementations to indicate warnings or errors that
occurred during an operation, e.g., SUNStepper_Evolve().

Parameters

• stepper – the stepper object.

• last_flag – the flag value.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNStepper_GetLastFlag(SUNStepper stepper, int *last_flag)
This function provides the last value of the flag used by the SUNStepper implementation to indicate warnings
or errors that occurred during an operation, e.g., SUNStepper_Evolve().

Parameters

• stepper – the stepper object.

• last_flag – A pointer to where the flag value will be written.

Returns
A SUNErrCode indicating success or failure.

13.1.1.6 Setting Member Functions

The functions in this section are used to specify how each operation on a SUNStepper implementation is performed.
Technically, all of these functions are optional to call; the functions that need to be attached are determined by the
“consumer” of the SUNStepper.

SUNErrCode SUNStepper_SetEvolveFn(SUNStepper stepper, SUNStepperEvolveFn fn)
This function attaches a SUNStepperEvolveFn function to a SUNStepper object.

Parameters

• stepper – a stepper object.

• fn – the SUNStepperEvolveFn function to attach.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNStepper_SetOneStepFn(SUNStepper stepper, SUNStepperOneStepFn fn)
This function attaches a SUNStepperOneStepFn function to a SUNStepper object.

Parameters

• stepper – a stepper object.

652 Chapter 13. Stepper Data Structure

User Documentation for ARKODE, v6.3.0

• fn – the SUNStepperOneStepFn function to attach.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNStepper_SetFullRhsFn(SUNStepper stepper, SUNStepperFullRhsFn fn)
This function attaches a SUNStepperFullRhsFn function to a SUNStepper object.

Parameters

• stepper – a stepper object.

• fn – the SUNStepperFullRhsFn function to attach.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNStepper_SetReInitFn(SUNStepper stepper, SUNStepperResetFn fn)
This function attaches a SUNStepperReInitFn function to a SUNStepper object.

Parameters

• stepper – a stepper object.

• fn – the SUNStepperReInitFn function to attach.

Returns
A SUNErrCode indicating success or failure.

Added in version 7.3.0.

SUNErrCode SUNStepper_SetResetFn(SUNStepper stepper, SUNStepperResetFn fn)
This function attaches a SUNStepperResetFn function to a SUNStepper object.

Parameters

• stepper – a stepper object.

• fn – the SUNStepperResetFn function to attach.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNStepper_SetResetCheckpointIndexFn(SUNStepper stepper,
SUNStepperResetCheckpointIndexFn fn)

This function attaches a SUNStepperResetCheckpointIndexFn function to a SUNStepper object.

Parameters

• stepper – a stepper object.

• fn – the SUNStepperResetCheckpointIndexFn function to attach.

Returns
A SUNErrCode indicating success or failure.

Added in version 7.3.0.

SUNErrCode SUNStepper_SetStopTimeFn(SUNStepper stepper, SUNStepperSetStopTimeFn fn)
This function attaches a SUNStepperSetStopTimeFn function to a SUNStepper object.

Parameters

• stepper – a stepper object.

• fn – the SUNStepperSetStopTimeFn function to attach.

13.1. The SUNStepper API 653

User Documentation for ARKODE, v6.3.0

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNStepper_SetStepDirectionFn(SUNStepper stepper, SUNStepperSetStepDirectionFn fn)
This function attaches a SUNStepperSetStepDirectionFn function to a SUNStepper object.

Parameters

• stepper – a stepper object.

• fn – the SUNStepperSetStepDirectionFn function to attach.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNStepper_SetForcingFn(SUNStepper stepper, SUNStepperSetForcingFn fn)
This function attaches a SUNStepperSetForcingFn function to a SUNStepper object.

Parameters

• stepper – a stepper object.

• fn – the SUNStepperSetForcingFn function to attach.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNStepper_SetGetNumStepsFn(SUNStepper stepper, SUNStepperGetNumStepsFn fn)
This function attaches a SUNStepperGetNumStepsFn function to a SUNStepper object.

Parameters

• stepper – a stepper object.

• fn – the SUNStepperGetNumStepsFn function to attach.

Returns
A SUNErrCode indicating success or failure.

Added in version 7.3.0.

SUNErrCode SUNStepper_SetDestroyFn(SUNStepper stepper, SUNStepperDestroyFn fn)
This function attaches a SUNStepperDestroyFn function to a SUNStepper. The provided function is respon-
sible for freeing any memory allocated for the SUNStepper content.

Parameters

• stepper – a stepper object.

• fn – the SUNStepperDestroyFn function to attach.

Returns
A SUNErrCode indicating success or failure.

654 Chapter 13. Stepper Data Structure

User Documentation for ARKODE, v6.3.0

13.1.2 Implementation Specific Methods

This section describes the virtual methods defined by the SUNStepper abstract base class.

typedef SUNErrCode (*SUNStepperEvolveFn)(SUNStepper stepper, sunrealtype tout, N_Vector vret, sunrealtype
*tret)

This type represents a function with the signature of SUNStepper_Evolve().

typedef SUNErrCode (*SUNStepperOneStepFn)(SUNStepper stepper, sunrealtype tout, N_Vector vret, sunrealtype
*tret)

This type represents a function with the signature of SUNStepper_OneStep().

typedef SUNErrCode (*SUNStepperFullRhsFn)(SUNStepper stepper, sunrealtype t, N_Vector v, N_Vector f,
SUNFullRhsMode mode)

This type represents a function with the signature of SUNStepper_FullRhs().

typedef SUNErrCode (*SUNStepperResetFn)(SUNStepper stepper, sunrealtype tR, N_Vector vR)
This type represents a function with the signature of SUNStepper_Reset().

typedef SUNErrCode (*SUNStepperReInitFn)(SUNStepper stepper, sunrealtype tR, N_Vector vR)
This type represents a function with the signature of SUNStepper_ReInit().

Added in version 7.3.0.

typedef SUNErrCode (*SUNStepperResetCheckpointIndexFn)(SUNStepper stepper, suncountertype ckptIdxR)
This type represents a function with the signature of SUNStepper_ResetCheckpointIndex().

Added in version 7.3.0.

typedef SUNErrCode (*SUNStepperSetStopTimeFn)(SUNStepper stepper, sunrealtype tstop)
This type represents a function with the signature of SUNStepper_SetStopTime().

typedef SUNErrCode (*SUNStepperSetStepDirectionFn)(SUNStepper stepper, sunrealtype stepdir)
This type represents a function with the signature of SUNStepper_SetStepDirection().

typedef SUNErrCode (*SUNStepperSetForcingFn)(SUNStepper stepper, sunrealtype tshift, sunrealtype tscale,
N_Vector *forcing, int nforcing)

This type represents a function with the signature of SUNStepper_SetForcing().

typedef SUNErrCode (*SUNStepperDestroyFn)(SUNStepper stepper)
This type represents a function with the signature similar to SUNStepper_Destroy() for freeing the content
associated with a SUNStepper.

typedef SUNErrCode (*SUNStepperGetNumStepsFn)(SUNStepper stepper, suncountertype *nst)
This type represents a function with the signature of SUNStepper_GetNumSteps().

Added in version 7.3.0.

13.2 Implementing a SUNStepper

To create a SUNStepper implementation:

1. Define the stepper-specific content.

This is typically a user-defined structure in C codes, a user-defined class or structure in C++ codes, or a user-
defined module in Fortran codes. This content should hold any data necessary to perform the operations defined
by the SUNStepper member functions.

13.2. Implementing a SUNStepper 655

User Documentation for ARKODE, v6.3.0

2. Define implementations of the required member functions (see §13.1.2).

These are typically user-defined functions in C, member functions of the user-defined structure or class in C++,
or functions contained in the user-defined module in Fortran.

Note that all member functions are passed the SUNStepper object and the stepper-specific content can, if nec-
essary, be retrieved using SUNStepper_GetContent(). Stepper-specific warnings and errors can be recorded
with SUNStepper_SetLastFlag().

3. In the user code, before creating the outer memory structure that uses the SUNStepper, e.g., with Splitting-
StepCreate() or ForcingStepCreate(), do the following:

1. Create a SUNStepper object with SUNStepper_Create().

2. Attach a pointer to the stepper content to the SUNStepper object with SUNStepper_SetContent() if
necessary, e.g., when the content is a C structure.

3. Attach the member function implementations using the functions described in §13.1.1.6.

4. Attach the SUNStepper object to the outer memory structure, e.g., with SplittingStepCreate() or Forc-
ingStepCreate().

656 Chapter 13. Stepper Data Structure

Chapter 14

Adjoint Sensitivity Analysis

This section presents the SUNAdjointStepper and SUNAdjointCheckpointScheme classes that provide a common
interface for adjoint sensitivity analysis (ASA) capabilities. Currently it supports the ASA capabilities in ARKODE,
while the ASA capabilities in CVODES and IDAS must be used directly.

14.1 Introduction to Adjoint Sensitivity Analysis

This section presents the SUNAdjointStepper and SUNAdjointCheckpointScheme classes. The SUNAd-
jointStepper represents a generic adjoint sensitivity analysis (ASA) procedure to obtain the adjoint sensitivities
of an IVP of the form

ẏ(t) = f(t, y, p), y(t0) = y0(p), y ∈ RN , (14.1)

where p is some set of Ns problem parameters.

Note

The API itself does not implement ASA, but it provides a common interface for ASA capabilities implemented in
the SUNDIALS packages. Right now it supports the ASA capabilities in ARKODE, while the ASA capabilities in
CVODES and IDAS must be used directly.

Suppose we have a functional g(tf , y(tf), p) for which we would like to compute the gradients dg(tf , y(tf), p)/dy(t0)
and/or dg(tf , y(tf), p)/dp. This most often arises in the form of an optimization problem such as

min
y(t0),p

g(tf , y(tf), p) (14.2)

Warning

The CVODES documentation uses λ to represent the adjoint variables needed to obtain the gradient dG/dp where
G is an integral of g. Our use of λ in the following is akin to the use of µ in the CVODES docs.

The adjoint method is one approach to obtaining the gradients that is particularly efficient when there are relatively few
functionals and a large number of parameters. While CVODES and IDAS continuous adjoint methods (differentiate-

657

https://sundials.readthedocs.io/en/v7.3.0/cvodes/Mathematics_link.html#cvodes-mathematics-asa
https://sundials.readthedocs.io/en/v7.3.0/idas/Mathematics_link.html#idas-mathematics-asa
https://sundials.readthedocs.io/en/v7.3.0/cvodes/Mathematics_link.html#cvodes-mathematics-asa
https://sundials.readthedocs.io/en/v7.3.0/idas/Mathematics_link.html#idas-mathematics-asa
https://sundials.readthedocs.io/en/v7.3.0/cvodes/Mathematics_link.html#cvodes-mathematics-asa
https://sundials.readthedocs.io/en/v7.3.0/idas/Mathematics_link.html#idas-mathematics-asa

User Documentation for ARKODE, v6.3.0

then-discretize), ARKODE provides discrete adjoint methods (discretize-then-differentiate). For the continuous ap-
proach, we derive and solve the adjoint IVP backwards in time

λ̇(t) = −f∗y (t, y, p)λ, λ(tF) = g∗y(tf , y(tf), p) (14.3)

where λ(t) ∈ RNs , fy ≡ ∂f/∂y ∈ RN×N and gy ≡ ∂g/∂y ∈ RN×N , are the Jacobians with respect to the dependent
variable, ∗ denotes the Hermitian (conjugate) transpose, N is the size of the original IVP, and Ns is the number of
parameters. When solved with a numerical time integration scheme, the solution to the continuous adjoint IVP is a
numerical approximation of the continuous adjoint sensitivities,

λ(tn) ≈ gy(tf , y(tn), p), λ(t0) ≈ gy(tf , y(t0), p). (14.4)

The gradients with respect to the parameters can then be obtained as

dg(tf , y(tn), p)

dp
= λ∗(tn)yp(tn) + gp(tf , y(tn), p) +

∫ tf

tn

λ∗(t)fp(t, y(tn), p) dt, (14.5)

where y_p(t) equiv partial y(t)/partial p in mathbb{R}^{N times N_s}, and gp ≡ ∂g/∂p ∈ RN×Ns and fp ≡ ∂f/∂p ∈
RN×Ns are the Jacobians with respect to the parameters.

For the discrete adjoint approach, we first numerically discretize the original IVP (14.1) using a time integration scheme,
ϕ, so that

y0 = y(t0), yn = ϕ(yn−k, · · · , yn−1, p), k = n, · · · , 1. (14.6)

For linear multistep methods k ≥ 1 and for one step methods k = 1. Reformulating the optimization problem for the
discrete case, we have

min
y0,p

g(tf , yn, p) (14.7)

The gradients of (14.7) can be computed using the transposed chain rule backwards in time to obtain the discrete
adjoint variables λn, λn−1, · · · , λ0 and µn, µn−1, · · · , µ0. The discrete adjoint variables represent the gradients of the
discrete cost function (14.7) with respect to changes in the discretized IVP (14.6),

dg

dyn
= λn,

dg

dp
= µn + λ∗n

(
∂y0
∂p

)
. (14.8)

14.1.1 Discrete vs. Continuous Adjoint Method

It is understood that the continuous adjoint method can be problematic in the context of optimization problems because
the continuous adjoint method provides an approximation to the gradient of a continuous cost function while the op-
timizer is expecting the gradient of the discrete cost function. The discrepancy means that the optimizer can fail to
due to inconsistent gradients [47, 48]. On the other hand, the discrete adjoint method provides the exact gradient of
the discrete cost function allowing the optimizer to fully converge. Consequently, the discrete adjoint method is often
preferable in optimization despite its own drawbacks – such as its (relatively) increased memory usage and the possible
introduction of unphysical computational modes [101]. This is not to say that the discrete adjoint approach is always
the better choice over the continuous adjoint approach in optimization. Computational efficiency and stability of one
approach over the other can be both problem and method dependent. Section 8 in the paper [82] discusses the tradeoffs
further and provides numerous references that may help inform users in choosing between the discrete and continuous
adjoint approaches.

658 Chapter 14. Adjoint Sensitivity Analysis

User Documentation for ARKODE, v6.3.0

14.2 The SUNAdjointStepper Class

Added in version 7.3.0.

type SUNAdjointStepper
The SUNAdjointStepper class provides a package-agnostic interface to SUNDIALS ASA capabilities. It cur-
rently only supports the discrete ASA capabilities in the ARKODE package, but in the future this support may
be expanded.

14.2.1 Class Methods

The SUNAdjointStepper class has the following methods:

SUNErrCode SUNAdjointStepper_Create(SUNStepper fwd_sunstepper, sunbooleantype own_fwd, SUNStepper
adj_sunstepper, sunbooleantype own_adj, suncountertype
final_step_idx, sunrealtype tf, N_Vector sf,
SUNAdjointCheckpointScheme checkpoint_scheme, SUNContext
sunctx, SUNAdjointStepper *adj_stepper)

Creates the SUNAdjointStepper object needed to solve the adjoint problem.

Parameters

• fwd_sunstepper – The SUNStepper to be used for forward computations of the original
ODE.

• own_fwd – Should fwd_sunstepper be owned (and destroyed) by the SUNAdjointStepper or
not.

• adj_sunstepper – The SUNStepper to be used for the backward integration of the adjoint
ODE.

• own_adj – Should adj_sunstepper be owned (and destroyed) by the SUNAdjointStepper or
not.

• final_step_idx – The index (step number) of the step corresponding to t_f for the forward
ODE.

• tf – The terminal time for the forward ODE (the initial time for the adjoint ODE).

• sf – The terminal condition for the adjoint ODE.

• checkpoint_scheme – The SUNAdjointCheckpointScheme object that determines the
checkpointing strategy to use. This should be the same object provided to the forward inte-
grator/stepper.

• sunctx – The SUNContext for the simulation.

• adj_stepper – The SUNAdjointStepper to construct (will be NULL on failure).

Returns
A SUNErrCode indicating failure or success.

SUNErrCode SUNAdjointStepper_ReInit(SUNAdjointStepper self, sunrealtype t0, N_Vector y0, sunrealtype tf,
N_Vector sf)

Reinitializes the adjoint stepper to solve a new problem of the same size.

Parameters

• adj_stepper – The adjoint solver object.

• t0 – The new initial time.

14.2. The SUNAdjointStepper Class 659

User Documentation for ARKODE, v6.3.0

• y0 – The new initial condition.

• tf – The time to start integrating the adjoint system from.

• sf – The terminal condition vector of sensitivity solutions ∂g/∂y0 and ∂g/∂p.

Returns
A SUNErrCode indicating failure or success.

SUNErrCode SUNAdjointStepper_Evolve(SUNAdjointStepper adj_stepper, sunrealtype tout, N_Vector sens,
sunrealtype *tret)

Integrates the adjoint system.

Parameters

• adj_stepper – The adjoint solver object.

• tout – The time at which the adjoint solution is desired.

• sens – The vector of sensitivity solutions ∂g/∂y0 and ∂g/∂p.

• tret – On return, the time reached by the adjoint solver.

Returns
A SUNErrCode indicating failure or success.

SUNErrCode SUNAdjointStepper_OneStep(SUNAdjointStepper adj_stepper, sunrealtype tout, N_Vector sens,
sunrealtype *tret)

Evolves the adjoint system backwards one step.

Parameters

• adj_stepper – The adjoint solver object.

• tout – The time at which the adjoint solution is desired.

• sens – The vector of sensitivity solutions ∂g/∂y0 and ∂g/∂p.

• tret – On return, the time reached by the adjoint solver.

Returns
A SUNErrCode indicating failure or success.

SUNErrCode SUNAdjointStepper_RecomputeFwd(SUNAdjointStepper adj_stepper, suncountertype start_idx,
sunrealtype t0, N_Vector y0, sunrealtype tf)

Evolves the forward system in time from (start_idx, t0) to (stop_idx, tf) with dense checkpointing.

Parameters

• adj_stepper – The SUNAdjointStepper object.

• start_idx – the index of the step, w.r.t. the original forward integration, to begin forward
integration from.

• t0 – the initial time, w.r.t. the original forward integration, to start forward integration from.

• y0 – the initial state, w.r.t. the original forward integration, to start forward integration from.

• tf – the final time, w.r.t. the original forward integration, to stop forward integration at.

Returns
A SUNErrCode indicating failure or success.

660 Chapter 14. Adjoint Sensitivity Analysis

User Documentation for ARKODE, v6.3.0

SUNErrCode SUNAdjointStepper_SetUserData(SUNAdjointStepper adj_stepper, void *user_data)
Sets the user data pointer.

Parameters

• adj_stepper – The SUNAdjointStepper object.

• user_data – the user data pointer that will be passed back to user-supplied callback func-
tions.

Returns
A SUNErrCode indicating failure or success.

SUNErrCode SUNAdjointStepper_GetNumSteps(SUNAdjointStepper adj_stepper, suncountertype *num_steps)
Retrieves the number of steps taken by the adjoint stepper.

Parameters

• adj_stepper – The SUNAdjointStepper object.

• num_steps – Pointer to store the number of steps.

Returns
A SUNErrCode indicating failure or success.

SUNErrCode SUNAdjointStepper_GetNumRecompute(SUNAdjointStepper adj_stepper, suncountertype
*num_recompute)

Retrieves the number of recomputations performed by the adjoint stepper.

Parameters

• adj_stepper – The SUNAdjointStepper object.

• num_recompute – Pointer to store the number of recomputations.

Returns
A SUNErrCode indicating failure or success.

SUNErrCode SUNAdjointStepper_PrintAllStats(SUNAdjointStepper adj_stepper, FILE *outfile,
SUNOutputFormat fmt)

Prints the adjoint stepper statistics/counters in a human-readable table format or CSV format.

Parameters

• adj_stepper – The SUNAdjointStepper object.

• outfile – A file to write the output to.

• fmt – the format to write in (SUN_OUTPUTFORMAT_TABLE or SUN_OUTPUTFORMAT_CSV).

Returns
A SUNErrCode indicating failure or success.

14.2. The SUNAdjointStepper Class 661

User Documentation for ARKODE, v6.3.0

14.2.2 User-Supplied Functions

typedef int (*SUNAdjRhsFn)(sunrealtype t, N_Vector y, N_Vector sens, N_Vector sens_dot, void *user_data)
These functions compute the adjoint ODE right-hand side.

For ARKODE, this is

Λ = f∗y (t, y, p)λ, and if the systems has parameters,
ν = f∗p (t, y, p)λ.

and corresponds to (2.70) for explicit Runge–Kutta methods.

Parameters:

• t – the current value of the independent variable.

• y – the current value of the forward solution vector.

• sens – a NVECTOR_MANYVECTOR object with two subvectors, the first subvector holds λ and the second
holds µ and is unused in this function.

• sens_dot – a NVECTOR_MANYVECTOR object with two subvectors, the first subvector holds Λ and the
second holds ν.

• user_data – the user_data pointer that was passed to SUNAdjointStepper_SetUserData().

Returns:

A SUNAdjRhsFn should return 0 if successful, a positive value if a recoverable error occurred (in
which case the integrator may attempt to correct), or a negative value if it failed unrecoverably (in
which case the integration is halted and an error is raised).

Note

Allocation of memory for y is handled within the integrator.

The vector sens_dotmay be uninitialized on input; it is the user’s responsibility to fill this entire vector with
meaningful values.

14.3 The SUNAdjointCheckpointScheme Class

Added in version 7.3.0.

As with other SUNDIALS classes, the SUNAdjointCheckpointScheme abstract base class is implemented using a
C structure containing a content pointer to the derived class member data and a structure of function pointers to the
derived class implementations of the virtual methods.

type SUNAdjointCheckpointScheme
A class that provides an interface for checkpointing states during forward integration and accessing them as
needed during the backwards integration of the adjoint model.

enum SUNDataIOMode

enumerator SUNDATAIOMODE_INMEM
The IO mode for data that is stored in addressable random access memory. The location of the memory
(e.g., CPU or GPU) is not specified by this mode.

662 Chapter 14. Adjoint Sensitivity Analysis

User Documentation for ARKODE, v6.3.0

14.3.1 Base Class Methods

SUNErrCode SUNAdjointCheckpointScheme_NewEmpty(SUNContext sunctx, SUNAdjointCheckpointScheme
*cs_ptr)

Parameters

• sunctx – The SUNDIALS simulation context

• cs_ptr – on output, a pointer to a new SUNAdjointCheckpointScheme object

Returns
A SUNErrCode indicating failure or success.

SUNErrCode SUNAdjointCheckpointScheme_NeedsSaving(SUNAdjointCheckpointScheme self, suncountertype
step_num, suncountertype stage_num, sunrealtype
t, sunbooleantype *yes_or_no)

Determines if the (step_num, stage_num) should be checkpointed or not.

Parameters

• self – the SUNAdjointCheckpointScheme object

• step_num – the step number of the checkpoint

• stage_num – the stage number of the checkpoint

• t – the time of the checkpoint

• yes_or_no – boolean indicating if the checkpoint should be saved or not

Returns
A SUNErrCode indicating failure or success.

SUNErrCode SUNAdjointCheckpointScheme_InsertVector(SUNAdjointCheckpointScheme self,
suncountertype step_num, suncountertype
stage_num, sunrealtype t, N_Vector y)

Inserts the vector as the checkpoint for (step_num, stage_num).

Parameters

• self – the SUNAdjointCheckpointScheme object

• step_num – the step number of the checkpoint

• stage_num – the stage number of the checkpoint

• t – the time of the checkpoint

• y – the state vector to checkpoint

Returns
A SUNErrCode indicating failure or success.

SUNErrCode SUNAdjointCheckpointScheme_LoadVector(SUNAdjointCheckpointScheme self, suncountertype
step_num, suncountertype stage_num, sunrealtype t,
sunbooleantype peek, N_Vector *yout, sunrealtype
*tout)

Loads the checkpointed vector for (step_num, stage_num).

Parameters

• self – the SUNAdjointCheckpointScheme object

14.3. The SUNAdjointCheckpointScheme Class 663

User Documentation for ARKODE, v6.3.0

• step_num – the step number of the checkpoint

• stage_num – the stage number of the checkpoint

• t – the desired time of the checkpoint

• peek – if true, then the checkpoint will be loaded but not deleted regardless of other
implementation-specific settings. If false, then the checkpoint may be deleted depending
on the implementation.

• yout – the loaded state vector

• tout – on output, the time of the checkpoint

Returns
A SUNErrCode indicating failure or success.

SUNErrCode SUNAdjointCheckpointScheme_EnableDense(SUNAdjointCheckpointScheme self, sunbooleantype
on_or_off)

Enables or disables dense checkpointing (checkpointing every step/stage). When dense checkpointing is disabled,
the checkpointing interval that was set when the object was created is restored.

Parameters

• self – the SUNAdjointCheckpointScheme object

• on_or_off – if true, dense checkpointing will be turned on, if false it will be turned off.

Returns
A SUNErrCode indicating failure or success.

SUNErrCode SUNAdjointCheckpointScheme_Destroy(SUNAdjointCheckpointScheme *cs_ptr)
Destroys (deallocates) the SUNAdjointCheckpointScheme object.

Parameters

• cs_ptr – pointer to a SUNAdjointCheckpointScheme object

Returns
A SUNErrCode indicating failure or success.

14.3.2 Implementation Specific Methods

This section describes the virtual methods defined by the SUNAdjointCheckpointScheme abstract base class.

typedef SUNErrCode (*SUNAdjointCheckpointSchemeNeedsSavingFn)(SUNAdjointCheckpointScheme
check_scheme, suncountertype step_num, suncountertype stage_num, sunrealtype t, sunbooleantype *yes_or_no)

This type represents a function with the signature of SUNAdjointCheckpointScheme_NeedsSaving().

typedef SUNErrCode (*SUNAdjointCheckpointSchemeInsertVectorFn)(SUNAdjointCheckpointScheme
check_scheme, suncountertype step_num, suncountertype stage_num, sunrealtype t, N_Vector y)

This type represents a function with the signature of SUNAdjointCheckpointScheme_InsertVector().

typedef SUNErrCode (*SUNAdjointCheckpointSchemeLoadVectorFn)(SUNAdjointCheckpointScheme
check_scheme, suncountertype step_num, suncountertype stage_num, sunrealtype t, sunbooleantype peek, N_Vector
*yout, sunrealtype *tout)

This type represents a function with the signature of SUNAdjointCheckpointScheme_LoadVector().

664 Chapter 14. Adjoint Sensitivity Analysis

User Documentation for ARKODE, v6.3.0

typedef SUNErrCode (*SUNAdjointCheckpointSchemeEnableDenseFn)(SUNAdjointCheckpointScheme
check_scheme, sunbooleantype on_or_off)

This type represents a function with the signature of SUNAdjointCheckpointScheme_EnableDense().

typedef SUNErrCode (*SUNAdjointCheckpointSchemeDestroyFn)(SUNAdjointCheckpointScheme
*check_scheme_ptr)

This type represents a function with the signature of SUNAdjointCheckpointScheme_Destroy().

14.3.3 Setting Content and Member Functions

These functions can be used to set the content pointer or virtual method pointers as needed when implementing the
abstract base class.

SUNErrCode SUNAdjointCheckpointScheme_SetNeedsSavingFn(SUNAdjointCheckpointScheme self, SUNAd-
jointCheckpointSchemeNeedsSavingFn
fn)

This function attaches a SUNAdjointCheckpointSchemeNeedsSavingFn function to a SUNAdjointCheck-
pointScheme object.

Parameters

• self – a checkpoint scheme object.

• fn – the SUNAdjointCheckpointSchemeNeedsSavingFn function to attach.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNAdjointCheckpointScheme_SetInsertVectorFn(SUNAdjointCheckpointScheme self,
SUNAdjointCheckpointSchemeInsertVec-
torFn
fn)

This function attaches a SUNAdjointCheckpointSchemeInsertVectorFn function to a SUNAdjointCheck-
pointScheme object.

Parameters

• self – a checkpoint scheme object.

• fn – the SUNAdjointCheckpointSchemeInsertVectorFn function to attach.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNAdjointCheckpointScheme_SetLoadVectorFn(SUNAdjointCheckpointScheme self,
SUNAdjointCheckpointSchemeLoadVectorFn
fn)

This function attaches a SUNAdjointCheckpointSchemeLoadVectorFn function to a SUNAdjointCheck-
pointScheme object.

Parameters

• self – a checkpoint scheme object.

• fn – the SUNAdjointCheckpointSchemeLoadVectorFn function to attach.

Returns
A SUNErrCode indicating success or failure.

14.3. The SUNAdjointCheckpointScheme Class 665

User Documentation for ARKODE, v6.3.0

SUNErrCode SUNAdjointCheckpointScheme_SetDestroyFn(SUNAdjointCheckpointScheme self,
SUNAdjointCheckpointSchemeDestroyFn fn)

This function attaches a SUNAdjointCheckpointSchemeDestroyFn function to a SUNAdjointCheck-
pointScheme object.

Parameters

• self – a checkpoint scheme object.

• fn – the SUNAdjointCheckpointSchemeDestroyFn function to attach.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNAdjointCheckpointScheme_SetEnableDenseFn(SUNAdjointCheckpointScheme self, SUNAd-
jointCheckpointSchemeEnableDenseFn
fn)

This function attaches a SUNAdjointCheckpointSchemeEnableDenseFn function to a SUNAdjointCheck-
pointScheme object.

Parameters

• self – a checkpoint scheme object.

• fn – the SUNAdjointCheckpointSchemeEnableDenseFn function to attach.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNAdjointCheckpointScheme_SetContent(SUNAdjointCheckpointScheme self, void *content)
This function attaches a member data (content) pointer to a SUNAdjointCheckpointScheme object.

Parameters

• self – a checkpoint scheme object.

• content – a pointer to the checkpoint scheme member data.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNAdjointCheckpointScheme_GetContent(SUNAdjointCheckpointScheme self, void **content)
This function retrieves the member data (content) pointer from a SUNAdjointCheckpointScheme object.

Parameters

• self – a checkpoint scheme object.

• content – a pointer to set to the checkpoint scheme member data pointer.

Returns
A SUNErrCode indicating success or failure.

666 Chapter 14. Adjoint Sensitivity Analysis

User Documentation for ARKODE, v6.3.0

14.4 The SUNAdjointCheckpointScheme_Fixed Module

The SUNAdjointCheckpointScheme_Fixedmodule implements a scheme where a checkpoint is saved at some fixed
interval (in time steps). The module supports checkpointing of time step states only, or time step states with intermediate
stage states as well (for multistage methods). When used with a fixed time step size then the number of checkpoints
that will be saved is fixed. However, with adaptive time steps the number of checkpoints stored with this scheme is
unbounded.

The diagram below illustrates how checkpoints are stored with this scheme:

14.4.1 Base-class Method Overrides

The SUNAdjointCheckpointScheme_Fixed module implements the following SUNAdjointCheckpointScheme
functions:

• SUNAdjointCheckpointScheme_NeedsSaving()

• SUNAdjointCheckpointScheme_InsertVector()

• SUNAdjointCheckpointScheme_LoadVector()

• SUNAdjointCheckpointScheme_Destroy()

• SUNAdjointCheckpointScheme_EnableDense()

14.4.2 Implementation Specific Methods

The SUNAdjointCheckpointScheme_Fixed module also implements the following module-specific functions:

SUNErrCode SUNAdjointCheckpointScheme_Create_Fixed(SUNDataIOMode io_mode, SUNMemoryHelper
mem_helper, suncountertype interval,
suncountertype estimate, sunbooleantype keep,
SUNContext sunctx,
SUNAdjointCheckpointScheme
*check_scheme_ptr)

Creates a new SUNAdjointCheckpointScheme object that checkpoints at a fixed interval.

Parameters

• io_mode – The IO mode used for storing the checkpoints.

14.4. The SUNAdjointCheckpointScheme_Fixed Module 667

User Documentation for ARKODE, v6.3.0

• mem_helper – Memory helper for managing memory.

• interval – The interval (in steps) between checkpoints.

• estimate – An estimate of the total number of checkpoints needed.

• keep – Keep data stored even after it is not needed anymore.

• sunctx – The SUNContext for the simulation.

• check_scheme_ptr – Pointer to the newly constructed object.

Returns
A SUNErrCode indicating success or failure.

668 Chapter 14. Adjoint Sensitivity Analysis

Chapter 15

Tools for Memory Management

To support applications which leverage memory pools, or utilize a memory abstraction layer, SUNDIALS provides a
set of utilities that we collectively refer to as the SUNMemoryHelper API. The goal of this API is to allow users to
leverage operations defined by native SUNDIALS data structures while allowing the user to have finer-grained control
of the memory management.

15.1 The SUNMemoryHelper API

This API consists of three new SUNDIALS types: SUNMemoryType, SUNMemory, and SUNMemoryHelper:

typedef struct SUNMemory_ *SUNMemory
The SUNMemory type is a pointer the structure

struct SUNMemory_

void *ptr;
The actual data.

SUNMemoryType type;
The data memory type.

sunbooleantype own;
A flag indicating ownership.

size_t bytes;
The size of the data allocated.

size_t stride;
Added in version 7.3.0.

The stride of the data.

SUNMemory SUNMemoryNewEmpty(SUNContext sunctx)
This function returns an empty SUNMemory object.

Parameters

• sunctx – the SUNContext object.

Returns
an uninitialized SUNMemory object

669

User Documentation for ARKODE, v6.3.0

Changed in version 7.0.0: The function signature was updated to add the SUNContext argument.

enum SUNMemoryType
The SUNMemoryType type is an enumeration that defines the supported memory types:

enumerator SUNMEMTYPE_HOST
Pageable memory accessible on the host

enumerator SUNMEMTYPE_PINNED
Page-locked memory accessible on the host

enumerator SUNMEMTYPE_DEVICE
Memory accessible from the device

enumerator SUNMEMTYPE_UVM
Memory accessible from the host or device

typedef struct SUNMemoryHelper_ *SUNMemoryHelper
The SUNMemoryHelper type is a pointer to the structure

struct SUNMemoryHelper_

void *content;
Pointer to the implementation-specific member data

void *queue;
Pointer to the implementation-specific queue (e.g., a cudaStream_t*) to use by default when one is
not provided for an operation

Added in version 7.3.0.

SUNMemoryHelper_Ops ops;
A virtual method table of member functions

SUNContext sunctx;
The SUNDIALS simulation context

typedef struct SUNMemoryHelper_Ops_ *SUNMemoryHelper_Ops
The SUNMemoryHelper_Ops type is defined as a pointer to the structure containing the function pointers to the
member function implementations. This structure is define as

struct SUNMemoryHelper_Ops_

SUNErrCode (*alloc)(SUNMemoryHelper, SUNMemory *memptr, size_t mem_size, SUNMemoryType
mem_type, void *queue)

The function implementing SUNMemoryHelper_Alloc()

SUNErrCode (*allocstrided)(SUNMemoryHelper, SUNMemory *memptr, size_t mem_size, size_t
stride, SUNMemoryType mem_type, void *queue)

The function implementing SUNMemoryHelper_AllocStrided()

Added in version 7.3.0.

SUNErrCode (*dealloc)(SUNMemoryHelper, SUNMemory mem, void *queue)
The function implementing SUNMemoryHelper_Dealloc()

SUNErrCode (*copy)(SUNMemoryHelper, SUNMemory dst, SUNMemory src, size_t mem_size, void
*queue)

The function implementing SUNMemoryHelper_Copy()

670 Chapter 15. Tools for Memory Management

User Documentation for ARKODE, v6.3.0

SUNErrCode (*copyasync)(SUNMemoryHelper, SUNMemory dst, SUNMemory src, size_t mem_size,
void *queue)

The function implementing SUNMemoryHelper_CopyAsync()

SUNErrCode (*getallocstats)(SUNMemoryHelper, SUNMemoryType mem_type, unsigned long
*num_allocations, unsigned long *num_deallocations, size_t *bytes_allocated, size_t
*bytes_high_watermark)

The function implementing SUNMemoryHelper_GetAllocStats()

SUNMemoryHelper (*clone)(SUNMemoryHelper)
The function implementing SUNMemoryHelper_Clone()

SUNErrCode (*destroy)(SUNMemoryHelper)
The function implementing SUNMemoryHelper_Destroy()

15.1.1 Implementation defined operations

The SUNMemory API defines the following operations that an implementation to must define:

SUNMemory SUNMemoryHelper_Alloc(SUNMemoryHelper helper, SUNMemory *memptr, size_t mem_size,
SUNMemoryType mem_type, void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• mem_type – the SUNMemoryType of the ptr.

• queue – typically a handle for an object representing an alternate execution stream (e.g., a
CUDA/HIP stream or SYCL queue), but it can also be any implementation specific data.

Returns
A new SUNMemory object

SUNMemory SUNMemoryHelper_AllocStrided(SUNMemoryHelper helper, SUNMemory *memptr, size_t
mem_size, size_t stride, SUNMemoryType mem_type, void
*queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes with the specified stride, and is of
type mem_type. The new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_-
Dealloc() is called.

Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• stride – the stride of the memory in bytes.

• mem_type – the SUNMemoryType of the ptr.

• queue – typically a handle for an object representing an alternate execution stream (e.g., a
CUDA/HIP stream or SYCL queue), but it can also be any implementation specific data.

15.1. The SUNMemoryHelper API 671

User Documentation for ARKODE, v6.3.0

Returns
A new SUNMemory object

Added in version 7.3.0.

SUNErrCode SUNMemoryHelper_Dealloc(SUNMemoryHelper helper, SUNMemory mem, void *queue)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Parameters

• helper – the SUNMemoryHelper object.

• mem – the SUNMemory object.

• queue – typically a handle for an object representing an alternate execution stream (e.g., a
CUDA/HIP stream or SYCL queue), but it can also be any implementation specific data.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_Copy(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src, size_t
mem_size, void *queue)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
should use the memory types of dst and src to determine the appropriate transfer type necessary.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – typically a handle for an object representing an alternate execution stream (e.g., a
CUDA/HIP stream or SYCL queue), but it can also be any implementation specific data.

Returns
A SUNErrCode indicating success or failure.

15.1.2 Utility Functions

The SUNMemoryHelper API defines the following functions which do not require a SUNMemoryHelper instance:

SUNMemory SUNMemoryHelper_Alias(SUNMemoryHelper helper, SUNMemory mem1)
Returns a SUNMemory object whose ptr field points to the same address as mem1. The new object will not have
ownership of ptr, therefore, it will not free ptr when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – a SUNMemoryHelper object.

• mem1 – a SUNMemory object.

Returns
A SUNMemory object or NULL if an error occurs.

Changed in version 7.0.0: The SUNMemoryHelper argument was added to the function signature.

672 Chapter 15. Tools for Memory Management

User Documentation for ARKODE, v6.3.0

SUNMemory SUNMemoryHelper_Wrap(SUNMemoryHelper helper, void *ptr, SUNMemoryType mem_type)
Returns a SUNMemory object whose ptr field points to the ptr argument passed to the function. The new object
will not have ownership of ptr, therefore, it will not free ptr when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – a SUNMemoryHelper object.

• ptr – the data pointer to wrap in a SUNMemory object.

• mem_type – the SUNMemoryType of the ptr.

Returns
A SUNMemory object or NULL if an error occurs.

Changed in version 7.0.0: The SUNMemoryHelper argument was added to the function signature.

SUNMemoryHelper SUNMemoryHelper_NewEmpty(SUNContext sunctx)
Returns an empty SUNMemoryHelper. This is useful for building custom SUNMemoryHelper implementations.

Parameters

• helper – a SUNMemoryHelper object.

Returns
A SUNMemoryHelper object or NULL if an error occurs.

Changed in version 7.0.0: The SUNMemoryHelper argument was added to the function signature.

SUNErrCode SUNMemoryHelper_CopyOps(SUNMemoryHelper src, SUNMemoryHelper dst)
Copies the ops field of src to the ops field of dst. This is useful for building custom SUNMemoryHelper
implementations.

Parameters

• src – the object to copy from.

• dst – the object to copy to.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_GetAllocStats(SUNMemoryHelper helper, SUNMemoryType mem_type,
unsigned long *num_allocations, unsigned long
*num_deallocations, size_t *bytes_allocated, size_t
*bytes_high_watermark)

Returns statistics about the allocations performed with the helper.

Parameters

• helper – the SUNMemoryHelper object.

• mem_type – the SUNMemoryType to get stats for.

• num_allocations – (output argument) number of allocations done through the helper.

• num_deallocations – (output argument) number of deallocations done through the helper.

• bytes_allocated – (output argument) total number of bytes allocated through the helper
at the moment this function is called.

• bytes_high_watermark – (output argument) max number of bytes allocated through the
helper at any moment in the lifetime of the helper.

15.1. The SUNMemoryHelper API 673

User Documentation for ARKODE, v6.3.0

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_SetDefaultQueue(SUNMemoryHelper helper, void *queue)
Sets the default queue for the helper.

Parameters

• helper – the SUNMemoryHelper object.

• queue – pointer to the queue to use by default.

Returns
A SUNErrCode indicating success or failure.

Added in version 7.3.0.

15.1.3 Implementation overridable operations with defaults

In addition, the SUNMemoryHelper API defines the following optionally overridable operations which an implemen-
tation may define:

SUNErrCode SUNMemoryHelper_CopyAsync(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void *queue)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
should use the memory types of dst and src to determine the appropriate transfer type necessary. The ctx
argument is used when a different execution stream needs to be provided to perform the copy in, e.g. with CUDA
this would be a cudaStream_t.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – typically a handle for an object representing an alternate execution stream (e.g., a
CUDA/HIP stream or SYCL queue), but it can also be any implementation specific data.

An int flag indicating success (zero) or failure (non-zero).

Note

If this operation is not defined by the implementation, then SUNMemoryHelper_Copy() will be used.

SUNMemoryHelper SUNMemoryHelper_Clone(SUNMemoryHelper helper)
Clones the SUNMemoryHelper object itself.

Parameters

• helper – the SUNMemoryHelper object to clone.

Returns
A SUNMemoryHelper object.

674 Chapter 15. Tools for Memory Management

User Documentation for ARKODE, v6.3.0

Note

If this operation is not defined by the implementation, then the default clone will only copy the SUNMemory-
Helper_Ops structure stored in helper->ops, and not the helper->content field.

SUNErrCode SUNMemoryHelper_Destroy(SUNMemoryHelper helper)
Destroys (frees) the SUNMemoryHelper object itself.

Parameters

• helper – the SUNMemoryHelper object to destroy.

Returns
A SUNErrCode indicating success or failure.

Note

If this operation is not defined by the implementation, then the default destroy will only free the helper->ops
field and the helper itself. The helper->content field will not be freed.

15.1.4 Implementing a custom SUNMemoryHelper

A particular implementation of the SUNMemoryHelper API must:

• Define and implement the required operations. Note that the names of these routines should be unique to that
implementation in order to permit using more than one SUNMemoryHelper module in the same code.

• Optionally, specify the content field of SUNMemoryHelper.

• Optionally, define and implement additional user-callable routines acting on the newly defined SUNMemory-
Helper.

An example of a custom SUNMemoryHelper is given in examples/utilities/custom_memory_helper.h.

15.2 The SUNMemoryHelper_Sys Implementation

The SUNMemoryHelper_Sys module is an implementation of the SUNMemoryHelper. API that interfaces with stan-
dard library memory management through malloc/free. The implementation defines the constructor

SUNMemoryHelper SUNMemoryHelper_Sys(SUNContext sunctx)
Allocates and returns a SUNMemoryHelper object for handling system memory if successful. Otherwise, it
returns NULL.

15.2. The SUNMemoryHelper_Sys Implementation 675

User Documentation for ARKODE, v6.3.0

15.2.1 SUNMemoryHelper_Sys API Functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

• SUNMemoryHelper_Alloc()

• SUNMemoryHelper_AllocStrided()

• SUNMemoryHelper_Dealloc()

• SUNMemoryHelper_Copy()

• SUNMemoryHelper_Clone()

• SUNMemoryHelper_GetAllocStats()

• SUNMemoryHelper_Destroy()

15.3 The SUNMemoryHelper_Cuda Implementation

The SUNMemoryHelper_Cuda module is an implementation of the SUNMemoryHelper API that interfaces to the
NVIDIA [5] library. The implementation defines the constructor

SUNMemoryHelper SUNMemoryHelper_Cuda(SUNContext sunctx)
Allocates and returns a SUNMemoryHelper object for handling CUDA memory if successful. Otherwise it re-
turns NULL.

Parameters

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNMemoryHelper object; otherwise it will return NULL.

15.3.1 SUNMemoryHelper_Cuda API Functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemory SUNMemoryHelper_Alloc_Cuda(SUNMemoryHelper helper, SUNMemory memptr, size_t mem_size,
SUNMemoryType mem_type, void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• mem_type – the SUNMemoryType of the ptr. Supported values are: * SUNMEMTYPE_HOST –
memory is allocated with a call to malloc. * SUNMEMTYPE_PINNED – memory is allocated
with a call to cudaMallocHost. * SUNMEMTYPE_DEVICE – memory is allocated with a call
to cudaMalloc. * SUNMEMTYPE_UVM – memory is allocated with a call to cudaMalloc-
Managed.

• queue – currently unused.

676 Chapter 15. Tools for Memory Management

User Documentation for ARKODE, v6.3.0

Returns
A new SUNMemory object.

SUNMemory SUNMemoryHelper_AllocStrided_Cuda(SUNMemoryHelper helper, SUNMemory memptr, size_t
mem_size, size_t stride, SUNMemoryType mem_type,
void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• stride – the number of bytes between elements in the array.

• mem_type – the SUNMemoryType of the ptr.

• queue – currently unused.

Returns
A new SUNMemory object.

Added in version 7.3.0.

SUNErrCode SUNMemoryHelper_Dealloc_Cuda(SUNMemoryHelper helper, SUNMemory mem, void *queue)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Parameters

• helper – the SUNMemoryHelper object.

• mem – the SUNMemory object.

• queue – currently unused.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_Copy_Cuda(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void *queue)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – currently unused.

Returns
A SUNErrCode indicating success or failure.

15.3. The SUNMemoryHelper_Cuda Implementation 677

User Documentation for ARKODE, v6.3.0

SUNErrCode SUNMemoryHelper_CopyAsync_Cuda(SUNMemoryHelper helper, SUNMemory dst, SUNMemory
src, size_t mem_size, void *queue)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – the cudaStream_t handle for the stream that the copy will be performed on.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_GetAllocStats_Cuda(SUNMemoryHelper helper, SUNMemoryType
mem_type, unsigned long *num_allocations, unsigned
long *num_deallocations, size_t *bytes_allocated, size_t
*bytes_high_watermark)

Returns statistics about memory allocations performed with the helper.

Parameters

• helper – the SUNMemoryHelper object.

• mem_type – the SUNMemoryType to get stats for.

• num_allocations – (output argument) number of memory allocations done through the
helper.

• num_deallocations – (output argument) number of memory deallocations done through
the helper.

• bytes_allocated – (output argument) total number of bytes allocated through the helper
at the moment this function is called.

• bytes_high_watermark – (output argument) max number of bytes allocated through the
helper at any moment in the lifetime of the helper.

Returns
A SUNErrCode indicating success or failure.

15.4 The SUNMemoryHelper_Hip Implementation

The SUNMemoryHelper_Hip module is an implementation of the SUNMemoryHelper API that interfaces to the AMD
ROCm HIP library [2]. The implementation defines the constructor

SUNMemoryHelper SUNMemoryHelper_Hip(SUNContext sunctx)
Allocates and returns a SUNMemoryHelper object for handling HIP memory if successful. Otherwise it returns
NULL.

Parameters

• sunctx – the current SUNContext object.

678 Chapter 15. Tools for Memory Management

User Documentation for ARKODE, v6.3.0

Returns
if successful, a usable SUNMemoryHelper object; otherwise it will return NULL.

15.4.1 SUNMemoryHelper_Hip API Functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemory SUNMemoryHelper_Alloc_Hip(SUNMemoryHelper helper, SUNMemory memptr, size_t mem_size,
SUNMemoryType mem_type, void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• mem_type – the SUNMemoryType of the ptr. Supported values are: * SUNMEMTYPE_HOST –
memory is allocated with a call to malloc. * SUNMEMTYPE_PINNED – memory is allocated
with a call to hipMallocHost. * SUNMEMTYPE_DEVICE – memory is allocated with a call to
hipMalloc. * SUNMEMTYPE_UVM – memory is allocated with a call to hipMallocManaged.

• queue – currently unused.

Returns
A new SUNMemory object.

SUNMemory SUNMemoryHelper_AllocStrided_Hip(SUNMemoryHelper helper, SUNMemory memptr, size_t
mem_size, size_t stride, SUNMemoryType mem_type, void
*queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• stride – the number of bytes between elements in the array.

• mem_type – the SUNMemoryType of the ptr.

• queue – currently unused.

Returns
A new SUNMemory object.

Added in version 7.3.0.

SUNErrCode SUNMemoryHelper_Dealloc_Hip(SUNMemoryHelper helper, SUNMemory mem, void *queue)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Parameters

• helper – the SUNMemoryHelper object.

• mem – the SUNMemory object.

15.4. The SUNMemoryHelper_Hip Implementation 679

User Documentation for ARKODE, v6.3.0

• queue – currently unused.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_Copy_Hip(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src, size_t
mem_size, void *queue)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – currently unused.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_CopyAsync_Hip(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void *queue)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – the hipStream_t handle for the stream that the copy will be performed on.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_GetAllocStats_Hip(SUNMemoryHelper helper, SUNMemoryType mem_type,
unsigned long *num_allocations, unsigned long
*num_deallocations, size_t *bytes_allocated, size_t
*bytes_high_watermark)

Returns statistics about memory allocations performed with the helper.

Parameters

• helper – the SUNMemoryHelper object.

• mem_type – the SUNMemoryType to get stats for.

• num_allocations – (output argument) number of memory allocations done through the
helper.

• num_deallocations – (output argument) number of memory deallocations done through
the helper.

680 Chapter 15. Tools for Memory Management

User Documentation for ARKODE, v6.3.0

• bytes_allocated – (output argument) total number of bytes allocated through the helper
at the moment this function is called.

• bytes_high_watermark – (output argument) max number of bytes allocated through the
helper at any moment in the lifetime of the helper.

Returns
A SUNErrCode indicating success or failure.

15.5 The SUNMemoryHelper_Sycl Implementation

The SUNMemoryHelper_Sycl module is an implementation of the SUNMemoryHelperAPI that interfaces to the SYCL
abstraction layer. The implementation defines the constructor

SUNMemoryHelper SUNMemoryHelper_Sycl(SUNContext sunctx)
Allocates and returns a SUNMemoryHelper object for handling SYCL memory using the provided queue. Oth-
erwise it returns NULL.

Parameters

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNMemoryHelper object; otherwise it will return NULL.

15.5.1 SUNMemoryHelper_Sycl API Functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemory SUNMemoryHelper_Alloc_Sycl(SUNMemoryHelper helper, SUNMemory memptr, size_t mem_size,
SUNMemoryType mem_type, void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• mem_type – the SUNMemoryType of the ptr. Supported values are: * SUNMEMTYPE_HOST –
memory is allocated with a call to malloc. * SUNMEMTYPE_PINNED – memory is allocated
with a call to sycl::malloc_host. * SUNMEMTYPE_DEVICE – memory is allocated with a
call to sycl::malloc_device. * SUNMEMTYPE_UVM – memory is allocated with a call to
sycl::malloc_shared.

• queue – the sycl::queue handle for the stream that the allocation will be performed on.

Returns
A new SUNMemory object.

SUNMemory SUNMemoryHelper_AllocStrided_Sycl(SUNMemoryHelper helper, SUNMemory memptr, size_t
mem_size, size_t stride, SUNMemoryType mem_type,
void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

15.5. The SUNMemoryHelper_Sycl Implementation 681

https://www.khronos.org/sycl/

User Documentation for ARKODE, v6.3.0

Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• stride – the number of bytes between elements in the array.

• mem_type – the SUNMemoryType of the ptr.

• queue – the sycl::queue handle for the stream that the allocation will be performed on.

Returns
A new SUNMemory object.

Added in version 7.3.0.

SUNErrCode SUNMemoryHelper_Dealloc_Sycl(SUNMemoryHelper helper, SUNMemory mem, void *queue)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Parameters

• helper – the SUNMemoryHelper object.

• mem – the SUNMemory object.

• queue – the sycl::queue handle for the queue that the deallocation will be performed on.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_Copy_Sycl(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void *queue)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – the sycl::queue handle for the queue that the copy will be performed on.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_CopyAsync_Sycl(SUNMemoryHelper helper, SUNMemory dst, SUNMemory
src, size_t mem_size, void *queue)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

682 Chapter 15. Tools for Memory Management

User Documentation for ARKODE, v6.3.0

• mem_size – the number of bytes to copy.

• queue – the sycl::queue handle for the queue that the copy will be performed on.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_GetAllocStats_Sycl(SUNMemoryHelper helper, SUNMemoryType
mem_type, unsigned long *num_allocations, unsigned
long *num_deallocations, size_t *bytes_allocated, size_t
*bytes_high_watermark)

Returns statistics about memory allocations performed with the helper.

Parameters

• helper – the SUNMemoryHelper object.

• mem_type – the SUNMemoryType to get stats for.

• num_allocations – (output argument) number of memory allocations done through the
helper.

• num_deallocations – (output argument) number of memory deallocations done through
the helper.

• bytes_allocated – (output argument) total number of bytes allocated through the helper
at the moment this function is called.

• bytes_high_watermark – (output argument) max number of bytes allocated through the
helper at any moment in the lifetime of the helper.

Returns
A SUNErrCode indicating success or failure.

15.5. The SUNMemoryHelper_Sycl Implementation 683

User Documentation for ARKODE, v6.3.0

684 Chapter 15. Tools for Memory Management

Chapter 16

Installing SUNDIALS

In this chapter we discuss two ways for building and installing SUNDIALS from source. The first is with the Spack
HPC package manager and the second is with CMake.

16.1 Installing with Spack

Spack is a package management tool that provides a simple spec syntax to configure and install software on a wide
variety of platforms and environments. See the Getting Started section in the Spack documentation for more information
on installing Spack.

Once Spack is setup on your system, the default SUNDIALS configuration can be install with the command

spack install sundials

Additional options can be enabled through various Spack package variants. For information on the available variants
visit the SUNDIALS Spack package web page or use the command

spack info sundials

16.2 Installing with CMake

CMake provides a platform-independent build system capable of generating Unix and Linux Makefiles, as well as
KDevelop, Visual Studio, and (Apple) XCode project files from the same configuration file. A GUI front end is also
available allowing for an interactive build and installation process.

At a minimum, building SUNDIALS requires CMake version 3.18.0 or higher and a working C compiler. If a compat-
ible version of CMake is not already installed on you system, source files or pre-built binary files can be obtained from
the CMake Download website.

When building with CMake, you will need to obtain the SUNDIALS source code. You can get the source files by either
cloning the SUNDIALS GitHub repository with the command

git clone https://github.com/LLNL/sundials

or by downloading release compressed archives (.tar.gz files) from the SUNDIALS download website. The com-
pressed archives allow for downloading the entire SUNDIALS suite or individual packages. The name of the distri-
bution archive is of the form SOLVER-7.3.0.tar.gz, where SOLVER is one of: sundials, cvode, cvodes, arkode,

685

https://spack.io/
https://cmake.org/
https://spack.readthedocs.io/en/latest/getting_started.html
https://packages.spack.io/package.html?name=sundials
https://cmake.org/download/
https://github.com/LLNL/sundials
https://computing.llnl.gov/projects/sundials/sundials-software

User Documentation for ARKODE, v6.3.0

ida, idas, or kinsol, and 7.3.0 represents the version number of the SUNDIALS suite or of the individual package.
After downloading the relevant archives, uncompress and expand the sources. For example, by running

tar -zxf SOLVER-7.3.0.tar.gz

the extracted source files will be under the SOLVER-7.3.0 directory.

In the installation steps below we will refer to the following directories:

• SOLVER_DIR is the sundials directory created when cloning from GitHub or the SOLVER-7.3.0 directory
created after uncompressing the release archive.

• BUILD_DIR is the (temporary) directory under which SUNDIALS is built. In-source builds are prohibited; the
build directory BUILD_DIR can not be the same as SOLVER_DIR and such an attempt will lead to an error. This
prevents “polluting” the source tree, simplifies building with different configurations and/or options, and makes
it easy to clean-up all traces of the build by simply removing the build directory.

• INSTALL_DIR is the directory under which the SUNDIALS exported header files and libraries will be installed.
The installation directory INSTALL_DIR can not be the same as the SOLVER_DIR directory. Typically, header files
are exported under a directory INSTALL_DIR/include while libraries are typically installed under INSTALL_-
DIR/lib or INSTALL_LIB/lib64, with INSTALL_DIR specified at configuration time.

16.2.1 Linux/Unix systems

CMake can be used from the command line with the cmake command, or from graphical interfaces with the ccmake
or cmake-gui commands. Below we present the installation steps using the command line interface.

Using CMake from the command line is simply a matter of generating the build files for the desired configuration,
building, and installing. For example, the following commands will build and install the default configuration:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR

cd BUILD_DIR
make
make install

The default configuration will install static and shared libraries for all SUNDIALS packages and install the associated
example codes. Additional features can be enabled by specifying more options in the configuration step. For example,
to enable MPI add -D ENABLE_MPI=ON to the cmake command above:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_MPI=ON

See section §16.3 below for a complete list of SUNDIALS configuration options and additional configuration examples.

686 Chapter 16. Installing SUNDIALS

User Documentation for ARKODE, v6.3.0

16.2.2 Windows Systems

CMake can also be used to build SUNDIALS on Windows. To build SUNDIALS for use with Visual Studio the
following steps should be performed:

1. Create a separate BUILD_DIR

2. Open a Visual Studio Command Prompt and cd to BUILD_DIR

3. Run cmake-gui ../SOLVER_DIR

a. Hit Configure

b. Check/Uncheck solvers to be built

c. Change CMAKE_INSTALL_PREFIX to INSTALL_DIR

d. Set other options as desired (see section §16.3)

e. Hit Generate

4. Back in the VS Command Window:

a. Run msbuild ALL_BUILD.vcxproj

b. Run msbuild INSTALL.vcxproj

The resulting libraries will be in the INSTALL_DIR.

The SUNDIALS project can also now be opened in Visual Studio. Double click on the ALL_BUILD.vcxproj file to
open the project. Build the whole solution to create the SUNDIALS libraries. To use the SUNDIALS libraries in
your own projects, you must set the include directories for your project, add the SUNDIALS libraries to your project
solution, and set the SUNDIALS libraries as dependencies for your project.

16.2.3 HPC Clusters

This section is a guide for installing SUNDIALS on specific HPC clusters. In general, the procedure is the same as
described previously in §16.2.1 for Unix/Linux machines. The main differences are in the modules and environment
variables that are specific to different HPC clusters. We aim to keep this section as up to date as possible, but it may
lag the latest software updates to each cluster.

16.2.3.1 Frontier

Frontier is an Exascale supercomputer at the Oak Ridge Leadership Computing Facility. If you are new to this system,
then we recommend that you review the Frontier user guide.

A Standard Installation

Load the modules and set the environment variables needed to build SUNDIALS. This configuration enables both MPI
and HIP support for distributed and GPU parallelism. It uses the HIP compiler for C and C++ and the Cray Fortran
compiler. Other configurations are possible.

required dependencies
module load PrgEnv-cray-amd/8.5.0
module load craype-accel-amd-gfx90a
module load rocm/5.3.0
module load cmake/3.23.2

GPU-aware MPI
(continues on next page)

16.2. Installing with CMake 687

https://www.olcf.ornl.gov/frontier/
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html

User Documentation for ARKODE, v6.3.0

(continued from previous page)

export MPICH_GPU_SUPPORT_ENABLED=1

compiler environment hints
export CC=$(which hipcc)
export CXX=$(which hipcc)
export FC=$(which ftn)
export CFLAGS="-I${ROCM_PATH}/include"
export CXXFLAGS="-I${ROCM_PATH}/include -Wno-pass-failed"
export LDFLAGS="-L${ROCM_PATH}/lib -lamdhip64 ${PE_MPICH_GTL_DIR_amd_gfx90a} -lmpi_gtl_hsa"

Now we can build SUNDIALS. In general, this is the same procedure described in the previous sections. The following
command builds and installs SUNDIALS with MPI, HIP, and the Fortran interface enabled, where <account> is your
allocation account on Frontier:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D AMDGPU_TARGETS=gfx90a \
-D ENABLE_HIP=ON \
-D ENABLE_MPI=ON \
-D BUILD_FORTRAN_MODULE_INTERFACE=ON

cd BUILD_DIR
make -j8 install
Need an allocation to run the tests:
salloc -A <account> -t 10 -N 1 -p batch
make test
make test_install_all

16.3 Configuration options

All available SUNDIALS CMake options are described in the sections below. The default values for some options
(e.g., compiler flags and installation paths) are for a Linux system and are provided as illustration only.

Note

When using a CMake graphical interface (ccmake or cmake-gui), multiple configuration passes are performed
before generating the build files. For options where the default value depends on the value of another option,
the initial value is set on the first configuration pass and is not updated automatically if the related option value is
changed in subsequent passes. For example, the default value of EXAMPLES_INSTALL_PATH is CMAKE_INSTALL_-
PREFIX/examples; if the value of CMAKE_INSTALL_PREFIX is updated, then EXAMPLES_INSTALL_PATH will
also need to be updated as its value was set using the CMAKE_INSTALL_PREFIX default.

688 Chapter 16. Installing SUNDIALS

User Documentation for ARKODE, v6.3.0

16.3.1 Build Type

The build type determines the level of compiler optimization, if debug information is included, and if additional error
checking code is generated. The provided build types are:

• Debug – no optimization flags, debugging information included, additional error checking enabled

• Release – high optimization flags, no debugging information, no additional error checks

• RelWithDebInfo – high optimization flags, debugging information included, no additional error checks

• MinSizeRel – minimize size flags, no debugging information, no additional error checks

Each build type has a corresponding option for the set of compiler flags that are appended to the user-specified compiler
flags. See section §16.3.2 for more information.

CMAKE_BUILD_TYPE

Choose the type of build for single-configuration generators (e.g., Makefiles or Ninja).

Default: RelWithDebInfo

CMAKE_CONFIGURATION_TYPES

Specifies the build types for multi-config generators (e.g. Visual Studio, Xcode, or Ninja Multi-Config) as a
semicolon-separated list.

Default: Debug, Release, RelWithDebInfo, and MinSizeRel

16.3.2 Compilers and Compiler Flags

Building SUNDIALS requires a C compiler that supports at least a subset of the C99 standard (specifically those
features implemented by Visual Studio 2015).

Additional SUNDIALS features that interface with external C++ libraries or GPU programming models require a C++
compiler (e.g., CUDA, HIP, SYCL, Ginkgo, Trilinos, etc.). The C++ standard required depends on the particular library
or programming model used and is noted with the relevant options below. The C++ convenience classes provided by
SUNDIALS require C++14 or newer. C++ applications that require an earlier C++ standard should use the SUNDIALS
C API.

When enabling the SUNDIALS Fortran interfaces, a Fortran compiler that supports the Fortran 2003 or newer standard
is required in order to utilize the ISO_C_BINDING module.

16.3.2.1 C Compiler

CMAKE_C_COMPILER

The full path to the C compiler

Default: CMake will attempt to automatically locate a C compiler on the system (e.g., from the CC environment
variable or common installation paths).

CMAKE_C_FLAGS

User-specified flags for the C compiler. The value of this option should be a string with flags separated by spaces.

Default: Initialized by the CFLAGS environment variable.

CMAKE_C_FLAGS_DEBUG

C compiler flags appended when the CMAKE_BUILD_TYPE is Debug

Default: -g

16.3. Configuration options 689

User Documentation for ARKODE, v6.3.0

CMAKE_C_FLAGS_RELEASE

C compiler flags appended when the CMAKE_BUILD_TYPE is Release

Default: -O3 -DNDEBUG

CMAKE_C_FLAGS_RELWITHDEBINFO

C compiler flags appended when the CMAKE_BUILD_TYPE is RelWithDebInfo

Default: -O2 -g -DNDEBUG

CMAKE_C_FLAGS_MINSIZEREL

C compiler flags appended when the CMAKE_BUILD_TYPE is MinSizeRel

Default: -Os -DNDEBUG

CMAKE_C_STANDARD

The C standard used when building SUNDIALS C source files.

Default: 99

Options: 99, 11, or 17

CMAKE_C_EXTENSIONS

Enable compiler specific C extensions.

Default: ON

16.3.2.2 C++ Compiler

CMAKE_CXX_COMPILER

The full path to the C++ compiler

Default: CMake will attempt to automatically locate a C++ compiler on the system (e.g., from the CXX environ-
ment variable or common installation paths).

CMAKE_CXX_FLAGS

User-specified flags for the C++ compiler. The value of this option should be a string with flags separated by
spaces.

Default: Initialized by the CXXFLAGS environment variable.

CMAKE_CXX_FLAGS_DEBUG

C++ compiler flags appended when the CMAKE_BUILD_TYPE is Debug

Default: -g

CMAKE_CXX_FLAGS_RELEASE

C++ compiler flags appended when the CMAKE_BUILD_TYPE is Release

Default: -O3 -DNDEBUG

CMAKE_CXX_FLAGS_RELWITHDEBINFO

C++ compiler flags appended when the CMAKE_BUILD_TYPE is RelWithDebInfo

Default: -O2 -g -DNDEBUG

CMAKE_CXX_FLAGS_MINSIZEREL

C++ compiler flags appended when the CMAKE_BUILD_TYPE is MinSizeRel

Default: -Os -DNDEBUG

690 Chapter 16. Installing SUNDIALS

User Documentation for ARKODE, v6.3.0

CMAKE_CXX_STANDARD

The C++ standard used when building SUNDIALS C++ source files.

Default: 14

Options: 14, 17, or 20

CMAKE_CXX_EXTENSIONS

Enable compiler specific C++ extensions.

Default: ON

16.3.2.3 Fortran Compiler

CMAKE_Fortran_COMPILER

The full path to the Fortran compiler

Default: CMake will attempt to automatically locate a Fortran compiler on the system (e.g., from the FC envi-
ronment variable or common installation paths).

CMAKE_Fortran_FLAGS

User-specified flags for the Fortran compiler. The value of this option should be a string with flags separated by
spaces.

Default: Initialized by the FFLAGS environment variable.

CMAKE_Fortran_FLAGS_DEBUG

Fortran compiler flags appended when the CMAKE_BUILD_TYPE is Debug

Default: -g

CMAKE_Fortran_FLAGS_RELEASE

Fortran compiler flags appended when the CMAKE_BUILD_TYPE is Release

Default: -O3

CMAKE_Fortran_FLAGS_RELWITHDEBINFO

Fortran compiler flags appended when the CMAKE_BUILD_TYPE is RelWithDebInfo

Default: -O2 -g

CMAKE_Fortran_FLAGS_MINSIZEREL

Fortran compiler flags appended when the CMAKE_BUILD_TYPE is MinSizeRel

Default: -Os

16.3.3 Install Location

Use the following options to set where the SUNDIALS headers, library, and CMake configuration files will be installed.

CMAKE_INSTALL_PREFIX

Install path prefix (INSTALL_DIR), prepended onto install directories

Default: /usr/local

16.3. Configuration options 691

User Documentation for ARKODE, v6.3.0

Note

The user must have write access to the location specified through this option. Exported SUNDIALS header
files and libraries will be installed under subdirectories include and CMAKE_INSTALL_LIBDIR of CMAKE_-
INSTALL_PREFIX , respectively.

CMAKE_INSTALL_LIBDIR

The directory under CMAKE_INSTALL_PREFIX where libraries will be installed

Default: Set based on the system as lib, lib64, or lib/<multiarch-tuple>

SUNDIALS_INSTALL_CMAKEDIR

The directory under CMAKE_INSTALL_PREFIX where the SUNDIALS CMake package configuration files will
be installed (see section §16.6.1 for more information)

Default: CMAKE_INSTALL_LIBDIR/cmake/sundials

16.3.4 Shared and Static Libraries

Use the following options to set which types of libraries will be installed. By default both static and shared libraries
are installed.

BUILD_SHARED_LIBS

Build shared libraries

Default: ON

BUILD_STATIC_LIBS

Build static libraries

Default: ON

16.3.5 Index Size

SUNDIALS_INDEX_SIZE

The integer size (in bits) used for indices in SUNDIALS (e.g., for vector and matrix entries), options are: 32 or
64

Default: 64

Note

The build system tries to find an integer type of the appropriate size. Candidate 64-bit integer types are (in
order of preference): int64_t, __int64, long long, and long. Candidate 32-bit integers are (in order
of preference): int32_t, int, and long. The advanced option, SUNDIALS_INDEX_TYPE can be used to
provide a type not listed here.

SUNDIALS_INDEX_TYPE

The integer type used for SUNDIALS indices. The type size must match the size provided in the SUNDIALS_-
INDEX_SIZE option.

Default: Automatically determined based on SUNDIALS_INDEX_SIZE

692 Chapter 16. Installing SUNDIALS

User Documentation for ARKODE, v6.3.0

Changed in version 3.2.0: In prior versions, this option could be set to INT64_T to use 64-bit integers or INT32_T
to use 32-bit integers. These special values are deprecated and a user will only need to use the SUNDIALS_-
INDEX_SIZE option in most cases.

16.3.6 Precision

SUNDIALS_PRECISION

The floating-point precision used in SUNDIALS packages and class implementations, options are: single,
double, or extended

Default: double

16.3.7 Math Library

SUNDIALS_MATH_LIBRARY

The standard C math library (e.g., libm) to link with.

Default: -lm on Unix systems, none otherwise

16.3.8 SUNDIALS Packages

The following options can be used to enable/disable particular SUNDIALS packages.

BUILD_ARKODE

Build the ARKODE library

Default: ON

BUILD_CVODE

Build the CVODE library

Default: ON

BUILD_CVODES

Build the CVODES library

Default: ON

BUILD_IDA

Build the IDA library

Default: ON

BUILD_IDAS

Build the IDAS library

Default: ON

BUILD_KINSOL

Build the KINSOL library

Default: ON

16.3. Configuration options 693

User Documentation for ARKODE, v6.3.0

16.3.9 Example Programs

EXAMPLES_ENABLE_C

Build the SUNDIALS C examples

Default: ON

EXAMPLES_ENABLE_CXX

Build the SUNDIALS C++ examples

Default: OFF

EXAMPLES_ENABLE_CUDA

Build the SUNDIALS CUDA examples

Default: ON when ENABLE_CUDA is ON, otherwise OFF

EXAMPLES_ENABLE_F2003

Build the SUNDIALS Fortran 2003 examples

Default: ON when BUILD_FORTRAN_MODULE_INTERFACE is ON, otherwise OFF

EXAMPLES_INSTALL

Install example program source files and sample output files. See EXAMPLES_INSTALL_PATH for the install
location.

A CMakeLists.txt file to build the examples will be automatically generated and installed with the source
files. If building on a Unix-like system, a Makefile for compiling the installed example programs will be also
generated and installed.

Default: ON

EXAMPLES_INSTALL_PATH

Full path to where example source and output files will be installed

Default: CMAKE_INSTALL_PREFIX/examples

16.3.10 Fortran Interfaces

BUILD_FORTRAN_MODULE_INTERFACE

Build the SUNDIALS Fortran 2003 interface

Default: OFF

Note

The Fortran interface are only compatible with double precision (i.e., SUNDIALS_PRECISION must be dou-
ble).

Warning

There is a known issue with MSYS/gfortran and SUNDIALS shared libraries that causes linking the Fortran
interfaces to fail when building SUNDIALS. For now the work around is to only build with static libraries
when using MSYS with gfortran on Windows.

694 Chapter 16. Installing SUNDIALS

User Documentation for ARKODE, v6.3.0

16.3.11 Error Checking

For more information on error handling in SUNDIALS, see Error Checking.

SUNDIALS_ENABLE_ERROR_CHECKS

Build SUNDIALS with more extensive checks for unrecoverable errors.

Default: ON when CMAKE_BUILD_TYPE is Debug, otherwise OFF

Warning

Error checks will impact performance, but can be helpful for debugging.

16.3.12 Logging

For more information on logging in SUNDIALS, see Status and Error Logging.

SUNDIALS_LOGGING_LEVEL

The maximum logging level. The options are:

• 0 – no logging

• 1 – log errors

• 2 – log errors + warnings

• 3 – log errors + warnings + informational output

• 4 – log errors + warnings + informational output + debug output

• 5 – log all of the above and even more (e.g. vector valued variables may be logged)

Default: 2

Warning

Logging will impact performance, but can be helpful for debugging or understanding algorithm performance.
The higher the logging level, the more output that may be logged, and the more performance may degrade.

16.3.13 Monitoring

SUNDIALS_BUILD_WITH_MONITORING

Build SUNDIALS with capabilities for fine-grained monitoring of solver progress and statistics. This is primarily
useful for debugging.

Default: OFF

Warning

Building with monitoring may result in minor performance degradation even if monitoring is not utilized.

16.3. Configuration options 695

User Documentation for ARKODE, v6.3.0

16.3.14 Profiling

For more information on profiling in SUNDIALS, see Performance Profiling.

SUNDIALS_BUILD_WITH_PROFILING

Build SUNDIALS with capabilities for fine-grained profiling. This requires POSIX timers, the Windows
profileapi.h timers, or enabling Caliper with ENABLE_CALIPER .

Default: OFF

Warning

Profiling will impact performance, and should be enabled judiciously.

16.3.15 Building with Adiak

Adiak is a library for recording meta-data about HPC simulations. Adiak is developed by Lawrence Livermore National
Laboratory and can be obtained from the Adiak GitHub repository.

ENABLE_ADIAK

Enable Adiak support

Default: OFF

adiak_DIR

Path to the root of an Adiak installation

Default: None

16.3.16 Building with Caliper

Caliper is a performance analysis library providing a code instrumentation and performance measurement framework
for HPC applications. Caliper is developed by Lawrence Livermore National Laboratory and can be obtained from the
Caliper GitHub repository.

When profiling and Caliper are both enabled, SUNDIALS will utilize Caliper for performance profiling.

To enable Caliper support, set the ENABLE_CALIPER to ON and set CALIPER_DIR to the root path of the Caliper
installation. For example, the following command will configure SUNDIALS with profiling and Caliper support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D SUNDIALS_BUILD_WITH_PROFILING=ON \
-D ENABLE_CALIPER=ON \
-D CALIPER_DIR=/path/to/caliper/installation

ENABLE_CALIPER

Enable CALIPER support

Default: OFF

696 Chapter 16. Installing SUNDIALS

http://software.llnl.gov/Adiak/
https://github.com/LLNL/Adiak
https://software.llnl.gov/Caliper/
https://github.com/LLNL/Caliper

User Documentation for ARKODE, v6.3.0

Note

Using Caliper requires setting SUNDIALS_BUILD_WITH_PROFILING to ON.

CALIPER_DIR

Path to the root of a Caliper installation

Default: None

16.3.17 Building with CUDA

The NVIDIA CUDA Toolkit provides a development environment for GPU-accelerated computing with NVIDIA
GPUs. The CUDA Toolkit and compatible NVIDIA drivers are available from the NVIDIA developer website. SUN-
DIALS has been tested with the CUDA toolkit versions 10, 11, and 12.

When CUDA support is enabled, the CUDA NVector, the cuSPARSE SUNMatrix, and the cuSPARSE batched QR
SUNLinearSolver will be built (see sections §16.7.3.11, §16.7.4.2, and §16.7.5.2, respectively, for the corresponding
header files and libraries). For more information on using SUNDIALS with GPUs, see Features for GPU Accelerated
Computing.

To enable CUDA support, set ENABLE_CUDA to ON. If CUDA is installed in a nonstandard location, you may need
to set CUDA_TOOLKIT_ROOT_DIR to your CUDA Toolkit installation path. You will also need to set CMAKE_CUDA_-
ARCHITECTURES to the CUDA architecture for your system. For example, the following command will configure
SUNDIALS with CUDA support for a system with an Ampere GPU:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_CUDA=ON \
-D CMAKE_CUDA_ARCHITECTURES="80"

ENABLE_CUDA

Enable CUDA support

Default: OFF

CUDA_TOOLKIT_ROOT_DIR

Path to the CUDA Toolkit installation

Default: CMake will attempt to automatically locate an installed CUDA Toolkit

CMAKE_CUDA_ARCHITECTURES

Specifies the CUDA architecture to compile for i.e., 60 for Pascal, 70 for Volta, 80 for Ampere, 90 for Hopper,
etc. See the GPU compute capability tables on the NVIDIA webpage and the GPU Compilation section of the
CUDA documentation for more information.

Default: Determined automatically by CMake. Users are encouraged to override this value with the architecture
for their system as the default varies across compilers and compiler versions.

Changed in version 7.2.0: In prior versions CMAKE_CUDA_ARCHITECTURES defaulted to 70.

16.3. Configuration options 697

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-gpus
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-compilation

User Documentation for ARKODE, v6.3.0

16.3.18 Building with Ginkgo

Ginkgo is a high-performance linear algebra library with a focus on solving sparse linear systems. It is implemented
using modern C++ (you will need at least a C++14 compliant compiler to build it), with GPU kernels implemented
in CUDA (for NVIDIA devices), HIP (for AMD devices), and SYCL/DPC++ (for Intel devices and other supported
hardware). Ginkgo can be obtained from the Ginkgo GitHub repository. SUNDIALS is regularly tested with the latest
versions of Ginkgo, specifically up to version 1.8.0.

When Ginkgo support is enabled, the Ginkgo SUNMatrix and the Ginkgo SUNLinearSolver header files will be installed
(see sections §16.7.4.4 and §16.7.5.4, respectively, for the corresponding header files). For more information on using
SUNDIALS with GPUs, see Features for GPU Accelerated Computing.

To enable Ginkgo support, set ENABLE_GINKGO to ON and set Ginkgo_DIR to the root path of the Ginkgo installation.
Additionally, set SUNDIALS_GINKGO_BACKENDS to a semicolon-separated list of Ginkgo target architectures/executors.
For example, the following command will configure SUNDIALS with Ginkgo support using the reference, OpenMP,
and CUDA (targeting Ampere GPUs) backends:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_GINKGO=ON \
-D Ginkgo_DIR=/path/to/ginkgo/installation \
-D SUNDIALS_GINKGO_BACKENDS="REF;OMP;CUDA" \
-D ENABLE_CUDA=ON \
-D CMAKE_CUDA_ARCHITECTURES="80" \
-D ENABLE_OPENMP=ON

Note

The SUNDIALS interfaces to Ginkgo are not compatible with extended precision (i.e., when SUNDIALS_PRECI-
SION is set to extended).

ENABLE_GINKGO

Enable Ginkgo support

Default: OFF

Ginkgo_DIR

Path to the Ginkgo installation

Default: None

SUNDIALS_GINKGO_BACKENDS

Semi-colon separated list of Ginkgo target architectures/executors to build for. Options currently supported are
REF (the Ginkgo reference executor), OMP (OpenMP), CUDA, HIP, and SYCL.

Default: "REF;OMP"

Changed in version 7.1.0: The DPCPP option was changed to SYCL to align with Ginkgo’s naming convention.

698 Chapter 16. Installing SUNDIALS

https://ginkgo-project.github.io/
https://github.com/ginkgo-project/ginkgo

User Documentation for ARKODE, v6.3.0

16.3.19 Building with HIP

The Heterogeneous-compute Interface for Portability (HIP) allows developers to create portable applications for AMD
and NVIDIA GPUs. HIP can be obtained from the HIP GitHub repository. SUNDIALS has been tested with HIP
versions between 5.0.0 to 5.4.3.

When HIP support is enabled, the HIP NVector will be built (see section §16.7.3.12 for the corresponding header file
and library). For more information on using SUNDIALS with GPUs, see Features for GPU Accelerated Computing.

To enable HIP support, set ENABLE_HIP to ON and set AMDGPU_TARGETS to the desired target (e.g., gfx705). In
addition, set CMAKE_C_COMPILER and CMAKE_CXX_COMPILER to a HIP compatible compiler e.g., hipcc. For example,
the following command will configure SUNDIALS with HIP support for a system with an MI250X GPU:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D CMAKE_C_COMPILER=hipcc \
-D CMAKE_CXX_COMPILER=hipcc \
-D ENABLE_HIP=ON \
-D AMDGPU_TARGETS="gfx90a"

ENABLE_HIP

Enable HIP Support

Default: OFF

AMDGPU_TARGETS

Specify which AMD GPUs to target

Default: None

16.3.20 Building with hypre

hypre is a library of high performance preconditioners and solvers featuring multigrid methods for the solution of large,
sparse linear systems of equations on massively parallel computers. The library is developed by Lawrence Livermore
National Laboratory and is available from the hypre GitHub repository. SUNDIALS is regularly tested with the latest
versions of hypre, specifically up to version 2.26.0.

When hypre support is enabled, the ParHyp NVector will be built (see section §16.7.3.9 for the corresponding header
file and library).

To enable hypre support, set ENABLE_MPI to ON, set ENABLE_HYPRE to ON, and set HYPRE_DIR to the root path of the
hypre installation. For example, the following command will configure SUNDIALS with hypre support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_MPI=ON \
-D ENABLE_HYPRE=ON \
-D HYPRE_DIR=/path/to/hypre/installation

16.3. Configuration options 699

https://rocm.docs.amd.com/projects/HIP/en/latest/
https://github.com/ROCm-Developer-Tools/HIP
https://www.llnl.gov/casc/hypre/
https://github.com/hypre-space/hypre

User Documentation for ARKODE, v6.3.0

Note

SUNDIALS must be configured so that SUNDIALS_INDEX_SIZE is compatible with HYPRE_BigInt in the hypre
installation.

ENABLE_HYPRE

Enable hypre support

Default: OFF

HYPRE_DIR

Path to the hypre installation

Default: none

16.3.21 Building with KLU

KLU is a software package for the direct solution of sparse nonsymmetric linear systems of equations that arise in
circuit simulation and is part of SuiteSparse, a suite of sparse matrix software. The library is developed by Texas A&M
University and is available from the SuiteSparse GitHub repository. SUNDIALS is regularly tested with the latest
versions of KLU, specifically up to SuiteSparse version 7.7.0.

When KLU support is enabled, the KLU SUNLinearSolver will be built (see section §16.7.5.5 for the corresponding
header file and library).

To enable KLU support, set ENABLE_KLU to ON. For SuiteSparse 7.4.0 and newer, set KLU_ROOT to the root of the
SuiteSparse installation. Alternatively, set KLU_INCLUDE_DIR and KLU_LIBRARY_DIR to the path to the header and
library files, respectively, of the SuiteSparse installation. For example, the following command will configure SUNDI-
ALS with KLU support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_KLU=ON \
-D KLU_ROOT=/path/to/suitesparse/installation

ENABLE_KLU

Enable KLU support

Default: OFF

KLU_ROOT

Path to the SuiteSparse installation

Default: OFF

KLU_INCLUDE_DIR

Path to SuiteSparse header files

Default: none

KLU_LIBRARY_DIR

Path to SuiteSparse installed library files

Default: none

700 Chapter 16. Installing SUNDIALS

https://people.engr.tamu.edu/davis/suitesparse.html
https://github.com/DrTimothyAldenDavis/SuiteSparse

User Documentation for ARKODE, v6.3.0

16.3.22 Building with Kokkos

Kokkos is a modern C++ (requires at least C++14) programming model for witting performance portable code for
multicore CPU and GPU-based systems including NVIDIA, AMD, and Intel GPUs. Kokkos is developed by Sandia
National Laboratory and can be obtained from the Kokkos GitHub repository. The minimum supported version of
Kokkos 3.7.00. SUNDIALS is regularly tested with the latest versions of Kokkos, specifically up to version 4.3.01.

When Kokkos support is enabled, the Kokkos NVector header file will be installed (see section §16.7.3.16 for the
corresponding header file). For more information on using SUNDIALS with GPUs, see Features for GPU Accelerated
Computing.

To enable Kokkos support, set the ENABLE_KOKKOS to ON and set Kokkos_DIR to root path of the Kokkos installation.
For example, the following command will configure SUNDIALS with Kokkos support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_KOKKOS=ON \
-D Kokkos_DIR=/path/to/kokkos/installation

ENABLE_KOKKOS

Enable Kokkos support

Default: OFF

Kokkos_DIR

Path to the Kokkos installation.

Default: None

16.3.23 Building with KokkosKernels

The KokkosKernels library is built on Kokkos and provides common linear algebra computational kernels. KokkosKer-
nels is developed by Sandia National Laboratory and can be obtained from the KokkosKernels GitHub repository.
The minimum supported version of KokkosKernels 3.7.00. SUNDIALS is regularly tested with the latest versions of
KokkosKernels, specifically up to version 4.3.01.

When KokkosKernels support is enabled, the KokkosKernels SUNMatrix and KokkosKernels SUNLinearSolver header
files will be installed (see sections §16.7.4.5 and §16.7.5.6, respectively, for the corresponding header files). For more
information on using SUNDIALS with GPUs, see Features for GPU Accelerated Computing.

To enable KokkosKernels support, set ENABLE_KOKKOS and ENABLE_KOKKOS_KERNELS to ON and set Kokkos_DIR
and KokkosKernels_DIR to the root paths for the Kokkos and KokkosKernels installations, respectively. For example,
the following command will configure SUNDIALS with Kokkos and KokkosKernels support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_KOKKOS=ON \
-D Kokkos_DIR=/path/to/kokkos/installation \
-D ENABLE_KOKKOS_KERNELS=ON \
-D KokkosKernels_DIR=/path/to/kokkoskernels/installation

16.3. Configuration options 701

https://kokkos.github.io/kokkos-core-wiki/
https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos-kernels
https://github.com/kokkos/kokkos-kernels

User Documentation for ARKODE, v6.3.0

ENABLE_KOKKOS_KERNELS

Enable KokkosKernels support

Default: OFF

KokkosKernels_DIR

Path to the KokkosKernels installation.

Default: None

16.3.24 Building with LAPACK

The Linear Algebra PACKage (LAPACK) library interface defines functions for solving systems of linear equations.
Several LAPACK implementations are available e.g., the Netlib reference implementation, the Intel oneAPI Math
Kernel Library, or OpenBLAS (among others). SUNDIALS is regularly tested with the latest versions of OpenBLAS,
specifically up to version 0.3.27.

When LAPACK support is enabled, the LAPACK banded SUNLinearSolver and LAPACK dense SUNLinearSolver will
be built (see sections §16.7.5.7 and §16.7.5.8, respectively, for the corresponding header files and libraries).

To enable LAPACK support, set ENABLE_LAPACK to ON. CMake will attempt to find BLAS and LAPACK installations
on the system and set the variables BLAS_LIBRARIES, BLAS_LINKER_FLAGS, LAPACK_LIBRARIES, and LAPACK_-
LINKER_FLAGS. To explicitly specify the LAPACK library to build with, manually set the aforementioned variables to
the desired values when configuring the build. For example, the following command will configure SUNDIALS with
LAPACK support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_LAPACK=ON \
-D BLAS_LIBRARIES=/path/to/lapack/installation/lib/libblas.so \
-D LAPACK_LIBRARIES=/path/to/lapack/installation/lib/liblapack.so

Note

If a working Fortran compiler is not available to infer the name-mangling scheme for LAPACK functions, the
options SUNDIALS_LAPACK_CASE and SUNDIALS_LAPACK_UNDERSCORES must be set to bypass the check for a
Fortran compiler and define the name-mangling scheme. The defaults for these options in earlier versions of SUN-
DIALS were lower and one, respectively.

ENABLE_LAPACK

Enable LAPACK support

Default: OFF

BLAS_LIBRARIES

BLAS libraries

Default: none (CMake will try to find a BLAS installation)

BLAS_LINKER_FLAGS

BLAS required linker flags

Default: none (CMake will try to determine the necessary flags)

702 Chapter 16. Installing SUNDIALS

https://netlib.org/lapack/
https://www.netlib.org/lapack/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
http://www.openmathlib.org/OpenBLAS/

User Documentation for ARKODE, v6.3.0

LAPACK_LIBRARIES

LAPACK libraries

Default: none (CMake will try to find a LAPACK installation)

LAPACK_LINKER_FLAGS

LAPACK required linker flags

Default: none (CMake will try to determine the necessary flags)

SUNDIALS_LAPACK_CASE

Specify the case to use in the Fortran name-mangling scheme, options are: lower or upper

Default:

Note

The build system will attempt to infer the Fortran name-mangling scheme using the Fortran compiler. This
option should only be used if a Fortran compiler is not available or to override the inferred or default (lower)
scheme if one can not be determined. If used, SUNDIALS_LAPACK_UNDERSCORES must also be set.

SUNDIALS_LAPACK_UNDERSCORES

Specify the number of underscores to append in the Fortran name-mangling scheme, options are: none, one, or
two

Default:

Note

The build system will attempt to infer the Fortran name-mangling scheme using the Fortran compiler. This
option should only be used if a Fortran compiler is not available or to override the inferred or default (one)
scheme if one can not be determined. If used, SUNDIALS_LAPACK_CASE must also be set.

16.3.25 Building with MAGMA

The Matrix Algebra on GPU and Multicore Architectures (MAGMA) project provides a dense linear algebra library
similar to LAPACK but targeting heterogeneous architectures. The library is developed by the University of Tennessee
and is available from the MAGMA GitHub repository. SUNDIALS is regularly tested with the latest versions of
MAGMA, specifically up to version 2.8.0.

When MAGMA support is enabled, the MAGMA dense SUNMatrix and MAGMA dense SUNLinearSolver will be
built (see sections §16.7.4.6 and §16.7.5.9, respectively, for the corresponding header files and libraries). For more
information on using SUNDIALS with GPUs, see Features for GPU Accelerated Computing.

To enable MAGMA support, set ENABLE_MAGMA to ON, MAGMA_DIR to the root path of MAGMA installation, and
SUNDIALS_MAGMA_BACKENDS to the desired MAGMA backend to use. For example, the following command will
configure SUNDIALS with MAGMA support with the CUDA backend (targeting Ampere GPUs):

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_MAGMA=ON \
-D MAGMA_DIR=/path/to/magma/installation \

(continues on next page)

16.3. Configuration options 703

https://icl.utk.edu/magma/
https://github.com/icl-utk-edu/magma

User Documentation for ARKODE, v6.3.0

(continued from previous page)

-D SUNDIALS_MAGMA_BACKEND="CUDA" \
-D ENABLE_CUDA=ON \
-D CMAKE_CUDA_ARCHITECTURES="80"

ENABLE_MAGMA

Enable MAGMA support

Default: OFF

MAGMA_DIR

Path to the MAGMA installation

Default: none

SUNDIALS_MAGMA_BACKENDS

Which MAGMA backend to use under the SUNDIALS MAGMA interface: CUDA or HIP

Default: CUDA

16.3.26 Building with MPI

The Message Passing Interface (MPI) is a standard for communication on parallel computing systems. Several MPI
implementations are available e.g., OpenMPI, MPICH, MVAPICH, Cray MPICH, Intel MPI, or IBM Spectrum MPI
(among others). SUNDIALS is regularly tested with the latest versions of OpenMPI, specifically up to version 5.0.5.

When MPI support is enabled, the parallel NVector, MPI ManyVector NVector, and MPI+X NVector will be built (see
sections §16.7.3.3, §16.7.3.4, and §16.7.3.5, respectively, for the corresponding header files and libraries).

Attention

Changed in version 7.0.0: When MPI is enabled, all SUNDIALS libraries will include MPI symbols and applica-
tions will need to include the path for MPI headers and link against the corresponding MPI library.

To enable MPI support, set ENABLE_MPI to ON. If CMake is unable to locate an MPI installation, set the relevant MPI_-
<language>_COMPILER options to the desired MPI compilers. For example, the following command will configure
SUNDIALS with MPI support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_MPI=ON

ENABLE_MPI

Enable MPI support

Default: OFF

MPI_C_COMPILER

The MPI C compiler e.g., mpicc

Default: CMake will attempt to locate an MPI C compiler

704 Chapter 16. Installing SUNDIALS

https://www.mpi-forum.org/
https://www.open-mpi.org/
https://www.mpich.org/
https://mvapich.cse.ohio-state.edu/
https://cpe.ext.hpe.com/docs/24.03/mpt/mpich/index.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://www.ibm.com/products/spectrum-mpi

User Documentation for ARKODE, v6.3.0

MPI_CXX_COMPILER

The MPI C++ compiler e.g., mpicxx

Default: CMake will attempt to locate an MPI C++ compiler

Note

This option is only needed if MPI is enabled (ENABLE_MPI is ON) and C++ examples are enabled (EXAM-
PLES_ENABLE_CXX is ON). All SUNDIALS solvers can be used from C++ MPI applications by without
setting any additional configuration options other than ENABLE_MPI.

MPI_Fortran_COMPILER

The MPI Fortran compiler e.g., mpif90

Default: CMake will attempt to locate an MPI Fortran compiler

Note

This option is triggered only needed if MPI is enabled (ENABLE_MPI is ON) and the Fortran interfaces are
enabled (BUILD_FORTRAN_MODULE_INTERFACE is ON).

MPIEXEC_EXECUTABLE

Specify the executable for running MPI programs e.g., mpiexec

Default: CMake will attempt to locate the MPI executable

MPIEXEC_PREFLAGS

Specifies flags that come directly after MPIEXEC_EXECUTABLE and before MPIEXEC_NUMPROC_FLAG and
MPIEXEC_MAX_NUMPROCS.

Default: none

MPIEXEC_POSTFLAGS

Specifies flags that come after the executable to run but before any other program arguments.

Default: none

16.3.27 Building with oneMKL

The Intel oneAPI Math Kernel Library (oneMKL) includes CPU and SYCL/DPC++ interfaces for LAPACK dense
linear algebra routines. The SUNDIALS oneMKL interface targets the SYCL/DPC++ routines, to utilize the CPU
routine see section §16.3.24. SUNDIALS has been tested with oneMKL version 2021.4.

When oneMKL support is enabled, the oneMLK dense SUNMatrix and the oneMKL dense SUNLinearSolver will be
built (see sections §16.7.4.7 and §16.7.5.10, respectively, for the corresponding header files and libraries). For more
information on using SUNDIALS with GPUs, see Features for GPU Accelerated Computing.

To enable the SUNDIALS oneMKL interface set ENABLE_ONEMKL to ON and ONEMKL_DIR to the root path of oneMKL
installation. For example, the following command will configure SUNDIALS with oneMKL support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \

(continues on next page)

16.3. Configuration options 705

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html

User Documentation for ARKODE, v6.3.0

(continued from previous page)

-D ENABLE_ONEMKL=ON \
-D ONEMKL_DIR=/path/to/onemkl/installation \

ENABLE_ONEMKL

Enable oneMKL support

Default: OFF

ONEMKL_DIR

Path to oneMKL installation.

Default: none

SUNDIALS_ONEMKL_USE_GETRF_LOOP

This advanced debugging option replaces the batched LU factorization with a loop over each system in the batch
and a non-batched LU factorization.

Default: OFF

SUNDIALS_ONEMKL_USE_GETRS_LOOP

This advanced debugging option replaces the batched LU solve with a loop over each system in the batch and a
non-batched solve.

Default: OFF

16.3.28 Building with OpenMP

The OpenMP API defines a directive-based approach for portable parallel programming across architectures.

When OpenMP support is enabled, the OpenMP NVector will be built (see section §16.7.3.6 for the corresponding
header file and library).

To enable OpenMP support, set the ENABLE_OPENMP to ON. For example, the following command will configure SUN-
DIALS with OpenMP support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_OPENMP=ON

ENABLE_OPENMP

Enable OpenMP support

Default: OFF

706 Chapter 16. Installing SUNDIALS

https://www.openmp.org/

User Documentation for ARKODE, v6.3.0

16.3.29 Building with OpenMP Device Offloading

The OpenMP 4.0 specification added support for offloading computations to devices (i.e., GPUs). SUNDIALS requires
OpenMP 4.5 for GPU offloading support.

When OpenMP offloading support is enabled, the OpenMPDEV NVector will be built (see section §16.7.3.7 for the
corresponding header file and library).

To enable OpenMP device offloading support, set the ENABLE_OPENMP_DEVICE to ON. For example, the following
command will configure SUNDIALS with OpenMP device offloading support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_OPENMP_DEVICE=ON

ENABLE_OPENMP_DEVICE

Enable OpenMP device offloading support

Default: OFF

16.3.30 Building with PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines for simu-
lating applications modeled by partial differential equations. The library is developed by Argonne National Laboratory
and is available from the PETSc GitLab repository. SUNDIALS requires PETSc 3.5.0 or newer and is regularly tested
with the latest versions of PETSc, specifically up to version 3.21.4.

When PETSc support is enabled, the PETSc NVector and PETSc SNES SUNNonlinearSolver will be built (see sections
§16.7.3.10 and §16.7.6.3, respectively, for the corresponding header files and libraries).

To enable PETSc support, set ENABLE_MPI to ON, set ENABLE_PETSC to ON, and set PETSC_DIR to the path of the
PETSc installation. Alternatively, a user can provide a list of include paths in PETSC_INCLUDES and a list of complete
paths to the PETSc libraries in PETSC_LIBRARIES. For example, the following command will configure SUNDIALS
with PETSc support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_MPI=ON \
-D ENABLE_PETSC=ON \
-D PETSC_DIR=/path/to/petsc/installation

ENABLE_PETSC

Enable PETSc support

Default: OFF

PETSC_DIR

Path to PETSc installation

Default: none

16.3. Configuration options 707

https://www.openmp.org/
https://petsc.org
https://gitlab.com/petsc/petsc

User Documentation for ARKODE, v6.3.0

PETSC_LIBRARIES

Semi-colon separated list of PETSc link libraries. Unless provided by the user, this is autopopulated based on
the PETSc installation found in PETSC_DIR .

Default: none

PETSC_INCLUDES

Semi-colon separated list of PETSc include directories. Unless provided by the user, this is autopopulated based
on the PETSc installation found in PETSC_DIR .

Default: none

16.3.31 Building with PThreads

POSIX Threads (PThreads) is an API for shared memory programming defined by the Institute of Electrical and Elec-
tronics Engineers (IEEE) standard POSIX.1c.

When PThreads support is enabled, the PThreads NVector will be built (see section §16.7.3.8 for the corresponding
header file and library).

To enable PThreads support, set ENABLE_PTHREAD to ON. For example, the following command will configure SUN-
DIALS with PThreads support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_PTHREAD=ON

ENABLE_PTHREAD

Enable PThreads support

Default: OFF

16.3.32 Building with RAJA

RAJA is a performance portability layer developed by Lawrence Livermore National Laboratory and can be obtained
from the RAJA GitHub repository. SUNDIALS is regularly tested with the latest versions of RAJA, specifically up to
version 2024.02.2.

When RAJA support is enabled, the RAJA NVector will be built (see section §16.7.3.13 for the corresponding header
files and libraries).

To enable RAJA support, set ENABLE_RAJA to ON, set RAJA_DIR to the path of the RAJA installation, set SUNDIALS_-
RAJA_BACKENDS to the desired backend (CUDA, HIP, or SYCL), and set ENABLE_CUDA , ENABLE_HIP, or ENABLE_SYCL
to ON depending on the selected backend. For example, the following command will configure SUNDIALS with RAJA
support using the CUDA backend (targeting Ampere GPUs):

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_RAJA=ON \
-D RAJA_DIR=/path/to/raja/installation \
-D SUNDIALS_RAJA_BACKENDS="CUDA" \

(continues on next page)

708 Chapter 16. Installing SUNDIALS

https://raja.readthedocs.io/en/develop/
https://github.com/LLNL/RAJA

User Documentation for ARKODE, v6.3.0

(continued from previous page)

-D ENABLE_CUDA=ON \
-D CMAKE_CUDA_ARCHITECTURES="80"

ENABLE_RAJA

Enable RAJA support

Default: OFF

RAJA_DIR

Path to the RAJA installation

Default: none

SUNDIALS_RAJA_BACKENDS

If building SUNDIALS with RAJA support, this sets the RAJA backend to target. Values supported are CUDA,
HIP, or SYCL.

Default: CUDA

16.3.33 Building with SuperLU_DIST

SuperLU_DIST is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear
equations in a distributed memory setting. The library is developed by Lawrence Berkeley National Laboratory and is
available from the SuperLU_DIST GitHub repository. SuperLU_DIST version 7.0.0 or newer is required. SUNDIALS
is regularly tested with the latest versions of SuperLU_DIST, specifically up to version 8.2.1.

When SuperLU_DIST support is enabled, the SuperLU_DIST (SLUNRloc) SUNMatrix and SuperLU_DIST SUNLin-
earSolver will be built (see sections §16.7.4.9 and §16.7.5.16 for the corresponding header files and libraries).

To enable SuperLU_DIST support, set ENABLE_MPI to ON, set ENABLE_SUPERLUDIST to ON, and set SUPERLUDIST_-
DIR to the path where SuperLU_DIST is installed. If SuperLU_DIST was built with OpenMP enabled, set SUPER-
LUDIST_OpenMP and ENABLE_OPENMP to ON. For example, the following command will configure SUNDIALS with
SuperLU_DIST support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_SUPERLUDIST=ON \
-D SUPERLUDIST_DIR=/path/to/superludist/installation

ENABLE_SUPERLUDIST

Enable SuperLU_DIST support

Default: OFF

SUPERLUDIST_DIR

Path to SuperLU_DIST installation.

Default: none

SUPERLUDIST_OpenMP

Enable SUNDIALS support for SuperLU_DIST built with OpenMP

Default: none

16.3. Configuration options 709

https://portal.nersc.gov/project/sparse/superlu/
https://github.com/xiaoyeli/superlu_dist

User Documentation for ARKODE, v6.3.0

Note

SuperLU_DIST must be built with OpenMP support for this option to function. Additionally the environment
variable OMP_NUM_THREADS must be set to the desired number of threads.

SUPERLUDIST_INCLUDE_DIRS

List of include paths for SuperLU_DIST (under a typical SuperLU_DIST install, this is typically the SuperLU_-
DIST SRC directory)

Default: none

Note

This is an advanced option. Prefer to use SUPERLUDIST_DIR .

SUPERLUDIST_LIBRARIES

Semi-colon separated list of libraries needed for SuperLU_DIST

Default: none

Note

This is an advanced option. Prefer to use SUPERLUDIST_DIR .

SUPERLUDIST_INCLUDE_DIR

Path to SuperLU_DIST header files (under a typical SuperLU_DIST install, this is typically the SuperLU_DIST
SRC directory)

Default: none

Note

This is an advanced option. This option is deprecated. Use SUPERLUDIST_INCLUDE_DIRS.

SUPERLUDIST_LIBRARY_DIR

Path to SuperLU_DIST installed library files

Default: none

Note

This option is deprecated. Use SUPERLUDIST_DIR .

710 Chapter 16. Installing SUNDIALS

User Documentation for ARKODE, v6.3.0

16.3.34 Building with SuperLU_MT

SuperLU_MT is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear
equations on shared memory parallel machines. The library is developed by Lawrence Berkeley National Laboratory
and is available from the SuperLU_MT GitHub repository. SUNDIALS is regularly tested with the latest versions of
SuperLU_MT, specifically up to version 4.0.1.

When SuperLU_MT support is enabled, the SuperLU_MT SUNLinearSolver will be built (see section §16.7.5.17 for
the corresponding header file and library).

To enable SuperLU_MT support, set ENABLE_SUPERLUMT to ON, set SUPERLUMT_INCLUDE_DIR and SUPERLUMT_-
LIBRARY_DIR to the location of the header and library files, respectively, of the SuperLU_MT installation. Depending
on the SuperLU_MT installation, it may also be necessary to set SUPERLUMT_LIBRARIES to a semi-colon separated
list of other libraries SuperLU_MT depends on. For example, if SuperLU_MT was build with an external blas library,
then include the full path to the blas library in this list. Additionally, the variable SUPERLUMT_THREAD_TYPE must be
set to either Pthread or OpenMP. For example, the following command will configure SUNDIALS with SuperLU_MT
support using PThreads:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_SUPERLUMT=ON \
-D SUPERLUMT_INCLUDE_DIR=/path/to/superlumt/installation/include/dir \
-D SUPERLUMT_LIBRARY_DIR=/path/to/superlumt/installation/library/dir \
-D SUPERLUMT_THREAD_TYPE="Pthread"

Warning

Do not mix thread types when using SUNDIALS packages. For example, if using the OpenMP or PThreads NVector
then the SuperLU_MT installation should use the same threading type.

ENABLE_SUPERLUMT

Enable SuperLU_MT support

Default: OFF

SUPERLUMT_INCLUDE_DIR

Path to SuperLU_MT header files (under a typical SuperLU_MT install, this is typically the SuperLU_MT SRC
directory)

Default: none

SUPERLUMT_LIBRARY_DIR

Path to SuperLU_MT installed library files

Default: none

SUPERLUMT_LIBRARIES

Semi-colon separated list of libraries needed for SuperLU_MT

Default: none

SUPERLUMT_THREAD_TYPE

Must be set to Pthread or OpenMP, depending on how SuperLU_MT was compiled.

Default: Pthread

16.3. Configuration options 711

https://portal.nersc.gov/project/sparse/superlu/
https://github.com/xiaoyeli/superlu_mt

User Documentation for ARKODE, v6.3.0

16.3.35 Building with SYCL

SYCL is an abstraction layer for programming heterogeneous parallel computing based on C++17.

When SYCL support is enabled, the SYCL NVector will be built (see section §16.7.3.14 for the corresponding header
file and library).

To enable SYCL support, set the ENABLE_SYCL to ON. For example, the following command will configure SUNDIALS
with SYCL support using Intel compilers:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D CMAKE_C_COMPILER=icx \
-D CMAKE_CXX_COMPILER=icpx \
-D CMAKE_CXX_FLAGS="-fsycl" \
-D ENABLE_SYCL=ON

ENABLE_SYCL

Enable SYCL support

Default: OFF

Note

Building with SYCL enabled requires a compiler that supports a subset of the of SYCL 2020 specification
(specifically sycl/sycl.hpp must be available).

CMake does not currently support autodetection of SYCL compilers and CMAKE_CXX_COMPILER must be
set to a valid SYCL compiler. At present the only supported SYCL compilers are the Intel oneAPI compilers
i.e., dpcpp and icpx. When using icpx the -fsycl flag and any ahead of time compilation flags must be
added to CMAKE_CXX_FLAGS.

SUNDIALS_SYCL_2020_UNSUPPORTED

This advanced option disables the use of some features from the SYCL 2020 standard in SUNDIALS libraries
and examples. This can be used to work around some cases of incomplete compiler support for SYCL 2020.

Default: OFF

16.3.36 Building with Trilinos

Trilinos is a collection of C++ libraries of linear solvers, non-linear solvers, optimization solvers, etc. developed by
Sandia National Laboratory and available from the Trilinos GitHub repository. SUNDIALS is regularly tested with
the latest versions of Trilinos, specifically up to version 16.0.0.

When Trilinos support is enabled, the Trilinos Tpetra NVector will be built (see section §16.7.3.15 for the corresponding
header file and library).

To enable Trilinos support, set the ENABLE_TRILINOS to ON and set Trilinos_DIR to root path of the Trilinos instal-
lation. For example, the following command will configure SUNDIALS with Trilinos support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \

(continues on next page)

712 Chapter 16. Installing SUNDIALS

https://www.khronos.org/sycl/
https://trilinos.github.io/
https://github.com/trilinos/Trilinos

User Documentation for ARKODE, v6.3.0

(continued from previous page)

-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_TRILONOS=ON \
-D TRILINOS_DIR=/path/to/trilinos/installation

ENABLE_TRILINOS

Enable Trilinos support

Default: OFF

Trilinos_DIR

Path to the Trilinos installation

Default: None

16.3.37 Building with XBraid

XBraid is parallel-in-time library implementing an optimal-scaling multigrid reduction in time (MGRIT) solver. The
library is developed by Lawrence Livermore National Laboratory and is available from the XBraid GitHub repository.
SUNDIALS is regularly tested with the latest versions of XBraid, specifically up to version 3.0.0.

To enable XBraid support, set ENABLE_MPI to ON, set ENABLE_XBRAID to ON, set XBRAID_DIR to the root path of the
XBraid installation. For example, the following command will configure SUNDIALS with XBraid support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D SUNDIALS_INDEX_SIZE="32" \
-D ENABLE_MPI=ON \
-D ENABLE_XBRAID=ON \
-D XBRAID_DIR=/path/to/xbraid/installation

Note

At this time the XBraid types braid_Int and braid_Real are hard-coded to int and double respectively. As
such SUNDIALS must be configured with SUNDIALS_INDEX_SIZE set to 32 and SUNDIALS_PRECISION set to
double. Additionally, SUNDIALS must be configured with ENABLE_MPI set to ON.

ENABLE_XBRAID

Enable or disable the ARKStep + XBraid interface.

Default: OFF

XBRAID_DIR

The root directory of the XBraid installation.

Default: OFF

XBRAID_INCLUDES

Semi-colon separated list of XBraid include directories. Unless provided by the user, this is autopopulated based
on the XBraid installation found in XBRAID_DIR .

Default: none

16.3. Configuration options 713

https://github.com/XBraid/xbraid

User Documentation for ARKODE, v6.3.0

XBRAID_LIBRARIES

Semi-colon separated list of XBraid link libraries. Unless provided by the user, this is autopopulated based on
the XBraid installation found in XBRAID_DIR .

Default: none

16.3.38 Building with xSDK Defaults

The Extreme-scale Scientific Software Development Kit (xSDK) is a community of HPC libraries and applications
developing best practices and standards for scientific software.

USE_XSDK_DEFAULTS

Enable xSDK default configuration settings. This sets the default value for CMAKE_BUILD_TYPE to Debug,
SUNDIALS_INDEX_SIZE to 32, and SUNDIALS_PRECISION to double.

Default: OFF

16.3.39 Building with External Addons

SUNDIALS “addons” are community developed code additions for SUNDIALS that can be subsumed by the SUN-
DIALS build system so that they have full access to all internal SUNDIALS symbols. The intent is for SUNDIALS
addons to function as if they are part of the SUNDIALS library, while allowing them to potentially have different li-
censes (although we encourage BSD-3-Clause still), code style (although we encourage them to follow the SUNDIALS
style outlined here).

Warning

SUNDIALS addons are not maintained by the SUNDIALS team and may come with different licenses. Use them
at your own risk.

To build with SUNDIALS addons,

1. Clone/copy the addon(s) into SOLVER_DIR/external/

2. Copy the sundials-addon-example block in the SOLVER_DIR/external/CMakeLists.txt, paste it below
the example block, and modify the path listed for your own external addon(s).

3. When building SUNDIALS, set the CMake option SUNDIALS_ENABLE_EXTERNAL_ADDONS to ON

4. Build SUNDIALS as usual.

SUNDIALS_ENABLE_EXTERNAL_ADDONS

Build SUNDIALS with any external addons that you have put in SOLVER_DIR/external.

Default: OFF

714 Chapter 16. Installing SUNDIALS

https://xsdk.info
https://sundials.readthedocs.io/en/v7.3.0/developers/source_code/index.html#sourcecode

User Documentation for ARKODE, v6.3.0

16.4 Testing the Build and Installation

If SUNDIALS was configured with any EXAMPLES_ENABLE_<language> options set to ON, then a set of regression
tests can be run after building with the command:

make test

Additionally, if EXAMPLES_INSTALL is set to ON, then a set of smoke tests can be run after installing with the command:

make test_install

16.5 Building and Running Examples

Each of the SUNDIALS solvers is distributed with a set of examples demonstrating basic usage. To build and install
the examples, set at least one of the EXAMPLES_ENABLE_<language> options to ON, and set EXAMPLES_INSTALL to
ON. Along side the example sources and outputs, automatically generated CMakeLists.txt configuration files (and
Makefile files if on Linux/Unix systems) are installed referencing the installed SUNDIALS headers and libraries.

Either the CMakeLists.txt file or the traditional Makefilemay be used to build the examples and serve as a template
for building user developed problems. To use the supplied Makefile simply run make to compile and generate the
executables. To use CMake from within the installed example directory, run cmake (or ccmake or cmake-gui to use
the GUI) followed by make to compile the example code. Note that if CMake is used, it will overwrite the traditional
Makefile with a new CMake-generated Makefile.

The resulting output from running the examples can be compared with example output bundled in the SUNDIALS
distribution.

Note

There will potentially be differences in the output due to machine architecture, compiler versions, use of third party
libraries, etc.

16.6 Using SUNDIALS In Your Project

After installing SUNDIALS, building your application with SUNDIALS involves two steps: including the right header
files and linking to the right libraries. Depending on what features of SUNDIALS that your application uses, the
header files and libraries needed will vary. For example, if you want to use CVODE for serial computations you need
the following includes:

#include <cvode/cvode.h>
#include <nvector/nvector_serial.h>

and must link to libsundials_cvode and libsundials_nvecserial. If you wanted to use CVODE with the GM-
RES linear solver and the CUDA NVector, you need the following includes:

#include <cvode/cvode.h>
#include <nvector/nvector_cuda.h>
#include <sunlinsol/sunlinsol_spgmr.h>

and must link to libsundials_cvode, libsundials_nveccuda, and libsundials_sunlinsolspgmr.

16.4. Testing the Build and Installation 715

User Documentation for ARKODE, v6.3.0

Attention

Added in version 7.0.0: All applications must also link to libsundials_core. For projects using SUNDIALS
CMake targets (see section §16.6.1), this dependency is automatically included.

Refer to section §16.7 below or the documentations sections for the individual SUNDIALS packages and modules of
interest for the proper includes and libraries to link against.

16.6.1 CMake Projects

For projects that use CMake, the SUNDIALS CMake package configuration file provides CMake targets for the con-
suming project. Use the CMake find_package command to search for the configuration file, SUNDIALSConfig.
cmake, which is installed alongside a package version file, SUNDIALSConfigVersion.cmake, under the INSTALL_-
DIR/SUNDIALS_INSTALL_CMAKEDIR directory. The SUNDIALS CMake targets follow the same naming convention
as the generated library binaries with the libsundials_ prefix replaced by SUNDIALS::. For example, the exported
target for libsundials_cvode is SUNDIALS::cvode. See section §16.7 for a complete list of CMake targets. The
CMake code snippit below shows how a consuming project might leverage the SUNDIALS package configuration file
to build against SUNDIALS in their own CMake project.

project(MyProject)

Set the variable SUNDIALS_DIR to the SUNDIALS instdir.
When using the cmake CLI command, this can be done like so:
cmake -D SUNDIALS_DIR=/path/to/sundials/installation

Find any SUNDIALS version...
find_package(SUNDIALS REQUIRED)

... or find any version newer than some minimum...
find_package(SUNDIALS 7.1.0 REQUIRED)

... or find a version in a range
find_package(SUNDIALS 7.0.0...7.1.0 REQUIRED)

To check if specific components are available in the SUNDIALS installation,
use the COMPONENTS option followed by the desired target names
find_package(SUNDIALS REQUIRED COMPONENTS cvode nvecpetsc)

add_executable(myexec main.c)

Link to SUNDIALS libraries through the exported targets.
This is just an example, users should link to the targets appropriate
for their use case.
target_link_libraries(myexec PUBLIC SUNDIALS::cvode SUNDIALS::nvecpetsc)

Note

Changed in version 7.1.0: A single version provided to find_package denotes the minimum version of SUN-
DIALS to look for, and any version equal or newer than what is specified will match. In prior versions
SUNDIALSConfig.cmake required the version found to have the same major version number as the single ver-
sion provided to find_package.

716 Chapter 16. Installing SUNDIALS

https://cmake.org/cmake/help/v3.18/manual/cmake-packages.7.html

User Documentation for ARKODE, v6.3.0

To accommodate installing both static and shared libraries simultaneously, targets are created with _static and _-
shared suffixes, respectively, and the un-suffixed target is an alias to the _shared version. For example, SUNDI-
ALS::cvode is an alias to SUNDIALS::cvode_shared in this case. Projects that wish to use static libraries should
use the _static version of the target when both library types are installed. When only static or shared libraries
(not both) are installed the un-suffixed alias corresponds to the library type chosen at configuration time (see section
§16.3.4).

16.7 Libraries and Header Files

As noted above, the SUNDIALS the header files and libraries are installed under the CMAKE_INSTALL_PREFIX path in
the include and CMAKE_INSTALL_LIBDIR subdirectories, respectively. The public header files are further organized
into subdirectories under the include directory. The installed public header files and libraries are listed for reference
in the sections below. Additionally, the exported CMake targets are also listed for projects using CMake (see section
§16.6.1). The file extension .LIB used below is typically .so, .dll, or .dylib for shared libraries and .a or .lib
for static libraries.

Warning

SUNDIALS installs some header files to CMAKE_INSTALL_PREFIX/include/sundials/priv. All of the header
files in this directory are private and should not be included in user code. The private headers are subject to change
without any notice and relying on them may break your code.

16.7.1 SUNDIALS Core

The core library contains the shared infrastructure utilized by SUNDIALS packages. All applications using SUNDI-
ALS must link against the core library. For codes using the SUNDIALS CMake targets, the core target is automatically
included as needed by other targets.

Table 16.1: The SUNDIALS core library, header, and CMake target

Libraries libsundials_core.LIB
Headers sundials/sundials_core.h
CMake target SUNDIALS::core

The core header file is a convenient way to include all the header files that make up the SUNDIALS core infrastructure.

16.7. Libraries and Header Files 717

User Documentation for ARKODE, v6.3.0

Table 16.2: Header files included by sundials_core.h

Headers sundials/sundials_adaptcontroller.h
sundials/sundials_adjointstepper.h
sundials/sundials_adjointcheckpointscheme.h
sundials/sundials_config.h
sundials/sundials_context.h
sundials/sundials_errors.h
sundials/sundials_iterative.h
sundials/sundials_linearsolver.h
sundials/sundials_logger.h
sundials/sundials_math.h
sundials/sundials_matrix.h
sundials/sundials_memory.h
sundials/sundials_nonlinearsolver.h
sundials/sundials_nvector.h
sundials/sundials_profiler.h
sundials/sundials_types.h
sundials/sundials_version.h

For C++ applications, several convenience classes are provided for interacting with SUNDIALS objects. These can be
accessed by including the C++ core header file.

Table 16.3: The SUNDIALS C++ core header file

Headers sundials/sundials_core.hpp

Like the C core header file, the C++ core header file is a convenient way to include all the header files for the core C++
classes.

Warning

Features in the sundials::experimental namespace are not yet part of the public API and are subject to change
or removal without notice.

Table 16.4: Header files included by sundials_core.hpp

Headers sundials/sundials_context.hpp
sundials/sundials_core.h
sundials/sundials_linearsolver.hpp
sundials/sundials_matrix.hpp
sundials/sundials_memory.hpp
sundials/sundials_nonlinearsolver.hpp
sundials/sundials_nvector.hpp
sundials/sundials_profiler.hpp

When MPI support is enabled (ENABLE_MPI is ON), the following header file provides aliases between MPI data types
and SUNDIALS types. The alias MPI_SUNREALTYPE is one of MPI_FLOAT, MPI_DOUBLE, or MPI_LONG_DOUBLE
depending on the value of SUNDIALS_PRECISION. The alias MPI_SUNINDEXTYPE is either MPI_INT32_T or MPI_-
INT64_T depending on the value of SUNDIALS_INDEX_SIZE.

718 Chapter 16. Installing SUNDIALS

User Documentation for ARKODE, v6.3.0

Table 16.5: Header file defining aliases between SUNDIALS and MPI
data types

Headers sundials/sundials_mpi_types.h

When XBraid support is enabled (ENABLE_XBRAID is ON), the following header file defines types and functions for
interfacing SUNDIALS with XBraid.

Table 16.6: SUNDIALS header for interfacing with XBraid

Headers sundials/sundials_xbraid.h

16.7.2 SUNDIALS Packages

16.7.2.1 CVODE

To use the CVODE package, include the header file and link to the library given below.

Table 16.7: CVODE library, header file, and CMake target

Libraries libsundials_cvode.LIB
Headers cvode/cvode.h
CMake target SUNDIALS::cvode

The CVODE header file includes the files below which define functions, types, and constants for the CVODE linear
solver interface and using projection methods with CVODE.

Table 16.8: Additional header files included by cvode.h

Headers cvode/cvode_ls.h
cvode/cvode_proj.h

CVODE provides a specialized linear solver module for diagonal linear systems. Include the header file below to access
the related functions.

Table 16.9: CVODE diagonal linear solver

Headers cvode/cvode_diag.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative lin-
ear solvers, CVODE provides banded (bandpre) and band-block-diagonal (bbdpre) preconditioner modules. Include
the header files below to access the related functions.

Table 16.10: CVODE preconditioner modules

Headers cvode/cvode_bandpre.h
cvode/cvode_bbdpre.h

16.7. Libraries and Header Files 719

https://sundials.readthedocs.io/en/v7.3.0/cvode/index.html#cvode

User Documentation for ARKODE, v6.3.0

16.7.2.2 CVODES

To use the CVODES package, include the header file and link to the library given below.

Warning

CVODES is a superset of CVODE and defines the same functions as provided by CVODE. As such, applications
should not link to both CVODES and CVODE.

Table 16.11: CVODES library, header file, and CMake target

Libraries libsundials_cvodes.LIB
Headers cvodes/cvodes.h
CMake target SUNDIALS::cvodes

The CVODES header file includes the files below which define functions, types, and constants for the CVODES linear
solver interface and using projection methods with CVODES.

Table 16.12: Additional header files included by cvodes.h

Headers cvodes/cvodes_ls.h
cvodes/cvodes_proj.h

CVODES provides a specialized linear solver module for diagonal linear systems. Include the header file below to
access the related functions.

Table 16.13: CVODES diagonal linear solver

Headers cvodes/cvodes_diag.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative lin-
ear solvers, CVODES provides banded (bandpre) and band-block-diagonal (bbdpre) preconditioner modules. Include
the header files below to access the related functions.

Table 16.14: CVODES preconditioner modules

Headers cvodes/cvodes_bandpre.h
cvodes/cvodes_bbdpre.h

16.7.2.3 ARKODE

To use the ARKODE package, link to the library below and include the header file for the desired module.

720 Chapter 16. Installing SUNDIALS

https://sundials.readthedocs.io/en/v7.3.0/cvodes/index.html#cvodes
https://sundials.readthedocs.io/en/v7.3.0/arkode/index.html#arkode

User Documentation for ARKODE, v6.3.0

Table 16.15: ARKODE library, header files, and CMake target

Libraries libsundials_arkode.LIB
Headers arkode/arkode_arkstep.h

arkode/arkode_erkstep.h
arkode/arkode_forcingstep.h
arkode/arkode_lsrkstep.h
arkode/arkode_mristep.h
arkode/arkode_splittingstep.h
arkode/arkode_sprkstep.h

CMake target SUNDIALS::arkode

The ARKODE module header files include the header file for the shared ARKODE interface functions, constants, and
types (arkode.h). As appropriate, the module header files also include the ARKODE linear solver interface as well
as the header files defining method coefficients.

Table 16.16: Additional header files included by arkode_*step.h
header files

Headers arkode/arkode.h
arkode/arkode_butcher.h
arkode/arkode_butcher_dirk.h
arkode/arkode_butcher_erk.h
arkode/arkode_ls.h
arkode/arkode_sprk.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative
linear solvers, ARKODE provides banded (bandpre) and band-block-diagonal (bbdpre) preconditioner modules. In-
clude the header files below to access the related functions.

Table 16.17: ARKODE preconditioner modules

Headers arkode/arkode_bandpre.h
arkode/arkode_bbdpre.h

When XBraid support is enabled (ENABLE_XBRAID is ON), include the ARKODE-XBraid interface header file and link
to the interface library given below to use ARKODE and XBraid together.

Table 16.18: ARKODE library, header, and CMake target for interfacing
with XBraid

Libraries libsundials_arkode_xbraid.LIB
Headers arkode/arkode_xbraid.h
CMake target SUNDIALS::arkode_xbraid

16.7. Libraries and Header Files 721

User Documentation for ARKODE, v6.3.0

16.7.2.4 IDA

To use the IDA package, include the header file and link to the library given below.

Table 16.19: IDA library, header file, and CMake target

Libraries libsundials_ida.LIB
Headers ida/ida.h
CMake target SUNDIALS::ida

The IDA header file includes the header file below which defines functions, types, and constants for the IDA linear
solver interface.

Table 16.20: Additional header files included by ida.h

Headers ida/ida_ls.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative
linear solvers, IDA provides a band-block-diagonal (bbdpre) preconditioner module. Include the header file below to
access the related functions.

Table 16.21: IDA preconditioner modules

Headers ida/ida_bbdpre.h

16.7.2.5 IDAS

To use the IDAS package, include the header file and link to the library given below.

Warning

IDAS is a superset of IDA and defines the same functions as provided by IDA. As such, applications should not
link to both IDAS and IDA.

Table 16.22: IDAS library, header file, and CMake target

Libraries libsundials_idas.LIB
Headers idas/idas.h
CMake target SUNDIALS::idas

The IDAS header file includes the header file below which defines functions, types, and constants for the IDAS linear
solver interface.

Table 16.23: Additional header files included by idas.h

Headers idas/idas_ls.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative
linear solvers, IDAS provides a band-block-diagonal (bbdpre) preconditioner module. Include the header file below
to access the related functions.

722 Chapter 16. Installing SUNDIALS

https://sundials.readthedocs.io/en/v7.3.0/ida/index.html#ida
https://sundials.readthedocs.io/en/v7.3.0/idas/index.html#idas

User Documentation for ARKODE, v6.3.0

Table 16.24: IDAS preconditioner modules

Headers idas/idas_bbdpre.h

16.7.2.6 KINSOL

To use the KINSOL package, include the header file and link to the library given below.

Table 16.25: KINSOL library, header file, and CMake target

Libraries libsundials_kinsol.LIB
Headers kinsol/kinsol.h
CMake target SUNDIALS::kinsol

The KINSOL header file includes the header file below which defines functions, types, and constants for the KINSOL
linear solver interface.

Table 16.26: Additional header files included by kinsol.h

Headers kinsol/kinsol_ls.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative
linear solvers, KINSOL provides a band-block-diagonal (bbdpre) preconditioner module. Include the header file below
to access the related functions.

Table 16.27: KINSOL preconditioner modules

Headers kinsol/kinsol_bbdpre.h

16.7.3 Vectors

16.7.3.1 Serial

To use the serial NVector, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the serial NVector is bundled with the
package library and it is not necessary to link to the library below when using those packages.

Table 16.28: The serial NVector library, header file, and CMake target

Libraries libsundials_nvecserial.LIB
Headers nvector/nvector_serial.h
CMake target SUNDIALS::nvecserial

16.7. Libraries and Header Files 723

https://sundials.readthedocs.io/en/v7.3.0/kinsol/index.html#kinsol

User Documentation for ARKODE, v6.3.0

16.7.3.2 ManyVector

To use the ManyVector NVector, include the header file and link to the library given below.

Table 16.29: The ManyVector NVector library, header file, and CMake
target

Libraries libsundials_nvecmanyvector.LIB
Headers nvector/nvector_manyvector.h
CMake target SUNDIALS::nvecmanyvector

16.7.3.3 Parallel (MPI)

To use the parallel (MPI) NVector, include the header file and link to the library given below.

Table 16.30: The parallel (MPI) NVector library, header file, and CMake
target

Libraries libsundials_nvecparallel.LIB
Headers nvector/nvector_parallel.h
CMake target SUNDIALS::nvecparallel

16.7.3.4 MPI ManyVector

To use the MPI ManyVector NVector, include the header file and link to the library given below.

Table 16.31: The MPI ManyVector NVector library, header file, and
CMake target

Libraries libsundials_nvecmpimanyvector.LIB
Headers nvector/nvector_mpimanyvector.h
CMake target SUNDIALS::nvecmpimanyvector

16.7.3.5 MPI+X

To use the MPI+X NVector, include the header file and link to the library given below.

Table 16.32: The MPI+X NVector library, header file, and CMake target

Libraries libsundials_nvecmpiplusx.LIB
Headers nvector/nvector_mpiplusx.h
CMake target SUNDIALS::nvecmpiplusx

724 Chapter 16. Installing SUNDIALS

User Documentation for ARKODE, v6.3.0

16.7.3.6 OpenMP

To use the OpenMP NVector, include the header file and link to the library given below.

Table 16.33: The OpenMP NVector library, header file, and CMake target

Libraries libsundials_nvecopenmp.LIB
Headers nvector/nvector_openmp.h
CMake target SUNDIALS::nvecopenmp

16.7.3.7 OpenMPDEV

To use the OpenMP device offload NVector, include the header file and link to the library given below.

Table 16.34: The OpenMP device offload NVector library, header file,
and CMake target

Libraries libsundials_nvecopenmpdev.LIB
Headers nvector/nvector_openmpdev.h
CMake target SUNDIALS::nvecopenmpdev

16.7.3.8 PThreads

To use the POSIX Threads NVector, include the header file and link to the library given below.

Table 16.35: The POSIX Threads NVector library, header file, and
CMake target

Libraries libsundials_nvecpthreads.LIB
Headers nvector/nvector_pthreads.h
CMake target SUNDIALS::nvecpthreads

16.7.3.9 hypre (ParHyp)

To use the hypre (ParHyp) NVector, include the header file and link to the library given below.

Table 16.36: The hypre (ParHyp) NVector library, header file, and CMake
target

Libraries libsundials_nvecparhyp.LIB
Headers nvector/nvector_parhyp.h
CMake target SUNDIALS::nvecparhyp

16.7. Libraries and Header Files 725

User Documentation for ARKODE, v6.3.0

16.7.3.10 PETSc

To use the PETSc NVector, include the header file and link to the library given below.

Table 16.37: The PETSc NVector library, header file, and CMake target

Libraries libsundials_nvecpetsc.LIB
Headers nvector/nvector_petsc.h
CMake target SUNDIALS::nvecpetsc

16.7.3.11 CUDA

To use the CUDA NVector, include the header file and link to the library given below.

Table 16.38: The CUDA NVector library, header file, and CMake target

Libraries libsundials_nveccuda.LIB
Headers nvector/nvector_cuda.h
CMake target SUNDIALS::nveccuda

16.7.3.12 HIP

To use the HIP NVector, include the header file and link to the library given below.

Table 16.39: The HIP NVector library, header file, and CMake target

Libraries libsundials_nvechip.LIB
Headers nvector/nvector_hip.h
CMake target SUNDIALS::nvechip

16.7.3.13 RAJA

To use the RAJA NVector, include the header file and link to the library given below for the desired backend.

Table 16.40: The RAJA NVector libraries, header file, and CMake targets

Libraries libsundials_nveccudaraja.LIB
libsundials_nvechipraja.LIB
libsundials_nvecsyclraja.LIB

Headers nvector/nvector_raja.h
CMake target SUNDIALS::nveccudaraja

SUNDIALS::nvechipraja
SUNDIALS::nvecsyclraja

726 Chapter 16. Installing SUNDIALS

User Documentation for ARKODE, v6.3.0

16.7.3.14 SYCL

To use the SYCL NVector, include the header file and link to the library given below.

Table 16.41: The SYCL NVector library, header file, and CMake target

Libraries libsundials_nvecsycl.LIB
Headers nvector/nvector_sycl.h
CMake target SUNDIALS::nvecsycl

16.7.3.15 Trilinos (Tpetra)

To use the Trilinos (Tpetra) NVector, include the header file and link to the library given below.

Table 16.42: The Trilinos (Tpetra) NVector library, header file, and
CMake target

Libraries libsundials_nvectrilinos.LIB
Headers nvector/nvector_trilinos.h
CMake target SUNDIALS::nvectrilinos

16.7.3.16 Kokkos

To use the Kokkos NVector, include the header file and link to the library given below.

Table 16.43: The Kokkos NVector library, header file, and CMake target

Headers nvector/nvector_kokkos.hpp
CMake target SUNDIALS::nveckokkos

16.7.4 Matrices

16.7.4.1 Banded

To use the banded SUNMatrix, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the banded SUNMatrix is bundled with
the package library and it is not necessary to link to the library below when using those packages.

Table 16.44: The banded SUNMatrix library, header file, and CMake
target

Libraries libsundials_sunmatrixband.LIB
Headers sunmatrix/sunmatrix_band.h
CMake target SUNDIALS::sunmatrixband

16.7. Libraries and Header Files 727

User Documentation for ARKODE, v6.3.0

16.7.4.2 cuSPARSE

To use the cuSPARSE SUNMatrix, include the header file and link to the library given below.

Table 16.45: The cuSPARSE SUNMatrix library, header file, and CMake
target

Libraries libsundials_sunmatrixcusparse.LIB
Headers sunmatrix/sunmatrix_cusparse.h
CMake target SUNDIALS::sunmatrixcusparse

16.7.4.3 Dense

To use the dense SUNMatrix, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the dense SUNMatrix is bundled with the
package library and it is not necessary to link to the library below when using those packages.

Table 16.46: The dense SUNMatrix library, header file, and CMake target

Libraries libsundials_sunmatrixdense.LIB
Headers sunmatrix/sunmatrix_dense.h
CMake target SUNDIALS::sunmatrixdense

16.7.4.4 Ginkgo

To use the Ginkgo SUNMatrix, include the header file given below.

Table 16.47: The Ginkgo SUNMatrix library, header file, and CMake
target

Headers sunmatrix/sunmatrix_ginkgo.hpp
CMake target SUNDIALS::sunmatrixginkgo

16.7.4.5 KokkosKernels Dense

To use the KokkosKernels dense SUNMatrix, include the header file given below.

Table 16.48: The dense KokkosKernels SUNMatrix library, header file,
and CMake target

Headers sunmatrix/sunmatrix_kokkosdense.hpp
CMake target SUNDIALS::sunmatrixkokkosdense

728 Chapter 16. Installing SUNDIALS

User Documentation for ARKODE, v6.3.0

16.7.4.6 MAGMA Dense

To use the MAGMA dense SUNMatrix, include the header file and link to the library given below.

Table 16.49: The dense MAGMA SUNMatrix library, header file, and
CMake target

Libraries libsundials_sunmatrixmagmadense.LIB
Headers sunmatrix/sunmatrix_magmadense.h
CMake target SUNDIALS::sunmatrixmagmadense

16.7.4.7 oneMKL Dense

To use the oneMKL dense SUNMatrix, include the header file and link to the library given below.

Table 16.50: The dense oneMKL SUNMatrix library, header file, and
CMake target

Libraries libsundials_sunmatrixonemkldense.LIB
Headers sunmatrix/sunmatrix_onemkldense.h
CMake target SUNDIALS::sunmatrixonemkldense

16.7.4.8 Sparse

To use the sparse SUNMatrix, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the sparse SUNMatrix is bundled with
the package library and it is not necessary to link to the library below when using those packages.

Table 16.51: The sparse SUNMatrix library, header file, and CMake tar-
get

Libraries libsundials_sunmatrixsparse.LIB
Headers sunmatrix/sunmatrix_sparse.h
CMake target SUNDIALS::sunmatrixsparse

16.7.4.9 SuperLU_DIST (SLUNRloc)

To use the SuperLU_DIST (SLUNRloc) SUNMatrix, include the header file and link to the library given below.

Table 16.52: The SuperLU_DIST (SLUNRloc) SUNMatrix library,
header file, and CMake target

Libraries libsundials_sunmatrixslunrloc.LIB
Headers sunmatrix/sunmatrix_slunrloc.h
CMake target SUNDIALS::sunmatrixslunrloc

16.7. Libraries and Header Files 729

User Documentation for ARKODE, v6.3.0

16.7.5 Linear Solvers

16.7.5.1 Banded

To use the banded SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the banded SUNLinearSolver is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 16.53: The banded SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolband.LIB
Headers sunlinsol/sunlinsol_band.h
CMake target SUNDIALS::sunlinsolband

16.7.5.2 cuSPARSE Batched QR

To use the cuSPARSE batched QR SUNLinearSolver, include the header file and link to the library given below.

Table 16.54: The cuSPARSE batched QR SUNLinearSolver library,
header file, and CMake target

Libraries libsundials_sunlinsolcusolversp.LIB
Headers sunlinsol/sunlinsol_cusolversp_batchqr.h
CMake target SUNDIALS::sunlinsolcusolversp

16.7.5.3 Dense

To use the dense SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the dense SUNLinearSolver is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 16.55: The dense SUNLinearSolver library, header file, and CMake
target

Libraries libsundials_sunlinsoldense.LIB
Headers sunlinsol/sunlinsol_dense.h
CMake target SUNDIALS::sunlinsoldense

16.7.5.4 Ginkgo

To use the Ginkgo SUNLinearSolver, include the header file given below.

Table 16.56: The Ginkgo SUNLinearSolver header file and CMake target

Headers sunlinsol/sunlinsol_ginkgo.hpp
CMake target SUNDIALS::sunlinsolginkgo

730 Chapter 16. Installing SUNDIALS

User Documentation for ARKODE, v6.3.0

16.7.5.5 KLU

To use the KLU SUNLinearSolver, include the header file and link to the library given below.

Table 16.57: The KLU SUNLinearSolver library, header file, and CMake
target

Libraries libsundials_sunlinsolklu.LIB
Headers sunlinsol/sunlinsol_klu.h
CMake target SUNDIALS::sunlinsolklu

16.7.5.6 KokkosKernels Dense

To use the KokkosKernels dense SUNLinearSolver, include the header file given below.

Table 16.58: The KokkosKernels dense SUNLinearSolver header file and
CMake target

Headers sunlinsol/sunlinsol_kokkosdense.hpp
CMake target SUNDIALS::sunlinsolkokkosdense

16.7.5.7 LAPACK Banded

To use the LAPACK banded SUNLinearSolver, include the header file and link to the library given below.

Table 16.59: The LAPACK banded SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsollapackband.LIB
Headers sunlinsol/sunlinsol_lapackband.h
CMake target SUNDIALS::sunlinsollapackband

16.7.5.8 LAPACK Dense

To use the LAPACK dense SUNLinearSolver, include the header file and link to the library given below.

Table 16.60: The LAPACK dense SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsollapackdense.LIB
Headers sunlinsol/sunlinsol_lapackdense.h
CMake target SUNDIALS::sunlinsollapackdense

16.7. Libraries and Header Files 731

User Documentation for ARKODE, v6.3.0

16.7.5.9 MAGMA Dense

To use the MAGMA dense SUNLinearSolver, include the header file and link to the library given below.

Table 16.61: The MAGMA dense SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsolmagmadense.LIB
Headers sunlinsol/sunlinsol_magmadense.h
CMake target SUNDIALS::sunlinsolmagmadense

16.7.5.10 oneMKL Dense

To use the oneMKL dense SUNLinearSolver, include the header file and link to the library given below.

Table 16.62: The oneMKL dense SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsolonemkldense.LIB
Headers sunlinsol/sunlinsol_onemkldense.h
CMake target SUNDIALS::sunlinsolonemkldense

16.7.5.11 Preconditioned Conjugate Gradient (PCG)

To use the PCG SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the PCG SUNLinearSolver is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 16.63: The PCG SUNLinearSolver library, header file, and CMake
target

Libraries libsundials_sunlinsolpcg.LIB
Headers sunlinsol/sunlinsol_pcg.h
CMake target SUNDIALS::sunlinsolpcg

16.7.5.12 Scaled, Preconditioned Bi-Conjugate Gradient, Stabilized (SPBCGS)

To use the SPBCGS SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the SPBCGS SUNLinearSolver is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 16.64: The SPBCGS SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolspbcgs.LIB
Headers sunlinsol/sunlinsol_spbcgs.h
CMake target SUNDIALS::sunlinsolspbcgs

732 Chapter 16. Installing SUNDIALS

User Documentation for ARKODE, v6.3.0

16.7.5.13 Scaled, Preconditioned, Flexible, Generalized Minimum Residual (SPFGMR)

To use the SPFGMR SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the SPFGMR SUNLinearSolver is bun-
dled with the package library and it is not necessary to link to the library below when using those packages.

Table 16.65: The SPFGMR SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolspfgmr.LIB
Headers sunlinsol/sunlinsol_spfgmr.h
CMake target SUNDIALS::sunlinsolspfgmr

16.7.5.14 Scaled, Preconditioned, Generalized Minimum Residual (SPGMR)

To use the SPGMR SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the SPGMR SUNLinearSolver is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 16.66: The SPGMR SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolspgmr.LIB
Headers sunlinsol/sunlinsol_spgmr.h
CMake target SUNDIALS::sunlinsolspgmr

16.7.5.15 Scaled, Preconditioned, Transpose-Free Quasi-Minimum Residual (SPTFQMR)

To use the SPTFQMR SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the SPTFQMR SUNLinearSolver is bun-
dled with the package library and it is not necessary to link to the library below when using those packages.

Table 16.67: The SPTFQMR SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolsptfqmr.LIB
Headers sunlinsol/sunlinsol_sptfqmr.h
CMake target SUNDIALS::sunlinsolsptfqmr

16.7.5.16 SuperLU_DIST

To use the SuperLU_DIST SUNLinearSolver, include the header file and link to the library given below.

Table 16.68: The SuperLU_DIST SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsolsuperludist.LIB
Headers sunlinsol/sunlinsol_superludist.h
CMake target SUNDIALS::sunlinsolsuperludist

16.7. Libraries and Header Files 733

User Documentation for ARKODE, v6.3.0

16.7.5.17 SuperLU_MT

To use the SuperLU_MT SUNLinearSolver, include the header file and link to the library given below.

Table 16.69: The SuperLU_MT SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsolsuperlumt.LIB
Headers sunlinsol/sunlinsol_superlumt.h
CMake target SUNDIALS::sunlinsolsuperlumt

16.7.6 Nonlinear Solvers

16.7.6.1 Newton

To use the Newton SUNNonlinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages, the Newton SUNNonlinearSolver is bundled with the package
library and it is not necessary to link to the library below when using those packages.

Table 16.70: The Newton SUNNonlinearSolver library, header file, and
CMake target

Libraries libsundials_sunnonlinsolnewton.LIB
Headers sunnonlinsol/sunnonlinsol_newton.h
CMake target SUNDIALS::sunnonlinsolnewton

16.7.6.2 Fixed-point

To use the fixed-point SUNNonlinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages, the fixed-point SUNNonlinearSolver is bundled with the package
library and it is not necessary to link to the library below when using those packages.

Table 16.71: The Fixed-point SUNNonlinearSolver library, header file,
and CMake target

Libraries libsundials_sunnonlinsolfixedpoint.LIB
Headers sunnonlinsol/sunnonlinsol_fixedpoint.h
CMake target SUNDIALS::sunnonlinsolfixedpoint

16.7.6.3 PETSc SNES

To use the PETSc SNES SUNNonlinearSolver, include the header file and link to the library given below.

Table 16.72: The PETSc SNES SUNNonlinearSolver library, header file,
and CMake target

Libraries libsundials_sunnonlinsolpetscsnes.LIB
Headers sunnonlinsol/sunnonlinsol_petscsnes.h
CMake target SUNDIALS::sunnonlinsolpetscsnes

734 Chapter 16. Installing SUNDIALS

User Documentation for ARKODE, v6.3.0

16.7.7 Memory Helpers

16.7.7.1 System

When using SUNDIALS time integration packages or the KINSOL package, the system SUNMemoryHelper is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 16.73: SUNDIALS system memory helper header file

Headers sunmemory/sunmemory_system.h

16.7.7.2 CUDA

To use the CUDA SUNMemoryHelper, include the header file given below when using a CUDA-enabled NVector or
SUNMatrix.

Table 16.74: SUNDIALS CUDA memory helper header file

Headers sunmemory/sunmemory_cuda.h

16.7.7.3 HIP

To use the HIP SUNMemoryHelper, include the header file given below when using a HIP-enabled NVector or SUN-
Matrix.

Table 16.75: SUNDIALS HIP memory helper header file

Headers sunmemory/sunmemory_hip.h

16.7.7.4 SYCL

To use the SYCL SUNMemoryHelper, include the header file given below when using a SYCL-enabled NVector or
SUNMatrix.

Table 16.76: SUNDIALS SYCL memory helper header file

Headers sunmemory/sunmemory_sycl.h

16.7.8 Execution Policies

16.7.8.1 CUDA

When using a CUDA-enabled NVector or SUNMatrix, include the header file below to access the CUDA execution
policy C++ classes.

Table 16.77: SUNDIALS CUDA execution policies header file

Headers sundials/sundials_cuda_policies.hpp

16.7. Libraries and Header Files 735

User Documentation for ARKODE, v6.3.0

16.7.8.2 HIP

When using a HIP-enabled NVector or SUNMatrix, include the header file below to access the HIP execution policy
C++ classes.

Table 16.78: SUNDIALS HIP execution policies header file

Headers sundials/sundials_hip_policies.hpp

16.7.8.3 SYCL

When using a SYCL-enabled NVector or SUNMatrix, include the header file below to access the SYCL execution
policy C++ classes.

Table 16.79: SUNDIALS SYCL execution policies header file

Headers sundials/sundials_sycl_policies.hpp

16.7.9 Adjoint Sensitivity Checkpointing

16.7.9.1 Fixed ASA checkpointing

For fixed-interval adjoint checkpointing, include the header file below:

Table 16.80: SUNDIALS fixed adjoint checkpointing header files

Headers sunadjointcheckpointscheme/sunadjointcheckpointscheme_fixed.h

736 Chapter 16. Installing SUNDIALS

Chapter 17

ARKODE Constants

Below we list all input and output constants used by the main solver, timestepper, and linear solver modules, together
with a short description of their meaning. Table 17.1 contains the ARKODE input constants, and Table 17.2 contains
the ARKODE output constants.

Table 17.1: ARKODE input constants

Shared input constants
ARK_NORMAL Solver should return at a specified output time.
ARK_ONE_STEP Solver should return after each successful step.

Full right-hand side evaluation constants
ARK_FULLRHS_START Calling the full right-hand side function at the start of the integra-

tion.
ARK_FULLRHS_END Calling the full right-hand side function at the end of a step.
ARK_FULLRHS_OTHER Calling the full right-hand side function at the some other point

e.g., for dense output.

Interpolation module input constants
ARK_INTERP_NONE Disables polynomial interpolation for dense output.
ARK_INTERP_HERMITE Specifies use of the Hermite polynomial interpolation module (for

non-stiff problems).
ARK_INTERP_LAGRANGE Specifies use of the Lagrange polynomial interpolation module

(for stiff problems).
ARK_INTERP_MAX_DEGREE Maximum possible interpolating polynomial degree.

Relaxation module input constants
ARK_RELAX_BRENT Specifies Brent’s method as the relaxation nonlinear solver.
ARK_RELAX_NEWTON Specifies Newton’s method as the relaxation nonlinear solver.

Default explicit Butcher tables
ARKSTEP_DEFAULT_ERK_1 Use ARKStep’s default first-order ERK method ARKODE_FOR-

WARD_EULER_1_1.
ARKSTEP_DEFAULT_ERK_2 Use ARKStep’s default second-order ERK method ARKODE_RAL-

STON_3_1_2.
ARKSTEP_DEFAULT_ERK_3 Use ARKStep’s default third-order ERK method ARKODE_BO-

GACKI_SHAMPINE_4_2_3.
continues on next page

737

User Documentation for ARKODE, v6.3.0

Table 17.1 – continued from previous page
ARKSTEP_DEFAULT_ERK_4 Use ARKStep’s default fourth-order ERK method ARKODE_-

SOFRONIOU_SPALETTA_5_3_4.
ARKSTEP_DEFAULT_ERK_5 Use ARKStep’s default fifth-order ERK method ARKODE_TSI-

TOURAS_7_4_5.
ARKSTEP_DEFAULT_ERK_6 Use ARKStep’s default sixth-order ERK method ARKODE_-

VERNER_9_5_6.
ARKSTEP_DEFAULT_ERK_7 Use ARKStep’s default seventh-order ERK method ARKODE_-

VERNER_10_6_7.
ARKSTEP_DEFAULT_ERK_8 Use ARKStep’s default eighth-order ERK method ARKODE_-

VERNER_13_7_8.
ARKSTEP_DEFAULT_ERK_9 Use ARKStep’s default ninth-order ERK method ARKODE_-

VERNER_16_8_9.
ERKSTEP_DEFAULT_1 Use ERKStep’s default first-order ERK method ARKODE_FOR-

WARD_EULER_1_1.
ERKSTEP_DEFAULT_2 Use ERKStep’s default second-order ERK method ARKODE_RAL-

STON_3_1_2.
ERKSTEP_DEFAULT_3 Use ERKStep’s default third-order ERK method ARKODE_BO-

GACKI_SHAMPINE_4_2_3.
ERKSTEP_DEFAULT_4 Use ERKStep’s default fourth-order ERK method ARKODE_-

SOFRONIOU_SPALETTA_5_3_4.
ERKSTEP_DEFAULT_5 Use ERKStep’s default fifth-order ERK method ARKODE_TSI-

TOURAS_7_4_5.
ERKSTEP_DEFAULT_6 Use ERKStep’s default sixth-order ERK method ARKODE_-

VERNER_9_5_6.
ERKSTEP_DEFAULT_7 Use ERKStep’s default seventh-order ERK method ARKODE_-

VERNER_10_6_7.
ERKSTEP_DEFAULT_8 Use ERKStep’s default eighth-order ERK method ARKODE_-

VERNER_13_7_8.
ERKSTEP_DEFAULT_9 Use ERKStep’s default ninth-order ERK method ARKODE_-

VERNER_16_8_9.

Default implicit Butcher tables
ARKSTEP_DEFAULT_DIRK_1 Use ARKStep’s default first-order DIRK method ARKODE_BACK-

WARD_EULER_1_1.
ARKSTEP_DEFAULT_DIRK_2 Use ARKStep’s default second-order DIRK method ARKODE_-

ARK2_DIRK_3_1_2.
ARKSTEP_DEFAULT_DIRK_3 Use ARKStep’s default third-order DIRK method ARKODE_ES-

DIRK325L2SA_5_2_3.
ARKSTEP_DEFAULT_DIRK_4 Use ARKStep’s default fourth-order DIRK method ARKODE_ES-

DIRK436L2SA_6_3_4.
ARKSTEP_DEFAULT_DIRK_5 Use ARKStep’s default fifth-order DIRK method ARKODE_ES-

DIRK547L2SA2_7_4_5.

Default ImEx Butcher tables
ARKSTEP_DEFAULT_ARK_ETABLE_2 &
ARKSTEP_DEFAULT_ARK_ITABLE_2

Use ARKStep’s default second-order ARK method (ARKODE_-
ARK2_ERK_3_1_2 and ARKODE_ARK2_DIRK_3_1_2).

ARKSTEP_DEFAULT_ARK_ETABLE_3 &
ARKSTEP_DEFAULT_ARK_ITABLE_3

Use ARKStep’s default third-order ARK method (ARKODE_-
ARK324L2SA_ERK_4_2_3 and ARKODE_ARK324L2SA_-
DIRK_4_2_3).

ARKSTEP_DEFAULT_ARK_ETABLE_4 &
ARKSTEP_DEFAULT_ARK_ITABLE_4

Use ARKStep’s default fourth-order ARK method (ARKODE_-
ARK436L2SA_ERK_6_3_4 and ARKODE_ARK436L2SA_-
DIRK_6_3_4).

continues on next page

738 Chapter 17. ARKODE Constants

User Documentation for ARKODE, v6.3.0

Table 17.1 – continued from previous page
ARKSTEP_DEFAULT_ARK_ETABLE_5 &
ARKSTEP_DEFAULT_ARK_ITABLE_5

Use ARKStep’s default fifth-order ARK method (ARKODE_-
ARK548L2SA_ERK_8_4_5 and ARKODE_ARK548L2SA_-
DIRK_8_4_5).

LSRK method types
ARKODE_LSRK_RKC_2 2nd order Runge-Kutta-Chebyshev (RKC) method ARKODE_-

LSRK_RKC_2
ARKODE_LSRK_RKL_2 2nd order Runge-Kutta-Legendre (RKL) method ARKODE_-

LSRK_RKL_2
ARKODE_LSRK_SSP_S_2 Optimal 2nd order s-stage SSP RK method ARKODE_LSRK_SSP_-

S_2
ARKODE_LSRK_SSP_S_3 Optimal 3rd order s-stage SSP RK method ARKODE_LSRK_SSP_-

S_3
ARKODE_LSRK_SSP_10_4 Optimal 4th order 10-stage SSP RK method ARKODE_LSRK_-

SSP_10_4

MRI method types
MRISTEP_EXPLICIT Use an explicit (at the slow time scale) MRI method.
MRISTEP_IMPLICIT Use an implicit (at the slow time scale) MRI method.
MRISTEP_IMEX Use an ImEx (at the slow time scale) MRI method.

Default MRI coupling tables
MRISTEP_DEFAULT_EXPL_1 Use MRIStep’s default 1st-order explicit method (ARKODE_-

MRI_GARK_FORWARD_EULER).
MRISTEP_DEFAULT_EXPL_2 Use MRIStep’s default 2nd-order explicit method (ARKODE_-

MRI_GARK_ERK22b).
MRISTEP_DEFAULT_EXPL_3 Use MRIStep’s default 3rd-order explicit method (ARKODE_-

MIS_KW3).
MRISTEP_DEFAULT_EXPL_4 Use MRIStep’s default 4th-order explicit method (ARKODE_-

MRI_GARK_ERK45a).
MRISTEP_DEFAULT_EXPL_2_AD Use MRIStep’s default 2nd-order adaptive explicit method

(ARKODE_MRI_GARK_ERK22a).
MRISTEP_DEFAULT_EXPL_3_AD Use MRIStep’s default 3rd-order adaptive explicit method

(ARKODE_MRI_GARK_ERK33a).
MRISTEP_DEFAULT_EXPL_4_AD Use MRIStep’s default 4th-order adaptive explicit method

(ARKODE_MRI_GARK_ERK45a).
MRISTEP_DEFAULT_EXPL_5_AD Use MRIStep’s default 5th-order adaptive explicit method

(ARKODE_MERK54).
MRISTEP_DEFAULT_IMPL_SD_1 Use MRIStep’s default 1st-order solve-decoupled implicit method

(ARKODE_MRI_GARK_BACKWARD_EULER).
MRISTEP_DEFAULT_IMPL_SD_2 Use MRIStep’s default 2nd-order solve-decoupled implicit

method (ARKODE_MRI_GARK_IRK21a).
MRISTEP_DEFAULT_IMPL_SD_3 Use MRIStep’s default 3rd-order solve-decoupled implicit

method (ARKODE_MRI_GARK_ESDIRK34a).
MRISTEP_DEFAULT_IMPL_SD_4 Use MRIStep’s default 4th-order solve-decoupled implicit

method (ARKODE_MRI_GARK_ESDIRK46a).
MRISTEP_DEFAULT_IMEX_SD_1 Use MRIStep’s default 1st-order solve-decoupled ImEx method

(ARKODE_IMEX_MRI_GARK_EULER).
MRISTEP_DEFAULT_IMEX_SD_2 Use MRIStep’s default 2nd-order solve-decoupled ImEx method

(ARKODE_IMEX_MRI_GARK_TRAPEZOIDAL).
MRISTEP_DEFAULT_IMEX_SD_3 Use MRIStep’s default 3rd-order solve-decoupled ImEx method

(ARKODE_IMEX_MRI_GARK3b).
continues on next page

739

User Documentation for ARKODE, v6.3.0

Table 17.1 – continued from previous page
MRISTEP_DEFAULT_IMEX_SD_4 Use MRIStep’s default 4th-order solve-decoupled ImEx method

(ARKODE_IMEX_MRI_GARK4).
MRISTEP_DEFAULT_IMEX_SD_2_AD Use MRIStep’s default 2nd-order solve-decoupled adaptive ImEx

method (ARKODE_IMEX_MRI_SR21).
MRISTEP_DEFAULT_IMEX_SD_3_AD Use MRIStep’s default 3rd-order solve-decoupled adaptive ImEx

method (ARKODE_IMEX_MRI_SR32).
MRISTEP_DEFAULT_IMEX_SD_4_AD Use MRIStep’s default 4th-order solve-decoupled adaptive ImEx

method (ARKODE_IMEX_MRI_SR43).

Table 17.2: ARKODE output constants

Shared output constants
ARK_SUCCESS 0 Successful function return.
ARK_TSTOP_RETURN 1 ARKODE succeeded by reaching the specified stopping point.
ARK_ROOT_RETURN 2 ARKODE succeeded and found one more more roots.
ARK_WARNING 99 ARKODE succeeded but an unusual situation occurred.
ARK_TOO_MUCH_WORK -1 The solver took mxstep internal steps but could not reach tout.
ARK_TOO_MUCH_ACC -2 The solver could not satisfy the accuracy demanded by the user for some

internal step.
ARK_ERR_FAILURE -3 Error test failures occurred too many times during one internal time step, or

the minimum step size was reached.
ARK_CONV_FAILURE -4 Convergence test failures occurred too many times during one internal time

step, or the minimum step size was reached.
ARK_LINIT_FAIL -5 The linear solver’s initialization function failed.
ARK_LSETUP_FAIL -6 The linear solver’s setup function failed in an unrecoverable manner.
ARK_LSOLVE_FAIL -7 The linear solver’s solve function failed in an unrecoverable manner.
ARK_RHSFUNC_FAIL -8 The right-hand side function failed in an unrecoverable manner.
ARK_FIRST_RHSFUNC_-
ERR

-9 The right-hand side function failed at the first call.

ARK_REPTD_RHSFUNC_-
ERR

-10 The right-hand side function had repeated recoverable errors.

ARK_UNREC_RHS-
FUNC_ERR

-11 The right-hand side function had a recoverable error, but no recovery is pos-
sible.

ARK_RTFUNC_FAIL -12 The rootfinding function failed in an unrecoverable manner.
ARK_LFREE_FAIL -13 The linear solver’s memory deallocation function failed.
ARK_MASSINIT_FAIL -14 The mass matrix linear solver’s initialization function failed.
ARK_MASSSETUP_FAIL -15 The mass matrix linear solver’s setup function failed in an unrecoverable

manner.
ARK_MASSSOLVE_FAIL -16 The mass matrix linear solver’s solve function failed in an unrecoverable

manner.
ARK_MASSFREE_FAIL -17 The mass matrix linear solver’s memory deallocation function failed.
ARK_MASSMULT_FAIL -18 The mass matrix-vector product function failed.
ARK_CONSTR_FAIL -19 The inequality constraint test failed repeatedly or failed with the minimum

step size.
ARK_MEM_FAIL -20 A memory allocation failed.
ARK_MEM_NULL -21 The arkode_mem argument was NULL.
ARK_ILL_INPUT -22 One of the function inputs is illegal.
ARK_NO_MALLOC -23 The ARKODE memory block was not allocated by a call to ARKStepCre-

ate(), ERKStepCreate(), or MRIStepCreate().
ARK_BAD_K -24 The derivative order k is larger than allowed.
ARK_BAD_T -25 The time t is outside the last step taken.

continues on next page

740 Chapter 17. ARKODE Constants

User Documentation for ARKODE, v6.3.0

Table 17.2 – continued from previous page
ARK_BAD_DKY -26 The output derivative vector is NULL.
ARK_TOO_CLOSE -27 The output and initial times are too close to each other.
ARK_VECTOROP_ERR -28 An error occurred when calling an N_Vector routine.
ARK_NLS_INIT_FAIL -29 An error occurred when initializing a SUNNonlinSol module.
ARK_NLS_SETUP_FAIL -30 A non-recoverable error occurred when setting up a SUNNonlinSol module.
ARK_NLS_SETUP_-
RECVR

-31 A recoverable error occurred when setting up a SUNNonlinSol module.

ARK_NLS_OP_ERR -32 An error occurred when calling a set/get routine in a SUNNonlinSol module.
ARK_INNERSTEP_AT-
TACH_ERR

-33 An error occurred when attaching the inner stepper module.

ARK_INNERSTEP_FAIL -34 An error occurred in the inner stepper module.
ARK_PREINNERFN_FAIL -35 An error occurred in the MRIStep pre inner integrator function.
ARK_POSTINNERFN_-
FAIL

-36 An error occurred in the MRIStep post inner integrator function.

ARK_INTERP_FAIL -40 An error occurred in the ARKODE polynomial interpolation module.
ARK_INVALID_TABLE -41 An invalid Butcher or MRI table was encountered.
ARK_CONTEXT_ERR -42 An error occurred with the SUNDIALS context object
ARK_RELAX_FAIL -43 An error occurred in computing the relaxation parameter
ARK_RELAX_MEM_FAIL -44 The relaxation memory structure is NULL
ARK_RELAX_FUNC_FAIL -45 The relaxation function returned an unrecoverable error
ARK_RELAX_JAC_FAIL -46 The relaxation Jacobian function returned an unrecoverable error
ARK_CONTROLLER_ERR -47 An error with a SUNAdaptController object was encountered.
ARK_STEPPER_UNSUP-
PORTED

-48 An operation was not supported by the current time-stepping module.

ARK_DOMEIG_FAIL -49 The dominant eigenvalue function failed. It is either not provided or returns
an illegal value.

ARK_MAX_STAGE_-
LIMIT_FAIL

-50 Stepper failed to achieve stable results. Either reduce the step size or increase
the stage_max_limit

ARK_SUNSTEPPER_ERR -51 An error occurred in the SUNStepper module.
ARK_STEP_DIRECTION_-
ERR

-52 An error occurred changing the step direction.

ARK_ADJ_CHECK-
POINT_FAIL

-53 An occurred when checkpointing a state during the adjoint integration.

ARK_ADJ_RECOMPUTE_-
FAIL

-54 An occurred recomputing steps during the adjoint integration.

ARK_SUNADJSTEPPER_-
ERR

-55 An error occurred in the SUNAdjStepper module.

ARK_UNRECOGNIZED_-
ERROR

-99 An unknown error was encountered.

ARKLS linear solver module output constants
ARKLS_SUCCESS 0 Successful function return.
ARKLS_MEM_NULL -1 The arkode_mem argument was NULL.
ARKLS_LMEM_NULL -2 The ARKLS linear solver interface has not been initialized.
ARKLS_ILL_INPUT -3 The ARKLS solver interface is not compatible with the current N_Vector

module, or an input value was illegal.
ARKLS_MEM_FAIL -4 A memory allocation request failed.
ARKLS_PMEM_NULL -5 The preconditioner module has not been initialized.
ARKLS_MASSMEM_-
NULL

-6 The ARKLS mass-matrix linear solver interface has not been initialized.

ARKLS_JACFUNC_UN-
RECVR

-7 The Jacobian function failed in an unrecoverable manner.

continues on next page

741

User Documentation for ARKODE, v6.3.0

Table 17.2 – continued from previous page
ARKLS_JACFUNC_-
RECVR

-8 The Jacobian function had a recoverable error.

ARKLS_MASSFUNC_UN-
RECVR

-9 The mass matrix function failed in an unrecoverable manner.

ARKLS_MASSFUNC_-
RECVR

-10 The mass matrix function had a recoverable error.

ARKLS_SUNMAT_FAIL -11 An error occurred with the current SUNMatrix module.
ARKLS_SUNLS_FAIL -12 An error occurred with the current SUNLinearSolver module.

enum ARKRelaxSolver
Nonlinear solver identifiers used to specify the method for solving (2.63) when relaxation is enabled.

enumerator ARK_RELAX_NEWTON
Newton’s method

enumerator ARK_RELAX_BRENT
Brent’s method

742 Chapter 17. ARKODE Constants

Chapter 18

Butcher Tables

Here we catalog the full set of Butcher tables included in ARKODE. We group these into four categories: explicit,
implicit, additive and symplectic partitioned. However, since the methods that comprise an additive Runge–Kutta
method are themselves explicit and implicit, their component Butcher tables are listed within their separate sections,
but are referenced together in the additive section.

In each of the following tables, we use the following notation (shown for a 3-stage method):

c1 a1,1 a1,2 a1,3
c2 a2,1 a2,2 a2,3
c3 a3,1 a3,2 a3,3
q b1 b2 b3
p b̃1 b̃2 b̃3

where here the method and embedding share stage A and c values, but use their stages zi differently through the
coefficients b and b̃ to generate methods of orders q (the main method) and p (the embedding, typically q = p + 1,
though sometimes this is reversed).

Method authors often use different naming conventions to categorize their methods. For each of the methods below
with an embedding, we follow the uniform naming convention:

NAME-S-P-Q

where here

• NAME is the author or the name provided by the author (if applicable),

• S is the number of stages in the method,

• P is the global order of accuracy for the embedding,

• Q is the global order of accuracy for the method.

For methods without an embedding (e.g., fixed-step methods) P is omitted so that methods follow the naming convention
NAME-S-Q.

For SPRK methods, the naming convention is SPRK-NAME-S-Q.

In the code, unique integer IDs are defined inside arkode_butcher_erk.h and arkode_butcher_dirk.h for each
method, which may be used by calling routines to specify the desired method. SPRK methods are defined inside
arkode_sprk.h. These names are specified in fixed width font at the start of each method’s section below.

Additionally, for each method we provide a plot of the linear stability region in the complex plane. These have been
computed via the following approach. For any Runge–Kutta method as defined above, we may define the stability

743

User Documentation for ARKODE, v6.3.0

function

R(η) = 1 + ηb[I − ηA]−1e,

where e ∈ Rs is a column vector of all ones, η = hλ and h is the time step size. If the stability function satisfies
|R(η)| ≤ 1 for all eigenvalues, λ, of ∂

∂yf(t, y) for a given IVP, then the method will be linearly stable for that problem
and step size. The stability region

S = {η ∈ C : |R(η)| ≤ 1}

is typically given by an enclosed region of the complex plane, so it is standard to search for the border of that region in
order to understand the method. Since all complex numbers with unit magnitude may be written as eiθ for some value
of θ, we perform the following algorithm to trace out this boundary.

1. Define an array of values Theta. Since we wish for a smooth curve, and since we wish to trace out the entire
boundary, we choose 10,000 linearly-spaced points from 0 to 16π. Since some angles will correspond to multiple
locations on the stability boundary, by going beyond 2π we ensure that all boundary locations are plotted, and
by using such a fine discretization the Newton method (next step) is more likely to converge to the root closest
to the previous boundary point, ensuring a smooth plot.

2. For each value θ ∈ Theta, we solve the nonlinear equation

0 = f(η) = R(η)− eiθ

using a finite-difference Newton iteration, using tolerance 10−7, and differencing parameter
√
ε (≈ 10−8).

In this iteration, we use as initial guess the solution from the previous value of θ, starting with an initial-initial
guess of η = 0 for θ = 0.

3. We then plot the resulting η values that trace the stability region boundary.

We note that for any stable IVP method, the value η0 = −ε + 0i is always within the stability region. So in each of
the following pictures, the interior of the stability region is the connected region that includes η0. Resultingly, methods
whose linear stability boundary is located entirely in the right half-plane indicate an A-stable method.

18.1 Explicit Butcher tables

In the category of explicit Runge–Kutta methods, ARKODE includes methods that have orders 2 through 9, with
embeddings that are of orders 1 through 8. ARKODE’s explicit Butcher tables are provided in the enumeration

enum ARKODE_ERKTableID

with values specified in Table 18.1.

744 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

Table 18.1: Explicit Butcher tables. The default method for each order is
marked with an asterisk (*).

Method ID Stages Embedded Order Order
ARKODE_FORWARD_EULER_1_1 1 — 1*
ARKODE_RALSTON_3_1_2 3 1 2*
ARKODE_HEUN_EULER_2_1_2 2 1 2
ARKODE_RALSTON_EULER_2_1_2 2 1 2
ARKODE_EXPLICIT_MIDPOINT_EULER_2_1_2 2 1 2
ARKODE_ARK2_ERK_3_1_2 3 1 2
ARKODE_BOGACKI_SHAMPINE_4_2_3 4 2 3*
ARKODE_ARK324L2SA_ERK_4_2_3 4 2 3
ARKODE_SHU_OSHER_3_2_3 3 2 3
ARKODE_KNOTH_WOLKE_3_3 3 — 3
ARKODE_SOFRONIOU_SPALETTA_5_3_4 5 3 4*
ARKODE_ZONNEVELD_5_3_4 5 3 4
ARKODE_ARK436L2SA_ERK_6_3_4 6 3 4
ARKODE_ARK437L2SA_ERK_7_3_4 7 3 4
ARKODE_SAYFY_ABURUB_6_3_4 6 3 4
ARKODE_TSITOURAS_7_4_5 7 4 5*
ARKODE_CASH_KARP_6_4_5 6 4 5
ARKODE_FEHLBERG_6_4_5 6 4 5
ARKODE_DORMAND_PRINCE_7_4_5 7 4 5
ARKODE_ARK548L2SA_ERK_8_4_5 8 4 5
ARKODE_ARK548L2SAb_ERK_8_4_5 8 4 5
ARKODE_VERNER_9_5_6 9 5 6*
ARKODE_VERNER_8_5_6 8 5 6
ARKODE_VERNER_10_6_7 10 6 7*
ARKODE_VERNER_13_7_8 13 7 8*
ARKODE_FEHLBERG_13_7_8 13 7 8
ARKODE_VERNER_16_8_9 16 8 9*

enumerator ARKODE_FORWARD_EULER_1_1

Accessible via the constant ARKODE_FORWARD_EULER_1_1 to ARKStepSetTableNum(), ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_FORWARD_EULER_1_1" to ARKStepSet-
TableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). This is the default 1st or-
der explicit method (from [39]).

0 0

1 1

enumerator ARKODE_RALSTON_3_1_2

Accessible via the constant ARKODE_RALSTON_3_1_2 to ARKStepSetTableNum(), ERKStepSetTableNum() or
ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_RALSTON_3_1_2" to ARKStepSetTable-
Name(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). This is the default 2nd order
explicit method (primary method from [83]).

18.1. Explicit Butcher tables 745

User Documentation for ARKODE, v6.3.0

Fig. 18.1: Linear stability region for the forward Euler method.

Changed in version 6.3.0: Added as the default 2nd order explicit method

0 0 0 0

2
3

2
3 0 0

1 1
4

3
4 0

2 1
4

3
4 0

1 5
37

2
3

22
111

Fig. 18.2: Linear stability region for the Ralston method. The method’s region is outlined in blue; the embedding’s
region is in red.

enumerator ARKODE_HEUN_EULER_2_1_2

Accessible via the constant ARKODE_HEUN_EULER_2_1_2 to ARKStepSetTableNum(), ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_HEUN_EULER_2_1_2" to ARKStepSet-
TableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). (primary method from
[88]).

746 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

Changed in version 6.3.0: Replaced by ARKODE_RALSTON_3_1_2 as the default 2nd order explicit method

0 0 0

1 1 0

2 1
2

1
2

1 1 0

Fig. 18.3: Linear stability region for the Heun-Euler method. The method’s region is outlined in blue; the embedding’s
region is in red.

enumerator ARKODE_RALSTON_EULER_2_1_2

Accessible via the constant ARKODE_RALSTON_EULER_2_1_2 to ARKStepSetTableNum(), ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_RALSTON_EULER_2_1_2" to ARK-
StepSetTableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). (primary
method from [83]).

0 0 0

2
3

2
3 0

2 1
4

3
4

1 1 0

enumerator ARKODE_EXPLICIT_MIDPOINT_EULER_2_1_2

Accessible via the constant ARKODE_EXPLICIT_MIDPOINT_EULER_2_1_2 to ARKStepSetTableNum(), ERK-
StepSetTableNum() or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_EXPLICIT_MID-
POINT_EULER_2_1_2" to ARKStepSetTableName(), ERKStepSetTableName() or ARKodeButcherTable_Load-

18.1. Explicit Butcher tables 747

User Documentation for ARKODE, v6.3.0

Fig. 18.4: Linear stability region for the Ralston-Euler method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

ERKByName(). (primary method from [88]).

0 0 0

1
2

1
2 0

2 0 1

1 1 0

Fig. 18.5: Linear stability region for the Explicit-Midpoint-Euler method. The method’s region is outlined in blue; the
embedding’s region is in red.

enumerator ARKODE_ARK2_ERK_3_1_2

Accessible via the constant ARKODE_ARK2_ERK_3_1_2 to ARKStepSetTableNum(), ERKStepSetTableNum() or
ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_ARK2_ERK_3_1_2" to ARKStepSetTable-
Name(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). This is the explicit portion of

748 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

the default 2nd order additive method (the explicit portion of the ARK2 method from [49]).

0 0 0 0

2−
√

2 2−
√

2 0 0

1 1− 3+2
√
2

6
3+2
√
2

6 0

2 1
2
√
2

1
2
√
2

1− 1√
2

1 4−
√
2

8
4−
√
2

8
1

2
√
2

Fig. 18.6: Linear stability region for the ARK2-ERK method. The method’s region is outlined in blue; the embedding’s
region is in red.

enumerator ARKODE_BOGACKI_SHAMPINE_4_2_3

Accessible via the constant ARKODE_BOGACKI_SHAMPINE_4_2_3 to ARKStepSetTableNum(), ERKStepSet-
TableNum() or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_BOGACKI_SHAMPINE_-
4_2_3" to ARKStepSetTableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName().
This is the default 3rd order explicit method (from [19]).

0 0 0 0 0

1
2

1
2 0 0 0

3
4 0 3

4 0 0

1 2
9

1
3

4
9 0

3 2
9

1
3

4
9

2 7
24

1
4

1
3

1
8

enumerator ARKODE_ARK324L2SA_ERK_4_2_3

Accessible via the constant ARKODE_ARK324L2SA_ERK_4_2_3 to ARKStepSetTableNum(), ERKStepSet-
TableNum() or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_ARK324L2SA_ERK_4_2_3"

18.1. Explicit Butcher tables 749

User Documentation for ARKODE, v6.3.0

Fig. 18.7: Linear stability region for the Bogacki-Shampine method. The method’s region is outlined in blue; the
embedding’s region is in red.

to ARKStepSetTableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). This is
the explicit portion of the default 3rd order additive method (the explicit portion of the ARK3(2)4L[2]SA method from
[67]).

0 0 0 0 0

1767732205903
2027836641118

1767732205903
2027836641118 0 0 0

3
5

5535828885825
10492691773637

788022342437
10882634858940 0 0

1 6485989280629
16251701735622 − 4246266847089

9704473918619
10755448449292
10357097424841 0

3 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

2 2756255671327
12835298489170 − 10771552573575

22201958757719
9247589265047
10645013368117

2193209047091
5459859503100

enumerator ARKODE_SHU_OSHER_3_2_3

Accessible via the constant ARKODE_SHU_OSHER_3_2_3 to ARKStepSetTableNum(), ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_SHU_OSHER_3_2_3" to ARKStepSet-
TableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). (from [100] with embed-
ding from [44]).

0 0 0 0

1 1 0 0

1
2

1
4

1
4 0

3 1
6

1
6

2
3

2 291485418878409
1000000000000000

291485418878409
1000000000000000

208514581121591
500000000000000

enumerator ARKODE_KNOTH_WOLKE_3_3

750 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

Fig. 18.8: Linear stability region for the explicit ARK-4-2-3 method. The method’s region is outlined in blue; the
embedding’s region is in red.

Fig. 18.9: Linear stability region for the Shu-Osher method. The method’s region is outlined in blue; the embedding’s
region is in red.

18.1. Explicit Butcher tables 751

User Documentation for ARKODE, v6.3.0

Accessible via the constant ARKODE_KNOTH_WOLKE_3_3 to ARKStepSetTableNum(), ERKStepSetTableNum(),
or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_KNOTH_WOLKE_3_3" to ARKStepSet-
TableName(), ERKStepSetTableName(), or ARKodeButcherTable_LoadERKByName(). This is the default 3th
order slow and fast MRIStep method (from [73]).

0 0 0 0

1
3

1
3 0 0

3
4 − 3

16
15
16 0

3 1
6

3
10

8
15

Fig. 18.10: Linear stability region for the Knoth-Wolke method

enumerator ARKODE_SOFRONIOU_SPALETTA_5_3_4

Accessible via the constant ARKODE_SOFRONIOU_SPALETTA_5_3_4 to ARKStepSetTableNum(), ERKStepSet-
TableNum() or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_SOFRONIOU_SPALETTA_-
5_3_4" to ARKStepSetTableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName().
This is the default 4th order explicit method. (from [105]).

Changed in version 6.3.0: Made the default 4th order explicit method

0 0 0 0 0 0

2
5

2
5 0 0 0 0

3
5 − 3

20
3
4 0 0 0

1 19
44 − 15

44
10
11 0 0

1 11
72

25
72

25
72

11
72 0

4 11
72

25
72

25
72

11
72 0

3 1251515
8970912

3710105
8970912

2519695
8970912

61105
8970912

119041
747576

enumerator ARKODE_ZONNEVELD_5_3_4

Accessible via the constant ARKODE_ZONNEVELD_5_3_4 to ARKStepSetTableNum(), ERKStepSetTableNum(),
or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_ZONNEVELD_5_3_4" to ARKStepSet-
TableName(), ERKStepSetTableName(), or ARKodeButcherTable_LoadERKByName(). (from [125]).

752 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

Fig. 18.11: Linear stability region for the Sofroniou-Spaletta method. The method’s region is outlined in blue; the
embedding’s region is in red.

Changed in version 6.3.0: Replaced by ARKODE_SOFRONIOU_SPALETTA_5_3_4 as the default 4th order explicit method

0 0 0 0 0 0

1
2

1
2 0 0 0 0

1
2 0 1

2 0 0 0

1 0 0 1 0 0

3
4

5
32

7
32

13
32 − 1

32 0

4 1
6

1
3

1
3

1
6 0

3 − 1
2

7
3

7
3

13
6 − 16

3

Fig. 18.12: Linear stability region for the Zonneveld method. The method’s region is outlined in blue; the embedding’s
region is in red.

18.1. Explicit Butcher tables 753

User Documentation for ARKODE, v6.3.0

enumerator ARKODE_ARK436L2SA_ERK_6_3_4

Accessible via the constant ARKODE_ARK436L2SA_ERK_6_3_4 to ARKStepSetTableNum(), ERKStepSet-
TableNum() or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_ARK436L2SA_ERK_6_3_4"
to ARKStepSetTableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). This is
the explicit portion of the ARK4(3)6L[2]SA method from [67].

Changed in version 6.3.0: Replaced by ARKODE_ARK437L2SA_ERK_7_3_4 as the explicit portion of the default 4th
order additive method

0 0 0 0 0 0 0

1
2

1
2 0 0 0 0 0

83
250

13861
62500

6889
62500 0 0 0 0

31
50 − 116923316275

2393684061468 − 2731218467317
15368042101831

9408046702089
11113171139209 0 0 0

17
20 − 451086348788

2902428689909 − 2682348792572
7519795681897

12662868775082
11960479115383

3355817975965
11060851509271 0 0

1 647845179188
3216320057751

73281519250
8382639484533

552539513391
3454668386233

3354512671639
8306763924573

4040
17871 0

4 82889
524892 0 15625

83664
69875
102672 − 2260

8211
1
4

3 4586570599
29645900160 0 178811875

945068544
814220225
1159782912 − 3700637

11593932
61727
225920

Fig. 18.13: Linear stability region for the ARK436L2SA-ERK-6-3-4 method. The method’s region is outlined in blue;
the embedding’s region is in red.

enumerator ARKODE_ARK437L2SA_ERK_7_3_4

Accessible via the constant ARKODE_ARK437L2SA_ERK_7_3_4 to ARKStepSetTableNum(), ERKStepSet-
TableNum() or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_ARK437L2SA_ERK_7_3_4"
to ARKStepSetTableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). This is
the explicit portion of the default 4th order additive method and the explicit portion of the ARK4(3)7L[2]SA method
from [70].

Changed in version 6.3.0: Made the explicit portion of the default 4th order additive method

754 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

The Butcher table is too large to fit in the PDF version of this documentation. Please see the HTML documentation for
the table coefficients.

Fig. 18.14: Linear stability region for the ARK437L2SA-ERK-7-3-4 method. The method’s region is outlined in blue;
the embedding’s region is in red.

enumerator ARKODE_SAYFY_ABURUB_6_3_4

Accessible via the constant ARKODE_SAYFY_ABURUB_6_3_4 to ARKStepSetTableNum(), ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_SAYFY_ABURUB_6_3_4" to ARK-
StepSetTableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). (from [94]).

0 0 0 0 0 0 0

1
2

1
2 0 0 0 0 0

1 −1 2 0 0 0 0

1 1
6

2
3

1
6 0 0 0

1
2

137
1000

113
500

137
1000 0 0 0

1 113
250 − 113

125 − 137
250 0 2 0

4 1
6

1
3

1
12 0 1

3
1
12

3 1
6

2
3

1
6 0 0 0

enumerator ARKODE_TSITOURAS_7_4_5

Accessible via the constant ARKODE_TSITOURAS_7_4_5 to ARKStepSetTableNum(), ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_TSITOURAS_7_4_5" to ARKStepSet-
TableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). This is the default 5th
order explicit method (from [119]).

Changed in version 6.3.0: Added as the default 5th order explicit method

The Butcher table is too large to fit in the PDF version of this documentation. Please see the HTML documentation for
the table coefficients.

18.1. Explicit Butcher tables 755

User Documentation for ARKODE, v6.3.0

Fig. 18.15: Linear stability region for the Sayfy-Aburub-6-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

Fig. 18.16: Linear stability region for the Tsitouras method. The method’s region is outlined in blue; the embedding’s
region is in red.

756 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

enumerator ARKODE_CASH_KARP_6_4_5

Accessible via the constant ARKODE_CASH_KARP_6_4_5 to ARKStepSetTableNum(), ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_CASH_KARP_6_4_5" to ARKStepSet-
TableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). (from [28]).

Changed in version 6.3.0: Replaced by ARKODE_TSITOURAS_7_4_5 as the default 5th order explicit method

0 0 0 0 0 0 0

1
5

1
5 0 0 0 0 0

3
10

3
40

9
40 0 0 0 0

3
5

3
10 − 9

10
6
5 0 0 0

1 − 11
54

5
2 − 70

27
35
27 0 0

7
8

1631
55296

175
512

575
13824

44275
110592

253
4096 0

5 37
378 0 250

621
125
594 0 512

1771

4 2825
27648 0 18575

48384
13525
55296

277
14336

1
4

Fig. 18.17: Linear stability region for the Cash-Karp method. The method’s region is outlined in blue; the embedding’s
region is in red.

enumerator ARKODE_FEHLBERG_6_4_5

Accessible via the constant ARKODE_FEHLBERG_6_4_5 to ARKStepSetTableNum(), ERKStepSetTableNum() or
ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_FEHLBERG_6_4_5" to ARKStepSetTable-

18.1. Explicit Butcher tables 757

User Documentation for ARKODE, v6.3.0

Name(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). (from [42]).

0 0 0 0 0 0 0

1
4

1
4 0 0 0 0 0

3
8

3
32

9
32 0 0 0 0

12
13

1932
2197 − 7200

2197
7296
2197 0 0 0

1 439
216 −8 3680

513 − 845
4104 0 0

1
2 − 8

27 2 − 3544
2565

1859
4104 − 11

40 0

5 16
135 0 6656

12825
28561
56430 − 9

50
2
55

4 25
216 0 1408

2565
2197
4104 − 1

5 0

Fig. 18.18: Linear stability region for the Fehlberg method. The method’s region is outlined in blue; the embedding’s
region is in red.

enumerator ARKODE_DORMAND_PRINCE_7_4_5

Accessible via the constant ARKODE_DORMAND_PRINCE_7_4_5 to ARKStepSetTableNum(), ERKStepSet-
TableNum() or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_DORMAND_PRINCE_7_4_-
5" to ARKStepSetTableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). (from

758 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

[36]).

0 0 0 0 0 0 0 0

1
5

1
5 0 0 0 0 0 0

3
10

3
40

9
40 0 0 0 0 0

4
5

44
45 − 56

15
32
9 0 0 0 0

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729 0 0 0

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656 0 0

1 35
384 0 500

1113
125
192 − 2187

6784
11
84 0

5 35
384 0 500

1113
125
192 − 2187

6784
11
84 0

4 5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

Fig. 18.19: Linear stability region for the Dormand-Prince method. The method’s region is outlined in blue; the
embedding’s region is in red.

enumerator ARKODE_ARK548L2SA_ERK_8_4_5

Accessible via the constant ARKODE_ARK548L2SA_ERK_8_4_5 to ARKStepSetTableNum(), ERKStepSet-
TableNum() or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_ARK548L2SA_ERK_8_4_5"
to ARKStepSetTableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). This is
the explicit portion of the ARK5(4)8L[2]SA method from [67].

Changed in version 6.3.0: Replaced by ARKODE_ARK548L2SAb_ERK_8_4_5 as the explicit portion of the default 5th
order additive method

The Butcher table is too large to fit in the PDF version of this documentation. Please see the HTML documentation for
the table coefficients.

enumerator ARKODE_ARK548L2SAb_ERK_8_4_5

18.1. Explicit Butcher tables 759

User Documentation for ARKODE, v6.3.0

Fig. 18.20: Linear stability region for the explicit ARK-8-4-5 method. The method’s region is outlined in blue; the
embedding’s region is in red.

Accessible via the constant ARKODE_ARK548L2SAb_ERK_8_4_5 to ARKStepSetTableNum(), ERKStepSet-
TableNum() or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_ARK548L2SAb_ERK_8_4_-
5" to ARKStepSetTableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). This is
the explicit portion of the default 5th order additive method and the explicit portion of the 5th order ARK5(4)8L[2]SA
method from [70].

Changed in version 6.3.0: Made the explicit portion of the default 5th order additive method

The Butcher table is too large to fit in the PDF version of this documentation. Please see the HTML documentation for
the table coefficients.

enumerator ARKODE_VERNER_9_5_6

Accessible via the constant ARKODE_VERNER_9_5_6 to ARKStepSetTableNum(), ERKStepSetTableNum() or
ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_VERNER_9_5_6" to ARKStepSetTable-
Name(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). This is the default 6th order ex-
plicit method (method IIIXb-6(5) from [120]).

Changed in version 6.3.0: Made the default 6th order explicit method

The Butcher table is too large to fit in the PDF version of this documentation. Please see the HTML documentation for
the table coefficients.

enumerator ARKODE_VERNER_8_5_6

Accessible via the constant ARKODE_VERNER_8_5_6 to ARKStepSetTableNum(), ERKStepSetTableNum() or
ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_VERNER_8_5_6" to ARKStepSetTable-
Name(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). (from [62]).

760 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

Fig. 18.21: Linear stability region for the ARK548L2SAb-ERK-8-4-5 method. The method’s region is outlined in blue;
the embedding’s region is in red.

Fig. 18.22: Linear stability region for the Verner-9-5-6 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

18.1. Explicit Butcher tables 761

User Documentation for ARKODE, v6.3.0

Changed in version 6.3.0: Replaced by ARKODE_VERNER_9_5_6 as the default 6th order explicit method

0 0 0 0 0 0 0 0 0

1
6

1
6 0 0 0 0 0 0 0

4
15

4
75

16
75 0 0 0 0 0 0

2
3

5
6 − 8

3
5
2 0 0 0 0 0

5
6 − 165

64
55
6 − 425

64
85
96 0 0 0 0

1 12
5 −8 4015

612 − 11
36

88
255 0 0 0

1
15 − 8263

15000
124
75 − 643

680 − 81
250

2484
10625 0 0 0

1 3501
1720 − 300

43
297275
52632 − 319

2322
24068
84065 0 3850

26703 0

6 3
40 0 875

2244
23
72

264
1955 0 125

11592
43
616

5 13
160 0 2375

5984
5
16

12
85

3
44 0 0

Fig. 18.23: Linear stability region for the Verner-8-5-6 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

enumerator ARKODE_VERNER_10_6_7

Accessible via the constant ARKODE_VERNER_10_6_7 to ARKStepSetTableNum(), ERKStepSetTableNum() or
ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_VERNER_10_6_7" to ARKStepSetTable-
Name(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). This is the default 7th order ex-
plicit method (from [120]).

The Butcher table is too large to fit in the PDF version of this documentation. Please see the HTML documentation for
the table coefficients.

enumerator ARKODE_VERNER_13_7_8

Accessible via the constant ARKODE_VERNER_13_7_8 to ARKStepSetTableNum(), ERKStepSetTableNum() or
ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_VERNER_13_7_8" to ARKStepSetTable-

762 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

Fig. 18.24: Linear stability region for the Verner-10-6-7 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

Name(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). This is the default 8th order ex-
plicit method (method IIIX-8(7) from [120]).

Changed in version 6.3.0: Made the default 8th order explicit method

The Butcher table is too large to fit in the PDF version of this documentation. Please see the HTML documentation for
the table coefficients.

enumerator ARKODE_FEHLBERG_13_7_8

Accessible via the constant ARKODE_FEHLBERG_13_7_8 to ARKStepSetTableNum(), ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_FEHLBERG_13_7_8" to ARKStepSet-
TableName(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). (from [24]).

18.1. Explicit Butcher tables 763

User Documentation for ARKODE, v6.3.0

Fig. 18.25: Linear stability region for the Verner-13-7-8 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

Changed in version 6.3.0: Replaced by ARKODE_VERNER_13_7_8 as the default 8th order explicit method

0 0 0 0 0 0 0 0 0 0 0 0 0 0

2
27

2
27 0 0 0 0 0 0 0 0 0 0 0 0

1
9

1
36

1
12 0 0 0 0 0 0 0 0 0 0 0

1
6

1
24 0 1

8 0 0 0 0 0 0 0 0 0 0

5
12

5
12 0 − 25

16
25
16 0 0 0 0 0 0 0 0 0

1
2

1
20 0 0 1

4
1
5 0 0 0 0 0 0 0 0

5
6 − 25

108 0 0 125
108 − 65

27
125
54 0 0 0 0 0 0 0

1
6

31
300 0 0 0 61

225 − 2
9

13
900 0 0 0 0 0 0

2
3 2 0 0 − 53

6
704
45 − 107

9
67
90 3 0 0 0 0 0

1
3 − 91

108 0 0 23
108 − 976

135
311
54 − 19

60
17
6 − 1

12 0 0 0 0

1 2383
4100 0 0 − 341

164
4496
1025 − 301

82
2133
4100

45
82

45
164

18
41 0 0 0

0 3
205 0 0 0 0 − 6

41 − 3
205 − 3

41
3
41

6
41 0 0 0

1 − 1777
4100 0 0 − 341

164
4496
1025 − 289

82
2193
4100

51
82

33
164

12
41 0 1 0

8 0 0 0 0 0 34
105

9
35

9
35

9
280

9
280 0 41

840
41
840

7 41
840 0 0 0 0 34

105
9
35

9
35

9
280

9
280

41
840 0 0

enumerator ARKODE_VERNER_16_8_9

Accessible via the constant ARKODE_VERNER_16_8_9 to ARKStepSetTableNum(), ERKStepSetTableNum() or
ARKodeButcherTable_LoadERK(). Accessible via the string "ARKODE_VERNER_16_8_9" to ARKStepSetTable-

764 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

Fig. 18.26: Linear stability region for the Fehlberg-13-7-8 method. The method’s region is outlined in blue; the em-
bedding’s region is in red.

Name(), ERKStepSetTableName() or ARKodeButcherTable_LoadERKByName(). This is the default 9th order ex-
plicit method (from [120]).

The Butcher table is too large to fit in the PDF version of this documentation. Please see the HTML documentation for
the table coefficients.

18.2 Implicit Butcher tables

In the category of diagonally implicit Runge–Kutta methods, ARKODE includes methods that have orders 2 through
5, with embeddings that are of orders 1 through 4. ARKODE’s diagonally-implicit Butcher tables are provided in the
enumeration

enum ARKODE_DIRKTableID

with values specified in Table 18.2.

18.2. Implicit Butcher tables 765

User Documentation for ARKODE, v6.3.0

Fig. 18.27: Linear stability region for the Verner-16-8-9 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

Table 18.2: Implicit Butcher tables. The default method for each order is
marked with an asterisk (*).

Method ID Stages Embedded Order Order
ARKODE_BACKWARD_EULER_1_1 1 — 1*
ARKODE_ARK2_DIRK_3_1_2 3 1 2*
ARKODE_SDIRK_2_1_2 2 1 2
ARKODE_IMPLICIT_MIDPOINT_1_2 1 — 2
ARKODE_IMPLICIT_TRAPEZOIDAL_2_2 2 — 2
ARKODE_BILLINGTON_3_3_2 3 3 2
ARKODE_TRBDF2_3_3_2 3 3 2
ARKODE_ESDIRK325L2SA_5_2_3 5 2 3*
ARKODE_ESDIRK324L2SA_4_2_3 4 2 3
ARKODE_ESDIRK32I5L2SA_5_2_3 5 2 3
ARKODE_KVAERNO_4_2_3 4 2 3
ARKODE_ARK324L2SA_DIRK_4_2_3 4 2 3
ARKODE_ESDIRK436L2SA_6_3_4 6 3 4*
ARKODE_CASH_5_2_4 5 2 4
ARKODE_CASH_5_3_4 5 3 4
ARKODE_SDIRK_5_3_4 5 3 4
ARKODE_KVAERNO_5_3_4 5 3 4
ARKODE_ARK436L2SA_DIRK_6_3_4 6 3 4
ARKODE_ARK437L2SA_DIRK_7_3_4 7 3 4
ARKODE_ESDIRK43I6L2SA_6_3_4 6 3 4
ARKODE_QESDIRK436L2SA_6_3_4 6 3 4
ARKODE_ESDIRK437L2SA_7_3_4 7 3 4
ARKODE_ESDIRK547L2SA2_7_4_5 7 4 5*
ARKODE_KVAERNO_7_4_5 7 4 5
ARKODE_ARK548L2SA_DIRK_8_4_5 8 4 5
ARKODE_ARK548L2SAb_DIRK_8_4_5 8 4 5
ARKODE_ESDIRK547L2SA_7_4_5 7 4 5

766 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

enumerator ARKODE_BACKWARD_EULER_1_1

Accessible via the constant ARKODE_BACKWARD_EULER_1_1 to ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_BACKWARD_EULER_1_1" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). This is the default 1st order implicit method. The
method is A-, L-, and B-stable.

1 1

1 1

Fig. 18.28: Linear stability region for the backward Euler method.

enumerator ARKODE_ARK2_DIRK_3_1_2

Accessible via the constant ARKODE_ARK2_DIRK_3_1_2 to ARKStepSetTableNum(), or ARKodeButcherTable_-
LoadDIRK(). Accessible via the string "ARKODE_ARK2_DIRK_3_1_2" to ARKStepSetTableName(), or ARKode-
ButcherTable_LoadDIRKByName(). This is the default 2nd order implicit method and the implicit portion of the
default 2nd order additive method (the implicit portion of the ARK2 method from [49]).

Changed in version 6.3.0: Made the default 2nd order implicit method

0 0 0 0

2−
√

2 1− 1√
2

1− 1√
2

0

1 1
2
√
2

1
2
√
2

1− 1√
2

2 1
2
√
2

1
2
√
2

1− 1√
2

1 4−
√
2

8
4−
√
2

8
1

2
√
2

enumerator ARKODE_SDIRK_2_1_2

Accessible via the constant ARKODE_SDIRK_2_1_2 to ARKStepSetTableNum() or ARKodeButcherTable_-
LoadDIRK(). Accessible via the string "ARKODE_SDIRK_2_1_2" to ARKStepSetTableName() or ARKode-
ButcherTable_LoadDIRKByName(). Both the method and embedding are A- and B-stable.

18.2. Implicit Butcher tables 767

User Documentation for ARKODE, v6.3.0

Fig. 18.29: Linear stability region for the ARK2-DIRK method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

Changed in version 6.3.0: Replaced by ARKODE_ARK2_DIRK_3_1_2 as the default 2nd order implicit method

1 1 0

0 −1 1

2 1
2

1
2

1 1 0

enumerator ARKODE_IMPLICIT_MIDPOINT_1_2

Accessible via the constant ARKODE_IMPLICIT_MIDPOINT_1_2 to ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_IMPLICIT_MIDPOINT_1_2" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). The method is A- and B-stable.

1
2

1
2

2 1

enumerator ARKODE_IMPLICIT_TRAPEZOIDAL_2_2

Accessible via the constant ARKODE_IMPLICIT_TRAPEZOIDAL_2_2 to ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_IMPLICIT_TRAPEZOIDAL_2_2" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). The method is A-stable.

0 0 0

1 1
2

1
2

2 1
2

1
2

768 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

Fig. 18.30: Linear stability region for the SDIRK-2-1-2 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

Fig. 18.31: Linear stability region for the implicit midpoint method.

Fig. 18.32: Linear stability region for the implicit trapezoidal method.

18.2. Implicit Butcher tables 769

User Documentation for ARKODE, v6.3.0

enumerator ARKODE_BILLINGTON_3_3_2

Accessible via the constant ARKODE_BILLINGTON_3_3_2 to ARKStepSetTableNum() or ARKodeButcherTable_-
LoadDIRK(). Accessible via the string "ARKODE_BILLINGTON_3_3_2" to ARKStepSetTableName() or ARKode-
ButcherTable_LoadDIRKByName(). Here, the higher-order embedding is less stable than the lower-order method
(from [16]).

1− 1√
2

1− 1√
2

0 0

27√
2
− 18 14

√
2− 19 1− 1√

2
0

2− 1√
2

53−5
√
2

62
9+5
√
2

62 1− 1√
2

2 53−5
√
2

62
9+5
√
2

62 0

3 263−95
√
2

186
47+33

√
2

186

√
2−2
3

Fig. 18.33: Linear stability region for the Billington method. The method’s region is outlined in blue; the embedding’s
region is in red.

enumerator ARKODE_TRBDF2_3_3_2

Accessible via the constant ARKODE_TRBDF2_3_3_2 to ARKStepSetTableNum() or ARKodeButcherTable_-
LoadDIRK(). Accessible via the string "ARKODE_TRBDF2_3_3_2" to ARKStepSetTableName() or ARKode-
ButcherTable_LoadDIRKByName(). As with Billington, here the higher-order embedding is less stable than the
lower-order method (from [15]).

0 0 0 0

2−
√

2 2−
√
2

2
2−
√
2

2 0

1
√
2
4

√
2
4

2−
√
2

2

2
√
2
4

√
2
4

2−
√
2

2

3
1−
√

2
4

3

3
√

2
4 +1

3
2−
√
2

6

770 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

Fig. 18.34: Linear stability region for the TRBDF2 method. The method’s region is outlined in blue; the embedding’s
region is in red.

enumerator ARKODE_ESDIRK325L2SA_5_2_3

Accessible via the constant ARKODE_ESDIRK325L2SA_5_2_3 to ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_ESDIRK325L2SA_5_2_3" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). This is the default 3rd order implicit method and the
ESDIRK3(2)5L[2]SA method from [68]. Both the method and embedding are A- and L-stable.

Changed in version 6.3.0: Made the default 3rd order implicit method

enumerator ARKODE_ESDIRK324L2SA_4_2_3

Accessible via the constant ARKODE_ESDIRK324L2SA_4_2_3 to ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_ESDIRK324L2SA_4_2_3" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). This is the ESDIRK3(2)4L[2]SA method from [69].
Both the method and embedding are A- and L-stable.

enumerator ARKODE_ESDIRK32I5L2SA_5_2_3

Accessible via the constant ARKODE_ESDIRK32I5L2SA_5_2_3 to ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_ESDIRK32I5L2SA_5_2_3" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). This is the ESDIRK3(2I)5L[2]SA method from [68].
Both the method and embedding are A- and L-stable.

enumerator ARKODE_KVAERNO_4_2_3

Accessible via the constant ARKODE_KVAERNO_4_2_3 to ARKStepSetTableNum() or ARKodeButcherTable_-
LoadDIRK(). Accessible via the string "ARKODE_KVAERNO_4_2_3" to ARKStepSetTableName() or ARKode-
ButcherTable_LoadDIRKByName(). Both the method and embedding are A-stable; additionally the method is L-

18.2. Implicit Butcher tables 771

User Documentation for ARKODE, v6.3.0

Fig. 18.35: Linear stability region for the ESDIRK325L2SA-5-2-3 method method. The method’s region is outlined
in blue; the embedding’s region is in red.

Fig. 18.36: Linear stability region for the ESDIRK324L2SA-4-2-3 method method. The method’s region is outlined
in blue; the embedding’s region is in red.

772 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

Fig. 18.37: Linear stability region for the ESDIRK32I5L2SA-5-2-3 method method. The method’s region is outlined
in blue; the embedding’s region is in red.

stable (from [74]).

0 0 0 0 0

0.871733043 0.4358665215 0.4358665215 0 0

1 0.490563388419108 0.073570090080892 0.4358665215 0

1 0.308809969973036 1.490563388254106 −1.235239879727145 0.4358665215

3 0.308809969973036 1.490563388254106 −1.235239879727145 0.4358665215

2 0.490563388419108 0.073570090080892 0.4358665215 0

enumerator ARKODE_ARK324L2SA_DIRK_4_2_3

Accessible via the constant ARKODE_ARK324L2SA_DIRK_4_2_3 to ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_ARK324L2SA_DIRK_4_2_3" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). This is the implicit portion of the default 3rd order
additive method. Both the method and embedding are A-stable; additionally the method is L-stable (this is the implicit
portion of the ARK3(2)4L[2]SA method from [67]).

Changed in version 6.3.0: Replaced by ARKODE_ESDIRK325L2SA_5_2_3 as the default 3rd order implicit method

0 0 0 0 0

1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236 0 0

3
5

2746238789719
10658868560708 − 640167445237

6845629431997
1767732205903
4055673282236 0

1 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

3 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

2 2756255671327
12835298489170 − 10771552573575

22201958757719
9247589265047
10645013368117

2193209047091
5459859503100

18.2. Implicit Butcher tables 773

User Documentation for ARKODE, v6.3.0

Fig. 18.38: Linear stability region for the Kvaerno-4-2-3 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

Fig. 18.39: Linear stability region for the implicit ARK324L2SA-DIRK-4-2-3 method. The method’s region is outlined
in blue; the embedding’s region is in red.

774 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

enumerator ARKODE_ESDIRK436L2SA_6_3_4

Accessible via the constant ARKODE_ESDIRK436L2SA_6_3_4 to ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_ESDIRK436L2SA_6_3_4" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). This is the default 4th order implicit method and the
ESDIRK4(3)6L[2]SA method from [68]. Both the method and embedding are A- and L-stable.

Changed in version 6.3.0: Made the default 4th order implicit method

Fig. 18.40: Linear stability region for the ESDIRK436L2SA-6-3-4 method method. The method’s region is outlined
in blue; the embedding’s region is in red.

enumerator ARKODE_CASH_5_2_4

Accessible via the constant ARKODE_CASH_5_2_4 to ARKStepSetTableNum() or ARKodeButcherTable_-
LoadDIRK(). Accessible via the string "ARKODE_CASH_5_2_4" to ARKStepSetTableName() or ARKode-
ButcherTable_LoadDIRKByName(). Both the method and embedding are A-stable; additionally the method is L-
stable (from [27]).

0.435866521508 0.435866521508 0 0 0 0

−0.7 −1.13586652150 0.435866521508 0 0 0

0.8 1.08543330679 −0.721299828287 0.435866521508 0 0

0.924556761814 0.416349501547 0.190984004184 −0.118643265417 0.435866521508 0

1 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508

4 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508

2 1.05646216107052 −0.0564621610705236 0 0 0

enumerator ARKODE_CASH_5_3_4

Accessible via the constant ARKODE_CASH_5_3_4 to ARKStepSetTableNum() or ARKodeButcherTable_-
LoadDIRK(). Accessible via the string "ARKODE_CASH_5_3_4" to ARKStepSetTableName() or ARKode-
ButcherTable_LoadDIRKByName(). Both the method and embedding are A-stable; additionally the method is L-

18.2. Implicit Butcher tables 775

User Documentation for ARKODE, v6.3.0

Fig. 18.41: Linear stability region for the Cash-5-2-4 method. The method’s region is outlined in blue; the embedding’s
region is in red.

stable (from [27]).

0.435866521508 0.435866521508 0 0 0 0

−0.7 −1.13586652150 0.435866521508 0 0 0

0.8 1.08543330679 −0.721299828287 0.435866521508 0 0

0.924556761814 0.416349501547 0.190984004184 −0.118643265417 0.435866521508 0

1 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508

4 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508

3 0.776691932910 0.0297472791484 −0.0267440239074 0.220304811849 0

enumerator ARKODE_SDIRK_5_3_4

Accessible via the constant ARKODE_SDIRK_5_3_4 to ARKStepSetTableNum() or ARKodeButcherTable_-
LoadDIRK(). Accessible via the string "ARKODE_SDIRK_5_3_4" to ARKStepSetTableName() or ARKode-
ButcherTable_LoadDIRKByName(). Here, the method is both A- and L-stable, although the embedding has reduced
stability (from [55]).

Changed in version 6.3.0: Replaced by ARKODE_ESDIRK436L2SA_6_3_4 as the default 4th order implicit method

1
4

1
4 0 0 0 0

3
4

1
2

1
4 0 0 0

11
20

17
50 − 1

25
1
4 0 0

1
2

371
1360 − 137

2720
15
544

1
4 0

1 25
24 − 49

48
125
16 − 85

12
1
4

4 25
24 − 49

48
125
16 − 85

12
1
4

3 59
48 − 17

96
225
32 − 85

12 0

776 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

Fig. 18.42: Linear stability region for the Cash-5-3-4 method. The method’s region is outlined in blue; the embedding’s
region is in red.

enumerator ARKODE_KVAERNO_5_3_4

Accessible via the constant ARKODE_KVAERNO_5_3_4 to ARKStepSetTableNum() or ARKodeButcherTable_-
LoadDIRK(). Accessible via the string "ARKODE_KVAERNO_5_3_4" to ARKStepSetTableName() or ARKode-
ButcherTable_LoadDIRKByName(). Both the method and embedding are A-stable (from [74]).

The Butcher table is too large to fit in the PDF version of this documentation. Please see the HTML documentation for
the table coefficients.

enumerator ARKODE_ARK436L2SA_DIRK_6_3_4

Accessible via the constant ARKODE_ARK436L2SA_DIRK_6_3_4 to ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_ARK436L2SA_DIRK_6_3_4" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). Both the method and embedding are A-stable;
additionally the method is L-stable (this is the implicit portion of the ARK4(3)6L[2]SA method from [67]).

Changed in version 6.3.0: Replaced by ARKODE_ARK437L2SA_DIRK_7_3_4 as the implicit portion of the default 4th
order additive method

0 0 0 0 0 0 0

1
2

1
4

1
4 0 0 0 0

83
250

8611
62500 − 1743

31250
1
4 0 0 0

31
50

5012029
34652500 − 654441

2922500
174375
388108

1
4 0 0

17
20

15267082809
155376265600 − 71443401

120774400
730878875
902184768

2285395
8070912

1
4 0

1 82889
524892 0 15625

83664
69875
102672 − 2260

8211
1
4

4 82889
524892 0 15625

83664
69875
102672 − 2260

8211
1
4

3 4586570599
29645900160 0 178811875

945068544
814220225
1159782912 − 3700637

11593932
61727
225920

18.2. Implicit Butcher tables 777

User Documentation for ARKODE, v6.3.0

Fig. 18.43: Linear stability region for the SDIRK-5-3-4 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

Fig. 18.44: Linear stability region for the Kvaerno-5-3-4 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

778 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

Fig. 18.45: Linear stability region for the ARK436L2SA-DIRK-6-3-4 method. The method’s region is outlined in blue;
the embedding’s region is in red.

enumerator ARKODE_ARK437L2SA_DIRK_7_3_4

Accessible via the constant ARKODE_ARK437L2SA_DIRK_7_3_4 to ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_ARK437L2SA_DIRK_7_3_4" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). This is the implicit portion of the default 4th order
additive method and the implicit portion of the 4th order ARK4(3)7L[2]SA method from [70]. Both the method and
embedding are A- and L-stable.

Changed in version 6.3.0: Made the implicit portion of the default 4th order additive method

0 0 0 0 0 0 0 0

247
1000

1235
10000

1235
10000 0 0 0 0 0

4276536705230
10142255878289

624185399699
4186980696204

624185399699
4186980696204

1235
10000 0 0 0 0

67
200

1258591069120
10082082980243

1258591069120
10082082980243 − 322722984531

8455138723562
1235
10000 0 0 0

3
40 − 436103496990

5971407786587 − 436103496990
5971407786587 − 2689175662187

11046760208243
4431412449334
12995360898505

1235
10000 0 0

7
10 − 2207373168298

14430576638973 − 2207373168298
14430576638973

242511121179
3358618340039

3145666661981
7780404714551

5882073923981
14490790706663

1235
10000 0

1 0 0 9164257142617
17756377923965 − 10812980402763

74029279521829
1335994250573
5691609445217

2273837961795
8368240463276

1235
10000

4 0 0 9164257142617
17756377923965 − 10812980402763

74029279521829
1335994250573
5691609445217

2273837961795
8368240463276

1235
10000

3 0 0 4469248916618
8635866897933 − 621260224600

4094290005349
696572312987
2942599194819

1532940081127
5565293938103

2441
20000

enumerator ARKODE_ESDIRK43I6L2SA_6_3_4

Accessible via the constant ARKODE_ESDIRK43I6L2SA_6_3_4 to ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_ESDIRK43I6L2SA_6_3_4" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). This is the ESDIRK4(3I)6L[2]SA method from [68].
Both the method and embedding are A- and L-stable.

18.2. Implicit Butcher tables 779

User Documentation for ARKODE, v6.3.0

Fig. 18.46: Linear stability region for the ARK437L2SA-DIRK-7-3-4 method. The method’s region is outlined in blue;
the embedding’s region is in red.

Fig. 18.47: Linear stability region for the ESDIRK43I6L2SA-6-3-4 method method. The method’s region is outlined
in blue; the embedding’s region is in red.

780 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

enumerator ARKODE_QESDIRK436L2SA_6_3_4

Accessible via the constant ARKODE_QESDIRK436L2SA_6_3_4 to ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_QESDIRK436L2SA_6_3_4" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). This is the QESDIRK4(3)6L[2]SA method from
[68]. Both the method and embedding are A- and L-stable.

Fig. 18.48: Linear stability region for the QESDIRK436L2SA-6-3-4 method method. The method’s region is outlined
in blue; the embedding’s region is in red.

enumerator ARKODE_ESDIRK437L2SA_7_3_4

Accessible via the constant ARKODE_ESDIRK437L2SA_7_3_4 to ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_ESDIRK437L2SA_7_3_4" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). This is the ESDIRK4(3)7L[2]SA method from [69].
Both the method and embedding are A- and L-stable.

enumerator ARKODE_ESDIRK547L2SA2_7_4_5

Accessible via the constant ARKODE_ESDIRK547L2SA2_7_4_5 to ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_ESDIRK547L2SA2_7_4_5" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). This is the default 5th order implicit method and the
ESDIRK5(4)7L[2]SA2 method from [69]. Both the method and embedding are A- and L-stable.

Changed in version 6.3.0: Made the default 5th order implicit method

enumerator ARKODE_KVAERNO_7_4_5

Accessible via the constant ARKODE_KVAERNO_7_4_5 to ARKStepSetTableNum() or ARKodeButcherTable_-
LoadDIRK(). Accessible via the string "ARKODE_KVAERNO_7_4_5" to ARKStepSetTableName() or ARKode-
ButcherTable_LoadDIRKByName(). Both the method and embedding are A-stable; additionally the method is L-
stable (from [74]).

The Butcher table is too large to fit in the PDF version of this documentation. Please see the HTML documentation for
the table coefficients.

enumerator ARKODE_ARK548L2SA_DIRK_8_4_5

18.2. Implicit Butcher tables 781

User Documentation for ARKODE, v6.3.0

Fig. 18.49: Linear stability region for the ESDIRK437L2SA-7-3-4 method method. The method’s region is outlined
in blue; the embedding’s region is in red.

Fig. 18.50: Linear stability region for the ESDIRK547L2SA2-7-4-5 method method. The method’s region is outlined
in blue; the embedding’s region is in red.

782 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

Fig. 18.51: Linear stability region for the Kvaerno-7-4-5 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

Accessible via the constant ARKODE_ARK548L2SA_DIRK_8_4_5 for ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_ARK548L2SA_DIRK_8_4_5" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). Both the method and embedding are A-stable; ad-
ditionally the method is L-stable (the implicit portion of the ARK5(4)8L[2]SA method from [67]).

Changed in version 6.3.0: Replaced by ARKODE_ESDIRK547L2SA2_7_4_5 as the default 5th order implicit method
and replaced by ARKODE_ARK548L2SAb_DIRK_8_4_5 as the implicit portion of the default 5th order additive method

The Butcher table is too large to fit in the PDF version of this documentation. Please see the HTML documentation for
the table coefficients.

enumerator ARKODE_ARK548L2SAb_DIRK_8_4_5

Accessible via the constant ARKODE_ARK548L2SAb_DIRK_8_4_5 for ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_ARK548L2SAb_DIRK_8_4_5" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). This is the implicit portion of the default 5th order
additive method. Both the method and embedding are A-stable; additionally the method is L-stable (this is the implicit
portion of the 5th order ARK5(4)8L[2]SA method from [70]).

Changed in version 6.3.0: Made the implicit portion of the default 5th order additive method

The Butcher table is too large to fit in the PDF version of this documentation. Please see the HTML documentation for
the table coefficients.

enumerator ARKODE_ESDIRK547L2SA_7_4_5

Accessible via the constant ARKODE_ESDIRK547L2SA_7_4_5 to ARKStepSetTableNum() or ARKode-
ButcherTable_LoadDIRK(). Accessible via the string "ARKODE_ESDIRK547L2SA_7_4_5" to ARKStepSet-
TableName() or ARKodeButcherTable_LoadDIRKByName(). This is the ESDIRK5(4)7L[2]SA method from [68].
Both the method and embedding are A- and L-stable.

18.2. Implicit Butcher tables 783

User Documentation for ARKODE, v6.3.0

Fig. 18.52: Linear stability region for the implicit ARK548L2SA-ESDIRK-8-4-5 method. The method’s region is
outlined in blue; the embedding’s region is in red.

Fig. 18.53: Linear stability region for the ARK548L2SAb-DIRK-8-4-5 method. The method’s region is outlined in
blue; the embedding’s region is in red.

784 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

Fig. 18.54: Linear stability region for the ESDIRK547L2SA-7-4-5 method method. The method’s region is outlined
in blue; the embedding’s region is in red.

18.3 Additive Butcher tables

In the category of additive Runge–Kutta methods for split implicit and explicit calculations, ARKODE includes methods
that have orders 2 through 5, with embeddings that are of orders 1 through 4. These Butcher table pairs are as follows:

Table 18.3: Additive Butcher tables. The default method for each order
is marked with an asterisk (*).

ERK Method ID DIRK Method ID Stages Embedded
Order

Or-
der

ARKODE_ARK2_ERK_3_1_2 ARKODE_ARK2_DIRK_3_1_2 3 1 2*
ARKODE_ARK324L2SA_ERK_4_-
2_3

ARKODE_ARK324L2SA_DIRK_4_-
2_3

4 2 3*

ARKODE_ARK437L2SA_ERK_7_-
3_4

ARKODE_ARK437L2SA_DIRK_7_-
3_4

7 3 4*

ARKODE_ARK436L2SA_ERK_6_-
3_4

ARKODE_ARK436L2SA_DIRK_6_-
3_4

6 3 4

ARKODE_ARK548L2SAb_ERK_8_-
4_5

ARKODE_ARK548L2SAb_DIRK_8_-
4_5

8 4 5*

ARKODE_ARK548L2SA_ERK_8_-
4_5

ARKODE_ARK548L2SA_DIRK_8_-
4_5

8 5 5

18.3. Additive Butcher tables 785

User Documentation for ARKODE, v6.3.0

18.4 Symplectic Partitioned Butcher tables

In the category of symplectic partitioned Runge-Kutta (SPRK) methods, ARKODE includes methods that have orders
q = {1, 2, 3, 4, 5, 6, 8, 10}. ARKODE’s symplectic partitioned Butcher tables are provided in the enumeration

enum ARKODE_SPRKMethodID

with values specified in Table 18.4.

Table 18.4: Symplectic partitioned Butcher tables. The default method
for each order is marked with an asterisk (*).

Method ID Stages Order
ARKODE_SPRK_EULER_1_1 1 1*
ARKODE_SPRK_LEAPFROG_2_2 2 2*
ARKODE_SPRK_PSEUDO_LEAPFROG_2_2 2 2
ARKODE_SPRK_MCLACHLAN_2_2 2 2
ARKODE_SPRK_MCLACHLAN_3_3 3 3*
ARKODE_SPRK_RUTH_3_3 3 3
ARKODE_SPRK_MCLACHLAN_4_4 4 4*
ARKODE_SPRK_CANDY_ROZMUS_4_4 4 4
ARKODE_SPRK_MCLACHLAN_5_6 6 5*
ARKODE_SPRK_YOSHIDA_6_8 8 6*
ARKODE_SPRK_SUZUKI_UMENO_8_16 16 8*
ARKODE_SPRK_SOFRONIOU_10_36 36 10*

enumerator ARKODE_SPRK_EULER_1_1

Accessible via the constant (or string) ARKODE_SPRK_EULER_1_1 to ARKodeSPRKTable_Load() or ARKodeSPRK-
Table_LoadByName(). This is the classic Symplectic Euler method and the default 1st order method.

enumerator ARKODE_SPRK_LEAPFROG_2_2

Accessible via the constant (or string) ARKODE_SPRK_LEAPFROG_2_2 to ARKodeSPRKTable_Load() or ARKode-
SPRKTable_LoadByName(). This is the classic Leapfrog/Verlet method and the default 2nd order method.

enumerator ARKODE_SPRK_PSEUDO_LEAPFROG_2_2

Accessible via the constant (or string) ARKODE_SPRK_PSEUDO_LEAPFROG_2_2 to ARKodeSPRKTable_Load() or
ARKodeSPRKTable_LoadByName(). This is the classic Pseudo Leapfrog/Verlet method.

enumerator ARKODE_SPRK_MCLACHLAN_2_2

Accessible via the constant (or string) ARKODE_SPRK_MCLACHLAN_2_2 to ARKodeSPRKTable_Load() or ARKode-
SPRKTable_LoadByName(). This is the 2nd order method given by McLachlan in [80].

enumerator ARKODE_SPRK_MCLACHLAN_3_3

Accessible via the constant (or string) ARKODE_SPRK_MCLACHLAN_3_3 to ARKodeSPRKTable_Load() or ARKode-
SPRKTable_LoadByName(). This is the 3rd order method given by McLachlan in [80] and the default 3rd order
method.

enumerator ARKODE_SPRK_RUTH_3_3

Accessible via the constant (or string) ARKODE_SPRK_RUTH_3_3 to ARKodeSPRKTable_Load() or ARKodeSPRK-
Table_LoadByName(). This is the 3rd order method given by Ruth in [89].

786 Chapter 18. Butcher Tables

User Documentation for ARKODE, v6.3.0

enumerator ARKODE_SPRK_MCLACHLAN_4_4

Accessible via the constant (or string) ARKODE_SPRK_MCLACHLAN_4_4 to ARKodeSPRKTable_Load() or ARKode-
SPRKTable_LoadByName(). This is the 4th order method given by McLachlan in [80] and the default 4th order
method.

Warning

This method only has coefficients sufficient for single or double precision.

enumerator ARKODE_SPRK_CANDY_ROZMUS_4_4

Accessible via the constant (or string) ARKODE_SPRK_CANDY_ROZMUS_4_4 to ARKodeSPRKTable_Load() or
ARKodeSPRKTable_LoadByName(). This is the 4th order method given by Candy and Rozmus in [26].

enumerator ARKODE_SPRK_MCLACHLAN_5_6

Accessible via the constant (or string) ARKODE_SPRK_MCLACHLAN_5_6 to ARKodeSPRKTable_Load() or ARKode-
SPRKTable_LoadByName(). This is the 5th order method given by McLachlan in [80] and the default 5th order
method.

Warning

This method only has coefficients sufficient for single or double precision.

enumerator ARKODE_SPRK_YOSHIDA_6_8

Accessible via the constant (or string) ARKODE_SPRK_YOSHIDA_6_8 to ARKodeSPRKTable_Load() or ARKodeSPRK-
Table_LoadByName(). This is the 6th order method given by Yoshida in [124] and the default 6th order method.

enumerator ARKODE_SPRK_SUZUKI_UMENO_8_16

Accessible via the constant (or string) ARKODE_SPRK_SUZUKI_UMENO_8_16 to ARKodeSPRKTable_Load() or
ARKodeSPRKTable_LoadByName(). This is the 8th order method given by Suzuki and Umeno in [112] and the default
8th order method.

enumerator ARKODE_SPRK_SOFRONIOU_10_36

Accessible via the constant (or string) ARKODE_SPRK_SOFRONIOU_10_36 to ARKodeSPRKTable_Load() or ARKode-
SPRKTable_LoadByName(). This is the 10th order method given by Sofroniou and Spaletta in [107] and the default
10th order method.

18.4. Symplectic Partitioned Butcher tables 787

User Documentation for ARKODE, v6.3.0

788 Chapter 18. Butcher Tables

Chapter 19

Release History

Date SUNDIALS ARKODE CVODE CVODES IDA IDAS KINSOL
Apr 2025 7.3.0 6.3.0 7.3.0 7.3.0 7.3.0 6.3.0 7.3.0
Dec 2024 7.2.1 6.2.1 7.2.1 7.2.1 7.2.1 6.2.1 7.2.1
Dec 2024 7.2.0 6.2.0 7.2.0 7.2.0 7.2.0 6.2.0 7.2.0
Jun 2024 7.1.1 6.1.1 7.1.1 7.1.1 7.1.1 6.1.1 7.1.1
Jun 2024 7.1.0 6.1.0 7.1.0 7.1.0 7.1.0 6.1.0 7.1.0
Feb 2024 7.0.0 6.0.0 7.0.0 7.0.0 7.0.0 6.0.0 7.0.0
Dec 2023 6.7.0 5.7.0 6.7.0 6.7.0 6.7.0 5.7.0 6.7.0
Nov 2023 6.6.2 5.6.2 6.6.2 6.6.2 6.6.2 5.6.2 6.6.2
Sep 2023 6.6.1 5.6.1 6.6.1 6.6.1 6.6.1 5.6.1 6.6.1
Jul 2023 6.6.0 5.6.0 6.6.0 6.6.0 6.6.0 5.6.0 6.6.0
Mar 2023 6.5.1 5.5.1 6.5.1 6.5.1 6.5.1 5.5.1 6.5.1
Dec 2022 6.5.0 5.5.0 6.5.0 6.5.0 6.5.0 5.5.0 6.5.0
Oct 2022 6.4.1 5.4.1 6.4.1 6.4.1 6.4.1 5.4.1 6.4.1
Oct 2022 6.4.0 5.4.0 6.4.0 6.4.0 6.4.0 5.4.0 6.4.0
Aug 2022 6.3.0 5.3.0 6.3.0 6.3.0 6.3.0 5.3.0 6.3.0
Apr 2022 6.2.0 5.2.0 6.2.0 6.2.0 6.2.0 5.2.0 6.2.0
Feb 2022 6.1.1 5.1.1 6.1.1 6.1.1 6.1.1 5.1.1 6.1.1
Jan 2022 6.1.0 5.1.0 6.1.0 6.1.0 6.1.0 5.1.0 6.1.0
Dec 2021 6.0.0 5.0.0 6.0.0 6.0.0 6.0.0 5.0.0 6.0.0
Sep 2021 5.8.0 4.8.0 5.8.0 5.8.0 5.8.0 4.8.0 5.8.0
Jan 2021 5.7.0 4.7.0 5.7.0 5.7.0 5.7.0 4.7.0 5.7.0
Dec 2020 5.6.1 4.6.1 5.6.1 5.6.1 5.6.1 4.6.1 5.6.1
Dec 2020 5.6.0 4.6.0 5.6.0 5.6.0 5.6.0 4.6.0 5.6.0
Oct 2020 5.5.0 4.5.0 5.5.0 5.5.0 5.5.0 4.5.0 5.5.0
Sep 2020 5.4.0 4.4.0 5.4.0 5.4.0 5.4.0 4.4.0 5.4.0
May 2020 5.3.0 4.3.0 5.3.0 5.3.0 5.3.0 4.3.0 5.3.0
Mar 2020 5.2.0 4.2.0 5.2.0 5.2.0 5.2.0 4.2.0 5.2.0
Jan 2020 5.1.0 4.1.0 5.1.0 5.1.0 5.1.0 4.1.0 5.1.0
Oct 2019 5.0.0 4.0.0 5.0.0 5.0.0 5.0.0 4.0.0 5.0.0
Feb 2019 4.1.0 3.1.0 4.1.0 4.1.0 4.1.0 3.1.0 4.1.0
Jan 2019 4.0.2 3.0.2 4.0.2 4.0.2 4.0.2 3.0.2 4.0.2
Dec 2018 4.0.1 3.0.1 4.0.1 4.0.1 4.0.1 3.0.1 4.0.1
Dec 2018 4.0.0 3.0.0 4.0.0 4.0.0 4.0.0 3.0.0 4.0.0
Oct 2018 3.2.1 2.2.1 3.2.1 3.2.1 3.2.1 2.2.1 3.2.1

continues on next page

789

User Documentation for ARKODE, v6.3.0

Table 19.1 – continued from previous page
Date SUNDIALS ARKODE CVODE CVODES IDA IDAS KINSOL
Sep 2018 3.2.0 2.2.0 3.2.0 3.2.0 3.2.0 2.2.0 3.2.0
Jul 2018 3.1.2 2.1.2 3.1.2 3.1.2 3.1.2 2.1.2 3.1.2
May 2018 3.1.1 2.1.1 3.1.1 3.1.1 3.1.1 2.1.1 3.1.1
Nov 2017 3.1.0 2.1.0 3.1.0 3.1.0 3.1.0 2.1.0 3.1.0
Sep 2017 3.0.0 2.0.0 3.0.0 3.0.0 3.0.0 2.0.0 3.0.0
Sep 2016 2.7.0 1.1.0 2.9.0 2.9.0 2.9.0 1.3.0 2.9.0
Aug 2015 2.6.2 1.0.2 2.8.2 2.8.2 2.8.2 1.2.2 2.8.2
Mar 2015 2.6.1 1.0.1 2.8.1 2.8.1 2.8.1 1.2.1 2.8.1
Mar 2015 2.6.0 1.0.0 2.8.0 2.8.0 2.8.0 1.2.0 2.8.0
Mar 2012 2.5.0 – 2.7.0 2.7.0 2.7.0 1.1.0 2.7.0
May 2009 2.4.0 – 2.6.0 2.6.0 2.6.0 1.0.0 2.6.0
Nov 2006 2.3.0 – 2.5.0 2.5.0 2.5.0 – 2.5.0
Mar 2006 2.2.0 – 2.4.0 2.4.0 2.4.0 – 2.4.0
May 2005 2.1.1 – 2.3.0 2.3.0 2.3.0 – 2.3.0
Apr 2005 2.1.0 – 2.3.0 2.2.0 2.3.0 – 2.3.0
Mar 2005 2.0.2 – 2.2.2 2.1.2 2.2.2 – 2.2.2
Jan 2005 2.0.1 – 2.2.1 2.1.1 2.2.1 – 2.2.1
Dec 2004 2.0.0 – 2.2.0 2.1.0 2.2.0 – 2.2.0
Jul 2002 1.0.0 – 2.0.0 1.0.0 2.0.0 – 2.0.0
Mar 2002 – – 1.0.0 3 – – – –
Feb 1999 – – – – 1.0.0 4 – –
Aug 1998 – – – – – – 1.0.0 5

Jul 1997 – – 1.0.0 2 – – – –
Sep 1994 – – 1.0.0 1 – – – –

1. CVODE written

2. PVODE written

3. CVODE and PVODE combined

4. IDA written

5. KINSOL written

790 Chapter 19. Release History

Chapter 20

Changelog

20.1 Changes to SUNDIALS in release 7.3.0

Major Features

A new discrete adjoint capability for explicit Runge–Kutta methods has been added to the ARKODE ERKStep
and ARKStep stepper modules. This is based on a new set of shared classes, SUNAdjointStepper and SUNAd-
jointCheckpointScheme. A new example demonstrating this capability can be found in examples/arkode/C_-
serial/ark_lotka_volterra_ASA.c. See the Adjoint Sensitivity Analysis section of the ARKODE user guide for
details.

New Features and Enhancements

ARKODE

The following changes have been made to the default ERK, DIRK, and ARK methods in ARKODE to utilize more
efficient methods:

791

User Documentation for ARKODE, v6.3.0

Type Old Default New Default
2nd Order
Explicit

ARKODE_HEUN_EULER_2_1_2 ARKODE_RALSTON_3_1_2

4th Order
Explicit

ARKODE_ZONNEVELD_5_3_4 ARKODE_SOFRONIOU_SPALETTA_5_3_4

5th Order
Explicit

ARKODE_CASH_KARP_6_4_5 ARKODE_TSITOURAS_7_4_5

6th Order
Explicit

ARKODE_VERNER_8_5_6 ARKODE_VERNER_9_5_6

8th Order
Explicit

ARKODE_FEHLBERG_13_7_8 ARKODE_VERNER_13_7_8

2nd Order
Implicit

ARKODE_SDIRK_2_1_2 ARKODE_ARK2_DIRK_3_1_2

3rd Order
Implicit

ARKODE_ARK324L2SA_DIRK_4_2_3 ARKODE_ESDIRK325L2SA_5_2_3

4th Order
Implicit

ARKODE_SDIRK_5_3_4 ARKODE_ESDIRK436L2SA_6_3_4

5th Order
Implicit

ARKODE_ARK548L2SA_DIRK_8_4_5 ARKODE_ESDIRK547L2SA2_7_4_5

4th Order
ARK

ARKODE_ARK436L2SA_ERK_6_3_4 and
ARKODE_ARK436L2SA_DIRK_6_3_4

ARKODE_ARK437L2SA_ERK_7_3_4 and
ARKODE_ARK437L2SA_DIRK_7_3_4

5th Order
ARK

ARKODE_ARK548L2SA_ERK_8_4_5 and
ARKODE_ARK548L2SA_DIRK_8_4_5

ARKODE_ARK548L2SAb_ERK_8_4_5 and
ARKODE_ARK548L2SAb_DIRK_8_4_5

The old default methods can be loaded using the functions ERKStepSetTableName() or ERKStepSetTableNum()
with ERKStep and ARKStepSetTableName() or ARKStepSetTableNum() with ARKStep and passing the desired
method name string or constant, respectively. For example, the following call can be used to load the old default fourth
order method with ERKStep:

/* Load the old 4th order ERK method using the table name */
ierr = ERKStepSetTableName(arkode_mem, "ARKODE_ZONNEVELD_5_3_4");

Similarly with ARKStep, the following calls can be used for ERK, DIRK, or ARK methods, respectively:

/* Load the old 4th order ERK method by name */
ierr = ARKStepSetTableName(arkode_mem, "ARKODE_DIRK_NONE",

"ARKODE_ZONNEVELD_5_3_4");

/* Load the old 4th order DIRK method by name */
ierr = ARKStepSetTableName(arkode_mem, "ARKODE_SDIRK_5_3_4",

"ARKODE_ERK_NONE");

/* Load the old 4th order ARK method by name */
ierr = ARKStepSetTableName(arkode_mem, "ARKODE_ARK436L2SA_DIRK_6_3_4",

"ARKODE_ARK436L2SA_ERK_6_3_4");

Additionally, the following changes have been made to the default time step adaptivity parameters in ARKODE:

792 Chapter 20. Changelog

User Documentation for ARKODE, v6.3.0

Parameter Old Default New Default
Controller PID (PI for ERKStep) I
Safety Factor 0.96 0.9
Bias 1.5 (1.2 for ERKStep) 1.0
Fixed Step Bounds [1.0, 1.5] [1.0, 1.0]
Adaptivity Adjustment -1 0

The following calls can be used to restore the old defaults for ERKStep:

SUNAdaptController controller = SUNAdaptController_Soderlind(ctx);
SUNAdaptController_SetParams_PI(controller, 0.8, -0.31);
ARKodeSetAdaptController(arkode_mem, controller);
SUNAdaptController_SetErrorBias(controller, 1.2);
ARKodeSetSafetyFactor(arkode_mem, 0.96);
ARKodeSetFixedStepBounds(arkode_mem, 1, 1.5);
ARKodeSetAdaptivityAdjustment(arkode_mem, -1);

The following calls can be used to restore the old defaults for other ARKODE integrators:

SUNAdaptController controller = SUNAdaptController_PID(ctx);
ARKodeSetAdaptController(arkode_mem, controller);
SUNAdaptController_SetErrorBias(controller, 1.5);
ARKodeSetSafetyFactor(arkode_mem, 0.96);
ARKodeSetFixedStepBounds(arkode_mem, 1, 1.5);
ARKodeSetAdaptivityAdjustment(arkode_mem, -1);

In both cases above, destroy the controller at the end of the run with SUNAdaptController_Destroy(controller);
.

The Soderlind time step adaptivity controller now starts with an I controller until there is sufficient history of past time
steps and errors.

Added ARKodeSetAdaptControllerByName() to set a time step adaptivity controller with a string. There are
also four new controllers: SUNAdaptController_H0211(), SUNAdaptController_H0321(), SUNAdaptCon-
troller_H211(), and SUNAdaptController_H312().

Added the ARKODE_RALSTON_3_1_2 and ARKODE_TSITOURAS_7_4_5 explicit Runge-Kutta Butcher tables.

Improved the precision of the coefficients for ARKODE_ARK324L2SA_ERK_4_2_3, ARKODE_VERNER_9_5_6, ARKODE_-
VERNER_10_6_7, ARKODE_VERNER_13_7_8, ARKODE_ARK324L2SA_DIRK_4_2_3, and ARKODE_ESDIRK324L2SA_-
4_2_3.

CVODE / CVODES

Added support for resizing CVODE and CVODES when solving initial value problems where the number of equations
and unknowns changes over time. Resizing requires a user supplied history of solution and right-hand side values at
the new problem size, see CVodeResizeHistory() for more information.

KINSOL

Added support in KINSOL for setting user-supplied functions to compute the damping factor and, when using An-
derson acceleration, the depth in fixed-point or Picard iterations. See KINSetDampingFn() and KINSetDepthFn(),
respectively, for more information.

SUNDIALS Types

20.1. Changes to SUNDIALS in release 7.3.0 793

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeResizeHistory
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDampingFn
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDepthFn

User Documentation for ARKODE, v6.3.0

A new type, suncountertype, was added for the integer type used for counter variables. It is currently an alias for
long int.

Bug Fixes

ARKODE

Fixed bug in ARKodeResize() which caused it return an error for MRI methods.

Removed error floors from the SUNAdaptController implementations which could unnecessarily limit the time size
growth, particularly after the first step.

Fixed bug in ARKodeSetFixedStep() where it could return ARK_SUCCESS despite an error occurring.

Fixed bug in the ARKODE SPRKStep SPRKStepReInit() function and ARKodeReset() function with SPRKStep
that could cause a segmentation fault when compensated summation is not used.

KINSOL

Fixed a bug in KINSOL where an incorrect damping parameter is applied on the initial iteration with Anderson ac-
celeration unless KINSetDamping() and KINSetDampingAA() are both called with the same value when enabling
damping.

Fixed a bug in KINSOL where errors that occurred when computing Anderson acceleration were not captured.

Added missing return values to KINGetReturnFlagName().

CMake

Fixed the behavior of SUNDIALS_ENABLE_ERROR_CHECKS so additional runtime error checks are disabled by default
with all release build types. Previously, MinSizeRel builds enabled additional error checking by default.

Deprecation Notices

All work space functions, e.g., CVodeGetWorkSpace and ARKodeGetLinWorkSpace, have been deprecated and will
be removed in version 8.0.0.

20.2 Changes to SUNDIALS in release 7.2.1

New Features and Enhancements

Unit tests were separated from examples. To that end, the following directories were moved out of the examples/
directory to the test/unit_tests directory: nvector, sunmatrix, sunlinsol, and sunnonlinsol.

Bug Fixes

Fixed a bug in ARKStep where an extra right-hand side evaluation would occur each time step when enabling the
ARKodeSetAutonomous() option and using an IMEX method where the DIRK table has an implicit first stage and is
not stiffly accurate.

20.3 Changes to SUNDIALS in release 7.2.0

Major Features

Added a time-stepping module to ARKODE for low storage Runge–Kutta methods, LSRKStep. This currently supports
five explicit low-storage methods: the second-order Runge–Kutta–Chebyshev and Runge–Kutta–Legendre methods,
and the second- through fourth-order optimal strong stability preserving Runge–Kutta methods. All methods include
embeddings for temporal adaptivity.

794 Chapter 20. Changelog

https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDamping
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDampingAA
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINGetReturnFlagName

User Documentation for ARKODE, v6.3.0

Added an operator splitting module, SplittingStep, and forcing method module, ForcingStep, to ARKODE. These mod-
ules support a broad range of operator-split time integration methods for multiphysics applications.

Added support for multirate time step adaptivity controllers, based on the recently introduced SUNAdaptController
base class, to ARKODE’s MRIStep module. As a part of this, we added embeddings for existing MRI-GARK methods,
as well as support for embedded MERK and IMEX-MRI-SR methods. Added new default MRI methods for temporally
adaptive versus fixed-step runs.

New Features and Enhancements

Logging

The information level logging output in ARKODE, CVODE(S), and IDA(S) has been updated to be more uniform
across the packages and a new tools directory has been added with a Python module, suntools, containing utilities
for parsing logging output. The Python utilities for parsing CSV output have been relocated from the scripts directory
to the Python module.

SUNStepper

Added the SUNStepper base class to represent a generic solution procedure for IVPs. This is used by the SplittingStep
and ForcingStep modules of ARKODE. A SUNStepper can be created from an ARKODE memory block with the
new function ARKodeCreateSUNStepper(). To enable interoperability with MRIStepInnerStepper, the function
MRIStepInnerStepper_CreateFromSUNStepper() was added.

ARKODE

Added functionality to ARKODE to accumulate a temporal error estimate over multiple time steps. See the rou-
tines ARKodeSetAccumulatedErrorType(), ARKodeResetAccumulatedError(), and ARKodeGetAccumulat-
edError() for details.

Added the ARKodeSetStepDirection() and ARKodeGetStepDirection() functions to change and query the di-
rection of integration.

Added the function MRIStepGetNumInnerStepperFails() to retrieve the number of recoverable failures reported
by the MRIStepInnerStepper.

Added a utility routine to wrap any valid ARKODE integrator for use as an MRIStep inner stepper object, ARKode-
CreateMRIStepInnerStepper().

The following DIRK schemes now have coefficients accurate to quad precision:

• ARKODE_BILLINGTON_3_3_2

• ARKODE_KVAERNO_4_2_3

• ARKODE_CASH_5_2_4

• ARKODE_CASH_5_3_4

• ARKODE_KVAERNO_5_3_4

• ARKODE_KVAERNO_7_4_5

CMake

The default value of CMAKE_CUDA_ARCHITECTURES is no longer set to 70 and is now determined automatically by
CMake. The previous default was only valid for Volta GPUs while the automatically selected value will vary across
compilers and compiler versions. As such, users are encouraged to override this value with the architecture for their
system.

The build system has been updated to utilize the CMake LAPACK imported target which should ease building SUN-
DIALS with LAPACK libraries that require setting specific linker flags e.g., MKL.

Third Party Libraries

20.3. Changes to SUNDIALS in release 7.2.0 795

User Documentation for ARKODE, v6.3.0

The Trilinos Tpetra NVector interface has been updated to utilize CMake imported targets added in Trilinos 14 to
improve support for different Kokkos backends with Trilinos. As such, Trilinos 14 or newer is required and the Trili-
nos_INTERFACE_* CMake options have been removed.

Example programs using hypre have been updated to support v2.20 and newer.

Bug Fixes

CMake

Fixed a CMake bug regarding usage of missing “print_warning” macro that was only triggered when the deprecated
CUDA_ARCH option was used.

Fixed a CMake configuration issue related to aliasing an ALIAS target when using ENABLE_KLU=ON in combination
with a static-only build of SuiteSparse.

Fixed a CMake issue which caused third-party CMake variables to be unset. Users may see more options in the CMake
GUI now as a result of the fix. See details in GitHub Issue #538.

NVector

Fixed a build failure with the SYCL NVector when using Intel oneAPI 2025.0 compilers. See GitHub Issue #596.

Fixed compilation errors when building the Trilinos Teptra NVector with CUDA support.

SUNMatrix

Fixed a bug in the sparse matrix implementation of SUNMatScaleAddI() which caused out of bounds writes unless
indexvals were in ascending order for each row/column.

SUNLinearSolver

Fixed a bug in the SPTFQMR linear solver where recoverable preconditioner errors were reported as unrecoverable.

ARKODE

Fixed ARKodeResize() not using the default hscale when an argument of 0 was provided.

Fixed a memory leak that could occur if ARKodeSetDefaults() is called repeatedly.

Fixed the loading of ARKStep’s default first order explicit method.

Fixed loading the default IMEX-MRI method if ARKodeSetOrder() is used to specify a third or fourth order method.
Previously, the default second order method was loaded in both cases.

Fixed potential memory leaks and out of bounds array accesses that could occur in the ARKODE Lagrange interpolation
module when changing the method order or polynomial degree after re-initializing an integrator.

Fixed a bug in ARKODE when enabling rootfinding with fixed step sizes and the initial value of the rootfinding function
is zero. In this case, uninitialized right-hand side data was used to compute a state value near the initial condition to
determine if any rootfinding functions are initially active.

Fixed a bug in MRIStep where the data supplied to the Hermite interpolation module did not include contributions from
the fast right-hand side function. With this fix, users will see one additional fast right-hand side function evaluation
per slow step with the Hermite interpolation option.

Fixed a bug in SPRKStep when using compensated summations where the error vector was not initialized to zero.

CVODE(S)

Fixed a bug where CVodeSetProjFailEta() would ignore the eta parameter.

Fortran Interfaces

Fixed a bug in the 32-bit sunindextype Fortran interfaces to N_VGetSubvectorArrayPointer_ManyVector(),
N_VGetSubvectorArrayPointer_MPIManyVector(), SUNBandMatrix_Column() and SUNDenseMatrix_Col-
umn() where 64-bit sunindextype interface functions were used.

796 Chapter 20. Changelog

https://github.com/LLNL/sundials/issues/538
https://github.com/LLNL/sundials/issues/596
https://github.com/LLNL/sundials/issues/581
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetProjFailEta

User Documentation for ARKODE, v6.3.0

Deprecation Notices

Deprecated the ARKStep-specific utility routine for wrapping an ARKStep instance as an MRIStep inner stepper object,
ARKStepCreateMRIStepInnerStepper(). Use ARKodeCreateMRIStepInnerStepper() instead.

The ARKODE stepper specific functions to retrieve the number of right-hand side function evaluations have been
deprecated. Use ARKodeGetNumRhsEvals() instead.

20.4 Changes to SUNDIALS in release 7.1.1

Bug Fixes

Fixed a bug in v7.1.0 with the SYCL N_Vector N_VSpace function.

20.5 Changes to SUNDIALS in release 7.1.0

Major Features

Created shared user interface functions for ARKODE to allow more uniform control over time-stepping algorithms,
improved extensibility, and simplified code maintenance. The corresponding stepper-specific user-callable functions
are now deprecated and will be removed in a future major release.

Added CMake infrastructure that enables externally maintained addons/plugins to be optionally built with SUNDIALS.
See Contributing for details.

New Features and Enhancements

Added support for Kokkos Kernels v4.

Added the following Runge-Kutta Butcher tables

• ARKODE_FORWARD_EULER_1_1

• ARKODE_RALSTON_EULER_2_1_2

• ARKODE_EXPLICIT_MIDPOINT_EULER_2_1_2

• ARKODE_BACKWARD_EULER_1_1

• ARKODE_IMPLICIT_MIDPOINT_1_2

• ARKODE_IMPLICIT_TRAPEZOIDAL_2_2

Added the following MRI coupling tables

• ARKODE_MRI_GARK_FORWARD_EULER

• ARKODE_MRI_GARK_RALSTON2

• ARKODE_MRI_GARK_RALSTON3

• ARKODE_MRI_GARK_BACKWARD_EULER

• ARKODE_MRI_GARK_IMPLICIT_MIDPOINT

• ARKODE_IMEX_MRI_GARK_EULER

• ARKODE_IMEX_MRI_GARK_TRAPEZOIDAL

• ARKODE_IMEX_MRI_GARK_MIDPOINT

20.4. Changes to SUNDIALS in release 7.1.1 797

https://github.com/LLNL/sundials/pull/523
https://sundials.readthedocs.io/en/v7.3.0/contributing/index.html#contributing

User Documentation for ARKODE, v6.3.0

Added ARKodeButcherTable_ERKIDToName() and ARKodeButcherTable_DIRKIDToName() to convert a Butcher
table ID to a string representation.

Added the function ARKodeSetAutonomous() in ARKODE to indicate that the implicit right-hand side function does
not explicitly depend on time. When using the trivial predictor, an autonomous problem may reuse implicit function
evaluations across stage solves to reduce the total number of function evaluations.

Users may now disable interpolated output in ARKODE by passing ARK_INTERP_NONE to ARKodeSetInterpolant-
Type(). When interpolation is disabled, rootfinding is not supported, implicit methods must use the trivial predictor
(the default option), and interpolation at stop times cannot be used (interpolating at stop times is disabled by default).
With interpolation disabled, calling ARKodeEvolve() in ARK_NORMALmode will return at or past the requested output
time (setting a stop time may still be used to halt the integrator at a specific time). Disabling interpolation will reduce
the memory footprint of an integrator by two or more state vectors (depending on the interpolant type and degree) which
can be beneficial when interpolation is not needed e.g., when integrating to a final time without output in between or
using an explicit fast time scale integrator with an MRI method.

Added “Resize” capability to ARKODE’s SPRKStep time-stepping module.

Enabled the Fortran interfaces to build with 32-bit sunindextype.

Bug Fixes

Updated the CMake variable HIP_PLATFORM default to amd as the previous default, hcc, is no longer recognized in
ROCm 5.7.0 or newer. The new default is also valid in older version of ROCm (at least back to version 4.3.1).

Renamed the DPCPP value for the SUNDIALS_GINKGO_BACKENDS CMake option to SYCL to match Ginkgo’s updated
naming convention.

Changed the CMake version compatibility mode for SUNDIALS to AnyNewerVersion instead of SameMajorVer-
sion. This fixes the issue seen here.

Fixed a CMake bug that caused an MPI linking error for our C++ examples in some instances. Fixes GitHub Issue
#464.

Fixed the runtime library installation path for windows systems. This fix changes the default library installation path
from CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_BINDIR.

Fixed conflicting .lib files between shared and static libs when using MSVC on Windows

Fixed invalid SUNDIALS_EXPORT generated macro when building both shared and static libs.

Fixed a bug in some Fortran examples where c_null_ptr was passed as an argument to a function pointer instead of
c_null_funptr. This caused compilation issues with the Cray Fortran compiler.

Fixed a bug in the HIP execution policies where WARP_SIZE would not be set with ROCm 6.0.0 or newer.

Fixed a bug that caused error messages to be cut off in some cases. Fixes GitHub Issue #461.

Fixed a memory leak when an error handler was added to a SUNContext. Fixes GitHub Issue #466.

Fixed a bug where MRIStepEvolve() would not handle a recoverable error produced from evolving the inner stepper.

Added missing SetRootDirection and SetNoInactiveRootWarn functions to ARKODE’s SPRKStep time-
stepping module.

Fixed a bug in ARKodeSPRKTable_Create() where the coefficient arrays were not allocated.

Fix bug on LLP64 platforms (like Windows 64-bit) where KLU_INDEXTYPE could be 32 bits wide even if SUNDIALS_-
INT64_T is defined.

Check if size of SuiteSparse_long is 8 if the size of sunindextype is 8 when using KLU.

Fixed several build errors with the Fortran interfaces on Windows systems.

Deprecation Notices

798 Chapter 20. Changelog

https://github.com/AMReX-Codes/amrex/pull/3835
https://github.com/LLNL/sundials/issues/464
https://github.com/LLNL/sundials/issues/464
https://github.com/LLNL/sundials/issues/461
https://github.com/LLNL/sundials/issues/466

User Documentation for ARKODE, v6.3.0

Numerous ARKODE stepper-specific functions are now deprecated in favor of ARKODE-wide functions.

Deprecated the ARKStepSetOptimalParams function. Since this function does not have an ARKODE-wide equivalent,
instructions have been added to the user guide for how to retain the current functionality using other user-callable
functions.

The unsupported implementations of N_VGetArrayPointer and N_VSetArrayPointer for the hypre and PETSc
vectors are now deprecated. Users should access the underlying wrapped external library vector objects instead with
N_VGetVector_ParHyp and N_VGetVector_Petsc, respectively.

20.6 Changes to SUNDIALS in release 7.0.0

Major Feature

SUNDIALS now has more robust and uniform error handling. Non-release builds will be built with additional error
checking by default. See §4.3 for details.

Breaking Changes

Minimum C Standard

SUNDIALS now requires using a compiler that supports a subset of the C99 standard. Note with the Microsoft C/C++
compiler the subset of C99 features utilized by SUNDIALS are available starting with Visual Studio 2015.

Minimum CMake Version

CMake 3.18 or newer is now required when building SUNDIALS.

Deprecated Types and Functions Removed

The previously deprecated types realtype and booleantype were removed from sundials_types.h and replaced
with sunrealtype and sunbooleantype. The deprecated names for these types can be used by including the header
file sundials_types_deprecated.h but will be fully removed in the next major release. Functions, types and header
files that were previously deprecated have also been removed.

Error Handling Changes

With the addition of the new error handling capability, the *SetErrHandlerFn and *SetErrFile functions in
CVODE(S), IDA(S), ARKODE, and KINSOL have been removed. Users of these functions can use the functions
SUNContext_PushErrHandler(), and SUNLogger_SetErrorFilename() instead. For further details see Sections
§4.3 and §4.4.

In addition the following names/symbols were replaced by SUN_ERR_* codes:

20.6. Changes to SUNDIALS in release 7.0.0 799

https://learn.microsoft.com/en-us/cpp/overview/visual-cpp-language-conformance?view=msvc-170#c-standard-library-features-1

User Documentation for ARKODE, v6.3.0

Removed Replaced with SUNErrCode
SUNLS_SUCCESS SUN_SUCCESS
SUNLS_UNRECOV_FAILURE no replacement (value was unused)
SUNLS_MEM_NULL SUN_ERR_ARG_CORRUPT
SUNLS_ILL_INPUT SUN_ERR_ARG_*
SUNLS_MEM_FAIL SUN_ERR_MEM_FAIL
SUNLS_PACKAGE_FAIL_UNREC SUN_ERR_EXT_FAIL
SUNLS_VECTOROP_ERR SUN_ERR_OP_FAIL
SUN_NLS_SUCCESS SUN_SUCCESS
SUN_NLS_MEM_NULL SUN_ERR_ARG_CORRUPT
SUN_NLS_MEM_FAIL SUN_ERR_MEM_FAIL
SUN_NLS_ILL_INPUT SUN_ERR_ARG_*
SUN_NLS_VECTOROP_ERR SUN_ERR_OP_FAIL
SUN_NLS_EXT_FAIL SUN_ERR_EXT_FAIL
SUNMAT_SUCCESS SUN_SUCCESS
SUNMAT_ILL_INPUT SUN_ERR_ARG_*
SUNMAT_MEM_FAIL SUN_ERR_MEM_FAIL
SUNMAT_OPERATION_FAIL SUN_ERR_OP_FAIL
SUNMAT_MATVEC_SETUP_REQUIRED SUN_ERR_OP_FAIL

The following functions have had their signature updated to ensure they can leverage the new SUNDIALS error handling
capabilities.

• From sundials_futils.h

– SUNDIALSFileOpen()

– SUNDIALSFileClose()

• From sundials_memory.h

– SUNMemoryNewEmpty()

– SUNMemoryHelper_Alias()

– SUNMemoryHelper_Wrap()

• From sundials_nvector.h

– N_VNewVectorArray()

SUNComm Type Added

We have replaced the use of a type-erased (i.e., void*) pointer to a communicator in place of MPI_Comm throughout the
SUNDIALS API with a SUNComm , which is just a typedef to an int in builds without MPI and a typedef to a MPI_Comm
in builds with MPI. As a result:

• When MPI is enabled, all SUNDIALS libraries will include MPI symbols and applications will need to include
the path for MPI headers and link against the corresponding MPI library.

• All users will need to update their codes because the call to SUNContext_Create() now takes a SUNComm in-
stead of type-erased pointer to a communicator. For non-MPI codes, pass SUN_COMM_NULL to the comm argument
instead of NULL. For MPI codes, pass the MPI_Comm directly.

• The same change must be made for calls to SUNLogger_Create() or SUNProfiler_Create().

• Some users will need to update their calls to N_VGetCommunicator(), and update any custom N_Vector im-
plementations that provide N_VGetCommunicator(), since it now returns a SUNComm .

800 Chapter 20. Changelog

User Documentation for ARKODE, v6.3.0

The change away from type-erased pointers for SUNComm fixes problems like the one described in GitHub Issue #275.

The SUNLogger is now always MPI-aware if MPI is enabled in SUNDIALS and the SUNDIALS_LOGGING_ENABLE_-
MPI CMake option and macro definition were removed accordingly.

SUNDIALS Core Library

Users now need to link to sundials_core in addition to the libraries already linked to. This will be picked up au-
tomatically in projects that use the SUNDIALS CMake target. The library sundials_generic has been superseded
by sundials_core and is no longer available. This fixes some duplicate symbol errors on Windows when linking to
multiple SUNDIALS libraries.

Fortran Interface Modules Streamlined

We have streamlined the Fortran modules that need to be included by users by combining the SUNDIALS core into one
Fortran module, fsundials_core_mod. Modules for implementations of the core APIs still exist (e.g., for the Dense
linear solver there is fsunlinsol_dense_mod) as do the modules for the SUNDIALS packages (e.g., fcvode_mod).
The following modules are the ones that have been consolidated into fsundials_core_mod:

fsundials_adaptcontroller_mod
fsundials_context_mod
fsundials_futils_mod
fsundials_linearsolver_mod
fsundials_logger_mod
fsundials_matrix_mod
fsundials_nonlinearsolver_mod
fsundials_nvector_mod
fsundials_profiler_mod
fsundials_types_mod

Minor Changes

The CMAKE_BUILD_TYPE defaults to RelWithDebInfo mode now i.e., SUNDIALS will be built with optimizations
and debugging symbols enabled by default. Previously the build type was unset by default so no optimization or
debugging flags were set.

The advanced CMake options to override the inferred LAPACK name-mangling scheme have been updated from SUN-
DIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES to SUNDIALS_LAPACK_CASE and SUNDIALS_LA-
PACK_UNDERSCORES, respectively.

As a subset of C99 is now required the CMake option USE_GENERIC_MATH as been removed.

The C++ convenience classes (e.g., sundials::Context) have been moved to from SUNDIALS .h headers to corre-
sponding .hpp headers (e.g., sundials/sundials_context.hpp) so C++ codes do not need to compile with C++14
support when using the C API.

Converted most previous Fortran 77 and 90 examples to use SUNDIALS’ Fortran 2003 interface.

Bug Fixes

Fixed GitHub Issue #329 so that C++20 aggregate initialization can be used.

Fixed integer overflow in the internal SUNDIALS hashmap. This resolves GitHub Issues #409 and #249.

Deprecation Notice

The functions in sundials_math.h will be deprecated in the next release.

sunrealtype SUNRpowerI(sunrealtype base, int exponent);
sunrealtype SUNRpowerR(sunrealtype base, sunrealtype exponent);
sunbooleantype SUNRCompare(sunrealtype a, sunrealtype b);

(continues on next page)

20.6. Changes to SUNDIALS in release 7.0.0 801

https://github.com/LLNL/sundials/issues/275
https://github.com/LLNL/sundials/issues/329
https://github.com/LLNL/sundials/issues/409
https://github.com/LLNL/sundials/issues/249

User Documentation for ARKODE, v6.3.0

(continued from previous page)

sunbooleantype SUNRCompareTol(sunrealtype a, sunrealtype b, sunrealtype tol);
sunrealtype SUNStrToReal(const char* str);

Additionally, the following header files (and everything in them) will be deprecated – users who rely on these are
recommended to transition to the corresponding SUNMatrix and SUNLinearSolver modules:

sundials_direct.h
sundials_dense.h
sundials_band.h

20.7 Changes to SUNDIALS in release 6.7.0

Major Feature

Added the SUNAdaptController base class, ported ARKODE’s internal implementations of time step controllers
to implementations of this class, and updated ARKODE to use these objects instead of its own implementations.
Added ARKStepSetAdaptController() and ERKStepSetAdaptController() routines so that users can modify
controller parameters, or even provide custom implementations.

New Features

Improved the computational complexity of the sparse matrix ScaleAddI function from O(M ∗N) to O(NNZ).

Added Fortran support for the LAPACK dense linear solver implementation.

Added the routines ARKStepSetAdaptivityAdjustment() and ERKStepSetAdaptivityAdjustment(), that al-
low users to adjust the value for the method order supplied to the temporal adaptivity controllers. The ARKODE default
for this adjustment has been−1 since its initial release, but for some applications a value of 0 is more appropriate. Users
who notice that their simulations encounter a large number of temporal error test failures may want to experiment with
adjusting this value.

Added the third order ERK method ARKODE_SHU_OSHER_3_2_3, the fourth order ERK method ARKODE_SOFRONIOU_-
SPALETTA_5_3_4, the sixth order ERK method ARKODE_VERNER_9_5_6, the seventh order ERK method ARKODE_-
VERNER_10_6_7, the eighth order ERK method ARKODE_VERNER_13_7_8, and the ninth order ERK method ARKODE_-
VERNER_16_8_9.

ARKStep, ERKStep, MRIStep, and SPRKStep were updated to remove a potentially unnecessary right-hand side eval-
uation at the end of an integration. ARKStep was additionally updated to remove extra right-hand side evaluations
when using an explicit method or an implicit method with an explicit first stage.

The MRIStepInnerStepper class in MRIStep was updated to make supplying an MRIStepInnerFullRhsFn op-
tional.

Bug Fixes

Changed the SUNProfiler so that it does not rely on MPI_WTime in any case. This fixes GitHub Issue #312.

Fixed scaling bug in SUNMatScaleAddI_Sparse for non-square matrices.

Fixed a regression introduced by the stop time bug fix in v6.6.1 where ARKODE, CVODE, CVODES, IDA, and IDAS
would return at the stop time rather than the requested output time if the stop time was reached in the same step in
which the output time was passed.

Fixed a bug in ERKStep where methods with cs = 1 but as,j 6= bj were incorrectly treated as having the first same as
last (FSAL) property.

Fixed a bug in ARKODE where ARKStepSetInterpolateStopTime() would return an interpolated solution at the
stop time in some cases when interpolation was disabled.

802 Chapter 20. Changelog

https://github.com/LLNL/sundials/issues/312

User Documentation for ARKODE, v6.3.0

Fixed a bug in ARKStepSetTableNum() wherein it did not recognize ARKODE_ARK2_ERK_3_1_2 and ARKODE_-
ARK2_DIRK_3_1_2 as a valid additive Runge–Kutta Butcher table pair.

Fixed a bug in MRIStepCoupling_Write() where explicit coupling tables were not written to the output file pointer.

Fixed missing soversions in some SUNLinearSolver and SUNNonlinearSolver CMake targets.

Renamed some internal types in CVODES and IDAS to allow both packages to be built together in the same binary.

20.8 Changes to SUNDIALS in release 6.6.2

Fixed the build system support for MAGMA when using a NVIDIA HPC SDK installation of CUDA and fixed the
targets used for rocBLAS and rocSPARSE.

20.9 Changes to SUNDIALS in release 6.6.1

New Features

Updated the Trilinos Tpetra N_Vector interface to support Trilinos 14.

Bug Fixes

Fixed a memory leak when destroying a CUDA, HIP, SYCL, or system SUNMemoryHelper object.

Fixed a bug in ARKODE, CVODE, CVODES, IDA, and IDAS where the stop time may not be cleared when using
normal mode if the requested output time is the same as the stop time. Additionally, with ARKODE, CVODE, and
CVODES this fix removes an unnecessary interpolation of the solution at the stop time that could occur in this case.

20.10 Changes to SUNDIALS in release 6.6.0

Major Features

A new time-stepping module, SPRKStep, was added to ARKODE. This time-stepper provides explicit symplectic par-
titioned Runge-Kutta methods up to order 10 for separable Hamiltonian systems.

Added support for relaxation Runge-Kutta methods in ERKStep and ARKStep, see Relaxation Methods, Relaxation
Methods, and Relaxation Methods for more information.

New Features

Updated the default ARKODE, CVODE, and CVODES behavior when returning the solution when the internal time
has reached a user-specified stop time. Previously, the output solution was interpolated to the value of tstop;
the default is now to copy the internal solution vector. Users who wish to revert to interpolation may call a
new routine CVodeSetInterpolateStopTime(), ARKStepSetInterpolateStopTime(), ERKStepSetInterpo-
lateStopTime(), or MRIStepSetInterpolateStopTime().

Added the second order IMEX method from [49] as the default second order IMEX method in ARKStep. The explicit
table is given by ARKODE_ARK2_ERK_3_1_2 and the implicit table by ARKODE_ARK2_DIRK_3_1_2.

Updated the F2003 utility routines SUNDIALSFileOpen() and SUNDIALSFileClose() to support user specification
of stdout and stderr strings for the output file names.

Bug Fixes

A potential bug was fixed when using inequality constraint handling and calling ARKStepGetEstLocalErrors() or
ERKStepGetEstLocalErrors() after a failed step in which an inequality constraint violation occurred. In this case,
the values returned by ARKStepGetEstLocalErrors() or ERKStepGetEstLocalErrors() may have been invalid.

20.8. Changes to SUNDIALS in release 6.6.2 803

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetInterpolateStopTime

User Documentation for ARKODE, v6.3.0

20.11 Changes to SUNDIALS in release 6.5.1

New Features

Added the following functions to disable a previously set stop time:

• ARKStepClearStopTime()

• ERKStepClearStopTime()

• MRIStepClearStopTime()

• CVodeClearStopTime()

• IDAClearStopTime()

The default interpolant in ARKODE when using a first order method has been updated to a linear interpolant to en-
sure values obtained by the integrator are returned at the ends of the time interval. To restore the previous behavior
of using a constant interpolant call ARKStepSetInterpolantDegree(), ERKStepSetInterpolantDegree(), or
MRIStepSetInterpolantDegree() and set the interpolant degree to zero before evolving the problem.

Bug Fixes

Fixed build errors when using SuperLU_DIST with ROCM enabled to target AMD GPUs.

Fixed compilation errors in some SYCL examples when using the icx compiler.

20.12 Changes to SUNDIALS in release 6.5.0

New Features

A new capability to keep track of memory allocations made through the SUNMemoryHelper classes has been added.
Memory allocation stats can be accessed through the SUNMemoryHelper_GetAllocStats() function. See §15.1 for
more details.

Added the following functions to assist in debugging simulations utilizing matrix-based linear solvers:

• ARKStepGetJac()

• ARKStepGetJacTime()

• ARKStepGetJacNumSteps()

• MRIStepGetJac()

• MRIStepGetJacTime()

• MRIStepGetJacNumSteps()

• CVodeGetJac()

• CVodeGetJacTime()

• CVodeGetJacNumSteps()

• IDAGetJac()

• IDAGetJacCj()

• IDAGetJacTime()

• IDAGetJacNumSteps()

• KINGetJac()

804 Chapter 20. Changelog

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeClearStopTime
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDAClearStopTime
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeGetJac
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeGetJacTime
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeGetJacNumSteps
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDAGetJac
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDAGetJacCj
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDAGetJacTime
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDAGetJacNumSteps
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINGetJac

User Documentation for ARKODE, v6.3.0

• KINGetJacNumIters()

Added support for CUDA 12.

Added support for the SYCL backend with RAJA 2022.x.y.

Bug Fixes

Fixed an underflow bug during root finding in ARKODE, CVODE, CVODES, IDA and IDAS. This fixes GitHub Issue
#57.

Fixed an issue with finding oneMKL when using the icpx compiler with the -fsycl flag as the C++ compiler instead
of dpcpp.

Fixed the shape of the arrays returned by the Fortran interfaces to N_VGetArrayPointer(), SUNDenseMatrix_-
Data(), SUNBandMatrix_Data(), SUNSparseMatrix_Data(), SUNSparseMatrix_IndexValues(), and SUN-
SparseMatrix_IndexPointers(). Compiling and running code that uses the SUNDIALS Fortran interfaces with
bounds checking will now work.

Fixed an implicit conversion error in the Butcher table for ESDIRK5(4)7L[2]SA2.

20.13 Changes to SUNDIALS in release 6.4.1

Fixed a bug with the Kokkos interfaces that would arise when using clang.

Fixed a compilation error with the Intel oneAPI 2022.2 Fortran compiler in the Fortran 2003 interface test for the serial
N_Vector.

Fixed a bug in the LAPACK band and dense linear solvers which would cause the tests to fail on some platforms.

20.14 Changes to SUNDIALS in release 6.4.0

New Requirements

CMake 3.18.0 or newer is now required for CUDA support.

A C++14 compliant compiler is now required for C++ based features and examples e.g., CUDA, HIP, RAJA, Trilinos,
SuperLU_DIST, MAGMA, Ginkgo, and Kokkos.

Major Features

Added support for the Ginkgo linear algebra library. This support includes new SUNDIALS matrix and linear solver
implementations, see the sections §9.10 and §10.18.

Added new SUNDIALS vector, dense matrix, and dense linear solver implementations utilizing the Kokkos Ecosystem
for performance portability, see sections §8.14, §9.11, and §10.19 for more information.

New Features

Added support for GPU enabled SuperLU_DIST and SuperLU_DIST v8.x.x. Removed support for SuperLU_DIST
v6.x.x or older. Fix mismatched definition and declaration bug in SuperLU_DIST matrix constructor.

Added the functions following functions to load a Butcher table from a string:

• ARKStepSetTableName()

• ERKStepSetTableName()

• MRIStepCoupling_LoadTableByName()

• ARKodeButcherTable_LoadDIRKByName()

20.13. Changes to SUNDIALS in release 6.4.1 805

https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINGetJacNumIters
https://github.com/LLNL/sundials/issues/57
https://github.com/LLNL/sundials/issues/57
https://ginkgo-project.github.io/
https://kokkos.org/

User Documentation for ARKODE, v6.3.0

• ARKodeButcherTable_LoadERKByName()

Bug Fixes

Fixed a bug in the CUDA and HIP vectors where N_VMaxNorm() would return the minimum positive floating-point
value for the zero vector.

Fixed memory leaks/out of bounds memory accesses in the ARKODE MRIStep module that could occur when attaching
a coupling table after reinitialization with a different number of stages than originally selected.

Fixed a memory leak where the projection memory would not be deallocated when calling CVodeFree().

20.15 Changes to SUNDIALS in release 6.3.0

New Features

Added the following functions to retrieve the user data pointer provided with SetUserData functions:

• ARKStepGetUserData()

• ERKStepGetUserData()

• MRIStepGetUserData()

• CVodeGetUserData()

• IDAGetUserData()

• KINGetUserData()

Added a variety of embedded DIRK methods from [68] and [69].

Updated MRIStepReset() to call the corresponding MRIStepInnerResetFn with the same tR and yR arguments for
the MRIStepInnerStepper object that is used to evolve the MRI “fast” time scale subproblems.

Added a new example (examples/cvode/serial/cvRocket_dns.c) which demonstrates using CVODE with a dis-
continuous right-hand-side function and rootfinding.

Bug Fixes

Fixed a bug in ERKStepReset(), ERKStepReInit(), ARKStepReset(), ARKStepReInit(), MRIStepReset(),
and MRIStepReInit() where a previously-set value of tstop (from a call to ERKStepSetStopTime(), ARK-
StepSetStopTime(), or MRIStepSetStopTime(), respectively) would not be cleared.

Fixed the unituitive behavior of the USE_GENERIC_MATH CMake option which caused the double precision math func-
tions to be used regardless of the value of SUNDIALS_PRECISION. Now, SUNDIALS will use precision appropriate
math functions when they are available and the user may provide the math library to link to via the advanced CMake
option SUNDIALS_MATH_LIBRARY .

Changed SUNDIALS_LOGGING_ENABLE_MPI CMake option default to be OFF. This fixes GitHub Issue #177.

806 Chapter 20. Changelog

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeFree
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeGetUserData
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDAGetUserData
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINGetUserData
https://github.com/LLNL/sundials/issues/177

User Documentation for ARKODE, v6.3.0

20.16 Changes to SUNDIALS in release 6.2.0

Major Features

Added the SUNLogger API which provides a SUNDIALS-wide mechanism for logging of errors, warnings, informa-
tional output, and debugging output.

Added support to CVODES for integrating IVPs with constraints using BDF methods and projecting the solution onto
the constraint manifold with a user defined projection function. This implementation is accompanied by additions to
the CVODES user documentation and examples.

New Features

Added the function SUNProfiler_Reset() to reset the region timings and counters to zero.

Added the following functions to output all of the integrator, nonlinear solver, linear solver, and other statistics in one
call:

• ARKStepPrintAllStats()

• ERKStepPrintAllStats()

• MRIStepPrintAllStats()

• CVodePrintAllStats()

• IDAPrintAllStats()

• KINPrintAllStats()

The file scripts/sundials_csv.py contains functions for parsing the comma-separated value (CSV) output files
when using the CSV output format.

Added functions to CVODE, CVODES, IDA, and IDAS to change the default step size adaptivity parameters. For more
information see the documentation for:

• CVodeSetEtaFixedStepBounds()

• CVodeSetEtaMaxFirstStep()

• CVodeSetEtaMaxEarlyStep()

• CVodeSetNumStepsEtaMaxEarlyStep()

• CVodeSetEtaMax()

• CVodeSetEtaMin()

• CVodeSetEtaMinErrFail()

• CVodeSetEtaMaxErrFail()

• CVodeSetNumFailsEtaMaxErrFail()

• CVodeSetEtaConvFail()

• IDASetEtaFixedStepBounds()

• IDASetEtaMax()

• IDASetEtaMin()

• IDASetEtaLow()

• IDASetEtaMinErrFail()

• IDASetEtaConvFail()

20.16. Changes to SUNDIALS in release 6.2.0 807

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodePrintAllStats
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDAPrintAllStats
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINPrintAllStats
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetEtaFixedStepBounds
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetEtaMaxFirstStep
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetEtaMaxEarlyStep
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetNumStepsEtaMaxEarlyStep
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetEtaMax
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetEtaMin
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetEtaMinErrFail
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetEtaMaxErrFail
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetNumFailsEtaMaxErrFail
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetEtaConvFail
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetEtaFixedStepBounds
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetEtaMax
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetEtaMin
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetEtaLow
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetEtaMinErrFail
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetEtaConvFail

User Documentation for ARKODE, v6.3.0

Added the functions ARKStepSetDeduceImplicitRhs() and MRIStepSetDeduceImplicitRhs() to optionally re-
move an evaluation of the implicit right-hand side function after nonlinear solves. See Nonlinear solver methods, for
considerations on using this optimization.

Added the function MRIStepSetOrder() to select the default MRI method of a given order.

Added the functions CVodeSetDeltaGammaMaxLSetup() and CVodeSetDeltaGammaMaxBadJac() in CVODE and
CVODES to adjust the γ change thresholds to require a linear solver setup or Jacobian/precondition update, respectively.

Added the function IDASetDeltaCjLSetup() in IDA and IDAS to adjust the parameter that determines when a change
in cj requires calling the linear solver setup function.

Added the function IDASetMinStep() to set a minimum step size.

Bug Fixes

Fixed the SUNContext convenience class for C++ users to disallow copy construction and allow move construction.

The behavior of N_VSetKernelExecPolicy_Sycl() has been updated to be consistent with the CUDA and HIP
vectors. The input execution policies are now cloned and may be freed after calling N_VSetKernelExecPolicy_-
Sycl(). Additionally, NULL inputs are now allowed and, if provided, will reset the vector execution policies to the
defaults.

A memory leak in the SYCL vector was fixed where the execution policies were not freed when the vector was destroyed.

The include guard in nvector_mpimanyvector.h has been corrected to enable using both the ManyVector and MPI-
ManyVector vector implementations in the same simulation.

A bug was fixed in the ARKODE, CVODE(S), and IDA(S) functions to retrieve the number of nonlinear solver failures.
The failure count returned was the number of failed steps due to a nonlinear solver failure i.e., if a nonlinear solve failed
with a stale Jacobian or preconditioner but succeeded after updating the Jacobian or preconditioner, the initial failure
was not included in the nonlinear solver failure count. The following functions have been updated to return the total
number of nonlinear solver failures:

• ARKStepGetNumNonlinSolvConvFails()

• ARKStepGetNonlinSolvStats()

• MRIStepGetNumNonlinSolvConvFails()

• MRIStepGetNonlinSolvStats()

• CVodeGetNumNonlinSolvConvFails()

• CVodeGetNonlinSolvStats()

• CVodeGetSensNumNonlinSolvConvFails()

• CVodeGetSensNonlinSolvStats()

• CVodeGetStgrSensNumNonlinSolvConvFails()

• CVodeGetStgrSensNonlinSolvStats()

• IDAGetNumNonlinSolvConvFails()

• IDAGetNonlinSolvStats()

• IDAGetSensNumNonlinSolvConvFails()

• IDAGetSensNonlinSolvStats()

As a result of this change users may see an increase in the number of failures reported from the above functions. The
following functions have been added to retrieve the number of failed steps due to a nonlinear solver failure i.e., the
counts previously returned by the above functions:

• ARKStepGetNumStepSolveFails()

808 Chapter 20. Changelog

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetDeltaGammaMaxLSetup
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetDeltaGammaMaxBadJac
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetDeltaCjLSetup
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetMinStep
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeGetNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeGetNonlinSolvStats
https://sundials.readthedocs.io/en/v7.3.0/cvodes/Usage/FSA.html#c.CVodeGetSensNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.3.0/cvodes/Usage/FSA.html#c.CVodeGetSensNonlinSolvStats
https://sundials.readthedocs.io/en/v7.3.0/cvodes/Usage/FSA.html#c.CVodeGetStgrSensNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.3.0/cvodes/Usage/FSA.html#c.CVodeGetStgrSensNonlinSolvStats
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDAGetNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDAGetNonlinSolvStats
https://sundials.readthedocs.io/en/v7.3.0/idas/Usage/FSA.html#c.IDAGetSensNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.3.0/idas/Usage/FSA.html#c.IDAGetSensNonlinSolvStats

User Documentation for ARKODE, v6.3.0

• MRIStepGetNumStepSolveFails()

• CVodeGetNumStepSolveFails()

• CVodeGetNumStepSensSolveFails()

• CVodeGetNumStepStgrSensSolveFails()

• IDAGetNumStepSolveFails()

• IDAGetNumStepSensSolveFails()

Changed exported SUNDIALS PETSc CMake targets to be INTERFACE IMPORTED instead of UNKNOWN IM-
PORTED.

Deprecation Notice

Deprecated the following functions, it is recommended to use the SUNLogger API instead.

• ARKStepSetDiagnostics

• ERKStepSetDiagnostics

• MRIStepSetDiagnostics

• KINSetInfoFile

• SUNNonlinSolSetPrintLevel_Newton

• SUNNonlinSolSetInfoFile_Newton

• SUNNonlinSolSetPrintLevel_FixedPoint

• SUNNonlinSolSetInfoFile_FixedPoint

• SUNLinSolSetInfoFile_PCG

• SUNLinSolSetPrintLevel_PCG

• SUNLinSolSetInfoFile_SPGMR

• SUNLinSolSetPrintLevel_SPGMR

• SUNLinSolSetInfoFile_SPFGMR

• SUNLinSolSetPrintLevel_SPFGMR

• SUNLinSolSetInfoFile_SPTFQM

• SUNLinSolSetPrintLevel_SPTFQMR

• SUNLinSolSetInfoFile_SPBCGS

• SUNLinSolSetPrintLevel_SPBCGS

The SUNLinSolSetInfoFile_* and SUNNonlinSolSetInfoFile_* family of functions are now enabled by setting
the CMake option SUNDIALS_LOGGING_LEVEL to a value >= 3.

20.16. Changes to SUNDIALS in release 6.2.0 809

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeGetNumStepSolveFails
https://sundials.readthedocs.io/en/v7.3.0/cvodes/Usage/FSA.html#c.CVodeGetNumStepSensSolveFails
https://sundials.readthedocs.io/en/v7.3.0/cvodes/Usage/FSA.html#c.CVodeGetNumStepStgrSensSolveFails
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDAGetNumStepSolveFails
https://sundials.readthedocs.io/en/v7.3.0/idas/Usage/FSA.html#c.IDAGetNumStepSensSolveFails

User Documentation for ARKODE, v6.3.0

20.17 Changes to SUNDIALS in release 6.1.1

New Feature

Added new Fortran example program, examples/arkode/F2003_serial/ark_kpr_mri_f2003.f90 demonstrat-
ing MRI capabilities.

Bug Fixes

Fixed exported SUNDIALSConfig.cmake.

Fixed Fortran interface to MRIStepInnerStepper and MRIStepCoupling structures and functions.

20.18 Changes to SUNDIALS in release 6.1.0

New Features

Added new reduction implementations for the CUDA and HIP vectors that use shared memory (local data storage)
instead of atomics. These new implementations are recommended when the target hardware does not provide atomic
support for the floating point precision that SUNDIALS is being built with. The HIP vector uses these by default, but
the N_VSetKernelExecPolicy_Cuda() and N_VSetKernelExecPolicy_Hip() functions can be used to choose
between different reduction implementations.

SUNDIALS::<lib> targets with no static/shared suffix have been added for use within the build directory (this mirrors
the targets exported on installation).

CMAKE_C_STANDARD is now set to 99 by default.

Bug Fixes

Fixed exported SUNDIALSConfig.cmake when profiling is enabled without Caliper.

Fixed sundials_export.h include in sundials_config.h.

Fixed memory leaks in the SuperLU_MT linear solver interface.

20.19 Changes to SUNDIALS in release 6.0.0

Breaking Changes

SUNContext Object Added

SUNDIALS v6.0.0 introduces a new SUNContext object on which all other SUNDIALS objects depend. As such, the
constructors for all SUNDIALS packages, vectors, matrices, linear solvers, nonlinear solvers, and memory helpers
have been updated to accept a context as the last input. Users upgrading to SUNDIALS v6.0.0 will need to call
SUNContext_Create() to create a context object with before calling any other SUNDIALS library function, and then
provide this object to other SUNDIALS constructors. The context object has been introduced to allow SUNDIALS to
provide new features, such as the profiling/instrumentation also introduced in this release, while maintaining thread-
safety. See the §4.2 for more details.

The script scripts/upgrade-to-sundials-6-from-5.sh has been provided with this release (and obtainable from
the GitHub release page) to help ease the transition to SUNDIALS v6.0.0. The script will add a SUNCTX_PLACEHOLDER
argument to all of the calls to SUNDIALS constructors that now require a SUNContext object. It can also update
deprecated SUNDIALS constants/types to the new names. It can be run like this:

./upgrade-to-sundials-6-from-5.sh <files to update>

810 Chapter 20. Changelog

User Documentation for ARKODE, v6.3.0

Updated SUNMemoryHelper Function Signatures

The SUNMemoryHelper functions SUNMemoryHelper_Alloc(), SUNMemoryHelper_Dealloc(), and SUNMemory-
Helper_Copy() have been updated to accept an opaque handle as the last input. At a minimum, user-defined SUN-
MemoryHelper implementations will need to update these functions to accept the additional argument. Typically, this
handle is the execution stream (e.g., a CUDA/HIP stream or SYCL queue) for the operation. The CUDA, HIP, and
SYCL implementations have been updated accordingly. Additionally, the constructor SUNMemoryHelper_Sycl() has
been updated to remove the SYCL queue as an input.

Deprecated Functions Removed

The previously deprecated constructor N_VMakeWithManagedAllocator_Cuda and the function N_VSetCudaS-
tream_Cuda have been removed and replaced with N_VNewWithMemHelp_Cuda() and N_VSetKernelExecPol-
icy_Cuda() respectively.

The previously deprecated macros PVEC_REAL_MPI_TYPE and PVEC_INTEGER_MPI_TYPE have been removed and
replaced with MPI_SUNREALTYPE and MPI_SUNINDEXTYPE respectively.

The following previously deprecated SUNLinearSolver functions have been removed:

Removed Replacement
SUNBandLinearSolver SUNLinSol_Band()
SUNDenseLinearSolver SUNLinSol_Dense()
SUNKLU SUNLinSol_KLU()
SUNKLUReInit SUNLinSol_KLUReInit()
SUNKLUSetOrdering SUNLinSol_KLUSetOrdering()
SUNLapackBand SUNLinSol_LapackBand()
SUNLapackDense SUNLinSol_LapackDense()
SUNPCG SUNLinSol_PCG()
SUNPCGSetPrecType SUNLinSol_PCGSetPrecType()
SUNPCGSetMaxl SUNLinSol_PCGSetMaxl()
SUNSPBCGS SUNLinSol_SPBCGS()
SUNSPBCGSSetPrecType SUNLinSol_SPBCGSSetPrecType()
SUNSPBCGSSetMaxl SUNLinSol_SPBCGSSetMaxl()
SUNSPFGMR SUNLinSol_SPFGMR()
SUNSPFGMRSetPrecType SUNLinSol_SPFGMRSetPrecType()
SUNSPFGMRSetGSType SUNLinSol_SPFGMRSetGSType()
SUNSPFGMRSetMaxRestarts SUNLinSol_SPFGMRSetMaxRestarts()
SUNSPGMR SUNLinSol_SPGMR()
SUNSPGMRSetPrecType SUNLinSol_SPGMRSetPrecType()
SUNSPGMRSetGSType SUNLinSol_SPGMRSetGSType()
SUNSPGMRSetMaxRestarts SUNLinSol_SPGMRSetMaxRestarts()
SUNSPTFQMR SUNLinSol_SPTFQMR()
SUNSPTFQMRSetPrecType SUNLinSol_SPTFQMRSetPrecType()
SUNSPTFQMRSetMaxl SUNLinSol_SPTFQMRSetMaxl()
SUNSuperLUMT SUNLinSol_SuperLUMT()
SUNSuperLUMTSetOrdering SUNLinSol_SuperLUMTSetOrdering()

The deprecated functions MRIStepGetCurrentButcherTables and MRIStepWriteButcher and the utility func-
tions MRIStepSetTable and MRIStepSetTableNum have been removed. Users wishing to create an MRI-GARK
method from a Butcher table should use MRIStepCoupling_MIStoMRI() to create the corresponding MRI coupling
table and attach it with MRIStepSetCoupling().

The previously deprecated functions ARKStepSetMaxStepsBetweenLSet and ARKStepSetMaxStepsBetweenJac
have been removed and replaced with ARKStepSetLSetupFrequency() and ARKStepSetJacEvalFrequency()

20.19. Changes to SUNDIALS in release 6.0.0 811

User Documentation for ARKODE, v6.3.0

respectively.

The previously deprecated function CVodeSetMaxStepsBetweenJac has been removed and replaced with CVode-
SetJacEvalFrequency().

The ARKODE, CVODE, IDA, and KINSOL Fortran 77 interfaces has been removed. See §4.7 and the F2003 example
programs for more details using the SUNDIALS Fortran 2003 module interfaces.

Namespace Changes

The CUDA, HIP, and SYCL execution policies have been moved from the sundials namespace to the sundi-
als::cuda, sundials::hip, and sundials::sycl namespaces respectively. Accordingly, the prefixes “Cuda”,
“Hip”, and “Sycl” have been removed from the execution policy classes and methods.

The Sundials namespace used by the Trilinos Tpetra N_Vector implementation has been replaced with the sundi-
als::trilinos::nvector_tpetra namespace.

Major Features

Profiling Capability

A capability to profile/instrument SUNDIALS library code has been added. This can be enabled with the CMake option
SUNDIALS_BUILD_WITH_PROFILING . A built-in profiler will be used by default, but the Caliper library can also be
used instead with the CMake option ENABLE_CALIPER . See the documentation section on profiling for more details.

Warning

Profiling will impact performance, and should be enabled judiciously.

IMEX MRI Methods and MRIStepInnerStepper Object

The MRIStep module has been extended to support implicit-explicit (ImEx) multirate infinitesimal generalized ad-
ditive Runge–Kutta (MRI-GARK) methods. As such, MRIStepCreate() has been updated to include arguments
for the slow explicit and slow implicit ODE right-hand side functions. MRIStepCreate() has also been updated to
require attaching an MRIStepInnerStepper for evolving the fast time scale. MRIStepReInit() has been similarly up-
dated to take explicit and implicit right-hand side functions as input. Codes using explicit or implicit MRI methods
will need to update MRIStepCreate() and MRIStepReInit() calls to pass NULL for either the explicit or implicit
right-hand side function as appropriate. If ARKStep is used as the fast time scale integrator, codes will need to call
ARKStepCreateMRIStepInnerStepper() to wrap the ARKStep memory as an MRIStepInnerStepper object. Ad-
ditionally, MRIStepGetNumRhsEvals() has been updated to return the number of slow implicit and explicit function
evaluations. The coupling table, MRIStepCoupling, and the functions MRIStepCoupling_Alloc() and MRIStep-
Coupling_Create() have also been updated to support IMEX-MRI-GARK methods.

New Features

Two new optional vector operations, N_VDotProdMultiLocal() and N_VDotProdMultiAllReduce(), have been
added to support low-synchronization methods for Anderson acceleration.

The implementation of solve-decoupled implicit MRI-GARK methods has been updated to remove extraneous slow
implicit function calls and reduce the memory requirements.

Added a new function CVodeGetLinSolveStats() to get the CVODES linear solver statistics as a group.

Added a new function, CVodeSetMonitorFn(), that takes a user-function to be called by CVODES after every nst
successfully completed time-steps. This is intended to provide a way of monitoring the CVODES statistics throughout
the simulation.

New orthogonalization methods were added for use within the KINSOL Anderson acceleration routine. See Anderson
Acceleration QR Factorization and KINSetOrthAA() for more details.

Deprecation Notice

812 Chapter 20. Changelog

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetJacEvalFrequency
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetJacEvalFrequency
https://github.com/LLNL/Caliper
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeGetLinSolveStats
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetMonitorFn
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Mathematics_link.html#anderson-qr
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Mathematics_link.html#anderson-qr
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetOrthAA

User Documentation for ARKODE, v6.3.0

The serial, PThreads, PETSc, hypre, Parallel, OpenMP_DEV, and OpenMP vector functions N_VCloneVectorAr-
ray_* and N_VDestroyVectorArray_* have been deprecated. The generic N_VCloneVectorArray() and N_VDe-
stroyVectorArray() functions should be used instead.

Many constants, types, and functions have been renamed so that they are properly namespaced. The old names have
been deprecated and will be removed in SUNDIALS v7.0.0.

The following constants, macros, and typedefs are now deprecated:

Deprecated Name New Name
realtype sunrealtype
booleantype sunbooleantype
RCONST SUN_RCONST
BIG_REAL SUN_BIG_REAL
SMALL_REAL SUN_SMALL_REAL
UNIT_ROUNDOFF SUN_UNIT_ROUNDOFF
PREC_NONE SUN_PREC_NONE
PREC_LEFT SUN_PREC_LEFT
PREC_RIGHT SUN_PREC_RIGHT
PREC_BOTH SUN_PREC_BOTH
MODIFIED_GS SUN_MODIFIED_GS
CLASSICAL_GS SUN_CLASSICAL_GS
ATimesFn SUNATimesFn
PSetupFn SUNPSetupFn
PSolveFn SUNPSolveFn
DlsMat SUNDlsMat
DENSE_COL SUNDLS_DENSE_COL
DENSE_ELEM SUNDLS_DENSE_ELEM
BAND_COL SUNDLS_BAND_COL
BAND_COL_ELEM SUNDLS_BAND_COL_ELEM
BAND_ELEM SUNDLS_BAND_ELEM
SDIRK_2_1_2 ARKODE_SDIRK_2_1_2
BILLINGTON_3_3_2 ARKODE_BILLINGTON_3_3_2
TRBDF2_3_3_2 ARKODE_TRBDF2_3_3_2
KVAERNO_4_2_3 ARKODE_KVAERNO_4_2_3
ARK324L2SA_DIRK_4_2_3 ARKODE_ARK324L2SA_DIRK_4_2_3
CASH_5_2_4 ARKODE_CASH_5_2_4
CASH_5_3_4 ARKODE_CASH_5_3_4
SDIRK_5_3_4 ARKODE_SDIRK_5_3_4
KVAERNO_5_3_4 ARKODE_KVAERNO_5_3_4
ARK436L2SA_DIRK_6_3_4 ARKODE_ARK436L2SA_DIRK_6_3_4
KVAERNO_7_4_5 ARKODE_KVAERNO_7_4_5
ARK548L2SA_DIRK_8_4_5 ARKODE_ARK548L2SA_DIRK_8_4_5
ARK437L2SA_DIRK_7_3_4 ARKODE_ARK437L2SA_DIRK_7_3_4
ARK548L2SAb_DIRK_8_4_5 ARKODE_ARK548L2SAb_DIRK_8_4_5
MIN_DIRK_NUM ARKODE_MIN_DIRK_NUM
MAX_DIRK_NUM ARKODE_MAX_DIRK_NUM
MIS_KW3 ARKODE_MIS_KW3
MRI_GARK_ERK33a ARKODE_MRI_GARK_ERK33a
MRI_GARK_ERK45a ARKODE_MRI_GARK_ERK45a
MRI_GARK_IRK21a ARKODE_MRI_GARK_IRK21a
MRI_GARK_ESDIRK34a ARKODE_MRI_GARK_ESDIRK34a
MRI_GARK_ESDIRK46a ARKODE_MRI_GARK_ESDIRK46a

continues on next page

20.19. Changes to SUNDIALS in release 6.0.0 813

User Documentation for ARKODE, v6.3.0

Table 20.1 – continued from previous page
Deprecated Name New Name
IMEX_MRI_GARK3a ARKODE_IMEX_MRI_GARK3a
IMEX_MRI_GARK3b ARKODE_IMEX_MRI_GARK3b
IMEX_MRI_GARK4 ARKODE_IMEX_MRI_GARK4
MIN_MRI_NUM ARKODE_MIN_MRI_NUM
MAX_MRI_NUM ARKODE_MAX_MRI_NUM
DEFAULT_MRI_TABLE_3 MRISTEP_DEFAULT_TABLE_3
DEFAULT_EXPL_MRI_TABLE_3 MRISTEP_DEFAULT_EXPL_TABLE_3
DEFAULT_EXPL_MRI_TABLE_4 MRISTEP_DEFAULT_EXPL_TABLE_4
DEFAULT_IMPL_SD_TABLE_2 MRISTEP_DEFAULT_IMPL_SD_TABLE_2
DEFAULT_IMPL_SD_TABLE_3 MRISTEP_DEFAULT_IMPL_SD_TABLE_3
DEFAULT_IMPL_SD_TABLE_4 MRISTEP_DEFAULT_IMPL_SD_TABLE_4
DEFAULT_IMEX_SD_TABLE_3 MRISTEP_DEFAULT_IMEX_SD_TABLE_3
DEFAULT_IMEX_SD_TABLE_4 MRISTEP_DEFAULT_IMEX_SD_TABLE_4
HEUN_EULER_2_1_2 ARKODE_HEUN_EULER_2_1_2
BOGACKI_SHAMPINE_4_2_3 ARKODE_BOGACKI_SHAMPINE_4_2_3
ARK324L2SA_ERK_4_2_3 ARKODE_ARK324L2SA_ERK_4_2_3
ZONNEVELD_5_3_4 ARKODE_ZONNEVELD_5_3_4
ARK436L2SA_ERK_6_3_4 ARKODE_ARK436L2SA_ERK_6_3_4
SAYFY_ABURUB_6_3_4 ARKODE_SAYFY_ABURUB_6_3_4
CASH_KARP_6_4_5 ARKODE_CASH_KARP_6_4_5
FEHLBERG_6_4_5 ARKODE_FEHLBERG_6_4_5
DORMAND_PRINCE_7_4_5 ARKODE_DORMAND_PRINCE_7_4_5
ARK548L2SA_ERK_8_4_5 ARKODE_ARK548L2SA_ERK_8_4_5
VERNER_8_5_6 ARKODE_VERNER_8_5_6
FEHLBERG_13_7_8 ARKODE_FEHLBERG_13_7_8
KNOTH_WOLKE_3_3 ARKODE_KNOTH_WOLKE_3_3
ARK437L2SA_ERK_7_3_4 ARKODE_ARK437L2SA_ERK_7_3_4
ARK548L2SAb_ERK_8_4_5 ARKODE_ARK548L2SAb_ERK_8_4_5
MIN_ERK_NUM ARKODE_MIN_ERK_NUM
MAX_ERK_NUM ARKODE_MAX_ERK_NUM
DEFAULT_ERK_2 ARKSTEP_DEFAULT_ERK_2
DEFAULT_ERK_3 ARKSTEP_DEFAULT_ERK_3
DEFAULT_ERK_4 ARKSTEP_DEFAULT_ERK_4
DEFAULT_ERK_5 ARKSTEP_DEFAULT_ERK_5
DEFAULT_ERK_6 ARKSTEP_DEFAULT_ERK_6
DEFAULT_ERK_8 ARKSTEP_DEFAULT_ERK_8
DEFAULT_DIRK_2 ARKSTEP_DEFAULT_DIRK_2
DEFAULT_DIRK_3 ARKSTEP_DEFAULT_DIRK_3
DEFAULT_DIRK_4 ARKSTEP_DEFAULT_DIRK_4
DEFAULT_DIRK_5 ARKSTEP_DEFAULT_DIRK_5
DEFAULT_ARK_ETABLE_3 ARKSTEP_DEFAULT_ARK_ETABLE_3
DEFAULT_ARK_ETABLE_4 ARKSTEP_DEFAULT_ARK_ETABLE_4
DEFAULT_ARK_ETABLE_5 ARKSTEP_DEFAULT_ARK_ETABLE_4
DEFAULT_ARK_ITABLE_3 ARKSTEP_DEFAULT_ARK_ITABLE_3
DEFAULT_ARK_ITABLE_4 ARKSTEP_DEFAULT_ARK_ITABLE_4
DEFAULT_ARK_ITABLE_5 ARKSTEP_DEFAULT_ARK_ITABLE_5
DEFAULT_ERK_2 ERKSTEP_DEFAULT_2
DEFAULT_ERK_3 ERKSTEP_DEFAULT_3
DEFAULT_ERK_4 ERKSTEP_DEFAULT_4
DEFAULT_ERK_5 ERKSTEP_DEFAULT_5

continues on next page

814 Chapter 20. Changelog

User Documentation for ARKODE, v6.3.0

Table 20.1 – continued from previous page
Deprecated Name New Name
DEFAULT_ERK_6 ERKSTEP_DEFAULT_6
DEFAULT_ERK_8 ERKSTEP_DEFAULT_8

In addition, the following functions are now deprecated (compile-time warnings will be printed if supported by the
compiler):

Deprecated Name New Name
DenseGETRF SUNDlsMat_DenseGETRF
DenseGETRS SUNDlsMat_DenseGETRS
denseGETRF SUNDlsMat_denseGETRF
denseGETRS SUNDlsMat_denseGETRS
DensePOTRF SUNDlsMat_DensePOTRF
DensePOTRS SUNDlsMat_DensePOTRS
densePOTRF SUNDlsMat_densePOTRF
densePOTRS SUNDlsMat_densePOTRS
DenseGEQRF SUNDlsMat_DenseGEQRF
DenseORMQR SUNDlsMat_DenseORMQR
denseGEQRF SUNDlsMat_denseGEQRF
denseORMQR SUNDlsMat_denseORMQR
DenseCopy SUNDlsMat_DenseCopy
denseCopy SUNDlsMat_denseCopy
DenseScale SUNDlsMat_DenseScale
denseScale SUNDlsMat_denseScale
denseAddIdentity SUNDlsMat_denseAddIdentity
DenseMatvec SUNDlsMat_DenseMatvec
denseMatvec SUNDlsMat_denseMatvec
BandGBTRF SUNDlsMat_BandGBTRF
bandGBTRF SUNDlsMat_bandGBTRF
BandGBTRS SUNDlsMat_BandGBTRS
bandGBTRS SUNDlsMat_bandGBTRS
BandCopy SUNDlsMat_BandCopy
bandCopy SUNDlsMat_bandCopy
BandScale SUNDlsMat_BandScale
bandScale SUNDlsMat_bandScale
bandAddIdentity SUNDlsMat_bandAddIdentity
BandMatvec SUNDlsMat_BandMatvec
bandMatvec SUNDlsMat_bandMatvec
ModifiedGS SUNModifiedGS
ClassicalGS SUNClassicalGS
QRfact SUNQRFact
QRsol SUNQRsol
DlsMat_NewDenseMat SUNDlsMat_NewDenseMat
DlsMat_NewBandMat SUNDlsMat_NewBandMat
DestroyMat SUNDlsMat_DestroyMat
NewIntArray SUNDlsMat_NewIntArray
NewIndexArray SUNDlsMat_NewIndexArray
NewRealArray SUNDlsMat_NewRealArray
DestroyArray SUNDlsMat_DestroyArray
AddIdentity SUNDlsMat_AddIdentity

continues on next page

20.19. Changes to SUNDIALS in release 6.0.0 815

User Documentation for ARKODE, v6.3.0

Table 20.2 – continued from previous page
Deprecated Name New Name
SetToZero SUNDlsMat_SetToZero
PrintMat SUNDlsMat_PrintMat
newDenseMat SUNDlsMat_newDenseMat
newBandMat SUNDlsMat_newBandMat
destroyMat SUNDlsMat_destroyMat
newIntArray SUNDlsMat_newIntArray
newIndexArray SUNDlsMat_newIndexArray
newRealArray SUNDlsMat_newRealArray
destroyArray SUNDlsMat_destroyArray

In addition, the entire sundials_lapack.h header file is now deprecated for removal in SUNDIALS v7.0.0. Note,
this header file is not needed to use the SUNDIALS LAPACK linear solvers.

Deprecated “bootstrap” and “minimum correction” predictors in ARKStep (options 4 and 5 to ARKStepSetPredic-
torMethod()) and the “bootstrap” predictor in MRIStep (option 4 to MRIStepSetPredictorMethod()). These
functions will output a deprecation warning message and will be removed in a future release.

20.20 Changes to SUNDIALS in release 5.8.0

New Features

The RAJA vector implementation has been updated to support the SYCL backend in addition to the CUDA and HIP
backend. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS
CMake variable. This vector remains experimental and is subject to change from version to version.

New SUNMatrix and SUNLinearSolver implementation were added to interface with the Intel oneAPI Math Kernel
Library (oneMKL). Both the matrix and the linear solver support general dense linear systems as well as block diagonal
linear systems. See §10.9 for more details. This matrix is experimental and is subject to change from version to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess(), to indicate that the next
call to SUNLinSolSolve() will be made with a zero initial guess. SUNLinearSolver implementations that do not use
the SUNLinSolNewEmpty() constructor will, at a minimum, need set the setzeroguess function pointer in the linear
solver ops structure to NULL. The SUNDIALS iterative linear solver implementations have been updated to leverage
this new set function to remove one dot product per solve.

The time integrator packages (ARKODE, CVODE(S), and IDA(S)) all now support a new “matrix-embedded” SUN-
LinearSolver type. This type supports user-supplied SUNLinearSolver implementations that set up and solve the
specified linear system at each linear solve call. Any matrix-related data structures are held internally to the linear
solver itself, and are not provided by the SUNDIALS package.

Added functions to ARKODE and CVODE(S) for supplying an alternative right-hand side function and to IDA(S) for
supplying an alternative residual for use within nonlinear system function evaluations:

• ARKStepSetNlsRhsFn()

• MRIStepSetNlsRhsFn()

• CVodeSetNlsRhsFn()

• IDASetNlsResFn()

Support for user-defined inner (fast) integrators has been to the MRIStep module. See MRIStep Custom Inner Steppers
for more information on providing a user-defined integration method.

816 Chapter 20. Changelog

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetNlsRhsFn
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetNlsResFn

User Documentation for ARKODE, v6.3.0

Added specialized fused HIP kernels to CVODE which may offer better performance on smaller problems when using
CVODE with the HIP vector. See the optional input function CVodeSetUseIntegratorFusedKernels() for more
information. As with other SUNDIALS HIP features, this capability is considered experimental and may change from
version to version.

New KINSOL options have been added to apply a constant damping factor in the fixed point and Picard iterations
(see KINSetDamping()), to delay the start of Anderson acceleration with the fixed point and Picard iterations (see
KINSetDelayAA()), and to return the newest solution with the fixed point iteration (see KINSetReturnNewest()).

The installed SUNDIALSConfig.cmake file now supports the COMPONENTS option to find_package. The exported
targets no longer have IMPORTED_GLOBAL set.

Bug Fixes

A bug was fixed in SUNMatCopyOps() where the matrix-vector product setup function pointer was not copied.

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess and a solution
scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR as standalone solvers as all
SUNDIALS packages utilize a zero initial guess.

A bug was fixed in the ARKODE stepper modules where the stop time may be passed after resetting the integrator.

A bug was fixed in IDASetJacTimesResFn() in IDAS where the supplied function was used in the dense finite
difference Jacobian computation rather than the finite difference Jacobian-vector product approximation.

A bug was fixed in the KINSOL Picard iteration where the value of KINSetMaxSetupCalls() would be ignored.

20.21 Changes to SUNDIALS in release 5.7.0

A new N_Vector implementation based on the SYCL abstraction layer has been added targeting Intel GPUs. At present
the only SYCL compiler supported is the DPC++ (Intel oneAPI) compiler. See §8.12 for more details. This vector is
considered experimental and is subject to major changes even in minor releases.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the MAGMA linear algebra
library. Both the matrix and the linear solver support general dense linear systems as well as block diagonal linear
systems, and both are targeted at GPUs (AMD or NVIDIA). See §10.8 for more details.

20.22 Changes to SUNDIALS in release 5.6.1

Fixed a CMake bug which caused an error if the CMAKE_CXX_STANDARD and SUNDIALS_RAJA_BACKENDS options
were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

20.23 Changes to SUNDIALS in release 5.6.0

A new N_Vector implementation based on the AMD ROCm HIP platform has been added. This vector can target
NVIDIA or AMD GPUs. See §8.11 for more details. This vector is considered experimental and is subject to change
from version to version.

The RAJA vector implementation has been updated to support the HIP backend in addition to the CUDA backend. Users
can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS CMake variable. This
vector remains experimental and is subject to change from version to version.

20.21. Changes to SUNDIALS in release 5.7.0 817

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetUseIntegratorFusedKernels
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDamping
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDelayAA
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetReturnNewest
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetJacTimesResFn
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetMaxSetupCalls

User Documentation for ARKODE, v6.3.0

A new optional operation, N_VGetDeviceArrayPointer(), was added to the N_Vector API. This operation is useful
for vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA N_Vector.

The SUNDIALS matrix and linear solver interfaces to the cuSparse matrix and cuSolver batched QR solver no longer
require using the CUDA N_Vector. Instead, they require that the vector utilized provides the N_VGetDeviceAr-
rayPointer() operation, and that the pointer returned by N_VGetDeviceArrayPointer() is a valid CUDA device
pointer.

20.24 Changes to SUNDIALS in release 5.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see deprecation
warnings, but otherwise the changes should be fully backwards compatible for almost all users. SUNDIALS now
exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

20.25 Changes to SUNDIALS in release 5.4.0

Major Features

A new class, SUNMemoryHelper, was added to support GPU users who have complex memory management needs
such as using memory pools. This is paired with new constructors for the CUDA and RAJA vectors that accept a
SUNMemoryHelper object. Refer to §4.8, §15, §8.10 and §8.13 for more information.

Added full support for time-dependent mass matrices in ARKStep, and expanded existing non-identity mass matrix
infrastructure to support use of the fixed point nonlinear solver.

An interface between ARKStep and the XBraid multigrid reduction in time (MGRIT) library [1] has been added to
enable parallel-in-time integration. See the Multigrid Reduction in Time with XBraid section for more information
and the example codes in examples/arkode/CXX_xbraid. This interface required the addition of three new N_-
Vector operations to exchange vector data between computational nodes, see N_VBufSize(), N_VBufPack(), and
N_VBufUnpack(). These N_Vector operations are only used within the XBraid interface and need not be implemented
for any other context.

New Features

The RAJA vector has been updated to mirror the CUDA vector. Notably, the update adds managed memory support
to the RAJA vector. Users of the vector will need to update any calls to the N_VMake_Raja() function because that
signature was changed. This vector remains experimental and is subject to change from version to version.

The expected behavior of SUNNonlinSolGetNumIters() and SUNNonlinSolGetNumConvFails() in the SUNNon-
linearSolver API have been updated to specify that they should return the number of nonlinear solver iterations and
convergence failures in the most recent solve respectively rather than the cumulative number of iterations and failures
across all solves respectively. The API documentation and SUNDIALS provided SUNNonlinearSolver implemen-
tations have been updated accordingly. As before, the cumulative number of nonlinear iterations and failures may be
retrieved with the following functions:

• ARKStepGetNumNonlinSolvIters()

• ARKStepGetNumNonlinSolvConvFails()

• ARKStepGetNonlinSolvStats()

• MRIStepGetNumNonlinSolvIters()

• MRIStepGetNumNonlinSolvConvFails()

• MRIStepGetNonlinSolvStats()

818 Chapter 20. Changelog

User Documentation for ARKODE, v6.3.0

• CVodeGetNumNonlinSolvIters()

• CVodeGetNumNonlinSolvConvFails()

• CVodeGetNonlinSolvStats()

• IDAGetNumNonlinSolvIters()

• IDAGetNumNonlinSolvConvFails()

• IDAGetNonlinSolvStats()

Added the following the following functions that advanced users might find useful when providing a custom SUNNon-
linSolSysFn():

• ARKStepComputeState()

• ARKStepGetNonlinearSystemData()

• MRIStepComputeState()

• MRIStepGetNonlinearSystemData()

• CVodeComputeState()

• CVodeGetNonlinearSystemData()

• IDAGetNonlinearSystemData()

Added new functions to CVODE(S), ARKODE, and IDA(S) to to specify the factor for converting between integrator
tolerances (WRMS norm) and linear solver tolerances (L2 norm) i.e., tol_L2 = nrmfac * tol_WRMS:

• ARKStepSetLSNormFactor()

• ARKStepSetMassLSNormFactor()

• MRIStepSetLSNormFactor()

• CVodeSetLSNormFactor()

• IDASetLSNormFactor()

Added new reset functions ARKStepReset(), ERKStepReset(), and MRIStepReset() to reset the stepper time
and state vector to user-provided values for continuing the integration from that point while retaining the integration
history. These function complement the reinitialization functions ARKStepReInit(), ERKStepReInit(), and MRIS-
tepReInit() which reinitialize the stepper so that the problem integration should resume as if started from scratch.

Updated the MRIStep time-stepping module in ARKODE to support higher-order MRI-GARK methods [92], including
methods that involve solve-decoupled, diagonally-implicit treatment of the slow time scale.

The function CVodeSetLSetupFrequency() has been added to CVODE(S) to set the frequency of calls to the linear
solver setup function.

The Trilinos Tpetra N_Vector interface has been updated to work with Trilinos 12.18+. This update changes the local
ordinal type to always be an int.

Added support for CUDA 11.

Bug Fixes

A minor inconsistency in CVODE(S) and a bug ARKODE when checking the Jacobian evaluation frequency has been
fixed. As a result codes using using a non-default Jacobian update frequency through a call to CVodeSetMaxSteps-
BetweenJac or ARKStepSetMaxStepsBetweenJac will need to increase the provided value by 1 to achieve the same
behavior as before.

In IDAS and CVODES, the functions for forward integration with checkpointing (IDASolveF(), CVodeF()) are now
subject to a restriction on the number of time steps allowed to reach the output time. This is the same restriction

20.25. Changes to SUNDIALS in release 5.4.0 819

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeGetNumNonlinSolvIters
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeGetNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeGetNonlinSolvStats
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDAGetNumNonlinSolvIters
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDAGetNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDAGetNonlinSolvStats
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.CVodeComputeState
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.CVodeGetNonlinearSystemData
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.IDAGetNonlinearSystemData
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetLSNormFactor
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetLSNormFactor
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetLSetupFrequency
https://sundials.readthedocs.io/en/v7.3.0/idas/Usage/ADJ.html#c.IDASolveF
https://sundials.readthedocs.io/en/v7.3.0/cvodes/Usage/ADJ.html#c.CVodeF

User Documentation for ARKODE, v6.3.0

applied to IDASolve() and CVode(). The default maximum number of steps is 500, but this may be changed using
the CVodeSetMaxNumSteps() and IDASetMaxNumSteps() function. This change fixes a bug that could cause an
infinite loop in IDASolveF() and CVodeF(). This change may cause a runtime error in existing user code.

Fixed bug in using ERK method integration with static mass matrices.

Deprecation Notice

For greater clarity the following functions have been deprecated:

• CVodeSetMaxStepsBetweenJac

• ARKStepSetMaxStepsBetweenJac

• ARKStepSetMaxStepsBetweenLSet

The following functions should be used instead:

• CVodeSetJacEvalFrequency()

• ARKStepSetJacEvalFrequency()

• ARKStepSetLSetupFrequency()

20.26 Changes to SUNDIALS in release 5.3.0

Major Feature

Added support to CVODE for integrating IVPs with constraints using BDF methods and projecting the solution onto
the constraint manifold with a user defined projection function. This implementation is accompanied by additions to
user documentation and CVODE examples. See CVodeSetProjFn() for more information.

New Features

Added the ability to control the CUDA kernel launch parameters for the CUDA vector and spare matrix implementa-
tions. These implementations remain experimental and are subject to change from version to version. In addition, the
CUDA vector kernels were rewritten to be more flexible. Most users should see equivalent performance or some im-
provement, but a select few may observe minor performance degradation with the default settings. Users are encouraged
to contact the SUNDIALS team about any performance changes that they notice.

Added new capabilities for monitoring the solve phase in the Newton and fixed-point SUNNonlinearSolver, and the
SUNDIALS iterative linear solvers. SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_-
MONITORING to use these capabilities.

Added specialized fused CUDA kernels to CVODE which may offer better performance on smaller problems when
using CVODE with the CUDA vector. See the optional input function CVodeSetUseIntegratorFusedKernels()
for more information. As with other SUNDIALS CUDA features, this is feature is experimental and may change from
version to version.

Added a new function, CVodeSetMonitorFn(), that takes a user-function to be called by CVODE after every nst
successfully completed time-steps. This is intended to provide a way of monitoring the CVODE statistics throughout
the simulation.

Added a new function CVodeGetLinSolveStats() to get the CVODE linear solver statistics as a group.

Added the following optional functions to provide an alternative ODE right-hand side function (ARKODE and
CVODE(S)), DAE residual function (IDA(S)), or nonlinear system function (KINSOL) for use when computing
Jacobian-vector products with the internal difference quotient approximation:

• ARKStepSetJacTimesRhsFn()

• CVodeSetJacTimesRhsFn()

820 Chapter 20. Changelog

https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASolve
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVode
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetMaxNumSteps
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetMaxNumSteps
https://sundials.readthedocs.io/en/v7.3.0/idas/Usage/ADJ.html#c.IDASolveF
https://sundials.readthedocs.io/en/v7.3.0/cvodes/Usage/ADJ.html#c.CVodeF
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetJacEvalFrequency
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetProjFn
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetUseIntegratorFusedKernels
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetMonitorFn
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeGetLinSolveStats
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetJacTimesRhsFn

User Documentation for ARKODE, v6.3.0

• CVodeSetJacTimesRhsFnB()

• IDASetJacTimesResFn()

• IDASetJacTimesResFnB()

• KINSetJacTimesVecSysFn()

Bug Fixes

Fixed a bug in the iterative linear solvers where an error is not returned if the Atimes function is NULL or, if precondi-
tioning is enabled, the PSolve function is NULL.

Fixed a bug in ARKODE where the prototypes for ERKStepSetMinReduction() and ARKStepSetMinReduction()
were not included in arkode_erkstep.h and arkode_arkstep.h respectively.

Fixed a bug in ARKODE where inequality constraint checking would need to be disabled and then re-enabled to update
the inequality constraint values after resizing a problem. Resizing a problem will now disable constraints and a call
to ARKStepSetConstraints() or ERKStepSetConstraints() is required to re-enable constraint checking for the
new problem size.

20.27 Changes to SUNDIALS in release 5.2.0

New Features

The following functions were added to each of the time integration packages to enable or disable the scaling applied to
linear system solutions with matrix-based linear solvers to account for lagged matrix information:

• ARKStepSetLinearSolutionScaling()

• CVodeSetLinearSolutionScaling()

• CVodeSetLinearSolutionScalingB()

• IDASetLinearSolutionScaling()

• IDASetLinearSolutionScalingB()

When using a matrix-based linear solver with ARKODE, IDA(S), or BDF methods in CVODE(S) scaling is enabled
by default.

Added a new SUNMatrix implementation that interfaces to the sparse matrix implementation from the NVIDIA cuS-
PARSE library, see §9.7 for more details. In addition, the CUDA Sparse linear solver has been updated to use the new
matrix, as such, users of this matrix will need to update their code. This implementations are still considered to be
experimental, thus they are subject to breaking changes even in minor releases.

Added a new “stiff” interpolation module to ARKODE, based on Lagrange polynomial interpolation, that is acces-
sible to each of the ARKStep, ERKStep and MRIStep time-stepping modules. This module is designed to provide
increased interpolation accuracy when integrating stiff problems, as opposed to the ARKODE-standard Hermite in-
terpolation module that can suffer when the IVP right-hand side has large Lipschitz constant. While the Hermite
module remains the default, the new Lagrange module may be enabled using one of the routines ARKStepSetInter-
polantType(), ERKStepSetInterpolantType(), or MRIStepSetInterpolantType(). The serial example prob-
lem ark_brusselator.c has been converted to use this Lagrange interpolation module. Created accompanying rou-
tines ARKStepSetInterpolantDegree(), ARKStepSetInterpolantDegree() and ARKStepSetInterpolant-
Degree() to provide user control over these interpolating polynomials.

Added two new functions, ARKStepSetMinReduction() and ERKStepSetMinReduction(), to change the mini-
mum allowed step size reduction factor after an error test failure.

Bug Fixes

20.27. Changes to SUNDIALS in release 5.2.0 821

https://sundials.readthedocs.io/en/v7.3.0/cvodes/Usage/ADJ.html#c.CVodeSetJacTimesRhsFnB
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetJacTimesResFn
https://sundials.readthedocs.io/en/v7.3.0/idas/Usage/ADJ.html#c.IDASetJacTimesResFnB
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetJacTimesVecSysFn
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetLinearSolutionScaling
https://sundials.readthedocs.io/en/v7.3.0/cvodes/Usage/ADJ.html#c.CVodeSetLinearSolutionScalingB
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetLinearSolutionScaling
https://sundials.readthedocs.io/en/v7.3.0/idas/Usage/ADJ.html#c.IDASetLinearSolutionScalingB

User Documentation for ARKODE, v6.3.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL compiler. When building
the Fortran 2003 interfaces with an XL compiler it is recommended to set CMAKE_Fortran_COMPILER to f2003,
xlf2003, or xlf2003_r.

Fixed a bug in how ARKODE interfaces with a user-supplied, iterative, unscaled linear solver. In this case, ARKODE
adjusts the linear solver tolerance in an attempt to account for the lack of support for left/right scaling matrices. Previ-
ously, ARKODE computed this scaling factor using the error weight vector, ewt; this fix changes that to the residual
weight vector, rwt, that can differ from ewt when solving problems with non-identity mass matrix.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attribute missing on some SUN-
DIALS API functions.

Fixed a memory leak in CVODES and IDAS from not deallocating the atolSmin0 and atolQSmin0 arrays.

Fixed a bug where a non-default value for the maximum allowed growth factor after the first step would be ignored.

Deprecation Notice

The routines ARKStepSetDenseOrder(), ARKStepSetDenseOrder() and ARKStepSetDenseOrder() have been
deprecated and will be removed in a future release. The new functions ARKStepSetInterpolantDegree(), ARK-
StepSetInterpolantDegree(), and ARKStepSetInterpolantDegree() should be used instead.

20.28 Changes to SUNDIALS in release 5.1.0

New Features

Added support for a user-supplied function to update the prediction for each implicit stage solution in ARKStep. If
supplied, this routine will be called after any existing ARKStep predictor algorithm completes, so that the predictor
may be modified by the user as desired. The new user-supplied routine has type ARKStagePredictFn, and may be set
by calling ARKStepSetStagePredictFn().

The MRIStep module has been updated to support attaching different user data pointers to the inner and outer integra-
tors. If applicable, user codes will need to add a call to ARKStepSetUserData() to attach their user data pointer to the
inner integrator memory as MRIStepSetUserData() will not set the pointer for both the inner and outer integrators.
The MRIStep examples have been updated to reflect this change.

Added support for damping when using Anderson acceleration in KINSOL. See the Mathematical Considerations and
the description of the KINSetDampingAA() function for more details.

Added support for constant damping to the fixed-point SUNNonlinearSolver when using Anderson acceleration. See
SUNNonlinSol_FixedPoint description and the SUNNonlinSolSetDamping_FixedPoint() for more details.

Added two utility functions, SUNDIALSFileOpen() and SUNDIALSFileClose() for creating/destroying file pointers.
These are useful when using the Fortran 2003 interfaces.

Added a new build system option, CUDA_ARCH, to specify the CUDA architecture to target.

Bug Fixes

Fixed a build system bug related to finding LAPACK/BLAS.

Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and PETSC_-
LIBRARIES instead of PETSC_DIR .

Fixed a bug in the Fortran 2003 interfaces to the ARKODE Butcher table routines and structure. This includes changing
the ARKodeButcherTable type to be a type(c_ptr) in Fortran.

822 Chapter 20. Changelog

https://sundials.readthedocs.io/en/v7.3.0/kinsol/Mathematics_link.html#kinsol-mathematics
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDampingAA

User Documentation for ARKODE, v6.3.0

20.29 Changes to SUNDIALS in release 5.0.0

Build System

Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when CUDA or
OpenMP with device offloading are enabled.

The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds as SUN-
DIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS, the path to the BLAS
library should be included in the _LIBRARIES variable for the third party library e.g., SUPERLUDIST_LIBRARIES when
enabling SuperLU_DIST.

NVector

Two new functions were added to aid in creating custom N_Vector objects. The constructor N_VNewEmpty() allocates
an “empty” generic N_Vector with the object’s content pointer and the function pointers in the operations structure
initialized to NULL. When used in the constructor for custom objects this function will ease the introduction of any
new optional operations to the N_Vector API by ensuring only required operations need to be set. Additionally, the
function N_VCopyOps() has been added to copy the operation function pointers between vector objects. When used in
clone routines for custom vector objects these functions also will ease the introduction of any new optional operations
to the N_Vector API by ensuring all operations are copied when cloning objects.

Added new N_Vector implementations, ManyVector and MPIManyVector, to support flexible partitioning of solution
data among different processing elements (e.g., CPU + GPU) or for multi-physics problems that couple distinct MPI-
based simulations together (see the §8.17 and §8.18 for more details). This implementation is accompanied by additions
to user documentation and SUNDIALS examples.

Additionally, an MPIPlusX vector implementation has been created to support the MPI+X paradigm where X is a
type of on-node parallelism (e.g., OpenMP, CUDA, etc.). The implementation is accompanied by additions to user
documentation and SUNDIALS examples.

One new required vector operation and ten new optional vector operations have been added to the N_Vector API.
The new required operation, N_VGetLength(), returns the global vector length. The optional operations have been
added to support the new MPIManyVector implementation. The operation N_VGetCommunicator() must be imple-
mented by subvectors that are combined to create an MPIManyVector, but is not used outside of this context. The
remaining nine operations are optional local reduction operations intended to eliminate unnecessary latency when per-
forming vector reduction operations (norms, etc.) on distributed memory systems. The optional local reduction vector
operations are N_VDotProdLocal, N_VMaxNormLocal, N_VMinLocal, N_VL1NormLocal, N_VWSqrSumLocal, N_-
VWSqrSumMaskLocal, N_VInvTestLocal, N_VConstrMaskLocal, and N_VMinQuotientLocal. If an N_Vector
implementation defines any of the local operations as NULL, then the MPIManyVector will call standard N_Vector
operations to complete the computation.

The *_MPICuda and *_MPIRaja functions have been removed from the CUDA and RAJA vector implementations
respectively. Accordingly, the nvector_mpicuda.h, nvector_mpiraja.h, libsundials_nvecmpicuda.lib, and
libsundials_nvecmpicudaraja.lib files have been removed. Users should use the MPI+X vector in conjunction
with the CUDA and RAJA vectors to replace the functionality. The necessary changes are minimal and should require
few code modifications. See the example programs in examples/ida/mpicuda and examples/ida/mpiraja for
examples of how to use the MPI+X vector with the CUDA and RAJA vectors, respectively.

Made performance improvements to the CUDA vector. Users who utilize a non-default stream should no longer see
default stream synchronizations after memory transfers.

Added a new constructor to the CUDA vector that allows a user to provide custom allocate and free functions for the
vector data array and internal reduction buffer.

Added three new N_Vector utility functions, N_VGetVecAtIndexVectorArray(), N_VSetVecAtIndexVectorAr-
ray(), and N_VNewVectorArray(), for working with N_Vector arrays when using the Fortran 2003 interfaces.

SUNMatrix

20.29. Changes to SUNDIALS in release 5.0.0 823

User Documentation for ARKODE, v6.3.0

Two new functions were added to aid in creating custom SUNMatrix objects. The constructor SUNMatNewEmpty()
allocates an “empty” generic SUNMatrix with the object’s content pointer and the function pointers in the operations
structure initialized to NULL. When used in the constructor for custom objects this function will ease the introduction of
any new optional operations to the SUNMatrix API by ensuring only required operations need to be set. Additionally,
the function SUNMatCopyOps() has been added to copy the operation function pointers between matrix objects. When
used in clone routines for custom matrix objects these functions also will ease the introduction of any new optional
operations to the SUNMatrix API by ensuring all operations are copied when cloning objects.

A new operation, SUNMatMatvecSetup(), was added to the SUNMatrix API to perform any setup necessary for
computing a matrix-vector product. This operation is useful for SUNMatrix implementations which need to prepare
the matrix itself, or communication structures before performing the matrix-vector product. Users who have imple-
mented a custom SUNMatrix will need to at least update their code to set the corresponding ops structure member,
matvecsetup, to NULL.

The generic SUNMatrix API now defines error codes to be returned by matrix operations. Operations which return an
integer flag indicating success/failure may return different values than previously.

A new SUNMatrix (and SUNLinearSolver) implementation was added to facilitate the use of the SuperLU_DIST
library with SUNDIALS.

SUNLinearSolver

A new function was added to aid in creating custom SUNLinearSolver objects. The constructor SUNLinSol-
NewEmpty() allocates an “empty” generic SUNLinearSolver with the object’s content pointer and the function point-
ers in the operations structure initialized to NULL. When used in the constructor for custom objects this function will ease
the introduction of any new optional operations to the SUNLinearSolver API by ensuring only required operations
need to be set.

The return type of the SUNLinSolLastFlag in the SUNLinearSolver has changed from long int to sunindextype
to be consistent with the type used to store row indices in dense and banded linear solver modules.

Added a new optional operation to the SUNLinearSolver API, SUNLinSolGetID(), that returns a SUNLinear-
Solver_ID for identifying the linear solver module.

The SUNLinearSolver API has been updated to make the initialize and setup functions optional.

A new SUNLinearSolver (and SUNMatrix) implementation was added to facilitate the use of the SuperLU_DIST
library with SUNDIALS.

Added a new SUNLinearSolver implementation, cuSolverSp_batchQR, which leverages the NVIDIA cuSOLVER
sparse batched QR method for efficiently solving block diagonal linear systems on NVIDIA GPUs.

Added three new accessor functions to the KLU linear solver to provide user access to the underlying KLU solver
structures: SUNLinSol_KLUGetSymbolic(), SUNLinSol_KLUGetNumeric(), and SUNLinSol_KLUGetCommon().

SUNNonlinearSolver

A new function was added to aid in creating custom SUNNonlinearSolver objects. The constructor SUNNonlinSol-
NewEmpty() allocates an “empty” generic SUNNonlinearSolver with the object’s content pointer and the function
pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this function
will ease the introduction of any new optional operations to the SUNNonlinearSolver API by ensuring only required
operations need to be set.

To facilitate the use of user supplied nonlinear solver convergence test functions the SUNNonlinSolSetConvTestFn()
function in the SUNNonlinearSolver API has been updated to take a void* data pointer as input. The supplied data
pointer will be passed to the nonlinear solver convergence test function on each call.

The inputs values passed to the first two inputs of the SUNNonlinSolSolve() function in the SUNNonlinearSolver
have been changed to be the predicted state and the initial guess for the correction to that state. Additionally, the
definitions of SUNNonlinSolLSetupFn() and SUNNonlinSolLSolveFn() in the SUNNonlinearSolver API have

824 Chapter 20. Changelog

User Documentation for ARKODE, v6.3.0

been updated to remove unused input parameters. For more information on the nonlinear system formulation and the
API functions see Nonlinear Algebraic Solvers.

Added a new SUNNonlinearSolver implementation for interfacing with the PETSc SNES nonlinear solver.

New Features

A new linear solver interface functions, ARKLsLinSysFn and CVLsLinSysFn, as added as an alternative method for
evaluating the linear systems M − γJ or I − γJ .

Added the following functions to get the current state and gamma value to ARKStep, CVODE and CVODES that may
be useful to users who choose to provide their own nonlinear solver implementation:

• ARKStepGetCurrentState()

• ARKStepGetCurrentGamma()

• CVodeGetCurrentGamma()

• CVodeGetCurrentState()

• CVodeGetCurrentGamma()

• CVodeGetCurrentStateSens()

• CVodeGetCurrentSensSolveIndex()

• IDAGetCurrentCj()

• IDAGetCurrentY()

• IDAGetCurrentYp()

• IDAComputeY()

• IDAComputeYp()

Removed extraneous calls to N_VMin() for simulations where the scalar valued absolute tolerance, or all entries of
the vector-valued absolute tolerance array, are strictly positive. In this scenario ARKODE, CVODE(S), and IDA(S)
steppers will remove at least one global reduction per time step.

The ARKODE, CVODE(S), IDA(S), and KINSOL linear solver interfaces have been updated to only zero the Jacobian
matrix before calling a user-supplied Jacobian evaluation function when the attached linear solver has type SUNLIN-
EARSOLVER_DIRECT.

Added new Fortran 2003 interfaces to all of the SUNDIALS packages (ARKODE, CVODE(S), IDA(S), and KINSOL
as well as most of the N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinearSolver implementations. See
§4.7 section for more details. These new interfaces were generated with SWIG-Fortran and provide a user an idiomatic
Fortran 2003 interface to most of the SUNDIALS C API.

The MRIStep module has been updated to support explicit, implicit, or IMEX methods as the fast integrator using the
ARKStep module. As a result some function signatures have been changed including MRIStepCreate() which now
takes an ARKStep memory structure for the fast integration as an input.

The reinitialization functions ERKStepReInit(), ARKStepReInit(), and MRIStepReInit() have been updated to
retain the minimum and maximum step size values from before reinitialization rather than resetting them to the default
values.

Added two new embedded ARK methods of orders 4 and 5 to ARKODE (from [70]).

Support for optional inequality constraints on individual components of the solution vector has been added the
ARKODE ERKStep and ARKStep modules. See the descriptions of ERKStepSetConstraints() and ARKStepSet-
Constraints() for more details. Note that enabling constraint handling requires the N_Vector operations N_VMin-
Quotient(), N_VConstrMask(), and N_VCompare() that were not previously required by ARKODE.

20.29. Changes to SUNDIALS in release 5.0.0 825

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVLsLinSysFn
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.CVodeGetCurrentGamma
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.CVodeGetCurrentState
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.CVodeGetCurrentGamma
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.CVodeGetCurrentStateSens
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.CVodeGetCurrentSensSolveIndex
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.IDAGetCurrentCj
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.IDAGetCurrentY
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.IDAGetCurrentYp
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.IDAComputeY
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.IDAComputeYp

User Documentation for ARKODE, v6.3.0

Add two new ‘Set’ functions to MRIStep, MRIStepSetPreInnerFn() and MRIStepSetPostInnerFn(), for per-
forming communication or memory transfers needed before or after the inner integration.

Bug Fixes

Fixed a bug in the build system that prevented the PThreads NVECTOR module from being built.

Fixed a memory leak in the PETSc N_Vector clone function.

Fixed a memory leak in the ARKODE, CVODE, and IDA F77 interfaces when not using the default nonlinear solver.

Fixed a bug in the ARKStep time-stepping module in ARKODE that would result in an infinite loop if the nonlinear
solver failed to converge more than the maximum allowed times during a single step.

Fixed a bug in ARKODE that would result in a “too much accuracy requested” error when using fixed time step sizes
with explicit methods in some cases.

Fixed a bug in ARKStep where the mass matrix linear solver setup function was not called in the Matrix-free case.

Fixed a minor bug in ARKStep where an incorrect flag is reported when an error occurs in the mass matrix setup or
Jacobian-vector product setup functions.

Fixed a bug in the CVODE and CVODES constraint handling where the step size could be set below the minimum step
size.

Fixed a bug in the CVODE and CVODES nonlinear solver interfaces where the norm of the accumulated correction
was not updated when using a non-default convergence test function.

Fixed a bug in the CVODES cvRescale function where the loops to compute the array of scalars for the fused vector
scale operation stopped one iteration early.

Fixed a bug in CVODES and IDAS where CVodeF() and IDASolveF() would return the wrong flag under certain
circumstances.

Fixed a bug in CVODES and IDAS where CVodeF() and IDASolveF()would not return a root in NORMAL_STEPmode
if the root occurred after the desired output time.

Fixed a bug in the IDA and IDAS linear solver interfaces where an incorrect Jacobian-vector product increment was
used with iterative solvers other than SPGMR and SPFGMR.

Fixed a bug the IDAS IDAQuadReInitB() function where an incorrect memory structure was passed to
IDAQuadReInit().

Fixed a bug in the KINSOL linear solver interface where the auxiliary scalar sJpnorm was not computed when neces-
sary with the Picard iteration and the auxiliary scalar sFdotJp was unnecessarily computed in some cases.

20.30 Changes to SUNDIALS in release 4.1.0

Removed Implementation Headers

The implementation header files (*_impl.h) are no longer installed. This means users who are directly accessing or
manipulating package memory structures will need to update their code to use the package’s public API.

New Features

An additional N_Vector implementation was added for interfacing with the Tpetra vector from Trilinos library to
facilitate interoperability between SUNDIALS and Trilinos. This implementation is accompanied by additions to user
documentation and SUNDIALS examples.

Bug Fixes

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA enables all
examples that use CUDA including the RAJA examples with a CUDA back end (if RAJA is enabled).

826 Chapter 20. Changelog

https://sundials.readthedocs.io/en/v7.3.0/cvodes/Usage/ADJ.html#c.CVodeF
https://sundials.readthedocs.io/en/v7.3.0/idas/Usage/ADJ.html#c.IDASolveF
https://sundials.readthedocs.io/en/v7.3.0/cvodes/Usage/ADJ.html#c.CVodeF
https://sundials.readthedocs.io/en/v7.3.0/idas/Usage/ADJ.html#c.IDASolveF
https://sundials.readthedocs.io/en/v7.3.0/idas/Usage/ADJ.html#c.IDAQuadReInitB
https://sundials.readthedocs.io/en/v7.3.0/idas/Usage/SIM.html#c.IDAQuadReInit

User Documentation for ARKODE, v6.3.0

Python is no longer required to run make test and make test_install.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

Fixed a bug in ARKodeButcherTable_Write() when printing a Butcher table without an embedding.

20.31 Changes to SUNDIALS in release 4.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

Moved the definitions of backwards compatibility functions for the prior direct linear solver (DLS) and scaled precon-
ditioned iterarive linear solvers (SPILS) to a source file. The symbols are now included in the appropriate package
library, e.g. libsundials_cvode.lib.

20.32 Changes to SUNDIALS in release 4.0.1

A bug in ARKODE where single precision builds would fail to compile has been fixed.

20.33 Changes to SUNDIALS in release 4.0.0

The direct and iterative linear solver interfaces in all SUNDIALS packages have been merged into a single unified linear
solver interface to support any valid SUNLinearSolver. This includes the DIRECT and ITERATIVE types as well as
the new MATRIX_ITERATIVE type. Details regarding how SUNDIALS packages utilize linear solvers of each type as
well as a discussion regarding the intended use cases for user-supplied linear solver implementations are included in
§10. All example programs have been updated to use the new unified linear solver interfaces.

The unified linear solver interface is very similar to the previous DLS (direct linear solver) and SPILS (scaled pre-
conditioned iterative linear solver) interface in each package. To minimize challenges in user migration to the unified
linear solver interfaces, the previous DLS and SPILS functions may still be used however, these are now deprecated
and will be removed in a future release. Additionally, that Fortran users will need to enlarge their array of optional
integer outputs, and update the indices that they query for certain linear solver related statistics.

The names of all SUNDIALS-provided SUNLinearSolver constructors have have been updated to follow the naming
convention SUNLinSol_* where * is the name of the linear solver. The new constructor names are:

• SUNLinSol_Band()

• SUNLinSol_Dense()

• SUNLinSol_KLU()

• SUNLinSol_LapackBand()

• SUNLinSol_LapackDense()

• SUNLinSol_PCG()

• SUNLinSol_SPBCGS()

• SUNLinSol_SPFGMR()

• SUNLinSol_SPGMR()

• SUNLinSol_SPTFQMR()

• SUNLinSol_SuperLUMT()

20.31. Changes to SUNDIALS in release 4.0.2 827

User Documentation for ARKODE, v6.3.0

Linear solver-specific “set” routine names have been similarly standardized. To minimize challenges in user migration
to the new names, the previous function names may still be used however, these are now deprecated and will be removed
in a future release. All example programs and the standalone linear solver examples have been updated to use the new
naming convention.

The SUNLinSol_Band() constructor has been simplified to remove the storage upper bandwidth argument.

SUNDIALS integrators (ARKODE, CVODE(S), and IDA(S)) have been updated to utilize generic nonlinear solvers
defined by the SUNNonlinearSolver API. This enables the addition of new nonlinear solver options and allows for
external or user-supplied nonlinear solvers. The nonlinear solver API and SUNDIALS provided implementations are
described in Nonlinear Algebraic Solvers and follow the same object oriented design used by the N_Vector, SUN-
Matrix, and SUNLinearSolver classes. Currently two nonlinear solver implementations are provided, Newton and
fixed-point. These replicate the previous integrator-specific implementations of Newton’s method and a fixed-point
iteration (previously referred to as a functional iteration), respectively. Note the new fixed-point implementation can
optionally utilize Anderson’s method to accelerate convergence. Example programs using each of these nonlinear
solvers in a standalone manner have been added and all example programs have been updated accordingly.

The SUNDIALS integrators (ARKODE, CVODE(S), and IDA(S)) all now use the Newton SUNNonlinearSolver by
default. Users that wish to use the fixed-point SUNNonlinearSolver will need to create the corresponding nonlinear
solver object and attach it to the integrator with the appropriate set function:

• ARKStepSetNonlinearSolver()

• CVodeSetNonlinearSolver()

• IDASetNonlinearSolver()

Functions for setting the nonlinear solver options or getting nonlinear solver statistics remain unchanged and internally
call generic SUNNonlinearSolver functions as needed.

With the introduction of the SUNNonlinearSolver class, the input parameter iter to CVodeCreate() has been
removed along with the function CVodeSetIterType and the constants CV_NEWTON and CV_FUNCTIONAL. While
SUNDIALS includes a fixed-point nonlinear solver, it is not currently supported in IDA.

Three fused vector operations and seven vector array operations have been added to the N_Vector API. These optional
operations are disabled by default and may be activated by calling vector specific routines after creating a vector (see
§8.1 for more details). The new operations are intended to increase data reuse in vector operations, reduce parallel
communication on distributed memory systems, and lower the number of kernel launches on systems with accelerators.
The fused operations are:

• N_VLinearCombination()

• N_VScaleAddMulti()

• N_VDotProdMulti()

and the vector array operations are:

• N_VLinearCombinationVectorArray()

• N_VScaleVectorArray()

• N_VConstVectorArray()

• N_VWrmsNormVectorArray()

• N_VWrmsNormMaskVectorArray()

• N_VScaleAddMultiVectorArray()

• N_VLinearCombinationVectorArray()

If an N_Vector implementation defines the implementation any of these operations as NULL, then standard vector
operations will automatically be called as necessary to complete the computation.

828 Chapter 20. Changelog

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetNonlinearSolver
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetNonlinearSolver
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeCreate

User Documentation for ARKODE, v6.3.0

A new N_Vector implementation, OpenMPDEV , leveraging OpenMP device offloading has been added.

Multiple updates to the CUDA vector were made:

• Changed the N_VMake_Cuda() function to take a host data pointer and a device data pointer instead of an N_-
VectorContent_Cuda object.

• Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.

• Added N_VGetLocalLength_Cuda to return the local vector length.

• Added N_VGetMPIComm_Cuda to return the MPI communicator used.

• Removed the accessor functions in the suncudavec namespace.

• Added the ability to set the cudaStream_t used for execution of the CUDA kernels. See the function N_-
VSetCudaStreams_Cuda.

• Added N_VNewManaged_Cuda(), N_VMakeManaged_Cuda(), and N_VIsManagedMemory_Cuda() functions
to accommodate using managed memory with the CUDA vector.

Multiple updates to the RAJA vector were made:

• Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.

• Added N_VGetLocalLength_Raja to return the local vector length.

• Added N_VGetMPIComm_Raja to return the MPI communicator used.

• Removed the accessor functions in the sunrajavec namespace.

Two changes were made in the ARKODE and CVODE(S) initial step size algorithm:

• Fixed an efficiency bug where an extra call to the RHS function was made.

• Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm would exit with
the step size calculated on the penultimate iteration. Now it will exit with the step size calculated on the final
iteration.

Fortran 2003 interfaces to CVODE, the fixed-point and Newton nonlinear solvers, the dense, band, KLU, PCG, SP-
BCGS, SPFGMR, SPGMR, and SPTFQMR linear solvers, and the serial, PThreads, and OpenMP vectors have been
added.

The ARKODE library has been entirely rewritten to support a modular approach to one-step methods, which should
allow rapid research and development of novel integration methods without affecting existing solver functionality. To
support this, the existing ARK-based methods have been encapsulated inside the new ARKStep time-stepping module.
Two new time-stepping modules have been added:

• The ERKStep module provides an optimized implementation for explicit Runge–Kutta methods with reduced
storage and number of calls to the ODE right-hand side function.

• The MRIStep module implements two-rate explicit-explicit multirate infinitesimal step methods utilizing differ-
ent step sizes for slow and fast processes in an additive splitting.

This restructure has resulted in numerous small changes to the user interface, particularly the suite of “Set” routines for
user-provided solver parameters and “Get” routines to access solver statistics, that are now prefixed with the name of
time-stepping module (e.g., ARKStep or ERKStep) instead of ARKODE. Aside from affecting the names of these routines,
user-level changes have been kept to a minimum. However, we recommend that users consult both this documentation
and the ARKODE example programs for further details on the updated infrastructure.

As part of the ARKODE restructuring an ARKodeButcherTable structure has been added for storing Butcher ta-
bles. Functions for creating new Butcher tables and checking their analytic order are provided along with other utility
routines. For more details see the Butcher Table Data Structure section.

20.33. Changes to SUNDIALS in release 4.0.0 829

User Documentation for ARKODE, v6.3.0

ARKODE’s dense output infrastructure has been improved to support higher-degree Hermite polynomial interpolants
(up to degree 5) over the last successful time step.

20.34 Changes to SUNDIALS in release 3.2.1

Fixed a bug in the CUDA vector where the N_VInvTest() operation could write beyond the allocated vector data.

Fixed the library installation path for multiarch systems. This fix changes the default library installation path from
CMAKE_INSTALL_PREFIX/lib to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR. The default value library di-
rectory name is automatically set to lib, lib64, or lib/<multiarch-tuple> depending on the system, but maybe
be overridden by setting CMAKE_INSTALL_LIBDIR .

20.35 Changes to SUNDIALS in release 3.2.0

Library Name Change

Changed the name of the RAJA nvector library from libsundials_nvecraja.lib to libsundials_-
nveccudaraja.lib to better reflect that the RAJA vector only support the CUDA backend currently.

New Features

Added hybrid MPI+CUDA and MPI+RAJA vectors to allow use of more than one MPI rank when using a GPU system.
The vectors assume one GPU device per MPI rank.

Support for optional inequality constraints on individual components of the solution vector has been added to CVODE
and CVODES. For more details see the Mathematical Considerations and Optional input functions sections. Use
of CVodeSetConstraints() requires the N_Vector operations N_VMinQuotient(), N_VConstrMask(), and N_-
VCompare() that were not previously required by CVODE and CVODES.

CMake Updates

CMake 3.1.3 is now the minimum required CMake version.

Deprecated the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the SUNDIALS_INDEX_SIZE CMake
option to select the sunindextype integer size.

The native CMake FindMPI module is now used to locate an MPI installation.

If MPI is enabled and MPI compiler wrappers are not set, the build system will check if CMAKE_<language>_COM-
PILER can compile MPI programs before trying to locate and use an MPI installation.

The previous options for setting MPI compiler wrappers and the executable for running MPI programs have been have
been deprecated. The new options that align with those used in native CMake FindMPI module are MPI_C_COMPILER ,
MPI_CXX_COMPILER , MPI_Fortran_COMPILER , and MPIEXEC_EXECUTABLE.

When a Fortran name-mangling scheme is needed (e.g., ENABLE_LAPACK is ON) the build system will infer the scheme
from the Fortran compiler. If a Fortran compiler is not available or the inferred or default scheme needs to be overridden,
the advanced options SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES can be used to manually
set the name-mangling scheme and bypass trying to infer the scheme.

Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make the
CMake configuration file structure more modular.

Bug Fixes

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that do not
define __STDC_VERSION__.

Fixed a thread-safety issue in CVODES and IDAS when using adjoint sensitivity analysis.

830 Chapter 20. Changelog

https://sundials.readthedocs.io/en/v7.3.0/cvode/Mathematics_link.html#cvode-mathematics
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#cvode-usage-cc-optional-input
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeSetConstraints

User Documentation for ARKODE, v6.3.0

Fixed a bug in IDAS where the saved residual value used in the nonlinear solve for consistent initial conditions was
passed as temporary workspace and could be overwritten.

20.36 Changes to SUNDIALS in release 3.1.2

CMake Updates

Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared libraries
on OSX.

New Features

Added the function SUNSparseMatrix_Reallocate() to allow specification of the matrix nonzero storage.

Added named constants for the two reinitialization types for the KLU SUNLinearSolver.

Updated the SUNMatScaleAdd() and SUNMatScaleAddI() implementations in the sparse SUNMatrix to more op-
timally handle the case where the target matrix contained sufficient storage for the sum, but had the wrong sparsity
pattern. The sum now occurs in-place, by performing the sum backwards in the existing storage. However, it is still
more efficient if the user-supplied Jacobian routine allocates storage for the sum M + γJ or M + γJ manually (with
zero entries if needed).

The following examples from the usage notes page of the SUNDIALS website, and updated them to work with SUN-
DIALS 3.x:

• cvDisc_dns.c demonstrates using CVODE with discontinuous solutions or RHS.

• cvRoberts_dns_negsol.c illustrates the use of the RHS function return value to control unphysical negative
concentrations.

• cvRoberts_FSA_dns_Switch.c demonstrates switching on/off forward sensitivity computations. This exam-
ple came from the usage notes page of the SUNDIALS website.

Bug Fixes

Fixed a Windows specific problem where sunindextype was not correctly defined when using 64-bit integers. On
Windows sunindextype is now defined as the MSVC basic type __int64.

Fixed a bug in the full KLU SUNLinearSolver reinitialization approach where the sparse SUNMatrix pointer would go
out of scope on some architectures.

The misnamed function CVSpilsSetJacTimesSetupFnBS has been deprecated and replaced by CVSpilsSetJac-
TimesBS. The deprecated function CVSpilsSetJacTimesSetupFnBS will be removed in the next major release.

Changed LICENSE install path to instdir/include/sundials.

20.37 Changes to SUNDIALS in release 3.1.1

Bug Fixes

Fixed a minor bug in the CVODE and CVODES cvSLdet, where a return was missing in the error check for three
inconsistent roots.

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers. If “Initialize” was called multiple times
then the solver memory was reallocated (without being freed).

Fixed a minor bug in ARKReInit, where a flag was incorrectly set to indicate that the problem had been resized (instead
of just re-initialized).

Fixed C++11 compiler errors/warnings about incompatible use of string literals.

20.36. Changes to SUNDIALS in release 3.1.2 831

User Documentation for ARKODE, v6.3.0

Updated the KLU SUNLinearSolver to use a typedef for the precision-specific solve functions to avoid compiler warn-
ings.

Added missing typecasts for some (void*) pointers to avoid compiler warnings.

Fixed bug in the sparse SUNMatrix where int was used instead of sunindextype in one location.

Fixed a minor bug in KINPrintInfowhere a case was missing for KIN_REPTD_SYSFUNC_ERR leading to an undefined
info message.

Added missing #include <stdio.h> in N_Vector and SUNMatrix header files.

Added missing prototypes for ARKSpilsGetNumMTSetups in ARKODE and IDASpilsGetNumJTSetupEvals in IDA
and IDAS.

Fixed an indexing bug in the CUDA vector implementation of N_VWrmsNormMask() and revised the RAJA vector
implementation of N_VWrmsNormMask() to work with mask arrays using values other than zero or one. Replaced
double with realtype in the RAJA vector test functions.

Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMatrix or SUNLinearSolver
e.g., iterative linear solvers, explicit methods in ARKODE, functional iteration in CVODE, etc.

20.38 Changes to SUNDIALS in release 3.1.0

Added N_Vector print functions that write vector data to a specified file (e.g., N_VPrintFile_Serial()).

Added make test and make test_install options to the build system for testing SUNDIALS after building with
make and installing with make install respectively.

20.39 Changes to SUNDIALS in release 3.0.0

Major Feature

Added new linear solver and matrix interfaces for all SUNDIALS packages and updated the existing linear solver and
matrix implementations. The goal of the redesign is to provide greater encapsulation and ease interfacing custom linear
solvers with linear solver libraries. Specific changes include:

• Added a SUNMatrix interface with three provided implementations: dense, banded, and sparse. These replicate
previous SUNDIALS direct (Dls) and sparse (Sls) matrix structures.

• Added example problems demonstrating use of the matrices.

• Added a SUNLinearSolver interface with eleven provided implementations: dense, banded, LAPACK dense,
LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR, SPFGMR, PCG. These replicate previous
SUNDIALS generic linear solvers.

• Added example problems demonstrating use of the linear solvers.

• Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear solver
(Spils) interfaces to utilize SUNMatrix and SUNLinearSolver objects.

• Removed package-specific, linear solver-specific, solver modules (e.g., CVDENSE, KINBAND, IDAKLU, ARK-
SPGMR) since their functionality is entirely replicated by the generic Dls/Spils interfaces and SUNLinear-
Solver / SUNMatrix classes. The exception is CVDIAG, a diagonal approximate Jacobian solver available to
CVODE and CVODES.

• Converted all SUNDIALS example problems to utilize new the new matrix and linear solver objects, along with
updated Dls and Spils linear solver interfaces.

832 Chapter 20. Changelog

User Documentation for ARKODE, v6.3.0

• Added Spils interface routines to ARKODE, CVODE, CVODES, IDA and IDAS to allow specification of a user-
provided JTSetup routine. This change supports users who wish to set up data structures for the user-provided
Jacobian-times-vector (JTimes) routine, and where the cost of one JTSetup setup per Newton iteration can be
amortized between multiple JTimes calls.

Corresponding updates were made to all the example programs.

New Features

CUDA and RAJA N_Vector implementations to support GPU systems. These vectors are supplied to provide very basic
support for running on GPU architectures. Users are advised that these vectors both move all data to the GPU device
upon construction, and speedup will only be realized if the user also conducts the right-hand-side function evaluation
on the device. In addition, these vectors assume the problem fits on one GPU. For further information about RAJA,
users are referred to the RAJA web site.

Added the type sunindextype to support using 32-bit or 64-bit integer types for indexing arrays within all SUNDIALS
structures. sunindextype is defined to int32_t or int64_t when portable types are supported, otherwise it is
defined as int or long int. The Fortran interfaces continue to use long int for indices, except for the sparse matrix
interface that now uses sunindextype. Interfaces to PETSc, hypre, SuperLU_MT, and KLU have been updated with
32-bit or 64-bit capabilities depending how the user configures SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been changed
to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use in For-
tran programs.

Added support for many xSDK-compliant build system keys. For more information on on xSDK compliance the xSDK
policies. The xSDK is a movement in scientific software to provide a foundation for the rapid and efficient production
of high-quality, sustainable extreme-scale scientific applications. For more information visit the xSDK web site.

Added functions SUNDIALSGetVersion() and SUNDIALSGetVersionNumber() to get SUNDIALS release version
information at runtime.

Added comments to arkode_butcher.c regarding which methods should have coefficients accurate enough for use
in quad precision.

Build System

Renamed CMake options to enable/disable examples for greater clarity and added option to enable/disable Fortran 77
examples:

• Changed EXAMPLES_ENABLE to EXAMPLES_ENABLE_C

• Changed CXX_ENABLE to EXAMPLES_ENABLE_CXX

• Changed F90_ENABLE to EXAMPLES_ENABLE_F90

• Added EXAMPLES_ENABLE_F77 option

Added separate BLAS_ENABLE and BLAS_LIBRARIES CMake variables.

Fixed minor CMake bugs and included additional error checking during CMake configuration.

Bug Fixes

ARKODE

Fixed RCONST usage in arkode_butcher.c.

Fixed bug in arkInitialSetup to ensure the mass matrix vector product is set up before the “msetup” routine is
called.

20.39. Changes to SUNDIALS in release 3.0.0 833

https://software.llnl.gov/RAJA/
https://xsdk.info/policies/
https://xsdk.info/policies/
https://xsdk.info

User Documentation for ARKODE, v6.3.0

Fixed ARKODE printf-related compiler warnings when building SUNDIALS with extended precision.

CVODE and CVODES

CVodeFree() now calls lfree unconditionally (if non-NULL).

IDA and IDAS

Added missing prototype for IDASetMaxBacksIC() in ida.h and idas.h.

KINSOL

Corrected KINSOL Fortran name translation for FKIN_SPFGMR.

Renamed KINLocalFn and KINCommFn to KINBBDLocalFn and KINBBDCommFn respectively in the BBD precondi-
tioner module for consistency with other SUNDIALS solvers.

20.40 Changes to SUNDIALS in release 2.7.0

New Features and Enhancements

Two additional N_Vector implementations were added – one for hypre parallel vectors and one for PETSc vectors.
These additions are accompanied by additions to various interface functions and to user documentation.

Added a new N_Vector function, N_VGetVectorID(), that returns an identifier for the vector.

The sparse matrix structure was enhanced to support both CSR and CSC matrix storage formats.

Various additions were made to the KLU and SuperLU_MT sparse linear solver interfaces, including support for the
CSR matrix format when using KLU.

In all packages, the linear solver and preconditioner free routines were updated to return an integer.

In all packages, example codes were updated to use N_VGetArrayPointer_* rather than the NV_DATA macro when
using the native vectors shipped with SUNDIALS.

Additional example programs were added throughout including new examples utilizing the OpenMP vector.

ARKODE

The ARKODE implicit predictor algorithms were updated: methods 2 and 3 were improved slightly, a new predictor
approach was added, and the default choice was modified.

The handling of integer codes for specifying built-in ARKODE Butcher tables was enhanced. While a global numbering
system is still used, methods now have #defined names to simplify the user interface and to streamline incorporation
of new Butcher tables into ARKODE.

The maximum number of Butcher table stages was increased from 8 to 15 to accommodate very high order methods,
and an 8th-order adaptive ERK method was added.

Support was added for the explicit and implicit methods in an additive Runge–Kutta method with different stage times
to support new SSP-ARK methods.

The FARKODE interface was extended to include a routine to set scalar/array-valued residual tolerances, to support
Fortran applications with non-identity mass-matrices.

IDA and IDAS

The optional input function IDASetMaxBacksIC() was added to set the maximum number of linesearch backtracks
in the initial condition calculation.

Bug Fixes

Various minor fixes to installation-related files.

834 Chapter 20. Changelog

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeFree
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetMaxBacksIC
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINBBDLocalFn
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINBBDCommFn
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASetMaxBacksIC

User Documentation for ARKODE, v6.3.0

Fixed some examples with respect to the change to use new macro/function names e.g., SUNRexp, etc.

In all packages, a memory leak was fixed in the banded preconditioner and banded-block-diagonal preconditioner
interfaces.

Corrected name N_VCloneEmptyVectorArray to N_VCloneVectorArrayEmpty in all documentation files.

Various corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT.

For each linear solver, the various solver performance counters are now initialized to 0 in both the solver specification
function and in the solver linit function. This ensures that these solver counters are initialized upon linear solver
instantiation as well as at the beginning of the problem solution.

ARKODE

The missing ARKSpilsGetNumMtimesEvals function was added – this had been included in the previous documen-
tation but had not been implemented.

The choice of the method vs embedding the Billington and TRBDF2 explicit Runge–Kutta methods were swapped,
since in those the lower-order coefficients result in an A-stable method, while the higher-order coefficients do not. This
change results in significantly improved robustness when using those methods.

A bug was fixed for the situation where a user supplies a vector of absolute tolerances, and also uses the vector Resize
functionality.

A bug was fixed wherein a user-supplied Butcher table without an embedding is supplied, and the user is running with
either fixed time steps (or they do adaptivity manually); previously this had resulted in an error since the embedding
order was below 1.

CVODE

Corrections were made to three Fortran interface functions.

In FCVODE, fixed argument order bugs in the FCVKLU and FCVSUPERLUMT linear solver interfaces.

Added missing Fortran interface routines for supplying a sparse Jacobian routine with sparse direct solvers.

CVODES

A bug was fixed in the interpolation functions used in solving backward problems for adjoint sensitivity analysis.

In the interpolation routines for backward problems, added logic to bypass sensitivity interpolation if input sensitivity
argument is NULL.

Changed each the return type of *FreeB functions to int and added return(0) to each.

IDA

Corrections were made to three Fortran interface functions.

Corrected the output from the idaFoodWeb_bnd.c example, the wrong component was printed in PrintOutput.

IDAS

In the interpolation routines for backward problems, added logic to bypass sensitivity interpolation if input sensitivity
argument is NULL.

Changed each the return type of *FreeB functions to int and added return(0) to each.

Corrections were made to three Fortran interface functions.

Added missing Fortran interface routines for supplying a sparse Jacobian routine with sparse direct solvers.

KINSOL

The Picard iteration return was changed to always return the newest iterate upon success.

20.40. Changes to SUNDIALS in release 2.7.0 835

User Documentation for ARKODE, v6.3.0

A minor bug in the line search was fixed to prevent an infinite loop when the beta condition fails and lambda is below
the minimum size.

Corrections were made to three Fortran interface functions.

The functions FKINCREATE and FKININIT were added to split the FKINMALLOC routine into two pieces. FKINMALLOC
remains for backward compatibility, but documentation for it has been removed.

Added missing Fortran interface routines for supplying a sparse Jacobian routine with sparse direct solvers.

Matlab Interfaces Removed

Removed the Matlab interface from distribution as it has not been updated since 2009.

20.41 Changes to SUNDIALS in release 2.6.2

New Features and Enhancements

Various minor fixes to installation-related files

In KINSOL and ARKODE, updated the Anderson acceleration implementation with QR updating.

In CVODES and IDAS, added ReInit and SetOrdering wrappers for backward problems.

In IDAS, fixed for-loop bugs in IDAAckpntAllocVectors that could lead to a memory leak.

Bug Fixes

Updated the BiCGStab linear solver to remove a redundant dot product call.

Fixed potential memory leak in KLU ReInit functions in all solvers.

In ARKODE, fixed a bug in the Cash-Karp Butcher table where the method and embedding coefficient were swapped.

In ARKODE, fixed error in arkDoErrorTest in recovery after failure.

In CVODES, added CVKLUB prototype and corrected CVSuperLUMTB prototype.

In the CVODES and IDAS header files, corrected documentation of backward integration functions, especially the
which argument.

In IDAS, added missing backward problem support functions IDALapackDenseB, IDALapackDenseFreeB, IDALa-
packBandB, and IDALapackBandFreeB.

In IDAS, made SuperLUMT call for backward problem consistent with CVODES.

In CVODE, IDA, and ARKODE, fixed Fortran interfaces to enable calls to GetErrWeights, GetEstLocalErrors,
and GetDky within a time step.

20.42 Changes to SUNDIALS in release 2.6.1

Fixed loop limit bug in SlsAddMat function.

In all six solver interfaces to KLU and SuperLUMT, added #include lines, and removed redundant KLU structure
allocations.

Minor bug fixes in ARKODE.

836 Chapter 20. Changelog

User Documentation for ARKODE, v6.3.0

20.43 Changes to SUNDIALS in release 2.6.0

Autotools Build Option Removed

With this version of SUNDIALS, support and documentation of the Autotools mode of installation is being dropped,
in favor of the CMake mode, which is considered more widely portable.

New Package: ARKODE

Addition of ARKODE package of explicit, implicit, and additive Runge-Kutta methods for ODEs. This package API
is close to CVODE so switching between the two should be straightforward. Thanks go to Daniel Reynolds for the
addition of this package.

New Features and Enhancements

Added OpenMP and Pthreads N_Vector implementations for thread-parallel computing environments.

Two major additions were made to the linear system solvers available in all packages. First, in the serial case, an
interface to the sparse direct solver KLU was added. Second, an interface to SuperLU_MT, the multi-threaded version
of SuperLU, was added as a thread-parallel sparse direct solver option, to be used with the serial version of the N_-
Vector module. As part of these additions, a sparse matrix (CSC format) structure was added to CVODE.

KINSOL

Two major additions were made to the globalization strategy options (KINSol argument strategy). One is fixed-point
iteration, and the other is Picard iteration. Both can be accelerated by use of the Anderson acceleration method. See
the relevant paragraphs in Chapter Mathematical Considerations.

An interface to the Flexible GMRES iterative linear solver was added.

Bug Fixes

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX, SQR, RAbs, RSqrt,
RExp, RPowerI, and RPowerRwere changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs, SUNRsqrt, SUNRexp, SRpowerI,
and SUNRpowerR, respectively. These names occur in both the solver and example programs.

In the LAPACK banded linear solver interfaces, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml
to correct an illegal input error for to DGBTRF and DGBTRS.

In all Fortran examples, integer declarations were revised so that those which must match a C type long int are
declared INTEGER*8, and a comment was added about the type match. All other integer declarations are just INTEGER.
Corresponding minor corrections were made to the user guide.

CVODE and CVODES

In cvRootFind, a minor bug was corrected, where the input array was ignored, and a line was added to break out of
root-search loop if the initial interval size is below the tolerance ttol.

Two minor bugs were fixed regarding the testing of input on the first call to CVode – one involving tstop and one
involving the initialization of *tret.

The example program cvAdvDiff_diag_p was added to illustrate the use of in parallel.

In the FCVODE optional input routines FCVSETIIN and FCVSETRIN, the optional fourth argument key_length was
removed, with hardcoded key string lengths passed to all tests.

In order to eliminate or minimize the differences between the sources for private functions in CVODE and CVODES,
the names of many private functions were changed from CV* to cv* and a few other names were also changed.

An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian. With a call to
CVDlsSetDenseJacFnBS or CVDlsSetBandJacFnBS, the user can specify a user-supplied Jacobian function of type
CVDls***JacFnBS, for the case where the backward problem depends on the forward sensitivities.

In CVodeQuadSensInit, the line cv_mem->cv_fQS_data = ... was corrected (missing Q).

20.43. Changes to SUNDIALS in release 2.6.0 837

https://sundials.readthedocs.io/en/v7.3.0/kinsol/Mathematics_link.html#kinsol-mathematics

User Documentation for ARKODE, v6.3.0

In the CVODES User Guide, a paragraph was added in Section 6.2.1 on CVodeAdjReInit, and a paragraph was added
in Section 6.2.9 on CVodeGetAdjY. In the example cvsRoberts_ASAi_dns, the output was revised to include the use
of CVodeGetAdjY.

For the Adjoint Sensitivity Analysis case in which the backward problem depends on the forward sensitivities, options
have been added to allow for user-supplied pset, psolve, and jtimes functions.

In the example cvsHessian_ASA_FSA, an error was corrected in the function fB2, y2 in place of y3 in the third term
of Ith(yBdot,6).

IDA and IDAS

In IDARootfind, a minor bug was corrected, where the input array rootdir was ignored, and a line was added to
break out of root-search loop if the initial interval size is below the tolerance ttol.

A minor bug was fixed regarding the testing of the input tstop on the first call to IDASolve().

In the FIDA optional input routines FIDASETIIN, FIDASETRIN, and FIDASETVIN, the optional fourth argument key_-
length was removed, with hardcoded key string lengths passed to all strncmp tests.

An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian. With a call to
IDADlsSetDenseJacFnBS or IDADlsSetBandJacFnBS, the user can specify a user-supplied Jacobian function of
type IDADls***JacFnBS, for the case where the backward problem depends on the forward sensitivities.

KINSOL

In function KINStop, two return values were corrected to make the values of uu and fval consistent.

A bug involving initialization of mxnewtstep was fixed. The error affects the case of repeated user calls to KINSol
with no intervening call to KINSetMaxNewtonStep.

A bug in the increments for difference quotient Jacobian approximations was fixed in function kinDlsBandDQJac.

In the FKINSOL module, an incorrect return value ier in FKINfunc was fixed.

In the FKINSOL optional input routines FKINSETIIN, FKINSETRIN, and FKINSETVIN, the optional fourth argument
key_length was removed, with hardcoded key string lengths passed to all strncmp tests.

20.44 Changes to SUNDIALS in release 2.5.0

Integer Type Change

One significant design change was made with this release, the problem size and its relatives, bandwidth parameters,
related internal indices, pivot arrays, and the optional output lsflag have all been changed from type int to type long
int, except for the problem size and bandwidths in user calls to routines specifying BLAS/LAPACK routines for the
dense/band linear solvers. The function NewIntArray is replaced by a pair NewIntArray / NewLintArray, for int
and long int arrays, respectively.

Bug Fixes

In the installation files, we modified the treatment of the macro SUNDIALS_USE_GENERIC_MATH, so that the parameter
GENERIC_MATH_LIB is either defined (with no value) or not defined.

In all packages, after the solver memory is created, it is set to zero before being filled.

In each linear solver interface function, the linear solver memory is freed on an error return, and the function now
includes a line setting to NULL the main memory pointer to the linear solver memory.

Rootfinding

In CVODE(S) and IDA(S), in the functions Rcheck1 and Rcheck2, when an exact zero is found, the array glo of g
values at the left endpoint is adjusted, instead of shifting the t location tlo slightly.

838 Chapter 20. Changelog

https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDASolve

User Documentation for ARKODE, v6.3.0

CVODE and CVODES

In CVSetTqBDF, the logic was changed to avoid a divide by zero.

In a minor change to the CVODES user interface, the type of the index which was changed from long int to int.

Errors in the logic for the integration of backward problems in CVODES were identified and fixed.

IDA and IDAS

To be consistent with IDAS, IDA uses the function IDAGetDky for optional output retrieval.

A memory leak was fixed in two of the IDASp***Free functions.

A missing vector pointer setting was added in IDASensLineSrch.

In IDACompleteStep, conditionals around lines loading a new column of three auxiliary divided difference arrays,
for a possible order increase, were fixed.

KINSOL

Three major logic bugs were fixed - involving updating the solution vector, updating the linesearch parameter, and a
missing error return.

Three minor errors were fixed - involving setting etachoice in the Matlab/KINSOL interface, a missing error case in
KINPrintInfo, and avoiding an exponential overflow in the evaluation of omega.

20.45 Changes to SUNDIALS in release 2.4.0

Added a CMake-based build option in addition to the one based on autotools.

The user interface has been further refined. Some of the API changes involve:

(a) a reorganization of all linear solver modules into two families (besides the existing family of scaled preconditioned
iterative linear solvers, the direct solvers, including new LAPACK-based ones, were also organized into a direct
family);

(b) maintaining a single pointer to user data, optionally specified through a Set-type function; and

(c) a general streamlining of the preconditioner modules distributed with the solvers.

Added interfaces to LAPACK linear solvers for dense and banded matrices to all packages.

An option was added to specify which direction of zero-crossing is to be monitored while performing rootfinding in
CVODE(S) and IDA(S).

CVODES includes several new features related to sensitivity analysis, among which are:

(a) support for integration of quadrature equations depending on both the states and forward sensitivity (and thus
support for forward sensitivity analysis of quadrature equations),

(b) support for simultaneous integration of multiple backward problems based on the same underlying ODE (e.g.,
for use in an forward-over-adjoint method for computing second order derivative information),

(c) support for backward integration of ODEs and quadratures depending on both forward states and sensitivities
(e.g., for use in computing second-order derivative information), and

(d) support for reinitialization of the adjoint module.

Moreover, the prototypes of all functions related to integration of backward problems were modified to support the
simultaneous integration of multiple problems.

All backward problems defined by the user are internally managed through a linked list and identified in the user
interface through a unique identifier.

20.45. Changes to SUNDIALS in release 2.4.0 839

User Documentation for ARKODE, v6.3.0

20.46 Changes to SUNDIALS in release 2.3.0

New Features and Enhancements

The main changes in this release involve a rearrangement of the entire SUNDIALS source tree. At the user interface
level, the main impact is in the mechanism of including SUNDIALS header files which must now include the relative
path e.g., #include <cvode/cvode.h> as all exported header files are now installed in separate subdirectories of the
installation include directory.

The functions in the generic dense linear solver (sundials_dense and sundials_smalldense) were modified to
work for rectangular m × n matrices (m ≤ n), while the factorization and solution functions were renamed to
DenseGETRF / denGETRF and DenseGETRS / denGETRS, respectively. The factorization and solution functions in
the generic band linear solver were renamed BandGBTRF and BandGBTRS, respectively.

In IDA, the user interface to the consistent initial conditions calculations was modified. The IDACalcIC() arguments
t0, yy0, and yp0 were removed and a new function, IDAGetConsistentIC() is provided.

Bug Fixes

In the CVODES adjoint solver module, the following two bugs were fixed:

• In CVodeF the solver was sometimes incorrectly taking an additional step before returning control to the user (in
CV_NORMAL mode) thus leading to a failure in the interpolated output function.

• In CVodeB, while searching for the current check point, the solver was sometimes reaching outside the integration
interval resulting in a segmentation fault.

In IDA, a bug was fixed in the internal difference-quotient dense and banded Jacobian approximations, related to
the estimation of the perturbation (which could have led to a failure of the linear solver when zero components with
sufficiently small absolute tolerances were present).

20.47 Changes to SUNDIALS in release 2.2.0

New Header Files Names

To reduce the possibility of conflicts, the names of all header files have been changed by adding unique prefixes (e.g.,
cvode_ and sundials_). When using the default installation procedure, the header files are exported under various
subdirectories of the target include directory. For more details see Appendix §16.

Build System Changes

Updated configure script and Makefiles for Fortran examples to avoid C++ compiler errors (now use CC and MPICC to
link only if necessary).

The shared object files are now linked into each SUNDIALS library rater than into a separate libsundials_shared
library.

New Features and Enhancements

Deallocation functions now take the address of the respective memory block pointer as the input argument.

Interfaces to the Scaled Preconditioned Bi-CGstab (SPBCG) and Scaled Preconditioned Transpose-Free Quasi-
Minimal Residual (SPTFQMR) linear solver modules have been added to all packages. At the same time, function
type names for Scaled Preconditioned Iterative Linear Solvers were added for the user-supplied Jacobian-times-vector
and preconditioner setup and solve functions. Additionally, in KINSOL interfaces have been added to the SUNDIALS
DENSE, and BAND linear solvers and include support for nonlinear residual monitoring which can be used to control
Jacobian updating.

A new interpolation method was added to the CVODES adjoint module. The function CVadjMalloc has an additional
argument which can be used to select the desired interpolation scheme.

840 Chapter 20. Changelog

https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDACalcIC
https://sundials.readthedocs.io/en/v7.3.0/ida/Usage/index.html#c.IDAGetConsistentIC

User Documentation for ARKODE, v6.3.0

FIDA, a Fortran-C interface module, was added.

The rootfinding feature was added to IDA, whereby the roots of a set of given functions may be computed during the
integration of the DAE system.

In IDA a user-callable routine was added to access the estimated local error vector.

In the KINSOL Fortran interface module, FKINSOL, optional inputs are now set using FKINSETIIN (integer inputs),
FKINSETRIN (real inputs), and FKINSETVIN (vector inputs). Optional outputs are still obtained from the IOUT and
ROUT arrays which are owned by the user and passed as arguments to FKINMALLOC.

20.48 Changes to SUNDIALS in release 2.1.1

The function N_VCloneEmpty was added to the global vector operations table.

A minor bug was fixed in the interpolation functions of the adjoint CVODES module.

20.49 Changes to SUNDIALS in release 2.1.0

The user interface has been further refined. Several functions used for setting optional inputs were combined into a
single one.

In CVODE(S) and IDA, an optional user-supplied routine for setting the error weight vector was added.

Additionally, to resolve potential variable scope issues, all SUNDIALS solvers release user data right after its use.

The build systems has been further improved to make it more robust.

20.50 Changes to SUNDIALS in release 2.0.2

Fixed autoconf-related bug to allow configuration with the PGI Fortran compiler.

Modified the build system to use customized detection of the Fortran name mangling scheme (autoconf’s AC_F77_-
WRAPPERS routine is problematic on some platforms).

A bug was fixed in the CVode function that was potentially leading to erroneous behavior of the rootfinding procedure
on the integration first step.

A new chapter in the User Guide was added - with constants that appear in the user interface.

20.51 Changes to SUNDIALS in release 2.0.1

Build System

Changed the order of compiler directives in header files to avoid compilation errors when using a C++ compiler.

Changed the method of generating sundials_config.h to avoid potential warnings of redefinition of preprocessor
symbols.

New Features

In CVODES the option of activating and deactivating forward sensitivity calculations on successive runs without mem-
ory allocation and deallocation.

Bug Fixes

20.48. Changes to SUNDIALS in release 2.1.1 841

User Documentation for ARKODE, v6.3.0

In CVODES bug fixes related to forward sensitivity computations (possible loss of accuracy on a BDF order increase
and incorrect logic in testing user-supplied absolute tolerances) were made.

20.52 Changes to SUNDIALS in release 2.0.0

Installation of all of SUNDIALS packages has been completely redesigned and is now based on configure scripts.

The major changes from the previous version involve a redesign of the user interface across the entire SUNDIALS
suite. We have eliminated the mechanism of providing optional inputs and extracting optional statistics from the solver
through the iopt and ropt arrays. Instead, packages now provide Set functions to change the default values for various
quantities controlling the solver and Get functions to extract statistics after return from the main solver routine.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians and preconditioner in-
formation) were simplified by reducing the number of arguments. The same information that was previously accessible
through such arguments can now be obtained through Get-type functions.

In CVODE and CVODES a rootfinding feature was added, whereby the roots of a set of given functions may be com-
puted during the integration of the ODE system.

Changes to the NVector:

• Removed machEnv, redefined table of vector operations (now contained in the N_Vector structure itself).

• All SUNDIALS functions create new N_Vector variables through cloning, using an N_Vector passed by the
user as a template.

• A particular vector implementation is supposed to provide user-callable constructor and destructor functions.

• Removed the following functions from the structure of vector operations: N_VNew, N_VNew_S, N_VFree, N_-
VFree_S, N_VMake, N_VDispose, N_VGetData, N_VSetData, N_VConstrProdPos, and N_VOneMask.

• Added the following functions to the structure of vector operations: N_VClone, N_VDestroy, N_VSpace, N_-
VGetArrayPointer, N_VSetArrayPointer, and N_VWrmsNormMask.

• Note that nvec_ser and nvec_par are now separate modules outside the shared SUNDIALS module.

Changes to the linear solvers:

• In SPGMR, added a dummy N_Vector argument to be used as a template for cloning.

• In SPGMR, removed N (problem dimension) from the argument list of SpgmrMalloc.

• Replaced iterativ.{c,h} with iterative.{c,h}.

• Modified constant names in iterative.h (preconditioner types are prefixed with PREC_).

• Changed numerical values for MODIFIED_GS (from 0 to 1) and CLASSICAL_GS (from 1 to 2).

Changes to sundialsmath submodule:

• Replaced the internal routine for estimating unit roundoff with definition of unit roundoff from float.h.

• Modified functions to call the appropriate math routines given the precision level specified by the user.

Changes to sundialstypes submodule:

• Removed integertype.

• Added definitions for BIG_REAL, SMALL_REAL, and UNIT_ROUNDOFF using values from float.h based on the
precision.

• Changed definition of macro RCONST to depend on the precision level specified by the user.

842 Chapter 20. Changelog

Bibliography

[1] Xbraid: parallel multigrid in time. http://llnl.gov/casc/xbraid.

[2] AMD ROCm Documentation. https://rocmdocs.amd.com/en/latest/index.html.

[3] Intel oneAPI Programming Guide. https://software.intel.com/content/www/us/en/develop/documentation/
oneapi-programming-guide/top.html.

[4] KLU Sparse Matrix Factorization Library. http://faculty.cse.tamu.edu/davis/suitesparse.html.

[5] NVIDIA CUDA Programming Guide. https://docs.nvidia.com/cuda/index.html.

[6] NVIDIA cuSOLVER Programming Guide. https://docs.nvidia.com/cuda/cusolver/index.html.

[7] NVIDIA cuSPARSE Programming Guide. https://docs.nvidia.com/cuda/cusparse/index.html.

[8] SuperLU_DIST Parallel Sparse Matrix Factorization Library. https://portal.nersc.gov/project/sparse/superlu/
#superlu_dist.

[9] SuperLU_MT Threaded Sparse Matrix Factorization Library. https://portal.nersc.gov/project/sparse/superlu/
#superlu_mt.

[10] D. G. Anderson. Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Machinery, 12:547–560,
1965. doi:10.1145/321296.321305.

[11] Hartwig Anzt, Terry Cojean, Goran Flegar, Fritz Göbel, Thomas Grützmacher, Pratik Nayak, Tobias Ribizel,
Yuhsiang Mike Tsai, and Enrique S. Quintana-Ortí. Ginkgo: A Modern Linear Operator Algebra Framework for
High Performance Computing. ACM Transactions on Mathematical Software, 48(1):2:1–2:33, February 2022.
URL: 10.1145/3480935 (visited on 2022-02-17), doi:10.1145/3480935.

[12] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential Equations and Differential-
Algebraic Equations. SIAM, Philadelphia, Pa, 1998.

[13] Winfried Auzinger, Harald Hofstätter, David Ketcheson, and Othmar Koch. Practical splitting methods for the
adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of
schemes. BIT Numerical Mathematics, 57(1):55–74, July 2016. doi:10.1007/s10543-016-0626-9.

[14] Cody J Balos, David J Gardner, Carol S Woodward, and Daniel R Reynolds. Enabling GPU accel-
erated computing in the SUNDIALS time integration library. Parallel Computing, 108:102836, 2021.
doi:10.1016/j.parco.2021.102836.

[15] R.E. Bank, W.M. Coughran, W. Fichtner, E.H. Grosse, D.J. Rose, and R.K. Smith. Transient simulation of
silicon devices and circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
4(4):436–451, 1985. doi:10.1109/TCAD.1985.1270142.

[16] S.R Billington. Type-insensitive codes for the solution of stiff and nonstiff systems of ordinary differential equa-
tions. Master Thesis, University of Manchester, United Kingdom, 1983.

[17] Sergio Blanes, Fernando Casas, and Ander Murua. Splitting methods for differential equations. Acta Numerica,
33:1–161, 2024. doi:10.1017/S0962492923000077.

843

http://llnl.gov/casc/xbraid
https://rocmdocs.amd.com/en/latest/index.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/cusolver/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://portal.nersc.gov/project/sparse/superlu/#superlu_dist
https://portal.nersc.gov/project/sparse/superlu/#superlu_dist
https://portal.nersc.gov/project/sparse/superlu/#superlu_mt
https://portal.nersc.gov/project/sparse/superlu/#superlu_mt
https://doi.org/10.1145/321296.321305
10.1145/3480935
https://doi.org/10.1145/3480935
https://doi.org/10.1007/s10543-016-0626-9
https://doi.org/10.1016/j.parco.2021.102836
https://doi.org/10.1109/TCAD.1985.1270142
https://doi.org/10.1017/S0962492923000077

User Documentation for ARKODE, v6.3.0

[18] David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo Gimenez, Matthew LeGendre,
Olga Pearce, and Martin Schulz. Caliper: performance introspection for hpc software stacks. In SC'16: Pro-
ceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis,
550–560. IEEE, 2016. doi:10.1109/SC.2016.46.

[19] P. Bogacki and L.F. Shampine. A 3(2) pair of Runge-Kutta formulas. Applied Mathematics Letters, 2(4):321–325,
1989. doi:10.1016/0893-9659(89)90079-7.

[20] P. N. Brown. A local convergence theory for combined inexact-Newton/finite difference projection methods.
SIAM J. Numer. Anal., 24(2):407–434, 1987. doi:10.1137/0724031.

[21] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh. VODE, a Variable-Coefficient ODE Solver. SIAM J. Sci. Stat.
Comput., 10:1038–1051, 1989. doi:10.1137/0910062.

[22] P. N. Brown and A. C. Hindmarsh. Reduced storage matrix methods in stiff ODE systems. J. Appl. Math. &
Comp., 31:49–91, 1989. doi:10.1016/0096-3003(89)90110-0.

[23] P. N. Brown and Y. Saad. Hybrid Krylov Methods for Nonlinear Systems of Equations. SIAM J. Sci. Stat. Com-
put., 11:450–481, 1990. doi:10.1137/0911026.

[24] J.C. Butcher. Numerical Methods for Ordinary Differential Equations. Wiley, Chicester, England, 2 edition,
2008.

[25] G. D. Byrne. Pragmatic Experiments with Krylov Methods in the Stiff ODE Setting. In J.R. Cash and I. Gladwell,
editors, Computational Ordinary Differential Equations, 323–356. Oxford, 1992. Oxford University Press.

[26] J Candy and W Rozmus. A symplectic integration algorithm for separable hamiltonian functions. Journal of
Computational Physics, 92(1):230–256, 1991.

[27] J.R. Cash. Diagonally Implicit Runge-Kutta Formulae with Error Estimates. IMA Journal of Applied Mathemat-
ics, 24(3):293–301, 1979. doi:10.1093/imamat/24.3.293.

[28] J.R. Cash and A.H. Karp. A variable order Runge-Kutta method for initial value problems with
rapidly varying right-hand sides. ACM Transactions on Mathematical Software, 16(3):201–222, 1990.
doi:10.1145/79505.79507.

[29] Rujeko Chinomona and Daniel R Reynolds. Implicit-explicit multirate infinitesimal GARK methods. SIAM Jour-
nal on Scientific Computing, 43(5):A3082–A3113, 2021. doi:10.1137/20M1354349.

[30] Michael Creutz and Andreas Gocksch. Higher-order hybrid monte carlo algorithms. Phys. Rev. Lett., 63:9–12,
Jul 1989. doi:10.1103/PhysRevLett.63.9.

[31] T. A. Davis and P. N. Ekanathan. Algorithm 907: KLU, a direct sparse solver for circuit simulation problems.
ACM Trans. Math. Softw., 37(3):1–17, 2010. doi:10.1145/1824801.1824814.

[32] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton Methods. SIAM J. Numer. Anal., 19(2):400–408,
1982. doi:10.1137/0719025.

[33] J. W. Demmel, J. R. Gilbert, and X. S. Li. An Asynchronous Parallel Supernodal Algorithm
for Sparse Gaussian Elimination. SIAM J. Matrix Analysis and Applications, 20(4):915–952, 1999.
doi:10.1137/S0895479897317685.

[34] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations.
SIAM, Philadelphia, 1996. doi:10.1137/1.9781611971200.

[35] Fasma Diele and Carmela Marangi. Explicit symplectic partitioned Runge–Kutta–Nyström meth-
ods for non-autonomous dynamics. Applied Numerical Mathematics, 61(7):832–843, 2011.
doi:10.1016/j.apnum.2011.02.003.

[36] J.R. Dormand and P.J. Prince. A family of embedded runge-kutta formulae. Journal of Computational and
Applied Mathematics, 6(1):19–26, 1980. doi:10.1016/0771-050X(80)90013-3.

844 Bibliography

https://doi.org/10.1109/SC.2016.46
https://doi.org/10.1016/0893-9659(89)90079-7
https://doi.org/10.1137/0724031
https://doi.org/10.1137/0910062
https://doi.org/10.1016/0096-3003(89)90110-0
https://doi.org/10.1137/0911026
https://doi.org/10.1093/imamat/24.3.293
https://doi.org/10.1145/79505.79507
https://doi.org/10.1137/20M1354349
https://doi.org/10.1103/PhysRevLett.63.9
https://doi.org/10.1145/1824801.1824814
https://doi.org/10.1137/0719025
https://doi.org/10.1137/S0895479897317685
https://doi.org/10.1137/1.9781611971200
https://doi.org/10.1016/j.apnum.2011.02.003
https://doi.org/10.1016/0771-050X(80)90013-3

User Documentation for ARKODE, v6.3.0

[37] M.R. Dorr, J.-L. Fattebert, M.E. Wickett, J.F. Belak, and P.E.A. Turchi. A numerical algorithm for the solution
of a phase-field model of polycrystalline materials. Journal of Computational Physics, 229(3):626–641, 2010.
doi:10.1016/j.jcp.2009.09.041.

[38] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: enabling manycore performance
portability through polymorphic memory access patterns. Journal of Parallel and Distributed Computing,
74(12):3202–3216, 2014. doi:10.1016/j.jpdc.2014.07.003.

[39] Leonhard Euler. Institutiones calculi integralis. Volume Volumen Primum. B. G. Teubner Verlag, 1768. reprinted
in Opera Omnia Series 1, Volume 11.

[40] R.D. Falgout, S. Friedhoff, TZ.V. Kolev, S.P. MacLachlan, and J.B. Schroder. Parallel time integration with
multigrid. SIAM Journal of Scientific Computing, 36(6):C635–C661, 2014. doi:10.1137/130944230.

[41] H. Fang and Y. Saad. Two classes of secant methods for nonlinear acceleration. Numer. Linear Algebra Appl.,
16(3):197–221, 2009. doi:10.1002/nla.617.

[42] E. Fehlberg. Low-order classical runge-kutta formulas with step size control and their application to some heat
transfer problems. Technical Report 315, NASA, 1969.

[43] Imre Fekete, Sidafa Conde, and John N. Shadid. Embedded pairs for optimal explicit strong stability pre-
serving Runge–Kutta methods. Journal of Computational and Applied Mathematics, 412:114325, 2022.
doi:10.1016/j.cam.2022.114325.

[44] Imre Fekete, Sidafa Conde, and John N. Shadid. Embedded pairs for optimal explicit strong stability pre-
serving Runge–Kutta methods. Journal of Computational and Applied Mathematics, 412:114325, 2022.
doi:10.1016/j.cam.2022.114325.

[45] Alex C. Fish, Daniel R. Reynolds, and Steven B. Roberts. Implicit–explicit multirate infinitesi-
mal stage-restart methods. Journal of Computational and Applied Mathematics, 438:115534, 2024.
doi:10.1016/j.cam.2023.115534.

[46] R. W. Freund. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems. SIAM
J. Sci. Comp., 14(2):470–482, 1993. doi:10.1137/0914029.

[47] Amir Gholami, Kurt Keutzer, and George Biros. Anode: unconditionally accurate memory-efficient gradients
for neural odes. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, 730–736.
2019.

[48] Michael B Giles and Niles A Pierce. An introduction to the adjoint approach to design. Flow, turbulence and
combustion, 65(3):393–415, 2000.

[49] F. X. Giraldo, J. F. Kelly, and E. M. Constantinescu. Implicit-explicit formulations of a three-dimensional nonhy-
drostatic unified model of the atmosphere (numa). SIAM Journal on Scientific Computing, 35(5):B1162–B1194,
2013. doi:10.1137/120876034.

[50] Laura Grigori, James W. Demmel, and Xiaoye S. Li. Parallel symbolic factorization for sparse LU with static
pivoting. SIAM J. Scientific Computing, 29(3):1289–1314, 2007. doi:10.1137/050638102.

[51] K. Gustafsson. Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods. ACM Trans-
actions on Mathematical Software, 17(4):533–554, 1991. doi:10.1145/210232.210242.

[52] K. Gustafsson. Control theoretic techniques for stepsize selection in implicit Runge-Kutta methods. ACM Trans-
actions on Mathematical Software, 20(4):496–512, 1994. doi:10.1145/198429.198437.

[53] William W Hager. Runge-Kutta methods in optimal control and the transformed adjoint system. Numerische
Mathematik, 87:247–282, 2000. doi:10.1007/s002110000178.

[54] E. Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I. Springer-Verlag, Berlin, 1987.

[55] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems.
Springer-Verlag, Berlin, 1991.

Bibliography 845

https://doi.org/10.1016/j.jcp.2009.09.041
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1137/130944230
https://doi.org/10.1002/nla.617
https://doi.org/10.1016/j.cam.2022.114325
https://doi.org/10.1016/j.cam.2022.114325
https://doi.org/10.1016/j.cam.2023.115534
https://doi.org/10.1137/0914029
https://doi.org/10.1137/120876034
https://doi.org/10.1137/050638102
https://doi.org/10.1145/210232.210242
https://doi.org/10.1145/198429.198437
https://doi.org/10.1007/s002110000178

User Documentation for ARKODE, v6.3.0

[56] Ernst Hairer, Gerhard Wanner, and Christian Lubich. Geometric Numerical Integration, Structure-Preserving
Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, 2006.
doi:10.1007/3-540-30666-8.

[57] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear Systems. J. Research of the
National Bureau of Standards, 49(6):409–436, 1952. doi:10.6028/jres.049.044.

[58] K. L. Hiebert and L. F. Shampine. Implicitly Defined Output Points for Solutions of ODEs. Technical Report
SAND80-0180, Sandia National Laboratories, February 1980.

[59] A. C. Hindmarsh. The PVODE and IDA Algorithms. Technical Report UCRL-ID-141558, LLNL, Dec 2000.

[60] A. C. Hindmarsh and A. G. Taylor. PVODE and KINSOL: Parallel Software for Differential and Nonlinear
Systems. Technical Report UCRL-ID-129739, LLNL, February 1998.

[61] Alan C. Hindmarsh and Radu Serban. Example Programs for CVODE v7.3.0. Technical Report, LLNL, 2025.
UCRL-SM-208110.

[62] TE Hull, WH Enright, and KR Jackson. User's guide for DVERK: A subroutine for solving non-stiff ODE's.
Technical Report 100, University of Toronto. Department of Computer Science, 1976.

[63] Laurent O Jay. Symplecticness conditions of some low order partitioned methods for non-autonomous hamilto-
nian systems. Numerical Algorithms, 86(2):495–514, 2021.

[64] Seth R. Johnson, Andrey Prokopenko, and Katherine J. Evans. Automated fortran-c++ bindings
for large-scale scientific applications. Computing in Science & Engineering, 22(5):84–94, 2020.
doi:10.1109/MCSE.2019.2924204.

[65] Shinhoo Kang and Emil M Constantinescu. Entropy–Preserving and Entropy–Stable Relaxation IMEX and Mul-
tirate Time–Stepping Methods. Journal of Scientific Computing, 93(1):1–31, 2022. doi:10.1007/s10915-022-
01982-w.

[66] C. T. Kelley. Iterative Methods for Solving Linear and Nonlinear Equations. SIAM, Philadelphia, 1995.
doi:10.1137/1.9781611970944.

[67] C.A. Kennedy and M.H. Carpenter. Additive runge-kutta schemes for convection-diffusion-reaction equations.
Applied Numerical Mathematics, 44(1-2):139–181, 2003. doi:10.1016/S0168-9274(02)00138-1.

[68] C.A. Kennedy and M.H. Carpenter. Diagonally implicit Runge–Kutta methods for ordinary differential equa-
tions. a review. Technical Report TM-2016-219173, NASA, 2016.

[69] C.A. Kennedy and M.H. Carpenter. Diagonally implicit Runge–Kutta methods for stiff ODEs. Applied Numerical
Mathematics, 146():221–244, 2019. doi:10.1016/j.apnum.2019.07.008.

[70] C.A. Kennedy and M.H. Carpenter. Higher-order additive runge-kutta schemes for ordinary differential equa-
tions. Applied Numerical Mathematics, 136:183–205, 2019. doi:10.1016/j.apnum.2018.10.007.

[71] David I Ketcheson. Relaxation Runge–Kutta methods: Conservation and stability for inner-product norms. SIAM
Journal on Numerical Analysis, 57(6):2850–2870, 2019. doi:10.1137/19M1263662.

[72] David I. Ketcheson. Highly efficient strong stability-preserving Runge–Kutta methods with low-storage imple-
mentations. SIAM Journal on Scientific Computing, 30(4):2113–2136, 2008. doi:10.1137/07070485X.

[73] O. Knoth and R. Wolke. Implicit-explicit runge–kutta methods for computiong atmospheric reactive flows. Ap-
plied Numerical Analysis, 28(2-4):327–341, 1998. doi:10.1016/S0168-9274(98)00051-8.

[74] A. Kværno. Singly Diagonally Implicit Runge-Kutta Methods with an Explicit First Stage. BIT Numerical Math-
ematics, 44:489–502, 2004. doi:10.1023/B:BITN.0000046811.70614.38.

[75] X. S. Li. An overview of SuperLU: algorithms, implementation, and user interface. ACM Trans. Math. Softw.,
31(3):302–325, September 2005. doi:10.1145/1089014.1089017.

846 Bibliography

https://doi.org/10.1007/3-540-30666-8
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1109/MCSE.2019.2924204
https://doi.org/10.1007/s10915-022-01982-w
https://doi.org/10.1007/s10915-022-01982-w
https://doi.org/10.1137/1.9781611970944
https://doi.org/10.1016/S0168-9274(02)00138-1
https://doi.org/10.1016/j.apnum.2019.07.008
https://doi.org/10.1016/j.apnum.2018.10.007
https://doi.org/10.1137/19M1263662
https://doi.org/10.1137/07070485X
https://doi.org/10.1016/S0168-9274(98)00051-8
https://doi.org/10.1023/B:BITN.0000046811.70614.38
https://doi.org/10.1145/1089014.1089017

User Documentation for ARKODE, v6.3.0

[76] X.S. Li, J.W. Demmel, J.R. Gilbert, L. Grigori, M. Shao, and I. Yamazaki. SuperLU Users' Guide. Techni-
cal Report LBNL-44289, Lawrence Berkeley National Laboratory, September 1999. http://crd.lbl.gov/\protect\
unhbox\voidb@x\penalty\@M\xiaoye/SuperLU/. Last update: August 2011.

[77] Xiaoye S. Li and James W. Demmel. SuperLU_DIST: A scalable distributed-memory sparse direct
solver for unsymmetric linear systems. ACM Trans. Mathematical Software, 29(2):110–140, June 2003.
doi:10.1145/779359.779361.

[78] P. A. Lott, H. F. Walker, C. S. Woodward, and U. M. Yang. An accelerated Picard method for nonlinear systems
related to variably saturated flow. Adv. Wat. Resour., 38:92–101, 2012. doi:10.1016/j.advwatres.2011.12.013.

[79] Vu Thai Luan, Rujeko Chinomona, and Daniel R. Reynolds. A new class of high-order methods
for multirate differential equations. SIAM Journal of Scientific Computing, 42(2):A1245–A1268, 2020.
doi:10.1137/19M125621X.

[80] Robert I Mclachlan and Pau Atela. The accuracy of symplectic integrators. Nonlinearity, 5(2):541, 1992.

[81] Chad D. Meyer, Dinshaw S. Balsara, and Tariq D. Aslam. A stabilized Runge–Kutta–Legendre method for ex-
plicit super-time-stepping of parabolic and mixed equations. Journal of Computational Physics, 257:594–626,
2014. doi:10.1016/j.jcp.2013.08.021.

[82] Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar, Dominic
Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations for scientific machine learning.
arXiv preprint arXiv:2001.04385, 2020.

[83] Anthony Ralston. Runge–Kutta methods with minimum error bounds. Mathematics of Computation,
16(80):431–437, 1962. doi:10.1090/s0025-5718-1962-0150954-0.

[84] Hendrik Ranocha and David I Ketcheson. Relaxation Runge–Kutta methods for Hamiltonian problems. Journal
of Scientific Computing, 84(1):1–27, 2020. doi:10.1007/s10915-020-01277-y.

[85] Hendrik Ranocha, Mohammed Sayyari, Lisandro Dalcin, Matteo Parsani, and David I Ketcheson. Re-
laxation Runge–Kutta Methods: Fully Discrete Explicit Entropy-Stable Schemes for the Compressible
Euler and Navier–Stokes Equations. SIAM Journal on Scientific Computing, 42(2):A612–A638, 2020.
doi:10.1137/19M1263480.

[86] Daniel R. Reynolds. Example Programs for ARKODE v6.3.0. Technical Report, Southern Methodist University,
2025.

[87] Steven Roberts, Andrey A Popov, Arash Sarshar, and Adrian Sandu. A fast time-stepping strategy for dynamical
systems equipped with a surrogate model. SIAM Journal on Scientific Computing, 44(3):A1405–A1427, 2022.
doi:10.1137/20M1386281.

[88] C. Runge. Ueber die numerische auflösung von differentialgleichungen. Mathematische Annalen,
46(2):167–178, 1895. doi:10.1007/BF01446807.

[89] Ronald D Ruth. A canonical integration technique. IEEE Trans. Nucl. Sci., 30(CERN-LEP-TH-83-
14):2669–2671, 1983.

[90] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput., 14(2):461–469, 1993.
doi:10.1137/0914028.

[91] Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric
Linear Systems. SIAM J. Sci. Stat. Comp., 7(3):856–869, 1986. doi:10.1137/0907058.

[92] A. Sandu. A class of multirate infinitesimal gark methods. SIAM Journal of Numerical Analysis,
57(5):2300–2327, 2019. doi:10.1137/18M1205492.

[93] Adrian Sandu. On the properties of Runge-Kutta discrete adjoints. Lecture Notes in Computer Science, pages
550–557, 2006. doi:10.1007/11758549_76.

[94] A. Sayfy and A. Aburub. Embedded Additive Runge-Kutta Methods. International Journal of Computer Math-
ematics, 79(8):945–953, 2002. doi:10.1080/00207160212109.

Bibliography 847

http://crd.lbl.gov/\protect \unhbox \voidb@x \penalty \@M \ xiaoye/SuperLU/
http://crd.lbl.gov/\protect \unhbox \voidb@x \penalty \@M \ xiaoye/SuperLU/
https://doi.org/10.1145/779359.779361
https://doi.org/10.1016/j.advwatres.2011.12.013
https://doi.org/10.1137/19M125621X
https://doi.org/10.1016/j.jcp.2013.08.021
https://doi.org/10.1090/s0025-5718-1962-0150954-0
https://doi.org/10.1007/s10915-020-01277-y
https://doi.org/10.1137/19M1263480
https://doi.org/10.1137/20M1386281
https://doi.org/10.1007/BF01446807
https://doi.org/10.1137/0914028
https://doi.org/10.1137/0907058
https://doi.org/10.1137/18M1205492
https://doi.org/10.1007/11758549_76
https://doi.org/10.1080/00207160212109

User Documentation for ARKODE, v6.3.0

[95] M. Schlegel, O. Knoth, M. Arnold, and R. Wolke. Multirate Runge–Kutta schemes for advection equations.
Journal of Computational Applied Mathematics, 226(2):345–357, 2009. doi:10.1016/j.cam.2008.08.009.

[96] M. Schlegel, O. Knoth, M. Arnold, and R. Wolke. Implementation of multirate time integration methods for air
pollution modelling. GMD, 5(6):1395–1405, 2012. doi:10.5194/gmd-5-1395-2012.

[97] M. Schlegel, O. Knoth, M. Arnold, and R. Wolke. Numerical solution of multiscale problems in atmospheric
modeling. Applied Numerical Mathematics, 62(10):1531–1542, 2012. doi:10.1016/j.apnum.2012.06.023.

[98] L. F. Shampine. Implementation of implicit formulas for the solution of ODEs. SIAM Journal on Scientific and
Statistical Computing, 1(1):103–118, 1980. doi:10.1137/0901005.

[99] Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially non-oscillatory shock-capturing
schemes. Journal of computational physics, 77(2):439–471, 1988. doi:10.1016/0021-9991(88)90177-5.

[100] Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially non-oscillatory shock-capturing
schemes. Journal of Computational Physics, 77(2):439–471, 1988. doi:10.1016/0021-9991(88)90177-5.

[101] Ziv Sirkes and Eli Tziperman. Finite difference of adjoint or adjoint of finite difference? Monthly weather review,
125(12):3373–3378, 1997.

[102] G. Soderlind. The automatic control of numerical integration. CWI Quarterly, 11:55–74, 1998.

[103] G. Soderlind. Digital filters in adaptive time-stepping. ACM Transactions on Mathematical Software, 29(1):1–26,
2003. doi:10.1145/641876.641877.

[104] G. Soderlind. Time-step selection algorithms: Adaptivity, control and signal processing. Applied Numerical
Mathematics, 56(3-4):488–502, 2006. doi:10.1016/j.apnum.2005.04.026.

[105] M. Sofroniou and G. Spaletta. Construction of explicit Runge-Kutta pairs with stiffness detection. Mathematical
and Computer Modelling, 40(11):1157–1169, 2004. doi:10.1016/j.mcm.2005.01.010.

[106] Mark Sofroniou and Giulia Spaletta. Symplectic Methods for Separable Hamiltonian Systems. Lecture Notes in
Computer Science, pages 506–515, 2002. doi:10.1007/3-540-47789-6_53.

[107] Mark Sofroniou and Giulia Spaletta. Derivation of symmetric composition constants for symmetric integrators.
Optimization Methods and Software, 20(4-5):597–613, 2005.

[108] Raymond J Spiteri and Steven J Ruuth. A new class of optimal high-order strong-stability-
preserving time discretization methods. SIAM Journal on Numerical Analysis, 40(2):469–491, 2002.
doi:10.1137/S0036142901389025.

[109] Gilbert Strang. Accurate partial difference methods I: Linear cauchy problems. Archive for Rational Mechanics
and Analysis, 12(1):392–402, January 1963. doi:10.1007/bf00281235.

[110] Gilbert Strang. On the construction and comparison of difference schemes. SIAM Journal on Numerical Analysis,
5(3):506–517, September 1968. doi:10.1137/0705041.

[111] Jürgen Struckmeier and Claus Riedel. Canonical transformations and exact invariants for time-dependent hamil-
tonian systems. Annalen der Physik, 11(1):15–38, 2002.

[112] M Suzuki and K Umeno. Higher-order decomposition theory of exponential operators and its applications to
qmc and nonlinear dynamics. Computer simulation studies in condensed-matter physics VI, pages 74–86, 1993.

[113] Masuo Suzuki. Fractal decomposition of exponential operators with applications to many-body theories and
Monte Carlo simulations. Physics Letters A, 146(6):319–323, June 1990. doi:10.1016/0375-9601(90)90962-n.

[114] Masuo Suzuki. General nonsymmetric higher-order decomposition of exponential operators and symplectic inte-
grators. Journal of the Physical Society of Japan, 61(9):3015–3019, September 1992. doi:10.1143/jpsj.61.3015.

[115] Molei Tao and Shi Jin. Accurate and efficient simulations of hamiltonian mechanical systems with discontinuous
potentials. Journal of Computational Physics, 450:110846, 2022. URL: https://www.sciencedirect.com/science/
article/pii/S0021999121007415, doi:10.1016/j.jcp.2021.110846.

848 Bibliography

https://doi.org/10.1016/j.cam.2008.08.009
https://doi.org/10.5194/gmd-5-1395-2012
https://doi.org/10.1016/j.apnum.2012.06.023
https://doi.org/10.1137/0901005
https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.1145/641876.641877
https://doi.org/10.1016/j.apnum.2005.04.026
https://doi.org/10.1016/j.mcm.2005.01.010
https://doi.org/10.1007/3-540-47789-6\T1\textbackslash {}_53
https://doi.org/10.1137/S0036142901389025
https://doi.org/10.1007/bf00281235
https://doi.org/10.1137/0705041
https://doi.org/10.1016/0375-9601(90)90962-n
https://doi.org/10.1143/jpsj.61.3015
https://www.sciencedirect.com/science/article/pii/S0021999121007415
https://www.sciencedirect.com/science/article/pii/S0021999121007415
https://doi.org/10.1016/j.jcp.2021.110846

User Documentation for ARKODE, v6.3.0

[116] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense linear algebra for hybrid GPU accelerated
manycore systems. Parallel Computing, 36(5-6):232–240, June 2010. doi:10.1016/j.parco.2009.12.005.

[117] Christian Trott, Luc Berger-Vergiat, David Poliakoff, Sivasankaran Rajamanickam, Damien Lebrun-Grandie,
Jonathan Madsen, Nader Al Awar, Milos Gligoric, Galen Shipman, and Geoff Womeldorff. The kokkos ecosys-
tem: comprehensive performance portability for high performance computing. Computing in Science Engineer-
ing, 23(5):10–18, 2021. doi:10.1109/MCSE.2021.3098509.

[118] Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang, Nathan Ellingwood,
Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles,
David Poliakoff, Amy Powell, Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin,
and Jeremiah Wilke. Kokkos 3: programming model extensions for the exascale era. IEEE Transactions on
Parallel and Distributed Systems, 33(4):805–817, 2022. doi:10.1109/TPDS.2021.3097283.

[119] Ch. Tsitouras. Runge–Kutta pairs of order 5(4) satisfying only the first column simplifying assumption. Com-
puters & Mathematics with Applications, 62(2):770–775, July 2011. doi:10.1016/j.camwa.2011.06.002.

[120] J.H Verner. Numerically optimal Runge–Kutta pairs with interpolants. Numerical Algorithms, 53(2):383–396,
2010. doi:10.1007/s11075-009-9290-3.

[121] J.G. Verwer, B.P. Sommeijer, and W. Hundsdorfer. RKC time-stepping for advection–diffusion–reaction prob-
lems. Journal of Computational Physics, 201(1):61–79, 2004. doi:10.1016/j.jcp.2004.05.002.

[122] H. A. Van Der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of
Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comp., 13(2):631–644, 1992. doi:10.1137/0913035.

[123] H. F. Walker and P. Ni. Anderson Acceleration for Fixed-Point Iterations. SIAM Jour. Num. Anal.,
49(4):1715–1735, 2011. doi:10.1137/10078356X.

[124] Haruo Yoshida. Construction of higher order symplectic integrators. Physics letters A, 150(5-7):262–268, 1990.

[125] J.A. Zonneveld. Automatic integration of ordinary differential equations. Technical Report R743, Mathematisch
Centrum, Postbus 4079, 1009AB Amsterdam, 1963.

Bibliography 849

https://doi.org/10.1016/j.parco.2009.12.005
https://doi.org/10.1109/MCSE.2021.3098509
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1016/j.camwa.2011.06.002
https://doi.org/10.1007/s11075-009-9290-3
https://doi.org/10.1016/j.jcp.2004.05.002
https://doi.org/10.1137/0913035
https://doi.org/10.1137/10078356X

User Documentation for ARKODE, v6.3.0

850 Bibliography

Index

Symbols
_braid_Vector_struct (C struct), 266
_braid_Vector_struct.y (C member), 266
_generic_N_Vector (C struct), 423
_generic_N_Vector.content (C member), 423
_generic_N_Vector.ops (C member), 423
_generic_N_Vector.sunctx (C member), 423
_generic_N_Vector_Ops (C struct), 423
_generic_N_Vector_Ops.nvabs (C member), 424
_generic_N_Vector_Ops.nvaddconst (C member),

424
_generic_N_Vector_Ops.nvbufpack (C member),

426
_generic_N_Vector_Ops.nvbufsize (C member),

426
_generic_N_Vector_Ops.nvbufunpack (C member),

426
_generic_N_Vector_Ops.nvclone (C member), 424
_generic_N_Vector_Ops.nvcloneempty (C mem-

ber), 424
_generic_N_Vector_Ops.nvcompare (C member),

425
_generic_N_Vector_Ops.nvconst (C member), 424
_generic_N_Vector_Ops.nvconstrmask (C mem-

ber), 425
_generic_N_Vector_Ops.nvconstrmasklocal (C

member), 426
_generic_N_Vector_Ops.nvconstvectorarray (C

member), 425
_generic_N_Vector_Ops.nvdestroy (C member),

424
_generic_N_Vector_Ops.nvdiv (C member), 424
_generic_N_Vector_Ops.nvdotprod (C member),

425
_generic_N_Vector_Ops.nvdotprodlocal (C mem-

ber), 426
_generic_N_Vector_Ops.nvdotprodmulti (C mem-

ber), 425
_generic_N_Vector_-

Ops.nvdotprodmultiallreduce (C mem-
ber), 426

_generic_N_Vector_Ops.nvdotprodmultilocal (C
member), 426

_generic_N_Vector_Ops.nvgetarraypointer (C
member), 424

_generic_N_Vector_Ops.nvgetcommunicator (C
member), 424

_generic_N_Vector_-
Ops.nvgetdevicearraypointer (C mem-
ber), 424

_generic_N_Vector_Ops.nvgetlength (C member),
424

_generic_N_Vector_Ops.nvgetlocallength (C
member), 424

_generic_N_Vector_Ops.nvgetvectorid (C mem-
ber), 424

_generic_N_Vector_Ops.nvinv (C member), 424
_generic_N_Vector_Ops.nvinvtest (C member),

425
_generic_N_Vector_Ops.nvinvtestlocal (C mem-

ber), 426
_generic_N_Vector_Ops.nvl1norm (C member), 425
_generic_N_Vector_Ops.nvl1normlocal (C mem-

ber), 426
_generic_N_Vector_Ops.nvlinearcombination (C

member), 425
_generic_N_Vector_-

Ops.nvlinearcombinationvectorarray
(C member), 426

_generic_N_Vector_Ops.nvlinearsum (C member),
424

_generic_N_Vector_-
Ops.nvlinearsumvectorarray (C member),
425

_generic_N_Vector_Ops.nvmaxnorm (C member),
425

_generic_N_Vector_Ops.nvmaxnormlocal (C mem-
ber), 426

_generic_N_Vector_Ops.nvmin (C member), 425
_generic_N_Vector_Ops.nvminlocal (C member),

426
_generic_N_Vector_Ops.nvminquotient (C mem-

ber), 425
_generic_N_Vector_Ops.nvminquotientlocal (C

member), 426
_generic_N_Vector_Ops.nvprint (C member), 426
_generic_N_Vector_Ops.nvprintfile (C member),

426
_generic_N_Vector_Ops.nvprod (C member), 424
_generic_N_Vector_Ops.nvscale (C member), 424

851

User Documentation for ARKODE, v6.3.0

_generic_N_Vector_Ops.nvscaleaddmulti (C mem-
ber), 425

_generic_N_Vector_-
Ops.nvscaleaddmultivectorarray (C
member), 426

_generic_N_Vector_Ops.nvscalevectorarray (C
member), 425

_generic_N_Vector_Ops.nvsetarraypointer (C
member), 424

_generic_N_Vector_Ops.nvspace (C member), 424
_generic_N_Vector_Ops.nvwl2norm (C member),

425
_generic_N_Vector_Ops.nvwrmsnorm (C member),

425
_generic_N_Vector_Ops.nvwrmsnormmask (C mem-

ber), 425
_generic_N_Vector_-

Ops.nvwrmsnormmaskvectorarray (C
member), 425

_generic_N_Vector_Ops.nvwrmsnormvectorarray
(C member), 425

_generic_N_Vector_Ops.nvwsqrsumlocal (C mem-
ber), 426

_generic_N_Vector_Ops.nvwsqrsummasklocal (C
member), 426

_generic_SUNAdaptController (C struct), 629
_generic_SUNAdaptController.content (C mem-

ber), 629
_generic_SUNAdaptController.ops (C member),

629
_generic_SUNAdaptController.sunctx (C mem-

ber), 629
_generic_SUNAdaptController_Ops (C struct), 630
_generic_SUNAdaptController_Ops.destroy (C

member), 630
_generic_SUNAdaptController_-

Ops.estimatestep (C member), 630
_generic_SUNAdaptController_-

Ops.estimatesteptol (C member), 630
_generic_SUNAdaptController_Ops.gettype (C

member), 630
_generic_SUNAdaptController_Ops.reset (C mem-

ber), 630
_generic_SUNAdaptController_Ops.setdefaults

(C member), 630
_generic_SUNAdaptController_-

Ops.seterrorbias (C member), 630
_generic_SUNAdaptController_Ops.space (C mem-

ber), 630
_generic_SUNAdaptController_Ops.updateh (C

member), 630
_generic_SUNAdaptController_-

Ops.updatemritol (C member), 630
_generic_SUNAdaptController_Ops.write (C mem-

ber), 630
_generic_SUNLinearSolver (C struct), 551
_generic_SUNLinearSolver.content (C member),

551
_generic_SUNLinearSolver.ops (C member), 551
_generic_SUNLinearSolver.sunctx (C member),

551
_generic_SUNLinearSolver_Ops (C struct), 551
_generic_SUNLinearSolver_Ops.free (C member),

552
_generic_SUNLinearSolver_Ops.getid (C mem-

ber), 551
_generic_SUNLinearSolver_Ops.gettype (C mem-

ber), 551
_generic_SUNLinearSolver_Ops.initialize (C

member), 551
_generic_SUNLinearSolver_Ops.lastflag (C mem-

ber), 551
_generic_SUNLinearSolver_Ops.numiters (C mem-

ber), 551
_generic_SUNLinearSolver_Ops.resid (C mem-

ber), 552
_generic_SUNLinearSolver_Ops.resnorm (C mem-

ber), 551
_generic_SUNLinearSolver_Ops.setatimes (C

member), 551
_generic_SUNLinearSolver_-

Ops.setpreconditioner (C member),
551

_generic_SUNLinearSolver_-
Ops.setscalingvectors (C member),
551

_generic_SUNLinearSolver_Ops.setup (C mem-
ber), 551

_generic_SUNLinearSolver_Ops.setzeroguess (C
member), 551

_generic_SUNLinearSolver_Ops.solve (C mem-
ber), 551

_generic_SUNLinearSolver_Ops.space (C mem-
ber), 552

_generic_SUNMatrix (C struct), 501
_generic_SUNMatrix.content (C member), 501
_generic_SUNMatrix.ops (C member), 501
_generic_SUNMatrix.sunctx (C member), 501
_generic_SUNMatrix_Ops (C struct), 501
_generic_SUNMatrix_Ops.clone (C member), 502
_generic_SUNMatrix_Ops.copy (C member), 502
_generic_SUNMatrix_Ops.destroy (C member), 502
_generic_SUNMatrix_Ops.getid (C member), 502
_generic_SUNMatrix_-

Ops.mathermitiantransposevec (C
member), 502

_generic_SUNMatrix_Ops.matvec (C member), 502
_generic_SUNMatrix_Ops.matvecsetup (C mem-

852 Index

User Documentation for ARKODE, v6.3.0

ber), 502
_generic_SUNMatrix_Ops.scaleadd (C member),

502
_generic_SUNMatrix_Ops.scaleaddi (C member),

502
_generic_SUNMatrix_Ops.space (C member), 502
_generic_SUNMatrix_Ops.zero (C member), 502
_generic_SUNNonlinearSolver (C struct), 612
_generic_SUNNonlinearSolver.content (C mem-

ber), 612
_generic_SUNNonlinearSolver.ops (C member),

612
_generic_SUNNonlinearSolver.sunctx (C mem-

ber), 612
_generic_SUNNonlinearSolver_Ops (C struct), 612
_generic_SUNNonlinearSolver_Ops.free (C mem-

ber), 612
_generic_SUNNonlinearSolver_Ops.getcuriter

(C member), 613
_generic_SUNNonlinearSolver_-

Ops.getnumconvfails (C member), 613
_generic_SUNNonlinearSolver_Ops.getnumiters

(C member), 613
_generic_SUNNonlinearSolver_Ops.gettype (C

member), 612
_generic_SUNNonlinearSolver_Ops.initialize

(C member), 612
_generic_SUNNonlinearSolver_Ops.setctestfn

(C member), 613
_generic_SUNNonlinearSolver_Ops.setlsetupfn

(C member), 613
_generic_SUNNonlinearSolver_Ops.setlsolvefn

(C member), 613
_generic_SUNNonlinearSolver_Ops.setmaxiters

(C member), 613
_generic_SUNNonlinearSolver_Ops.setsysfn (C

member), 613
_generic_SUNNonlinearSolver_Ops.setup (C mem-

ber), 612
_generic_SUNNonlinearSolver_Ops.solve (C mem-

ber), 612

A
additive Runge--Kutta methods, 14
Adjoint Sensitivity Analysis user main pro-

gram, 409
ARK_ADJ_CHECKPOINT_FAIL, 741
ARK_ADJ_RECOMPUTE_FAIL, 741
ARK_BAD_DKY, 741
ARK_BAD_K, 740
ARK_BAD_T, 740
ARK_CONSTR_FAIL, 740
ARK_CONTEXT_ERR, 741
ARK_CONTROLLER_ERR, 741

ARK_CONV_FAILURE, 740
ARK_DOMEIG_FAIL, 741
ARK_ERR_FAILURE, 740
ARK_FIRST_RHSFUNC_ERR, 740
ARK_FULLRHS_END, 737
ARK_FULLRHS_OTHER, 737
ARK_FULLRHS_START, 737
ARK_ILL_INPUT, 740
ARK_INNERSTEP_ATTACH_ERR, 741
ARK_INNERSTEP_FAIL, 741
ARK_INTERP_FAIL, 741
ARK_INTERP_HERMITE, 737
ARK_INTERP_LAGRANGE, 737
ARK_INTERP_MAX_DEGREE, 737
ARK_INTERP_NONE, 737
ARK_INVALID_TABLE, 741
ARK_LFREE_FAIL, 740
ARK_LINIT_FAIL, 740
ARK_LSETUP_FAIL, 740
ARK_LSOLVE_FAIL, 740
ARK_MASSFREE_FAIL, 740
ARK_MASSINIT_FAIL, 740
ARK_MASSMULT_FAIL, 740
ARK_MASSSETUP_FAIL, 740
ARK_MASSSOLVE_FAIL, 740
ARK_MAX_STAGE_LIMIT_FAIL, 741
ARK_MEM_FAIL, 740
ARK_MEM_NULL, 740
ARK_NLS_INIT_FAIL, 741
ARK_NLS_OP_ERR, 741
ARK_NLS_SETUP_FAIL, 741
ARK_NLS_SETUP_RECVR, 741
ARK_NO_MALLOC, 740
ARK_NORMAL, 737
ARK_ONE_STEP, 737
ARK_POSTINNERFN_FAIL, 741
ARK_PREINNERFN_FAIL, 741
ARK_RELAX_BRENT, 737
ARK_RELAX_FAIL, 741
ARK_RELAX_FUNC_FAIL, 741
ARK_RELAX_JAC_FAIL, 741
ARK_RELAX_MEM_FAIL, 741
ARK_RELAX_NEWTON, 737
ARK_REPTD_RHSFUNC_ERR, 740
ARK_RHSFUNC_FAIL, 740
ARK_ROOT_RETURN, 740
ARK_RTFUNC_FAIL, 740
ARK_STEP_DIRECTION_ERR, 741
ARK_STEPPER_UNSUPPORTED, 741
ARK_SUCCESS, 740
ARK_SUNADJSTEPPER_ERR, 741
ARK_SUNSTEPPER_ERR, 741
ARK_TOO_CLOSE, 741
ARK_TOO_MUCH_ACC, 740

Index 853

User Documentation for ARKODE, v6.3.0

ARK_TOO_MUCH_WORK, 740
ARK_TSTOP_RETURN, 740
ARK_UNREC_RHSFUNC_ERR, 740
ARK_UNRECOGNIZED_ERROR, 741
ARK_VECTOROP_ERR, 741
ARK_WARNING, 740
ARKAccumError (C enum), 111
ARKAccumError.ARK_ACCUMERROR_AVG (C enumera-

tor), 111
ARKAccumError.ARK_ACCUMERROR_MAX (C enumera-

tor), 111
ARKAccumError.ARK_ACCUMERROR_NONE (C enumera-

tor), 111
ARKAccumError.ARK_ACCUMERROR_SUM (C enumera-

tor), 111
ARKAdaptFn (C type), 166
ARKBandPrecGetNumRhsEvals (C function), 189
ARKBandPrecGetWorkSpace (C function), 188
ARKBandPrecInit (C function), 188
ARKBBDPrecGetNumGfnEvals (C function), 195
ARKBBDPrecGetWorkSpace (C function), 195
ARKBBDPrecInit (C function), 193
ARKBBDPrecReInit (C function), 194
ARKBraid_Access (C function), 276
ARKBraid_BraidInit (C function), 270
ARKBraid_Create (C function), 270
ARKBraid_Free (C function), 271
ARKBraid_GetARKodeMem (C function), 273
ARKBraid_GetARKStepMem (C function), 273
ARKBraid_GetLastARKodeFlag (C function), 274
ARKBraid_GetLastARKStepFlag (C function), 274
ARKBraid_GetLastBraidFlag (C function), 274
ARKBraid_GetSolution (C function), 274
ARKBraid_GetUserData (C function), 273
ARKBraid_GetVecTmpl (C function), 273
ARKBraid_Init (C function), 276
ARKBraid_SetAccessFn (C function), 272
ARKBraid_SetInitFn (C function), 271
ARKBraid_SetSpatialNormFn (C function), 272
ARKBraid_SetStepFn (C function), 271
ARKBraid_Step (C function), 275
ARKBraid_TakeStep (C function), 278
ARKCommFn (C type), 191
ARKDomEigFn (C type), 324
ARKEwtFn (C type), 165
ARKExpStabFn (C type), 167
ARKLocalFn (C type), 191
ARKLS_ILL_INPUT, 741
ARKLS_JACFUNC_RECVR, 742
ARKLS_JACFUNC_UNRECVR, 741
ARKLS_LMEM_NULL, 741
ARKLS_MASSFUNC_RECVR, 742
ARKLS_MASSFUNC_UNRECVR, 742
ARKLS_MASSMEM_NULL, 741

ARKLS_MEM_FAIL, 741
ARKLS_MEM_NULL, 741
ARKLS_PMEM_NULL, 741
ARKLS_SUCCESS, 741
ARKLS_SUNLS_FAIL, 742
ARKLS_SUNMAT_FAIL, 742
ARKLsJacFn (C type), 169
ARKLsJacTimesSetupFn (C type), 172
ARKLsJacTimesVecFn (C type), 171
ARKLsLinSysFn (C type), 170
ARKLsMassFn (C type), 175
ARKLsMassPrecSetupFn (C type), 178
ARKLsMassPrecSolveFn (C type), 177
ARKLsMassTimesSetupFn (C type), 177
ARKLsMassTimesVecFn (C type), 176
ARKLsPrecSetupFn (C type), 174
ARKLsPrecSolveFn (C type), 173
ARKODE_ARK2_DIRK_3_1_2 (C enumerator), 767
ARKODE_ARK2_ERK_3_1_2 (C enumerator), 748
ARKODE_ARK324L2SA_DIRK_4_2_3 (C enumerator), 773
ARKODE_ARK324L2SA_ERK_4_2_3 (C enumerator), 749
ARKODE_ARK436L2SA_DIRK_6_3_4 (C enumerator), 777
ARKODE_ARK436L2SA_ERK_6_3_4 (C enumerator), 753
ARKODE_ARK437L2SA_DIRK_7_3_4 (C enumerator), 777
ARKODE_ARK437L2SA_ERK_7_3_4 (C enumerator), 754
ARKODE_ARK548L2SA_DIRK_8_4_5 (C enumerator), 781
ARKODE_ARK548L2SA_ERK_8_4_5 (C enumerator), 759
ARKODE_ARK548L2SAb_DIRK_8_4_5 (C enumerator),

783
ARKODE_ARK548L2SAb_ERK_8_4_5 (C enumerator), 759
ARKODE_BACKWARD_EULER_1_1 (C enumerator), 767
ARKODE_BILLINGTON_3_3_2 (C enumerator), 768
ARKODE_BOGACKI_SHAMPINE_4_2_3 (C enumerator),

749
ARKODE_CASH_5_2_4 (C enumerator), 775
ARKODE_CASH_5_3_4 (C enumerator), 775
ARKODE_CASH_KARP_6_4_5 (C enumerator), 755
ARKODE_DIRKTableID (C enum), 765
ARKODE_DORMAND_PRINCE_7_4_5 (C enumerator), 758
ARKODE_ERKTableID (C enum), 744
ARKODE_ESDIRK324L2SA_4_2_3 (C enumerator), 771
ARKODE_ESDIRK325L2SA_5_2_3 (C enumerator), 770
ARKODE_ESDIRK32I5L2SA_5_2_3 (C enumerator), 771
ARKODE_ESDIRK436L2SA_6_3_4 (C enumerator), 773
ARKODE_ESDIRK437L2SA_7_3_4 (C enumerator), 781
ARKODE_ESDIRK43I6L2SA_6_3_4 (C enumerator), 779
ARKODE_ESDIRK547L2SA2_7_4_5 (C enumerator), 781
ARKODE_ESDIRK547L2SA_7_4_5 (C enumerator), 783
ARKODE_EXPLICIT_MIDPOINT_EULER_2_1_2 (C enu-

merator), 747
ARKODE_FEHLBERG_13_7_8 (C enumerator), 763
ARKODE_FEHLBERG_6_4_5 (C enumerator), 757
ARKODE_FORWARD_EULER_1_1 (C enumerator), 745
ARKODE_HEUN_EULER_2_1_2 (C enumerator), 746

854 Index

User Documentation for ARKODE, v6.3.0

ARKODE_IMEX_MRI_GARK3a, 373
ARKODE_IMEX_MRI_GARK3b, 373
ARKODE_IMEX_MRI_GARK4, 373
ARKODE_IMEX_MRI_GARK_EULER, 373
ARKODE_IMEX_MRI_GARK_MIDPOINT, 373
ARKODE_IMEX_MRI_GARK_TRAPEZOIDAL, 373
ARKODE_IMEX_MRI_SR21, 373
ARKODE_IMEX_MRI_SR32, 373
ARKODE_IMEX_MRI_SR43, 373
ARKODE_IMPLICIT_MIDPOINT_1_2 (C enumerator), 768
ARKODE_IMPLICIT_TRAPEZOIDAL_2_2 (C enumerator),

768
ARKODE_KNOTH_WOLKE_3_3 (C enumerator), 750
ARKODE_KVAERNO_4_2_3 (C enumerator), 771
ARKODE_KVAERNO_5_3_4 (C enumerator), 777
ARKODE_KVAERNO_7_4_5 (C enumerator), 781
ARKODE_LSRK_RKC_2, 739
ARKODE_LSRK_RKL_2, 739
ARKODE_LSRK_SSP_10_4, 739
ARKODE_LSRK_SSP_S_2, 739
ARKODE_LSRK_SSP_S_3, 739
ARKODE_LSRKMethodType (C enum), 319
ARKODE_LSRKMethodType.ARKODE_LSRK_RKC_2 (C

enumerator), 319
ARKODE_LSRKMethodType.ARKODE_LSRK_RKL_2 (C

enumerator), 319
ARKODE_LSRKMethodType.ARKODE_LSRK_SSP_10_4

(C enumerator), 319
ARKODE_LSRKMethodType.ARKODE_LSRK_SSP_S_2 (C

enumerator), 319
ARKODE_LSRKMethodType.ARKODE_LSRK_SSP_S_3 (C

enumerator), 319
ARKODE_MERK21, 372
ARKODE_MERK32, 372
ARKODE_MERK43, 372
ARKODE_MERK54, 20, 372
ARKODE_MIS_KW3, 372
ARKODE_MRI_GARK_BACKWARD_EULER, 373
ARKODE_MRI_GARK_ERK22a, 372
ARKODE_MRI_GARK_ERK22b, 372
ARKODE_MRI_GARK_ERK33a, 372
ARKODE_MRI_GARK_ERK45a, 372
ARKODE_MRI_GARK_ESDIRK34a, 373
ARKODE_MRI_GARK_ESDIRK46a, 373
ARKODE_MRI_GARK_FORWARD_EULER, 372
ARKODE_MRI_GARK_IMPLICIT_MIDPOINT, 373
ARKODE_MRI_GARK_IRK21a, 373
ARKODE_MRI_GARK_RALSTON2, 372
ARKODE_MRI_GARK_RALSTON3, 372
ARKODE_MRITableID (C type), 372
ARKODE_QESDIRK436L2SA_6_3_4 (C enumerator), 779
ARKODE_RALSTON_3_1_2 (C enumerator), 745
ARKODE_RALSTON_EULER_2_1_2 (C enumerator), 747
ARKODE_SAYFY_ABURUB_6_3_4 (C enumerator), 755

ARKODE_SDIRK_2_1_2 (C enumerator), 767
ARKODE_SDIRK_5_3_4 (C enumerator), 776
ARKODE_SHU_OSHER_3_2_3 (C enumerator), 750
ARKODE_SOFRONIOU_SPALETTA_5_3_4 (C enumerator),

752
ARKODE_SplittingCoefficientsID (C enum), 393
ARKODE_SPRK_CANDY_ROZMUS_4_4 (C enumerator), 787
ARKODE_SPRK_EULER_1_1 (C enumerator), 786
ARKODE_SPRK_LEAPFROG_2_2 (C enumerator), 786
ARKODE_SPRK_MCLACHLAN_2_2 (C enumerator), 786
ARKODE_SPRK_MCLACHLAN_3_3 (C enumerator), 786
ARKODE_SPRK_MCLACHLAN_4_4 (C enumerator), 786
ARKODE_SPRK_MCLACHLAN_5_6 (C enumerator), 787
ARKODE_SPRK_PSEUDO_LEAPFROG_2_2 (C enumerator),

786
ARKODE_SPRK_RUTH_3_3 (C enumerator), 786
ARKODE_SPRK_SOFRONIOU_10_36 (C enumerator), 787
ARKODE_SPRK_SUZUKI_UMENO_8_16 (C enumerator),

787
ARKODE_SPRK_YOSHIDA_6_8 (C enumerator), 787
ARKODE_SPRKMethodID (C enum), 786
ARKODE_TRBDF2_3_3_2 (C enumerator), 770
ARKODE_TSITOURAS_7_4_5 (C enumerator), 755
ARKODE_VERNER_10_6_7 (C enumerator), 762
ARKODE_VERNER_13_7_8 (C enumerator), 762
ARKODE_VERNER_16_8_9 (C enumerator), 764
ARKODE_VERNER_8_5_6 (C enumerator), 760
ARKODE_VERNER_9_5_6 (C enumerator), 760
ARKODE_ZONNEVELD_5_3_4 (C enumerator), 752
ARKodeButcherTable (C type), 413
ARKodeButcherTable_Alloc (C function), 415
ARKodeButcherTable_CheckARKOrder (C function),

418
ARKodeButcherTable_CheckOrder (C function), 417
ARKodeButcherTable_Copy (C function), 416
ARKodeButcherTable_Create (C function), 416
ARKodeButcherTable_DIRKIDToName (C function),

415
ARKodeButcherTable_ERKIDToName (C function), 414
ARKodeButcherTable_Free (C function), 417
ARKodeButcherTable_IsStifflyAccurate (C func-

tion), 417
ARKodeButcherTable_LoadDIRK (C function), 415
ARKodeButcherTable_LoadDIRKByName (C function),

415
ARKodeButcherTable_LoadERK (C function), 414
ARKodeButcherTable_LoadERKByName (C function),

414
ARKodeButcherTable_Space (C function), 416
ARKodeButcherTable_Write (C function), 417
ARKodeButcherTableMem (C struct), 413
ARKodeButcherTableMem.A (C member), 413
ARKodeButcherTableMem.b (C member), 413
ARKodeButcherTableMem.c (C member), 413

Index 855

User Documentation for ARKODE, v6.3.0

ARKodeButcherTableMem.d (C member), 413
ARKodeButcherTableMem.p (C member), 413
ARKodeButcherTableMem.q (C member), 413
ARKodeButcherTableMem.stages (C member), 413
ARKodeClearStopTime (C function), 101
ARKodeComputeState (C function), 616
ARKodeCreateMRIStepInnerStepper (C function),

162
ARKodeCreateSUNStepper (C function), 163
ARKodeEvolve (C function), 91
ARKodeFree (C function), 82
ARKodeGetAccumulatedError (C function), 142
ARKodeGetActualInitStep (C function), 135
ARKodeGetCurrentGamma (C function), 136
ARKodeGetCurrentMassMatrix (C function), 615
ARKodeGetCurrentState (C function), 136
ARKodeGetCurrentStep (C function), 135
ARKodeGetCurrentTime (C function), 136
ARKodeGetDky (C function), 132
ARKodeGetErrWeights (C function), 137
ARKodeGetEstLocalErrors (C function), 141
ARKodeGetJac (C function), 146
ARKodeGetJacNumSteps (C function), 147
ARKodeGetJacTime (C function), 147
ARKodeGetLastLinFlag (C function), 152
ARKodeGetLastMassFlag (C function), 158
ARKodeGetLastStep (C function), 135
ARKodeGetLinReturnFlagName (C function), 153
ARKodeGetLinWorkSpace (C function), 148
ARKodeGetMassWorkSpace (C function), 153
ARKodeGetNonlinearSystemData (C function), 615
ARKodeGetNonlinSolvStats (C function), 144
ARKodeGetNumAccSteps (C function), 139
ARKodeGetNumConstrFails (C function), 142
ARKodeGetNumErrTestFails (C function), 141
ARKodeGetNumExpSteps (C function), 139
ARKodeGetNumGEvals (C function), 145
ARKodeGetNumJacEvals (C function), 148
ARKodeGetNumJtimesEvals (C function), 151
ARKodeGetNumJTSetupEvals (C function), 151
ARKodeGetNumLinConvFails (C function), 150
ARKodeGetNumLinIters (C function), 150
ARKodeGetNumLinRhsEvals (C function), 152
ARKodeGetNumLinSolvSetups (C function), 143
ARKodeGetNumMassConvFails (C function), 157
ARKodeGetNumMassIters (C function), 157
ARKodeGetNumMassMult (C function), 155
ARKodeGetNumMassMultSetups (C function), 154
ARKodeGetNumMassPrecEvals (C function), 156
ARKodeGetNumMassPrecSolves (C function), 156
ARKodeGetNumMassSetups (C function), 154
ARKodeGetNumMassSolves (C function), 155
ARKodeGetNumMTSetups (C function), 158

ARKodeGetNumNonlinSolvConvFails (C function),
144

ARKodeGetNumNonlinSolvIters (C function), 143
ARKodeGetNumPrecEvals (C function), 149
ARKodeGetNumPrecSolves (C function), 149
ARKodeGetNumRelaxBoundFails (C function), 186
ARKodeGetNumRelaxFails (C function), 185
ARKodeGetNumRelaxFnEvals (C function), 185
ARKodeGetNumRelaxJacEvals (C function), 185
ARKodeGetNumRelaxSolveFails (C function), 186
ARKodeGetNumRelaxSolveIters (C function), 186
ARKodeGetNumRhsEvals (C function), 140
ARKodeGetNumStepAttempts (C function), 140
ARKodeGetNumSteps (C function), 134
ARKodeGetNumStepSolveFails (C function), 141
ARKodeGetResWeights (C function), 137
ARKodeGetReturnFlagName (C function), 139
ARKodeGetRootInfo (C function), 145
ARKodeGetStepDirection (C function), 136
ARKodeGetStepStats (C function), 138
ARKodeGetTolScaleFactor (C function), 137
ARKodeGetUserData (C function), 142
ARKodeGetWorkSpace (C function), 134
ARKodePrintAllStats (C function), 138
ARKodeReset (C function), 160
ARKodeResetAccumulatedError (C function), 112
ARKodeResFtolerance (C function), 85
ARKodeResize (C function), 161
ARKodeResStolerance (C function), 84
ARKodeResVtolerance (C function), 85
ARKodeRootInit (C function), 91
ARKodeSetAccumulatedErrorType (C function), 111
ARKodeSetAdaptController (C function), 104
ARKodeSetAdaptControllerByName (C function), 104
ARKodeSetAdaptivityAdjustment (C function), 105
ARKodeSetAdjointCheckpointIndex (C function),

103
ARKodeSetAdjointCheckpointScheme (C function),

103
ARKodeSetAutonomous (C function), 114
ARKodeSetCFLFraction (C function), 106
ARKodeSetConstraints (C function), 102
ARKodeSetDeduceImplicitRhs (C function), 118
ARKodeSetDefaults (C function), 94
ARKodeSetDeltaGammaMax (C function), 120
ARKodeSetEpsLin (C function), 129
ARKodeSetErrorBias (C function), 106
ARKodeSetFixedStep (C function), 96
ARKodeSetFixedStepBounds (C function), 107
ARKodeSetInitStep (C function), 97
ARKodeSetInterpolantDegree (C function), 96
ARKodeSetInterpolantType (C function), 95
ARKodeSetInterpolateStopTime (C function), 100
ARKodeSetJacEvalFrequency (C function), 121

856 Index

User Documentation for ARKODE, v6.3.0

ARKodeSetJacFn (C function), 122
ARKodeSetJacTimes (C function), 125
ARKodeSetJacTimesRhsFn (C function), 125
ARKodeSetLinear (C function), 112
ARKodeSetLinearSolutionScaling (C function), 124
ARKodeSetLinearSolver (C function), 87
ARKodeSetLinSysFn (C function), 123
ARKodeSetLSetupFrequency (C function), 120
ARKodeSetLSNormFactor (C function), 130
ARKodeSetMassEpsLin (C function), 129
ARKodeSetMassFn (C function), 123
ARKodeSetMassLinearSolver (C function), 89
ARKodeSetMassLSNormFactor (C function), 130
ARKodeSetMassPreconditioner (C function), 128
ARKodeSetMassTimes (C function), 126
ARKodeSetMaxCFailGrowth (C function), 107
ARKodeSetMaxConvFails (C function), 118
ARKodeSetMaxEFailGrowth (C function), 107
ARKodeSetMaxErrTestFails (C function), 101
ARKodeSetMaxFirstGrowth (C function), 108
ARKodeSetMaxGrowth (C function), 108
ARKodeSetMaxHnilWarns (C function), 98
ARKodeSetMaxNonlinIters (C function), 116
ARKodeSetMaxNumConstrFails (C function), 102
ARKodeSetMaxNumSteps (C function), 98
ARKodeSetMaxStep (C function), 99
ARKodeSetMinReduction (C function), 109
ARKodeSetMinStep (C function), 99
ARKodeSetNlsRhsFn (C function), 115
ARKodeSetNoInactiveRootWarn (C function), 132
ARKodeSetNonlinConvCoef (C function), 116
ARKodeSetNonlinCRDown (C function), 117
ARKodeSetNonlinear (C function), 113
ARKodeSetNonlinearSolver (C function), 90
ARKodeSetNonlinRDiv (C function), 117
ARKodeSetOrder (C function), 94
ARKodeSetPreconditioner (C function), 127
ARKodeSetPredictorMethod (C function), 114
ARKodeSetRelaxEtaFail (C function), 182
ARKodeSetRelaxFn (C function), 181
ARKodeSetRelaxLowerBound (C function), 182
ARKodeSetRelaxMaxFails (C function), 183
ARKodeSetRelaxMaxIters (C function), 183
ARKodeSetRelaxResTol (C function), 184
ARKodeSetRelaxSolver (C function), 184
ARKodeSetRelaxTol (C function), 184
ARKodeSetRelaxUpperBound (C function), 183
ARKodeSetRootDirection (C function), 131
ARKodeSetSafetyFactor (C function), 109
ARKodeSetSmallNumEFails (C function), 110
ARKodeSetStabilityFn (C function), 110
ARKodeSetStagePredictFn (C function), 115
ARKodeSetStepDirection (C function), 97
ARKodeSetStopTime (C function), 100

ARKodeSetUserData (C function), 101
ARKodeSPRKTable (C type), 419
ARKodeSPRKTable_Alloc (C function), 420
ARKodeSPRKTable_Copy (C function), 420
ARKodeSPRKTable_Create (C function), 420
ARKodeSPRKTable_Free (C function), 421
ARKodeSPRKTable_Load (C function), 420
ARKodeSPRKTable_LoadByName (C function), 420
ARKodeSPRKTable_Space (C function), 421
ARKodeSPRKTable_ToButcher (C function), 421
ARKodeSPRKTable_Write (C function), 421
ARKodeSPRKTableMem (C type), 419
ARKodeSPRKTableMem.a (C member), 419
ARKodeSPRKTableMem.ahat (C member), 419
ARKodeSPRKTableMem.q (C member), 419
ARKodeSPRKTableMem.stages (C member), 419
ARKodeSStolerances (C function), 83
ARKodeSVtolerances (C function), 83
ARKodeWFtolerances (C function), 84
ARKodeWriteParameters (C function), 159
ARKRelaxFn (C type), 180
ARKRelaxJacFn (C type), 181
ARKRelaxSolver (C enum), 742
ARKRelaxSolver.ARK_RELAX_BRENT (C enumerator),

742
ARKRelaxSolver.ARK_RELAX_NEWTON (C enumerator),

742
ARKRhsFn (C type), 164
ARKRootFn (C type), 169
ARKRwtFn (C type), 166
ARKStagePredictFn (C type), 168
ARKSTEP_DEFAULT_ARK_ETABLE_2, 738
ARKSTEP_DEFAULT_ARK_ETABLE_3, 738
ARKSTEP_DEFAULT_ARK_ETABLE_4, 738
ARKSTEP_DEFAULT_ARK_ETABLE_5, 739
ARKSTEP_DEFAULT_ARK_ITABLE_2, 738
ARKSTEP_DEFAULT_ARK_ITABLE_3, 738
ARKSTEP_DEFAULT_ARK_ITABLE_4, 738
ARKSTEP_DEFAULT_ARK_ITABLE_5, 739
ARKSTEP_DEFAULT_DIRK_1, 738
ARKSTEP_DEFAULT_DIRK_2, 738
ARKSTEP_DEFAULT_DIRK_3, 738
ARKSTEP_DEFAULT_DIRK_4, 738
ARKSTEP_DEFAULT_DIRK_5, 738
ARKSTEP_DEFAULT_ERK_1, 737
ARKSTEP_DEFAULT_ERK_2, 737
ARKSTEP_DEFAULT_ERK_3, 737
ARKSTEP_DEFAULT_ERK_4, 738
ARKSTEP_DEFAULT_ERK_5, 738
ARKSTEP_DEFAULT_ERK_6, 738
ARKSTEP_DEFAULT_ERK_7, 738
ARKSTEP_DEFAULT_ERK_8, 738
ARKSTEP_DEFAULT_ERK_9, 738
ARKStepClearStopTime (C function), 207

Index 857

User Documentation for ARKODE, v6.3.0

ARKStepComputeState (C function), 618
ARKStepCreate (C function), 196
ARKStepCreateAdjointStepper (C function), 411
ARKStepCreateMRIStepInnerStepper (C function),

256
ARKStepEvolve (C function), 201
ARKStepFree (C function), 196
ARKStepGetActualInitStep (C function), 235
ARKStepGetCurrentButcherTables (C function), 240
ARKStepGetCurrentGamma (C function), 236
ARKStepGetCurrentMassMatrix (C function), 617
ARKStepGetCurrentState (C function), 236
ARKStepGetCurrentStep (C function), 235
ARKStepGetCurrentTime (C function), 236
ARKStepGetDky (C function), 234
ARKStepGetErrWeights (C function), 237
ARKStepGetEstLocalErrors (C function), 240
ARKStepGetJac (C function), 244
ARKStepGetJacNumSteps (C function), 245
ARKStepGetJacTime (C function), 244
ARKStepGetLastLinFlag (C function), 248
ARKStepGetLastMassFlag (C function), 252
ARKStepGetLastStep (C function), 235
ARKStepGetLinReturnFlagName (C function), 249
ARKStepGetLinWorkSpace (C function), 245
ARKStepGetMassWorkSpace (C function), 249
ARKStepGetNonlinearSystemData (C function), 617
ARKStepGetNonlinSolvStats (C function), 243
ARKStepGetNumAccSteps (C function), 238
ARKStepGetNumConstrFails (C function), 241
ARKStepGetNumErrTestFails (C function), 239
ARKStepGetNumExpSteps (C function), 238
ARKStepGetNumGEvals (C function), 244
ARKStepGetNumJacEvals (C function), 245
ARKStepGetNumJtimesEvals (C function), 247
ARKStepGetNumJTSetupEvals (C function), 247
ARKStepGetNumLinConvFails (C function), 247
ARKStepGetNumLinIters (C function), 246
ARKStepGetNumLinRhsEvals (C function), 248
ARKStepGetNumLinSolvSetups (C function), 242
ARKStepGetNumMassConvFails (C function), 252
ARKStepGetNumMassIters (C function), 251
ARKStepGetNumMassMult (C function), 250
ARKStepGetNumMassMultSetups (C function), 250
ARKStepGetNumMassPrecEvals (C function), 251
ARKStepGetNumMassPrecSolves (C function), 251
ARKStepGetNumMassSetups (C function), 249
ARKStepGetNumMassSolves (C function), 250
ARKStepGetNumMTSetups (C function), 252
ARKStepGetNumNonlinSolvConvFails (C function),

242
ARKStepGetNumNonlinSolvIters (C function), 242
ARKStepGetNumPrecEvals (C function), 246
ARKStepGetNumPrecSolves (C function), 246

ARKStepGetNumRelaxBoundFails (C function), 262
ARKStepGetNumRelaxFails (C function), 262
ARKStepGetNumRelaxFnEvals (C function), 261
ARKStepGetNumRelaxJacEvals (C function), 261
ARKStepGetNumRelaxSolveFails (C function), 262
ARKStepGetNumRelaxSolveIters (C function), 263
ARKStepGetNumRhsEvals (C function), 239
ARKStepGetNumStepAttempts (C function), 239
ARKStepGetNumSteps (C function), 234
ARKStepGetNumStepSolveFails (C function), 240
ARKStepGetResWeights (C function), 237
ARKStepGetReturnFlagName (C function), 238
ARKStepGetRootInfo (C function), 243
ARKStepGetStepStats (C function), 237
ARKStepGetTimestepperStats (C function), 241
ARKStepGetTolScaleFactor (C function), 236
ARKStepGetUserData (C function), 241
ARKStepGetWorkSpace (C function), 234
ARKStepPrintAllStats (C function), 238
ARKStepReInit (C function), 254
ARKStepReset (C function), 255
ARKStepResFtolerance (C function), 198
ARKStepResize (C function), 255
ARKStepResStolerance (C function), 198
ARKStepResVtolerance (C function), 198
ARKStepRootInit (C function), 201
ARKStepSetAdaptController (C function), 215
ARKStepSetAdaptivityAdjustment (C function), 217
ARKStepSetAdaptivityFn (C function), 216
ARKStepSetAdaptivityMethod (C function), 216
ARKStepSetCFLFraction (C function), 217
ARKStepSetConstraints (C function), 211
ARKStepSetDeduceImplicitRhs (C function), 225
ARKStepSetDefaults (C function), 203
ARKStepSetDeltaGammaMax (C function), 225
ARKStepSetDenseOrder (C function), 204
ARKStepSetDiagnostics (C function), 204
ARKStepSetEpsLin (C function), 231
ARKStepSetErrorBias (C function), 217
ARKStepSetExplicit (C function), 213
ARKStepSetFixedStep (C function), 204
ARKStepSetFixedStepBounds (C function), 218
ARKStepSetImEx (C function), 212
ARKStepSetImplicit (C function), 213
ARKStepSetInitStep (C function), 205
ARKStepSetInterpolantDegree (C function), 203
ARKStepSetInterpolantType (C function), 203
ARKStepSetInterpolateStopTime (C function), 207
ARKStepSetJacEvalFrequency (C function), 226
ARKStepSetJacFn (C function), 227
ARKStepSetJacTimes (C function), 228
ARKStepSetJacTimesRhsFn (C function), 229
ARKStepSetLinear (C function), 221

858 Index

User Documentation for ARKODE, v6.3.0

ARKStepSetLinearSolutionScaling (C function),
228

ARKStepSetLinearSolver (C function), 199
ARKStepSetLinSysFn (C function), 227
ARKStepSetLSetupFrequency (C function), 225
ARKStepSetLSNormFactor (C function), 232
ARKStepSetMassEpsLin (C function), 231
ARKStepSetMassFn (C function), 227
ARKStepSetMassLinearSolver (C function), 199
ARKStepSetMassLSNormFactor (C function), 232
ARKStepSetMassPreconditioner (C function), 230
ARKStepSetMassTimes (C function), 229
ARKStepSetMaxCFailGrowth (C function), 218
ARKStepSetMaxConvFails (C function), 224
ARKStepSetMaxEFailGrowth (C function), 218
ARKStepSetMaxErrTestFails (C function), 208
ARKStepSetMaxFirstGrowth (C function), 219
ARKStepSetMaxGrowth (C function), 219
ARKStepSetMaxHnilWarns (C function), 205
ARKStepSetMaxNonlinIters (C function), 223
ARKStepSetMaxNumConstrFails (C function), 211
ARKStepSetMaxNumSteps (C function), 206
ARKStepSetMaxStep (C function), 206
ARKStepSetMinReduction (C function), 219
ARKStepSetMinStep (C function), 206
ARKStepSetNlsRhsFn (C function), 223
ARKStepSetNoInactiveRootWarn (C function), 233
ARKStepSetNonlinConvCoef (C function), 223
ARKStepSetNonlinCRDown (C function), 224
ARKStepSetNonlinear (C function), 221
ARKStepSetNonlinearSolver (C function), 200
ARKStepSetNonlinRDiv (C function), 224
ARKStepSetOptimalParams (C function), 208
ARKStepSetOrder (C function), 212
ARKStepSetPreconditioner (C function), 230
ARKStepSetPredictorMethod (C function), 222
ARKStepSetRelaxEtaFail (C function), 258
ARKStepSetRelaxFn (C function), 257
ARKStepSetRelaxLowerBound (C function), 258
ARKStepSetRelaxMaxFails (C function), 259
ARKStepSetRelaxMaxIters (C function), 259
ARKStepSetRelaxResTol (C function), 260
ARKStepSetRelaxSolver (C function), 260
ARKStepSetRelaxTol (C function), 261
ARKStepSetRelaxUpperBound (C function), 259
ARKStepSetRootDirection (C function), 233
ARKStepSetSafetyFactor (C function), 220
ARKStepSetSmallNumEFails (C function), 220
ARKStepSetStabilityFn (C function), 220
ARKStepSetStagePredictFn (C function), 222
ARKStepSetStopTime (C function), 207
ARKStepSetTableName (C function), 215
ARKStepSetTableNum (C function), 214
ARKStepSetTables (C function), 213

ARKStepSetUserData (C function), 208
ARKStepSStolerances (C function), 197
ARKStepSVtolerances (C function), 197
ARKStepWFtolerances (C function), 197
ARKStepWriteButcher (C function), 253
ARKStepWriteParameters (C function), 253
ARKVecResizeFn (C type), 178

C
CMake options

adiak_DIR, 696
AMDGPU_TARGETS, 699
BLAS_LIBRARIES, 702
BLAS_LINKER_FLAGS, 702
BUILD_ARKODE, 693
BUILD_CVODE, 693
BUILD_CVODES, 693
BUILD_FORTRAN_MODULE_INTERFACE, 694
BUILD_IDA, 693
BUILD_IDAS, 693
BUILD_KINSOL, 693
BUILD_SHARED_LIBS, 692
BUILD_STATIC_LIBS, 692
CALIPER_DIR, 697
CMAKE_BUILD_TYPE, 689
CMAKE_C_COMPILER, 689
CMAKE_C_EXTENSIONS, 690
CMAKE_C_FLAGS, 689
CMAKE_C_FLAGS_DEBUG, 689
CMAKE_C_FLAGS_MINSIZEREL, 690
CMAKE_C_FLAGS_RELEASE, 689
CMAKE_C_FLAGS_RELWITHDEBINFO, 690
CMAKE_C_STANDARD, 690
CMAKE_CONFIGURATION_TYPES, 689
CMAKE_CUDA_ARCHITECTURES, 697
CMAKE_CXX_COMPILER, 690
CMAKE_CXX_EXTENSIONS, 691
CMAKE_CXX_FLAGS, 690
CMAKE_CXX_FLAGS_DEBUG, 690
CMAKE_CXX_FLAGS_MINSIZEREL, 690
CMAKE_CXX_FLAGS_RELEASE, 690
CMAKE_CXX_FLAGS_RELWITHDEBINFO, 690
CMAKE_CXX_STANDARD, 690
CMAKE_Fortran_COMPILER, 691
CMAKE_Fortran_FLAGS, 691
CMAKE_Fortran_FLAGS_DEBUG, 691
CMAKE_Fortran_FLAGS_MINSIZEREL, 691
CMAKE_Fortran_FLAGS_RELEASE, 691
CMAKE_Fortran_FLAGS_RELWITHDEBINFO, 691
CMAKE_INSTALL_LIBDIR, 692
CMAKE_INSTALL_PREFIX, 691
CUDA_TOOLKIT_ROOT_DIR, 697
ENABLE_ADIAK, 696
ENABLE_CALIPER, 696

Index 859

User Documentation for ARKODE, v6.3.0

ENABLE_CUDA, 697
ENABLE_GINKGO, 698
ENABLE_HIP, 699
ENABLE_HYPRE, 700
ENABLE_KLU, 700
ENABLE_KOKKOS, 701
ENABLE_KOKKOS_KERNELS, 701
ENABLE_LAPACK, 702
ENABLE_MAGMA, 704
ENABLE_MPI, 704
ENABLE_ONEMKL, 706
ENABLE_OPENMP, 706
ENABLE_OPENMP_DEVICE, 707
ENABLE_PETSC, 707
ENABLE_PTHREAD, 708
ENABLE_RAJA, 709
ENABLE_SUPERLUDIST, 709
ENABLE_SUPERLUMT, 711
ENABLE_SYCL, 712
ENABLE_TRILINOS, 713
ENABLE_XBRAID, 713
EXAMPLES_ENABLE_C, 694
EXAMPLES_ENABLE_CUDA, 694
EXAMPLES_ENABLE_CXX, 694
EXAMPLES_ENABLE_F2003, 694
EXAMPLES_INSTALL, 694
EXAMPLES_INSTALL_PATH, 694
Ginkgo_DIR, 698
HYPRE_DIR, 700
KLU_INCLUDE_DIR, 700
KLU_LIBRARY_DIR, 700
KLU_ROOT, 700
Kokkos_DIR, 701
KokkosKernels_DIR, 702
LAPACK_LIBRARIES, 702
LAPACK_LINKER_FLAGS, 703
MAGMA_DIR, 704
MPI_C_COMPILER, 704
MPI_CXX_COMPILER, 704
MPI_Fortran_COMPILER, 705
MPIEXEC_EXECUTABLE, 705
MPIEXEC_POSTFLAGS, 705
MPIEXEC_PREFLAGS, 705
ONEMKL_DIR, 706
PETSC_DIR, 707
PETSC_INCLUDES, 708
PETSC_LIBRARIES, 707
RAJA_DIR, 709
SUNDIALS_BUILD_WITH_MONITORING, 695
SUNDIALS_BUILD_WITH_PROFILING, 696
SUNDIALS_ENABLE_ERROR_CHECKS, 695
SUNDIALS_ENABLE_EXTERNAL_ADDONS, 714
SUNDIALS_GINKGO_BACKENDS, 698
SUNDIALS_INDEX_SIZE, 692

SUNDIALS_INDEX_TYPE, 692
SUNDIALS_INSTALL_CMAKEDIR, 692
SUNDIALS_LAPACK_CASE, 703
SUNDIALS_LAPACK_UNDERSCORES, 703
SUNDIALS_LOGGING_LEVEL, 695
SUNDIALS_MAGMA_BACKENDS, 704
SUNDIALS_MATH_LIBRARY, 693
SUNDIALS_ONEMKL_USE_GETRF_LOOP, 706
SUNDIALS_ONEMKL_USE_GETRS_LOOP, 706
SUNDIALS_PRECISION, 693
SUNDIALS_RAJA_BACKENDS, 709
SUNDIALS_SYCL_2020_UNSUPPORTED, 712
SUPERLUDIST_DIR, 709
SUPERLUDIST_INCLUDE_DIR, 710
SUPERLUDIST_INCLUDE_DIRS, 710
SUPERLUDIST_LIBRARIES, 710
SUPERLUDIST_LIBRARY_DIR, 710
SUPERLUDIST_OpenMP, 709
SUPERLUMT_INCLUDE_DIR, 711
SUPERLUMT_LIBRARIES, 711
SUPERLUMT_LIBRARY_DIR, 711
SUPERLUMT_THREAD_TYPE, 711
Trilinos_DIR, 713
USE_XSDK_DEFAULTS, 714
XBRAID_DIR, 713
XBRAID_INCLUDES, 713
XBRAID_LIBRARIES, 713

CopyFromDevice (C++ function), 483, 484
CopyToDevice (C++ function), 483, 484

D
DenseLinearSolver (C++ class), 602
DenseLinearSolver::~DenseLinearSolver (C++

function), 602
DenseLinearSolver::Convert (C++ function), 602
DenseLinearSolver::DenseLinearSolver (C++

function), 602
DenseLinearSolver::operator SUNLinearSolver

(C++ function), 602
DenseLinearSolver::operator= (C++ function), 602
DenseMatrix (C++ class), 538
DenseMatrix::~DenseMatrix (C++ function), 540
DenseMatrix::BlockCols (C++ function), 540
DenseMatrix::BlockRows (C++ function), 540
DenseMatrix::Blocks (C++ function), 540
DenseMatrix::Cols (C++ function), 540
DenseMatrix::Convert (C++ function), 540
DenseMatrix::DenseMatrix (C++ function), 539
DenseMatrix::exec_space (C++ type), 538
DenseMatrix::ExecSpace (C++ function), 540
DenseMatrix::member_type (C++ type), 538
DenseMatrix::memory_space (C++ type), 538
DenseMatrix::operator SUNMatrix (C++ function),

540

860 Index

User Documentation for ARKODE, v6.3.0

DenseMatrix::operator= (C++ function), 539, 540
DenseMatrix::range_policy (C++ type), 538
DenseMatrix::Rows (C++ function), 540
DenseMatrix::size_type (C++ type), 538
DenseMatrix::team_policy (C++ type), 538
DenseMatrix::View (C++ function), 540
DenseMatrix::view_type (C++ type), 538
diagonally-implicit Runge--Kutta methods, 15

E
ERKSTEP_DEFAULT_1, 738
ERKSTEP_DEFAULT_2, 738
ERKSTEP_DEFAULT_3, 738
ERKSTEP_DEFAULT_4, 738
ERKSTEP_DEFAULT_5, 738
ERKSTEP_DEFAULT_6, 738
ERKSTEP_DEFAULT_7, 738
ERKSTEP_DEFAULT_8, 738
ERKSTEP_DEFAULT_9, 738
ERKStepClearStopTime (C function), 287
ERKStepCreate (C function), 279
ERKStepCreateAdjointStepper (C function), 411
ERKStepEvolve (C function), 281
ERKStepFree (C function), 279
ERKStepGetActualInitStep (C function), 298
ERKStepGetCurrentButcherTable (C function), 302
ERKStepGetCurrentStep (C function), 299
ERKStepGetCurrentTime (C function), 299
ERKStepGetDky (C function), 297
ERKStepGetErrWeights (C function), 300
ERKStepGetEstLocalErrors (C function), 303
ERKStepGetLastStep (C function), 299
ERKStepGetNumAccSteps (C function), 301
ERKStepGetNumConstrFails (C function), 304
ERKStepGetNumErrTestFails (C function), 302
ERKStepGetNumExpSteps (C function), 301
ERKStepGetNumGEvals (C function), 305
ERKStepGetNumRelaxBoundFails (C function), 313
ERKStepGetNumRelaxFails (C function), 313
ERKStepGetNumRelaxFnEvals (C function), 312
ERKStepGetNumRelaxJacEvals (C function), 312
ERKStepGetNumRelaxSolveFails (C function), 313
ERKStepGetNumRelaxSolveIters (C function), 314
ERKStepGetNumRhsEvals (C function), 302
ERKStepGetNumStepAttempts (C function), 302
ERKStepGetNumSteps (C function), 298
ERKStepGetReturnFlagName (C function), 301
ERKStepGetRootInfo (C function), 305
ERKStepGetStepStats (C function), 300
ERKStepGetTimestepperStats (C function), 303
ERKStepGetTolScaleFactor (C function), 300
ERKStepGetUserData (C function), 304
ERKStepGetWorkSpace (C function), 298
ERKStepPrintAllStats (C function), 300

ERKStepReInit (C function), 306
ERKStepReset (C function), 307
ERKStepResize (C function), 308
ERKStepRootInit (C function), 281
ERKStepSetAdaptController (C function), 291
ERKStepSetAdaptivityAdjustment (C function), 292
ERKStepSetAdaptivityFn (C function), 291
ERKStepSetAdaptivityMethod (C function), 292
ERKStepSetCFLFraction (C function), 293
ERKStepSetConstraints (C function), 288
ERKStepSetDefaults (C function), 283
ERKStepSetDenseOrder (C function), 284
ERKStepSetDiagnostics (C function), 284
ERKStepSetErrorBias (C function), 293
ERKStepSetFixedStep (C function), 284
ERKStepSetFixedStepBounds (C function), 293
ERKStepSetInitStep (C function), 285
ERKStepSetInterpolantDegree (C function), 283
ERKStepSetInterpolantType (C function), 283
ERKStepSetInterpolateStopTime (C function), 287
ERKStepSetMaxEFailGrowth (C function), 294
ERKStepSetMaxErrTestFails (C function), 288
ERKStepSetMaxFirstGrowth (C function), 294
ERKStepSetMaxGrowth (C function), 295
ERKStepSetMaxHnilWarns (C function), 285
ERKStepSetMaxNumConstrFails (C function), 289
ERKStepSetMaxNumSteps (C function), 285
ERKStepSetMaxStep (C function), 286
ERKStepSetMinReduction (C function), 295
ERKStepSetMinStep (C function), 286
ERKStepSetNoInactiveRootWarn (C function), 297
ERKStepSetOrder (C function), 289
ERKStepSetRelaxEtaFail (C function), 309
ERKStepSetRelaxFn (C function), 308
ERKStepSetRelaxLowerBound (C function), 309
ERKStepSetRelaxMaxFails (C function), 310
ERKStepSetRelaxMaxIters (C function), 310
ERKStepSetRelaxResTol (C function), 311
ERKStepSetRelaxSolver (C function), 311
ERKStepSetRelaxTol (C function), 312
ERKStepSetRelaxUpperBound (C function), 310
ERKStepSetRootDirection (C function), 297
ERKStepSetSafetyFactor (C function), 295
ERKStepSetSmallNumEFails (C function), 296
ERKStepSetStabilityFn (C function), 296
ERKStepSetStopTime (C function), 286
ERKStepSetTable (C function), 290
ERKStepSetTableName (C function), 291
ERKStepSetTableNum (C function), 290
ERKStepSetUserData (C function), 287
ERKStepSStolerances (C function), 280
ERKStepSVtolerances (C function), 280
ERKStepWFtolerances (C function), 280
ERKStepWriteButcher (C function), 306

Index 861

User Documentation for ARKODE, v6.3.0

ERKStepWriteParameters (C function), 305
error weight vector, 22
explicit Runge--Kutta methods, 15

F
fixed point iteration, 31
ForcingStepCreate (C function), 315
ForcingStepGetNumEvolves (C function), 316
ForcingStepReInit (C function), 316

G
GetDenseMat (C++ function), 540
GetVec (C++ function), 483

I
inexact Newton iteration, 32

L
linear solver setup, 32
LSRKStepCreateSSP (C function), 318
LSRKStepCreateSTS (C function), 318
LSRKStepGetMaxNumStages (C function), 322
LSRKStepGetNumDomEigUpdates (C function), 322
LSRKStepReInitSSP (C function), 323
LSRKStepReInitSTS (C function), 323
LSRKStepSetDomEigFn (C function), 319
LSRKStepSetDomEigFrequency (C function), 320
LSRKStepSetDomEigSafetyFactor (C function), 321
LSRKStepSetMaxNumStages (C function), 320
LSRKStepSetNumSSPStages (C function), 321
LSRKStepSetSSPMethod (C function), 318
LSRKStepSetSSPMethodByName (C function), 319
LSRKStepSetSTSMethod (C function), 318
LSRKStepSetSTSMethodByName (C function), 319

M
Matrix (C++ class), 536
Matrix::~Matrix (C++ function), 536
Matrix::Convert (C++ function), 537
Matrix::GkoExec (C++ function), 537
Matrix::GkoMtx (C++ function), 537
Matrix::GkoSize (C++ function), 537
Matrix::Matrix (C++ function), 536
Matrix::operator SUNMatrix (C++ function), 537
Matrix::operator= (C++ function), 536
modified Newton iteration, 31
MRIStep user main program, 325
MRISTEP_DEFAULT_EXPL_1, 739
MRISTEP_DEFAULT_EXPL_2, 739
MRISTEP_DEFAULT_EXPL_2_AD, 739
MRISTEP_DEFAULT_EXPL_3, 739
MRISTEP_DEFAULT_EXPL_3_AD, 739
MRISTEP_DEFAULT_EXPL_4, 739

MRISTEP_DEFAULT_EXPL_4_AD, 739
MRISTEP_DEFAULT_EXPL_5_AD, 739
MRISTEP_DEFAULT_IMEX_SD_1, 739
MRISTEP_DEFAULT_IMEX_SD_2, 739
MRISTEP_DEFAULT_IMEX_SD_2_AD, 740
MRISTEP_DEFAULT_IMEX_SD_3, 739
MRISTEP_DEFAULT_IMEX_SD_3_AD, 740
MRISTEP_DEFAULT_IMEX_SD_4, 740
MRISTEP_DEFAULT_IMEX_SD_4_AD, 740
MRISTEP_DEFAULT_IMPL_SD_1, 739
MRISTEP_DEFAULT_IMPL_SD_2, 739
MRISTEP_DEFAULT_IMPL_SD_3, 739
MRISTEP_DEFAULT_IMPL_SD_4, 739
MRISTEP_EXPLICIT, 739
MRISTEP_IMEX, 739
MRISTEP_IMPLICIT, 739
MRISTEP_METHOD_TYPE (C enum), 367
MRISTEP_METHOD_TYPE.MRISTEP_EXPLICIT (C enu-

merator), 367
MRISTEP_METHOD_TYPE.MRISTEP_IMEX (C enumera-

tor), 367
MRISTEP_METHOD_TYPE.MRISTEP_IMPLICIT (C enu-

merator), 367
MRISTEP_METHOD_TYPE.MRISTEP_MERK (C enumera-

tor), 367
MRISTEP_METHOD_TYPE.MRISTEP_SR (C enumerator),

367
MRIStepClearStopTime (C function), 336
MRIStepComputeState (C function), 619
MRIStepCoupling (C type), 367
MRIStepCoupling_Alloc (C function), 369
MRIStepCoupling_Copy (C function), 371
MRIStepCoupling_Create (C function), 369
MRIStepCoupling_Free (C function), 371
MRIStepCoupling_LoadTable (C function), 368
MRIStepCoupling_LoadTableByName (C function),

368
MRIStepCoupling_MIStoMRI (C function), 370
MRIStepCoupling_Space (C function), 371
MRIStepCoupling_Write (C function), 371
MRIStepCouplingMem (C struct), 367
MRIStepCouplingMem.c (C member), 367
MRIStepCouplingMem.G (C member), 368
MRIStepCouplingMem.group (C member), 368
MRIStepCouplingMem.ngroup (C member), 368
MRIStepCouplingMem.nmat (C member), 367
MRIStepCouplingMem.p (C member), 367
MRIStepCouplingMem.q (C member), 367
MRIStepCouplingMem.stages (C member), 367
MRIStepCouplingMem.type (C member), 367
MRIStepCouplingMem.W (C member), 367
MRIStepCreate (C function), 327
MRIStepEvolve (C function), 331
MRIStepFree (C function), 328

862 Index

User Documentation for ARKODE, v6.3.0

MRIStepGetCurrentCoupling (C function), 354
MRIStepGetCurrentGamma (C function), 352
MRIStepGetCurrentState (C function), 352
MRIStepGetCurrentTime (C function), 351
MRIStepGetDky (C function), 350
MRIStepGetErrWeights (C function), 352
MRIStepGetJac (C function), 357
MRIStepGetJacNumSteps (C function), 358
MRIStepGetJacTime (C function), 358
MRIStepGetLastInnerStepFlag (C function), 354
MRIStepGetLastLinFlag (C function), 362
MRIStepGetLastStep (C function), 351
MRIStepGetLinReturnFlagName (C function), 363
MRIStepGetLinWorkSpace (C function), 358
MRIStepGetNonlinearSystemData (C function), 618
MRIStepGetNonlinSolvStats (C function), 356
MRIStepGetNumGEvals (C function), 357
MRIStepGetNumInnerStepperFails (C function), 350
MRIStepGetNumJacEvals (C function), 359
MRIStepGetNumJtimesEvals (C function), 361
MRIStepGetNumJTSetupEvals (C function), 361
MRIStepGetNumLinConvFails (C function), 360
MRIStepGetNumLinIters (C function), 360
MRIStepGetNumLinRhsEvals (C function), 361
MRIStepGetNumLinSolvSetups (C function), 355
MRIStepGetNumNonlinSolvConvFails (C function),

356
MRIStepGetNumNonlinSolvIters (C function), 355
MRIStepGetNumPrecEvals (C function), 359
MRIStepGetNumPrecSolves (C function), 359
MRIStepGetNumRhsEvals (C function), 354
MRIStepGetNumSteps (C function), 351
MRIStepGetNumStepSolveFails (C function), 354
MRIStepGetReturnFlagName (C function), 353
MRIStepGetRootInfo (C function), 357
MRIStepGetTolScaleFactor (C function), 352
MRIStepGetUserData (C function), 355
MRIStepGetWorkSpace (C function), 351
MRIStepInnerEvolveFn (C type), 380
MRIStepInnerFullRhsFn (C type), 381
MRIStepInnerGetAccumulatedError (C type), 381
MRIStepInnerResetAccumulatedError (C type), 382
MRIStepInnerResetFn (C type), 381
MRIStepInnerSetRTol (C type), 382
MRIStepInnerStepper (C type), 374
MRIStepInnerStepper_AddForcing (C function), 379
MRIStepInnerStepper_Create (C function), 374
MRIStepInnerStepper_CreateFromSUNStepper (C

function), 375
MRIStepInnerStepper_Free (C function), 375
MRIStepInnerStepper_GetContent (C function), 376
MRIStepInnerStepper_GetForcingData (C func-

tion), 379

MRIStepInnerStepper_SetAccumulatedError-
GetFn (C function), 378

MRIStepInnerStepper_SetAccumulatedErrorRe-
setFn (C function), 378

MRIStepInnerStepper_SetContent (C function), 376
MRIStepInnerStepper_SetEvolveFn (C function),

377
MRIStepInnerStepper_SetFullRhsFn (C function),

377
MRIStepInnerStepper_SetResetFn (C function), 377
MRIStepInnerStepper_SetRTolFn (C function), 378
MRIStepPostInnerFn (C type), 180
MRIStepPreInnerFn (C type), 179
MRIStepPrintAllStats (C function), 353
MRIStepReInit (C function), 364
MRIStepReset (C function), 365
MRIStepResize (C function), 366
MRIStepRootInit (C function), 331
MRIStepSetCoupling (C function), 338
MRIStepSetDeduceImplicitRhs (C function), 343
MRIStepSetDefaults (C function), 333
MRIStepSetDeltaGammaMax (C function), 343
MRIStepSetDenseOrder (C function), 334
MRIStepSetDiagnostics (C function), 334
MRIStepSetEpsLin (C function), 348
MRIStepSetFixedStep (C function), 334
MRIStepSetInterpolantDegree (C function), 333
MRIStepSetInterpolantType (C function), 333
MRIStepSetInterpolateStopTime (C function), 336
MRIStepSetJacEvalFrequency (C function), 344
MRIStepSetJacFn (C function), 345
MRIStepSetJacTimes (C function), 346
MRIStepSetJacTimesRhsFn (C function), 347
MRIStepSetLinear (C function), 339
MRIStepSetLinearSolutionScaling (C function),

345
MRIStepSetLinearSolver (C function), 329
MRIStepSetLinSysFn (C function), 345
MRIStepSetLSetupFrequency (C function), 343
MRIStepSetLSNormFactor (C function), 348
MRIStepSetMaxHnilWarns (C function), 335
MRIStepSetMaxNonlinIters (C function), 340
MRIStepSetMaxNumSteps (C function), 335
MRIStepSetNlsRhsFn (C function), 342
MRIStepSetNoInactiveRootWarn (C function), 349
MRIStepSetNonlinConvCoef (C function), 341
MRIStepSetNonlinCRDown (C function), 341
MRIStepSetNonlinear (C function), 339
MRIStepSetNonlinearSolver (C function), 330
MRIStepSetNonlinRDiv (C function), 341
MRIStepSetOrder (C function), 338
MRIStepSetPostInnerFn (C function), 337
MRIStepSetPreconditioner (C function), 347
MRIStepSetPredictorMethod (C function), 340

Index 863

User Documentation for ARKODE, v6.3.0

MRIStepSetPreInnerFn (C function), 337
MRIStepSetRootDirection (C function), 349
MRIStepSetStagePredictFn (C function), 342
MRIStepSetStopTime (C function), 336
MRIStepSetUserData (C function), 337
MRIStepSStolerances (C function), 328
MRIStepSVtolerances (C function), 328
MRIStepWFtolerances (C function), 329
MRIStepWriteCoupling (C function), 363
MRIStepWriteParameters (C function), 363

N
N_VAbs (C function), 434
N_VAddConst (C function), 434
N_VBufPack (C function), 443
N_VBufSize (C function), 443
N_VBufUnpack (C function), 443
N_VClone (C function), 431
N_VCloneEmpty (C function), 431
N_VCloneVectorArray (C function), 427
N_VCloneVectorArrayEmpty (C function), 428
N_VCompare (C function), 436
N_VConst (C function), 433
N_VConstrMask (C function), 436
N_VConstrMaskLocal (C function), 441
N_VConstVectorArray (C function), 438
N_VCopyFromDevice_Cuda (C function), 465
N_VCopyFromDevice_Hip (C function), 470
N_VCopyFromDevice_OpenMPDEV (C function), 486
N_VCopyFromDevice_Raja (C function), 480
N_VCopyFromDevice_Sycl (C++ function), 475
N_VCopyOps (C function), 430
N_VCopyToDevice_Cuda (C function), 465
N_VCopyToDevice_Hip (C function), 470
N_VCopyToDevice_OpenMPDEV (C function), 486
N_VCopyToDevice_Raja (C function), 480
N_VCopyToDevice_Sycl (C++ function), 475
N_VDestroy (C function), 432
N_VDestroyVectorArray (C function), 428
N_VDiv (C function), 434
N_VDotProd (C function), 434
N_VDotProdLocal (C function), 440
N_VDotProdMulti (C function), 437
N_VDotProdMultiAllReduce (C function), 442
N_VDotProdMultiLocal (C function), 442
N_Vector (C type), 423
N_Vector_ID (C enum), 430
N_Vector_Ops (C type), 423
N_VEnableConstVectorArray_Cuda (C function), 466
N_VEnableConstVectorArray_Hip (C function), 471
N_VEnableConstVectorArray_ManyVector (C func-

tion), 491
N_VEnableConstVectorArray_MPIManyVector (C

function), 494

N_VEnableConstVectorArray_OpenMP (C function),
454

N_VEnableConstVectorArray_OpenMPDEV (C func-
tion), 486

N_VEnableConstVectorArray_Parallel (C func-
tion), 451

N_VEnableConstVectorArray_ParHyp (C function),
460

N_VEnableConstVectorArray_Petsc (C function),
462

N_VEnableConstVectorArray_Pthreads (C func-
tion), 458

N_VEnableConstVectorArray_Raja (C function), 480
N_VEnableConstVectorArray_Serial (C function),

447
N_VEnableConstVectorArray_Sycl (C++ function),

476
N_VEnableDotProdMulti_Cuda (C function), 465
N_VEnableDotProdMulti_Hip (C function), 470
N_VEnableDotProdMulti_ManyVector (C function),

490
N_VEnableDotProdMulti_MPIManyVector (C func-

tion), 494
N_VEnableDotProdMulti_OpenMP (C function), 454
N_VEnableDotProdMulti_OpenMPDEV (C function),

486
N_VEnableDotProdMulti_Parallel (C function), 450
N_VEnableDotProdMulti_ParHyp (C function), 460
N_VEnableDotProdMulti_Petsc (C function), 462
N_VEnableDotProdMulti_Pthreads (C function), 457
N_VEnableDotProdMulti_Serial (C function), 447
N_VEnableFusedOps_Cuda (C function), 465
N_VEnableFusedOps_Hip (C function), 470
N_VEnableFusedOps_ManyVector (C function), 490
N_VEnableFusedOps_MPIManyVector (C function),

494
N_VEnableFusedOps_OpenMP (C function), 454
N_VEnableFusedOps_OpenMPDEV (C function), 486
N_VEnableFusedOps_Parallel (C function), 450
N_VEnableFusedOps_ParHyp (C function), 460
N_VEnableFusedOps_Petsc (C function), 462
N_VEnableFusedOps_Pthreads (C function), 457
N_VEnableFusedOps_Raja (C function), 480
N_VEnableFusedOps_Serial (C function), 447
N_VEnableFusedOps_Sycl (C++ function), 475
N_VEnableLinearCombination_Cuda (C function),

465
N_VEnableLinearCombination_Hip (C function), 470
N_VEnableLinearCombination_ManyVector (C func-

tion), 490
N_VEnableLinearCombination_MPIManyVector (C

function), 494
N_VEnableLinearCombination_OpenMP (C function),

454

864 Index

User Documentation for ARKODE, v6.3.0

N_VEnableLinearCombination_OpenMPDEV (C func-
tion), 486

N_VEnableLinearCombination_Parallel (C func-
tion), 450

N_VEnableLinearCombination_ParHyp (C function),
460

N_VEnableLinearCombination_Petsc (C function),
462

N_VEnableLinearCombination_Pthreads (C func-
tion), 457

N_VEnableLinearCombination_Raja (C function),
480

N_VEnableLinearCombination_Serial (C function),
447

N_VEnableLinearCombination_Sycl (C++ function),
475

N_VEnableLinearCombinationVectorArray_Cuda
(C function), 466

N_VEnableLinearCombinationVectorArray_Hip (C
function), 471

N_VEnableLinearCombinationVectorArray_-
OpenMP (C function), 454

N_VEnableLinearCombinationVectorArray_Open-
MPDEV (C function), 487

N_VEnableLinearCombinationVectorArray_Par-
allel (C function), 451

N_VEnableLinearCombinationVectorArray_-
ParHyp (C function), 460

N_VEnableLinearCombinationVectorArray_Petsc
(C function), 462

N_VEnableLinearCombinationVectorArray_-
Pthreads (C function), 458

N_VEnableLinearCombinationVectorArray_Raja
(C function), 480

N_VEnableLinearCombinationVectorArray_Se-
rial (C function), 447

N_VEnableLinearCombinationVectorArray_Sycl
(C++ function), 476

N_VEnableLinearSumVectorArray_Cuda (C func-
tion), 465

N_VEnableLinearSumVectorArray_Hip (C function),
470

N_VEnableLinearSumVectorArray_ManyVector (C
function), 490

N_VEnableLinearSumVectorArray_MPIManyVector
(C function), 494

N_VEnableLinearSumVectorArray_OpenMP (C func-
tion), 454

N_VEnableLinearSumVectorArray_OpenMPDEV (C
function), 486

N_VEnableLinearSumVectorArray_Parallel (C
function), 450

N_VEnableLinearSumVectorArray_ParHyp (C func-
tion), 460

N_VEnableLinearSumVectorArray_Petsc (C func-
tion), 462

N_VEnableLinearSumVectorArray_Pthreads (C
function), 458

N_VEnableLinearSumVectorArray_Raja (C func-
tion), 480

N_VEnableLinearSumVectorArray_Serial (C func-
tion), 447

N_VEnableLinearSumVectorArray_Sycl (C++ func-
tion), 476

N_VEnableScaleAddMulti_Cuda (C function), 465
N_VEnableScaleAddMulti_Hip (C function), 470
N_VEnableScaleAddMulti_ManyVector (C function),

490
N_VEnableScaleAddMulti_MPIManyVector (C func-

tion), 494
N_VEnableScaleAddMulti_OpenMP (C function), 454
N_VEnableScaleAddMulti_OpenMPDEV (C function),

486
N_VEnableScaleAddMulti_Parallel (C function),

450
N_VEnableScaleAddMulti_ParHyp (C function), 460
N_VEnableScaleAddMulti_Petsc (C function), 462
N_VEnableScaleAddMulti_Pthreads (C function),

457
N_VEnableScaleAddMulti_Raja (C function), 480
N_VEnableScaleAddMulti_Serial (C function), 447
N_VEnableScaleAddMulti_Sycl (C++ function), 476
N_VEnableScaleAddMultiVectorArray_Cuda (C

function), 466
N_VEnableScaleAddMultiVectorArray_Hip (C func-

tion), 471
N_VEnableScaleAddMultiVectorArray_OpenMP (C

function), 454
N_VEnableScaleAddMultiVectorArray_OpenMPDEV

(C function), 486
N_VEnableScaleAddMultiVectorArray_Parallel

(C function), 451
N_VEnableScaleAddMultiVectorArray_ParHyp (C

function), 460
N_VEnableScaleAddMultiVectorArray_Petsc (C

function), 462
N_VEnableScaleAddMultiVectorArray_Pthreads

(C function), 458
N_VEnableScaleAddMultiVectorArray_Raja (C

function), 480
N_VEnableScaleAddMultiVectorArray_Serial (C

function), 447
N_VEnableScaleAddMultiVectorArray_Sycl (C++

function), 476
N_VEnableScaleVectorArray_Cuda (C function), 466
N_VEnableScaleVectorArray_Hip (C function), 470
N_VEnableScaleVectorArray_ManyVector (C func-

tion), 490

Index 865

User Documentation for ARKODE, v6.3.0

N_VEnableScaleVectorArray_MPIManyVector (C
function), 494

N_VEnableScaleVectorArray_OpenMP (C function),
454

N_VEnableScaleVectorArray_OpenMPDEV (C func-
tion), 486

N_VEnableScaleVectorArray_Parallel (C func-
tion), 450

N_VEnableScaleVectorArray_ParHyp (C function),
460

N_VEnableScaleVectorArray_Petsc (C function),
462

N_VEnableScaleVectorArray_Pthreads (C func-
tion), 458

N_VEnableScaleVectorArray_Raja (C function), 480
N_VEnableScaleVectorArray_Serial (C function),

447
N_VEnableScaleVectorArray_Sycl (C++ function),

476
N_VEnableWrmsNormMaskVectorArray_Cuda (C func-

tion), 466
N_VEnableWrmsNormMaskVectorArray_Hip (C func-

tion), 471
N_VEnableWrmsNormMaskVectorArray_ManyVector

(C function), 491
N_VEnableWrmsNormMaskVectorArray_MPI-

ManyVector (C function), 494
N_VEnableWrmsNormMaskVectorArray_OpenMP (C

function), 454
N_VEnableWrmsNormMaskVectorArray_OpenMPDEV

(C function), 486
N_VEnableWrmsNormMaskVectorArray_Parallel (C

function), 451
N_VEnableWrmsNormMaskVectorArray_ParHyp (C

function), 460
N_VEnableWrmsNormMaskVectorArray_Petsc (C

function), 462
N_VEnableWrmsNormMaskVectorArray_Pthreads (C

function), 458
N_VEnableWrmsNormMaskVectorArray_Serial (C

function), 447
N_VEnableWrmsNormVectorArray_Cuda (C function),

466
N_VEnableWrmsNormVectorArray_Hip (C function),

471
N_VEnableWrmsNormVectorArray_ManyVector (C

function), 491
N_VEnableWrmsNormVectorArray_MPIManyVector

(C function), 494
N_VEnableWrmsNormVectorArray_OpenMP (C func-

tion), 454
N_VEnableWrmsNormVectorArray_OpenMPDEV (C

function), 486
N_VEnableWrmsNormVectorArray_Parallel (C func-

tion), 451
N_VEnableWrmsNormVectorArray_ParHyp (C func-

tion), 460
N_VEnableWrmsNormVectorArray_Petsc (C func-

tion), 462
N_VEnableWrmsNormVectorArray_Pthreads (C func-

tion), 458
N_VEnableWrmsNormVectorArray_Serial (C func-

tion), 447
N_VFreeEmpty (C function), 429
N_VGetArrayPointer (C function), 432
N_VGetArrayPointer_MPIPlusX (C function), 496
N_VGetCommunicator (C function), 433
N_VGetDeviceArrayPointer (C function), 432
N_VGetDeviceArrayPointer_Cuda (C function), 464
N_VGetDeviceArrayPointer_Hip (C function), 469
N_VGetDeviceArrayPointer_OpenMPDEV (C func-

tion), 485
N_VGetDeviceArrayPointer_Raja (C function), 479
N_VGetDeviceArrayPointer_Sycl (C++ function),

474
N_VGetHostArrayPointer_Cuda (C function), 464
N_VGetHostArrayPointer_Hip (C function), 469
N_VGetHostArrayPointer_OpenMPDEV (C function),

485
N_VGetHostArrayPointer_Raja (C function), 479
N_VGetHostArrayPointer_Sycl (C++ function), 474
N_VGetLength (C function), 433
N_VGetLocalLength (C function), 433
N_VGetLocalLength_MPIPlusX (C function), 496
N_VGetLocalLength_Parallel (C function), 450
N_VGetLocalVector_MPIPlusX (C function), 496
N_VGetNumSubvectors_ManyVector (C function), 490
N_VGetNumSubvectors_MPIManyVector (C function),

493
N_VGetSubvector_ManyVector (C function), 489
N_VGetSubvector_MPIManyVector (C function), 493
N_VGetSubvectorArrayPointer_ManyVector (C

function), 490
N_VGetSubvectorArrayPointer_MPIManyVector (C

function), 493
N_VGetSubvectorLocalLength_ManyVector (C func-

tion), 490
N_VGetSubvectorLocalLength_MPIManyVector (C

function), 493
N_VGetVecAtIndexVectorArray (C function), 428
N_VGetVector_ParHyp (C function), 459
N_VGetVector_Petsc (C function), 462
N_VGetVector_Trilinos (C++ function), 488
N_VGetVectorID (C function), 431
N_VInv (C function), 434
N_VInvTest (C function), 436
N_VInvTestLocal (C function), 441
N_VIsManagedMemory_Cuda (C function), 464

866 Index

User Documentation for ARKODE, v6.3.0

N_VIsManagedMemory_Hip (C function), 469
N_VIsManagedMemory_Raja (C function), 479
N_VIsManagedMemory_Sycl (C++ function), 475
N_VL1Norm (C function), 436
N_VL1NormLocal (C function), 440
N_VLinearCombination (C function), 437
N_VLinearCombinationVectorArray (C function),

439
N_VLinearSum (C function), 433
N_VLinearSumVectorArray (C function), 438
N_VMake_Cuda (C function), 464
N_VMake_Hip (C function), 469
N_VMake_MPIManyVector (C function), 493
N_VMake_MPIPlusX (C function), 495
N_VMake_OpenMP (C function), 453
N_VMake_OpenMPDEV (C function), 485
N_VMake_Parallel (C function), 450
N_VMake_ParHyp (C function), 459
N_VMake_Petsc (C function), 461
N_VMake_Pthreads (C function), 457
N_VMake_Raja (C function), 479
N_VMake_Serial (C function), 446
N_VMake_Sycl (C++ function), 474
N_VMake_Trilinos (C++ function), 488
N_VMakeManaged_Cuda (C function), 464
N_VMakeManaged_Hip (C function), 469
N_VMakeManaged_Raja (C function), 479
N_VMakeManaged_Sycl (C++ function), 474
N_VMakeWithManagedAllocator_Cuda (C function),

464
N_VMaxNorm (C function), 435
N_VMaxNormLocal (C function), 440
N_VMin (C function), 435
N_VMinLocal (C function), 440
N_VMinQuotient (C function), 437
N_VMinQuotientLocal (C function), 442
N_VNew_Cuda (C function), 464
N_VNew_Hip (C function), 469
N_VNew_ManyVector (C function), 489
N_VNew_MPIManyVector (C function), 492
N_VNew_OpenMP (C function), 453
N_VNew_OpenMPDEV (C function), 485
N_VNew_Parallel (C function), 450
N_VNew_Pthreads (C function), 457
N_VNew_Raja (C function), 479
N_VNew_Serial (C function), 446
N_VNew_Sycl (C++ function), 474
N_VNewEmpty (C function), 429
N_VNewEmpty_Cuda (C function), 464
N_VNewEmpty_Hip (C function), 469
N_VNewEmpty_OpenMP (C function), 453
N_VNewEmpty_OpenMPDEV (C function), 485
N_VNewEmpty_Parallel (C function), 450
N_VNewEmpty_ParHyp (C function), 459

N_VNewEmpty_Petsc (C function), 461
N_VNewEmpty_Pthreads (C function), 457
N_VNewEmpty_Raja (C function), 479
N_VNewEmpty_Serial (C function), 446
N_VNewEmpty_Sycl (C++ function), 474
N_VNewManaged_Cuda (C function), 464
N_VNewManaged_Hip (C function), 469
N_VNewManaged_Raja (C function), 479
N_VNewManaged_Sycl (C++ function), 474
N_VNewVectorArray (C function), 428
N_VNewWithMemHelp_Cuda (C function), 464
N_VNewWithMemHelp_Hip (C function), 469
N_VNewWithMemHelp_Raja (C function), 479
N_VNewWithMemHelp_Sycl (C++ function), 474
N_VPrint (C function), 443
N_VPrint_Cuda (C function), 465
N_VPrint_Hip (C function), 470
N_VPrint_OpenMP (C function), 453
N_VPrint_OpenMPDEV (C function), 485
N_VPrint_Parallel (C function), 450
N_VPrint_ParHyp (C function), 459
N_VPrint_Petsc (C function), 462
N_VPrint_Pthreads (C function), 457
N_VPrint_Raja (C function), 480
N_VPrint_Serial (C function), 446
N_VPrint_Sycl (C++ function), 475
N_VPrintFile (C function), 443
N_VPrintFile_Cuda (C function), 465
N_VPrintFile_Hip (C function), 470
N_VPrintFile_OpenMP (C function), 454
N_VPrintFile_OpenMPDEV (C function), 486
N_VPrintFile_Parallel (C function), 450
N_VPrintFile_ParHyp (C function), 460
N_VPrintFile_Petsc (C function), 462
N_VPrintFile_Pthreads (C function), 457
N_VPrintFile_Raja (C function), 480
N_VPrintFile_Serial (C function), 446
N_VPrintFile_Sycl (C++ function), 475
N_VProd (C function), 433
N_VScale (C function), 434
N_VScaleAddMulti (C function), 437
N_VScaleAddMultiVectorArray (C function), 439
N_VScaleVectorArray (C function), 438
N_VSetArrayPointer (C function), 432
N_VSetArrayPointer_MPIPlusX (C function), 496
N_VSetDeviceArrayPointer_Sycl (C++ function),

475
N_VSetHostArrayPointer_Sycl (C++ function), 474
N_VSetKernelExecPolicy_Cuda (C function), 464
N_VSetKernelExecPolicy_Hip (C function), 469
N_VSetKernelExecPolicy_Sycl (C++ function), 475
N_VSetSubvectorArrayPointer_ManyVector (C

function), 490

Index 867

User Documentation for ARKODE, v6.3.0

N_VSetSubvectorArrayPointer_MPIManyVector (C
function), 493

N_VSetVecAtIndexVectorArray (C function), 429
N_VSpace (C function), 432
N_VWL2Norm (C function), 435
N_VWrmsNorm (C function), 435
N_VWrmsNormMask (C function), 435
N_VWrmsNormMaskVectorArray (C function), 439
N_VWrmsNormVectorArray (C function), 438
N_VWSqrSumLocal (C function), 441
N_VWSqrSumMaskLocal (C function), 441
Newton linear system, 31
Newton update, 31
Newton's method, 31
NV_COMM_P (C macro), 449
NV_CONTENT_OMP (C macro), 452
NV_CONTENT_OMPDEV (C macro), 484
NV_CONTENT_P (C macro), 448
NV_CONTENT_PT (C macro), 456
NV_CONTENT_S (C macro), 445
NV_DATA_DEV_OMPDEV (C macro), 485
NV_DATA_HOST_OMPDEV (C macro), 485
NV_DATA_OMP (C macro), 452
NV_DATA_P (C macro), 449
NV_DATA_PT (C macro), 456
NV_DATA_S (C macro), 445
NV_GLOBLENGTH_P (C macro), 449
NV_Ith_OMP (C macro), 453
NV_Ith_P (C macro), 449
NV_Ith_PT (C macro), 456
NV_Ith_S (C macro), 446
NV_LENGTH_OMP (C macro), 453
NV_LENGTH_OMPDEV (C macro), 485
NV_LENGTH_PT (C macro), 456
NV_LENGTH_S (C macro), 446
NV_LOCLENGTH_P (C macro), 449
NV_NUM_THREADS_OMP (C macro), 453
NV_NUM_THREADS_PT (C macro), 456
NV_OWN_DATA_OMP (C macro), 452
NV_OWN_DATA_OMPDEV (C macro), 484
NV_OWN_DATA_P (C macro), 448
NV_OWN_DATA_PT (C macro), 456
NV_OWN_DATA_S (C macro), 445

O
optional input

generic linear solver interface
(ARKODE), 119

Jacobian update frequency (ARKODE), 121
linear solver setup frequency (ARKODE),

120
preconditioner update frequency

(ARKODE), 121

R
residual weight vector, 23

S
SM_COLS_B (C macro), 522
SM_COLS_D (C macro), 507
SM_COLUMN_B (C macro), 522
SM_COLUMN_D (C macro), 507
SM_COLUMN_ELEMENT_B (C macro), 522
SM_COLUMNS_B (C macro), 521
SM_COLUMNS_D (C macro), 507
SM_COLUMNS_S (C macro), 531
SM_CONTENT_B (C macro), 519
SM_CONTENT_D (C macro), 506
SM_CONTENT_S (C macro), 529
SM_DATA_B (C macro), 522
SM_DATA_D (C macro), 507
SM_DATA_S (C macro), 531
SM_ELEMENT_B (C macro), 522
SM_ELEMENT_D (C macro), 508
SM_INDEXPTRS_S (C macro), 531
SM_INDEXVALS_S (C macro), 531
SM_LBAND_B (C macro), 521
SM_LDATA_B (C macro), 521
SM_LDATA_D (C macro), 507
SM_LDIM_B (C macro), 521
SM_NNZ_S (C macro), 531
SM_NP_S (C macro), 531
SM_ROWS_B (C macro), 519
SM_ROWS_D (C macro), 507
SM_ROWS_S (C macro), 529
SM_SPARSETYPE_S (C macro), 531
SM_SUBAND_B (C macro), 521
SM_UBAND_B (C macro), 521
SplittingStep user main program, 383
SplittingStepCoefficients (C type), 388
SplittingStepCoefficients_Alloc (C function),

392
SplittingStepCoefficients_Copy (C function), 393
SplittingStepCoefficients_Create (C function),

392
SplittingStepCoefficients_Destroy (C function),

393
SplittingStepCoefficients_IDToName (C func-

tion), 390
SplittingStepCoefficients_LieTrotter (C func-

tion), 390
SplittingStepCoefficients_LoadCoefficients

(C function), 389
SplittingStepCoefficients_LoadCoefficients-

ByName (C function), 389
SplittingStepCoefficients_Parallel (C func-

tion), 390

868 Index

User Documentation for ARKODE, v6.3.0

SplittingStepCoefficients_Strang (C function),
390

SplittingStepCoefficients_SuzukiFractal (C
function), 391

SplittingStepCoefficients_SymmetricParallel
(C function), 390

SplittingStepCoefficients_ThirdOrderSuzuki
(C function), 391

SplittingStepCoefficients_TripleJump (C func-
tion), 391

SplittingStepCoefficients_Write (C function),
393

SplittingStepCoefficientsMem (C struct), 388
SplittingStepCoefficientsMem.alpha (C mem-

ber), 388
SplittingStepCoefficientsMem.beta (C member),

388
SplittingStepCoefficientsMem.order (C mem-

ber), 388
SplittingStepCoefficientsMem.partitions (C

member), 388
SplittingStepCoefficientsMem.sequential_-

methods (C member), 388
SplittingStepCoefficientsMem.stages (C mem-

ber), 388
SplittingStepCreate (C function), 385
SplittingStepGetNumEvolves (C function), 386
SplittingStepReInit (C function), 387
SplittingStepSetCoefficients (C function), 386
SPRKStepClearStopTime (C function), 399
SPRKStepCreate (C function), 395
SPRKStepEvolve (C function), 396
SPRKStepFree (C function), 395
SPRKStepGetCurrentMethod (C function), 406
SPRKStepGetCurrentState (C function), 404
SPRKStepGetCurrentStep (C function), 404
SPRKStepGetCurrentTime (C function), 404
SPRKStepGetDky (C function), 403
SPRKStepGetLastStep (C function), 404
SPRKStepGetNumGEvals (C function), 407
SPRKStepGetNumRhsEvals (C function), 406
SPRKStepGetNumStepAttempts (C function), 406
SPRKStepGetNumSteps (C function), 403
SPRKStepGetReturnFlagName (C function), 406
SPRKStepGetRootInfo (C function), 407
SPRKStepGetStepStats (C function), 405
SPRKStepGetUserData (C function), 407
SPRKStepPrintAllStats (C function), 405
SPRKStepReInit (C function), 408
SPRKStepReset (C function), 409
SPRKStepRootInit (C function), 395
SPRKStepSetDefaults (C function), 397
SPRKStepSetFixedStep (C function), 398
SPRKStepSetInterpolantDegree (C function), 398

SPRKStepSetInterpolantType (C function), 398
SPRKStepSetMaxNumSteps (C function), 398
SPRKStepSetMethod (C function), 401
SPRKStepSetMethodName (C function), 401
SPRKStepSetNoInactiveRootWarn (C function), 402
SPRKStepSetOrder (C function), 400
SPRKStepSetRootDirection (C function), 402
SPRKStepSetStopTime (C function), 399
SPRKStepSetUseCompensatedSums (C function), 401
SPRKStepSetUserData (C function), 399
SPRKStepWriteParameters (C function), 408
SUN_ADAPTCONTROLLER_H (C enumerator), 631
SUN_ADAPTCONTROLLER_MRI_H_TOL (C enumerator),

631
SUN_ADAPTCONTROLLER_NONE (C enumerator), 631
SUN_COMM_NULL (C macro), 48
SUN_OUTPUTFORMAT_CSV (C enumerator), 47
SUN_OUTPUTFORMAT_TABLE (C enumerator), 47
SUNAbortErrHandlerFn (C function), 55
SUNAdaptController (C type), 629
SUNAdaptController_Destroy (C function), 632
SUNAdaptController_DestroyEmpty (C function),

631
SUNAdaptController_EstimateStep (C function),

632
SUNAdaptController_EstimateStepTol (C func-

tion), 632
SUNAdaptController_ExpGus (C function), 638
SUNAdaptController_GetType (C function), 631
SUNAdaptController_H0211 (C function), 640
SUNAdaptController_H0321 (C function), 640
SUNAdaptController_H211 (C function), 640
SUNAdaptController_H312 (C function), 641
SUNAdaptController_I (C function), 638
SUNAdaptController_ImExGus (C function), 642
SUNAdaptController_ImpGus (C function), 639
SUNAdaptController_MRIHTol (C function), 644
SUNAdaptController_NewEmpty (C function), 631
SUNAdaptController_Ops (C type), 630
SUNAdaptController_PI (C function), 637
SUNAdaptController_PID (C function), 636
SUNAdaptController_Reset (C function), 633
SUNAdaptController_SetDefaults (C function), 633
SUNAdaptController_SetErrorBias (C function),

633
SUNAdaptController_SetParams_ExpGus (C func-

tion), 638
SUNAdaptController_SetParams_I (C function), 638
SUNAdaptController_SetParams_ImExGus (C func-

tion), 642
SUNAdaptController_SetParams_ImpGus (C func-

tion), 639
SUNAdaptController_SetParams_MRIHTol (C func-

tion), 644

Index 869

User Documentation for ARKODE, v6.3.0

SUNAdaptController_SetParams_PI (C function),
637

SUNAdaptController_SetParams_PID (C function),
637

SUNAdaptController_SetParams_Soderlind (C
function), 636

SUNAdaptController_Soderlind (C function), 636
SUNAdaptController_Space (C function), 634
SUNAdaptController_Type (C enum), 631
SUNAdaptController_UpdateH (C function), 633
SUNAdaptController_UpdateMRIHTol (C function),

634
SUNAdaptController_Write (C function), 633
SUNAdaptControllerContent_MRIHTol_ (C struct),

644
SUNAdaptControllerContent_MRIHTol_.HControl

(C member), 644
SUNAdaptControllerContent_MRIHTol_.inner_-

max_relch (C member), 644
SUNAdaptControllerContent_MRIHTol_.inner_-

max_tolfac (C member), 644
SUNAdaptControllerContent_MRIHTol_.inner_-

min_tolfac (C member), 644
SUNAdaptControllerContent_MRIHTol_.TolCon-

trol (C member), 644
SUNAdjointCheckpointScheme (C type), 662
SUNAdjointCheckpointScheme_Create_Fixed (C

function), 667
SUNAdjointCheckpointScheme_Destroy (C func-

tion), 664
SUNAdjointCheckpointScheme_EnableDense (C

function), 664
SUNAdjointCheckpointScheme_GetContent (C func-

tion), 666
SUNAdjointCheckpointScheme_InsertVector (C

function), 663
SUNAdjointCheckpointScheme_LoadVector (C func-

tion), 663
SUNAdjointCheckpointScheme_NeedsSaving (C

function), 663
SUNAdjointCheckpointScheme_NewEmpty (C func-

tion), 663
SUNAdjointCheckpointScheme_SetContent (C func-

tion), 666
SUNAdjointCheckpointScheme_SetDestroyFn (C

function), 665
SUNAdjointCheckpointScheme_SetEnableDenseFn

(C function), 666
SUNAdjointCheckpointScheme_SetInsertVec-

torFn (C function), 665
SUNAdjointCheckpointScheme_SetLoadVectorFn

(C function), 665
SUNAdjointCheckpointScheme_SetNeedsSavingFn

(C function), 665

SUNAdjointCheckpointSchemeDestroyFn (C type),
665

SUNAdjointCheckpointSchemeEnableDenseFn (C
type), 664

SUNAdjointCheckpointSchemeInsertVectorFn (C
type), 664

SUNAdjointCheckpointSchemeLoadVectorFn (C
type), 664

SUNAdjointCheckpointSchemeNeedsSavingFn (C
type), 664

SUNAdjointStepper (C type), 659
SUNAdjointStepper_Create (C function), 659
SUNAdjointStepper_Evolve (C function), 660
SUNAdjointStepper_GetNumRecompute (C function),

661
SUNAdjointStepper_GetNumSteps (C function), 661
SUNAdjointStepper_OneStep (C function), 660
SUNAdjointStepper_PrintAllStats (C function),

661
SUNAdjointStepper_RecomputeFwd (C function), 660
SUNAdjointStepper_ReInit (C function), 659
SUNAdjointStepper_SetUserData (C function), 660
SUNAdjRhsFn (C type), 662
SUNATimesFn (C type), 549
SUNBandMatrix (C function), 523
SUNBandMatrix_Cols (C function), 523
SUNBandMatrix_Column (C function), 524
SUNBandMatrix_Columns (C function), 523
SUNBandMatrix_Data (C function), 523
SUNBandMatrix_LData (C function), 523
SUNBandMatrix_LDim (C function), 523
SUNBandMatrix_LowerBandwidth (C function), 523
SUNBandMatrix_Print (C function), 523
SUNBandMatrix_Rows (C function), 523
SUNBandMatrix_StoredUpperBandwidth (C func-

tion), 523
SUNBandMatrix_UpperBandwidth (C function), 523
SUNBandMatrixStorage (C function), 523
sunbooleantype (C type), 47
SUNBraidApp_FreeEmpty (C function), 265
SUNBraidApp_GetVecTmpl (C function), 265
SUNBraidApp_NewEmpty (C function), 265
SUNBraidVector (C type), 266
SUNBraidVector_BufPack (C function), 268
SUNBraidVector_BufSize (C function), 268
SUNBraidVector_BufUnpack (C function), 269
SUNBraidVector_Clone (C function), 267
SUNBraidVector_Free (C function), 267
SUNBraidVector_GetNVector (C function), 266
SUNBraidVector_New (C function), 266
SUNBraidVector_SpatialNorm (C function), 268
SUNBraidVector_Sum (C function), 267
SUNComm (C type), 48
SUNContext (C type), 48

870 Index

User Documentation for ARKODE, v6.3.0

SUNContext_ClearErrHandlers (C function), 50
SUNContext_Create (C function), 48
SUNContext_Free (C function), 49
SUNContext_GetLastError (C function), 49
SUNContext_GetLogger (C function), 50
SUNContext_GetProfiler (C function), 50
SUNContext_PeekLastError (C function), 49
SUNContext_PopErrHandler (C function), 50
SUNContext_PushErrHandler (C function), 49
SUNContext_SetLogger (C function), 50
SUNContext_SetProfiler (C function), 50
suncountertype (C type), 47
SUNCudaBlockReduceAtomicExecPolicy (C++ func-

tion), 468
SUNCudaBlockReduceExecPolicy (C++ function), 468
SUNCudaExecPolicy (C++ type), 466
SUNCudaGridStrideExecPolicy (C++ function), 467
SUNCudaThreadDirectExecPolicy (C++ function),

467
SUNDataIOMode (C enum), 662
SUNDataIOMode.SUNDATAIOMODE_INMEM (C enumera-

tor), 662
SUNDenseMatrix (C function), 508
SUNDenseMatrix_Cols (C function), 508
SUNDenseMatrix_Column (C function), 508
SUNDenseMatrix_Columns (C function), 508
SUNDenseMatrix_Data (C function), 508
SUNDenseMatrix_LData (C function), 508
SUNDenseMatrix_Print (C function), 508
SUNDenseMatrix_Rows (C function), 508
sundials::cuda::ExecPolicy (C++ class), 466
sundials::cuda::ExecPolicy::~ExecPolicy

(C++ function), 467
sundials::cuda::ExecPolicy::atomic (C++ func-

tion), 467
sundials::cuda::ExecPolicy::blockSize (C++

function), 466
sundials::cuda::ExecPolicy::clone (C++ func-

tion), 467
sundials::cuda::ExecPolicy::clone_new_-

stream (C++ function), 467
sundials::cuda::ExecPolicy::ExecPolicy (C++

function), 466
sundials::cuda::ExecPolicy::gridSize (C++

function), 466
sundials::cuda::ExecPolicy::stream (C++ func-

tion), 467
sundials::ginkgo::LinearSolver (C++ class), 599
sundials::ginkgo::LinearSolver::~LinearSolver

(C++ function), 599
sundials::ginkgo::LinearSolver::Convert

(C++ function), 599
sundials::ginkgo::LinearSolver::GkoExec

(C++ function), 600

sundials::ginkgo::LinearSolver::GkoFactory
(C++ function), 600

sundials::ginkgo::LinearSolver::GkoSolver
(C++ function), 600

sundials::ginkgo::LinearSolver::LinearSolver
(C++ function), 599

sundials::ginkgo::LinearSolver::NumIters
(C++ function), 600

sundials::ginkgo::LinearSolver::operator
SUNLinearSolver (C++ function), 599

sundials::ginkgo::LinearSolver::operator=
(C++ function), 599

sundials::ginkgo::LinearSolver::ResNorm
(C++ function), 600

sundials::ginkgo::LinearSolver::Setup (C++
function), 600

sundials::ginkgo::LinearSolver::Solve (C++
function), 600

sundials::hip::ExecPolicy (C++ class), 471
sundials::hip::ExecPolicy::~ExecPolicy (C++

function), 472
sundials::hip::ExecPolicy::atomic (C++ func-

tion), 472
sundials::hip::ExecPolicy::blockSize (C++

function), 471
sundials::hip::ExecPolicy::clone (C++ func-

tion), 471
sundials::hip::ExecPolicy::clone_new_stream

(C++ function), 472
sundials::hip::ExecPolicy::ExecPolicy (C++

function), 471
sundials::hip::ExecPolicy::gridSize (C++

function), 471
sundials::hip::ExecPolicy::stream (C++ func-

tion), 471
sundials::sycl::ExecPolicy (C++ class), 476
sundials::sycl::ExecPolicy::~ExecPolicy

(C++ function), 477
sundials::sycl::ExecPolicy::blockSize (C++

function), 476
sundials::sycl::ExecPolicy::clone (C++ func-

tion), 477
sundials::sycl::ExecPolicy::gridSize (C++

function), 476
SUNDIALSFileClose (C function), 72
SUNDIALSFileOpen (C function), 72
SUNDIALSGetVersion (C function), 64
SUNDIALSGetVersionNumber (C function), 65
SUNErrCode (C type), 54
SUNErrHandlerFn (C type), 55
SUNFALSE (C macro), 47
SUNFullRhsMode (C enum), 651
SUNFullRhsMode.SUN_FULLRHS_END (C enumerator),

651

Index 871

User Documentation for ARKODE, v6.3.0

SUNFullRhsMode.SUN_FULLRHS_OTHER (C enumera-
tor), 651

SUNFullRhsMode.SUN_FULLRHS_START (C enumera-
tor), 651

SUNGetErrMsg (C function), 54
SUNHipBlockReduceAtomicExecPolicy (C++ func-

tion), 473
SUNHipBlockReduceExecPolicy (C++ function), 472
SUNHipExecPolicy (C++ type), 471
SUNHipGridStrideExecPolicy (C++ function), 472
SUNHipThreadDirectExecPolicy (C++ function), 472
sunindextype (C type), 47
SUNLinearSolver (C type), 551
SUNLinearSolver_ID (C enum), 554
SUNLinearSolver_Ops (C type), 551
SUNLinearSolver_Type (C enum), 544
SUNLinearSolver_Type.SUNLINEARSOLVER_DIRECT

(C enumerator), 544
SUNLinearSolver_Type.SUNLINEARSOLVER_ITERA-

TIVE (C enumerator), 545
SUNLinearSolver_Type.SUNLINEARSOLVER_MA-

TRIX_EMBEDDED (C enumerator), 545
SUNLinearSolver_Type.SUNLINEARSOLVER_MA-

TRIX_ITERATIVE (C enumerator), 545
SUNLinSol_Band (C function), 559
SUNLinSol_cuSolverSp_batchQR (C function), 596
SUNLinSol_cuSolverSp_batchQR_GetDescription

(C function), 597
SUNLinSol_cuSolverSp_batchQR_GetDeviceSpace

(C function), 597
SUNLinSol_cuSolverSp_batchQR_SetDescription

(C function), 597
SUNLinSol_Dense (C function), 561
SUNLinSol_KLU (C function), 562
SUNLinSol_KLUGetCommon (C function), 564
SUNLinSol_KLUGetCommon.sun_klu_common (C

type), 564
SUNLinSol_KLUGetNumeric (C function), 564
SUNLinSol_KLUGetNumeric.sun_klu_numeric (C

type), 564
SUNLinSol_KLUGetSymbolic (C function), 563
SUNLinSol_KLUGetSymbolic.sun_klu_symbolic (C

type), 563
SUNLinSol_KLUReInit (C function), 563
SUNLinSol_KLUSetOrdering (C function), 563
SUNLinSol_LapackBand (C function), 566
SUNLinSol_LapackDense (C function), 568
SUNLinSol_MagmaDense (C function), 570
SUNLinSol_MagmaDense_SetAsync (C function), 570
SUNLinSol_OneMklDense (C function), 571
SUNLinSol_PCG (C function), 573
SUNLinSol_PCGSetMaxl (C function), 574
SUNLinSol_PCGSetPrecType (C function), 573
SUNLinSol_SPBCGS (C function), 576

SUNLinSol_SPBCGSSetMaxl (C function), 577
SUNLinSol_SPBCGSSetPrecType (C function), 576
SUNLinSol_SPFGMR (C function), 579
SUNLinSol_SPFGMRSetGSType (C function), 580
SUNLinSol_SPFGMRSetMaxRestarts (C function), 580
SUNLinSol_SPFGMRSetPrecType (C function), 580
SUNLinSol_SPGMR (C function), 583
SUNLinSol_SPGMRSetGSType (C function), 584
SUNLinSol_SPGMRSetMaxRestarts (C function), 584
SUNLinSol_SPGMRSetPrecType (C function), 583
SUNLinSol_SPTFQMR (C function), 587
SUNLinSol_SPTFQMRSetMaxl (C function), 588
SUNLinSol_SPTFQMRSetPrecType (C function), 588
SUNLinSol_SuperLUDIST (C function), 590
SUNLinSol_SuperLUDIST_GetBerr (C function), 591
SUNLinSol_SuperLUDIST_GetGridinfo (C function),

591
SUNLinSol_SuperLUDIST_GetLUstruct (C function),

591
SUNLinSol_SuperLUDIST_GetScalePermstruct (C

function), 591
SUNLinSol_SuperLUDIST_GetSOLVEstruct (C func-

tion), 591
SUNLinSol_SuperLUDIST_GetSuperLUOptions (C

function), 591
SUNLinSol_SuperLUDIST_GetSuperLUStat (C func-

tion), 591
SUNLinSol_SuperLUMT (C function), 593
SUNLinSol_SuperLUMTSetOrdering (C function), 594
SUNLinSolFree (C function), 546
SUNLinSolFreeEmpty (C function), 554
SUNLinSolGetID (C function), 545
SUNLinSolGetType (C function), 545
SUNLinSolInitialize (C function), 545
SUNLinSolLastFlag (C function), 548
SUNLinSolNewEmpty (C function), 553
SUNLinSolNumIters (C function), 548
SUNLinSolResid (C function), 548
SUNLinSolResNorm (C function), 548
SUNLinSolSetATimes (C function), 547
SUNLinSolSetPreconditioner (C function), 547
SUNLinSolSetScalingVectors (C function), 547
SUNLinSolSetup (C function), 545
SUNLinSolSetZeroGuess (C function), 547
SUNLinSolSolve (C function), 546
SUNLinSolSpace (C function), 548
SUNLogErrHandlerFn (C function), 55
SUNLogger (C type), 58
SUNLogger_Create (C function), 58
SUNLogger_CreateFromEnv (C function), 58
SUNLogger_Destroy (C function), 60
SUNLogger_Flush (C function), 60
SUNLogger_GetOutputRank (C function), 60
SUNLogger_QueueMsg (C function), 59

872 Index

User Documentation for ARKODE, v6.3.0

SUNLogger_SetDebugFilename (C function), 59
SUNLogger_SetErrorFilename (C function), 59
SUNLogger_SetInfoFilename (C function), 59
SUNLogger_SetWarningFilename (C function), 59
SUNLogLevel (C enum), 58
SUNLogLevel.SUN_LOGLEVEL_ALL (C enumerator), 58
SUNLogLevel.SUN_LOGLEVEL_DEBUG (C enumerator),

58
SUNLogLevel.SUN_LOGLEVEL_ERROR (C enumerator),

58
SUNLogLevel.SUN_LOGLEVEL_INFO (C enumerator),

58
SUNLogLevel.SUN_LOGLEVEL_NONE (C enumerator),

58
SUNLogLevel.SUN_LOGLEVEL_WARNING (C enumera-

tor), 58
SUNMatClone (C function), 504
SUNMatCopy (C function), 505
SUNMatCopyOps (C function), 503
SUNMatDestroy (C function), 504
SUNMatFreeEmpty (C function), 503
SUNMatGetID (C function), 504
SUNMatHermitianTransposeVec (C function), 506
SUNMatMatvec (C function), 505
SUNMatMatvecSetup (C function), 505
SUNMatNewEmpty (C function), 503
SUNMatrix (C type), 501
SUNMatrix_cuSparse_BlockColumns (C function),

526
SUNMatrix_cuSparse_BlockData (C function), 526
SUNMatrix_cuSparse_BlockNNZ (C function), 526
SUNMatrix_cuSparse_BlockRows (C function), 526
SUNMatrix_cuSparse_Columns (C function), 526
SUNMatrix_cuSparse_CopyFromDevice (C function),

526
SUNMatrix_cuSparse_CopyToDevice (C function),

526
SUNMatrix_cuSparse_Data (C function), 526
SUNMatrix_cuSparse_IndexPointers (C function),

526
SUNMatrix_cuSparse_IndexValues (C function), 526
SUNMatrix_cuSparse_MakeCSR (C function), 525
SUNMatrix_cuSparse_MatDescr (C function), 526
SUNMatrix_cuSparse_NewBlockCSR (C function), 525
SUNMatrix_cuSparse_NewCSR (C function), 525
SUNMatrix_cuSparse_NNZ (C function), 526
SUNMatrix_cuSparse_NumBlocks (C function), 526
SUNMatrix_cuSparse_Rows (C function), 525
SUNMatrix_cuSparse_SetFixedPattern (C func-

tion), 527
SUNMatrix_cuSparse_SetKernelExecPolicy (C

function), 527
SUNMatrix_cuSparse_SparseType (C function), 526
SUNMatrix_ID (C type), 503

SUNMatrix_MagmaDense (C function), 510
SUNMatrix_MagmaDense_Block (C function), 512
SUNMatrix_MagmaDense_BlockColumn (C function),

512
SUNMatrix_MagmaDense_BlockColumns (C function),

511
SUNMatrix_MagmaDense_BlockData (C function), 511
SUNMatrix_MagmaDense_BlockRows (C function), 511
SUNMatrix_MagmaDense_Column (C function), 512
SUNMatrix_MagmaDense_Columns (C function), 510
SUNMatrix_MagmaDense_CopyFromDevice (C func-

tion), 513
SUNMatrix_MagmaDense_CopyToDevice (C function),

513
SUNMatrix_MagmaDense_Data (C function), 511
SUNMatrix_MagmaDense_LData (C function), 511
SUNMatrix_MagmaDense_NumBlocks (C function), 511
SUNMatrix_MagmaDense_Rows (C function), 510
SUNMatrix_MagmaDenseBlock (C function), 510
SUNMatrix_OneMklDense (C++ function), 514
SUNMatrix_OneMklDense_Block (C function), 517
SUNMatrix_OneMklDense_BlockColumn (C function),

517
SUNMatrix_OneMklDense_BlockColumns (C func-

tion), 516
SUNMatrix_OneMklDense_BlockData (C function),

517
SUNMatrix_OneMklDense_BlockLData (C function),

517
SUNMatrix_OneMklDense_BlockRows (C function),

516
SUNMatrix_OneMklDense_Column (C function), 516
SUNMatrix_OneMklDense_Columns (C function), 515
SUNMatrix_OneMklDense_CopyFromDevice (C func-

tion), 518
SUNMatrix_OneMklDense_CopyToDevice (C func-

tion), 518
SUNMatrix_OneMklDense_Data (C function), 516
SUNMatrix_OneMklDense_LData (C function), 516
SUNMatrix_OneMklDense_NumBlocks (C function),

516
SUNMatrix_OneMklDense_Rows (C function), 515
SUNMatrix_OneMklDenseBlock (C++ function), 515
SUNMatrix_SLUNRloc (C function), 534
SUNMatrix_SLUNRloc_OwnData (C function), 534
SUNMatrix_SLUNRloc_Print (C function), 534
SUNMatrix_SLUNRloc_ProcessGrid (C function), 534
SUNMatrix_SLUNRloc_SuperMatrix (C function), 534
SUNMatScaleAdd (C function), 505
SUNMatScaleAddI (C function), 505
SUNMatSpace (C function), 504
SUNMatZero (C function), 505
SUNMemory (C type), 669
SUNMemory.SUNMemory_ (C struct), 669

Index 873

User Documentation for ARKODE, v6.3.0

SUNMemory.SUNMemory_.bytes (C member), 669
SUNMemory.SUNMemory_.own (C member), 669
SUNMemory.SUNMemory_.ptr (C member), 669
SUNMemory.SUNMemory_.stride (C member), 669
SUNMemory.SUNMemory_.type (C member), 669
SUNMemoryHelper (C type), 670
SUNMemoryHelper.SUNMemoryHelper_ (C struct), 670
SUNMemoryHelper.SUNMemoryHelper_.content (C

member), 670
SUNMemoryHelper.SUNMemoryHelper_.ops (C mem-

ber), 670
SUNMemoryHelper.SUNMemoryHelper_.queue (C

member), 670
SUNMemoryHelper.SUNMemoryHelper_.sunctx (C

member), 670
SUNMemoryHelper_Alias (C function), 672
SUNMemoryHelper_Alloc (C function), 671
SUNMemoryHelper_Alloc_Cuda (C function), 676
SUNMemoryHelper_Alloc_Hip (C function), 679
SUNMemoryHelper_Alloc_Sycl (C function), 681
SUNMemoryHelper_AllocStrided (C function), 671
SUNMemoryHelper_AllocStrided_Cuda (C function),

677
SUNMemoryHelper_AllocStrided_Hip (C function),

679
SUNMemoryHelper_AllocStrided_Sycl (C function),

681
SUNMemoryHelper_Clone (C function), 674
SUNMemoryHelper_Copy (C function), 672
SUNMemoryHelper_Copy_Cuda (C function), 677
SUNMemoryHelper_Copy_Hip (C function), 680
SUNMemoryHelper_Copy_Sycl (C function), 682
SUNMemoryHelper_CopyAsync (C function), 674
SUNMemoryHelper_CopyAsync_Cuda (C function), 677
SUNMemoryHelper_CopyAsync_Hip (C function), 680
SUNMemoryHelper_CopyAsync_Sycl (C function), 682
SUNMemoryHelper_CopyOps (C function), 673
SUNMemoryHelper_Cuda (C function), 676
SUNMemoryHelper_Dealloc (C function), 672
SUNMemoryHelper_Dealloc_Cuda (C function), 677
SUNMemoryHelper_Dealloc_Hip (C function), 679
SUNMemoryHelper_Dealloc_Sycl (C function), 682
SUNMemoryHelper_Destroy (C function), 675
SUNMemoryHelper_GetAllocStats (C function), 673
SUNMemoryHelper_GetAllocStats_Cuda (C func-

tion), 678
SUNMemoryHelper_GetAllocStats_Hip (C function),

680
SUNMemoryHelper_GetAllocStats_Sycl (C func-

tion), 683
SUNMemoryHelper_Hip (C function), 678
SUNMemoryHelper_NewEmpty (C function), 673
SUNMemoryHelper_Ops (C type), 670

SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_ (C
struct), 670

SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_-
.alloc (C member), 670

SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_-
.allocstrided (C member), 670

SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_-
.clone (C member), 671

SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_-
.copy (C member), 670

SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_-
.copyasync (C member), 670

SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_-
.dealloc (C member), 670

SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_-
.destroy (C member), 671

SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_-
.getallocstats (C member), 671

SUNMemoryHelper_SetDefaultQueue (C function),
674

SUNMemoryHelper_Sycl (C function), 681
SUNMemoryHelper_Sys (C function), 675
SUNMemoryHelper_Wrap (C function), 672
SUNMemoryNewEmpty (C function), 669
SUNMemoryType (C enum), 670
SUNMemoryType.SUNMEMTYPE_DEVICE (C enumerator),

670
SUNMemoryType.SUNMEMTYPE_HOST (C enumerator),

670
SUNMemoryType.SUNMEMTYPE_PINNED (C enumerator),

670
SUNMemoryType.SUNMEMTYPE_UVM (C enumerator), 670
SUNMPIAbortErrHandlerFn (C function), 56
SUNNonlinearSolver (C type), 612
SUNNonlinearSolver_Ops (C type), 612
SUNNonlinearSolver_Type (C enum), 606
SUNNonlinearSolver_-

Type.SUNNONLINEARSOLVER_FIXEDPOINT
(C enumerator), 606

SUNNonlinearSolver_-
Type.SUNNONLINEARSOLVER_ROOTFIND
(C enumerator), 606

SUNNonlinSol_FixedPoint (C function), 624
SUNNonlinSol_Newton (C function), 621
SUNNonlinSol_PetscSNES (C function), 627
SUNNonlinSolConvTestFn (C type), 611
SUNNonlinSolFree (C function), 607
SUNNonlinSolFreeEmpty (C function), 614
SUNNonlinSolGetCurIter (C function), 609
SUNNonlinSolGetNumConvFails (C function), 609
SUNNonlinSolGetNumIters (C function), 609
SUNNonlinSolGetPetscError_PetscSNES (C func-

tion), 627
SUNNonlinSolGetSNES_PetscSNES (C function), 627

874 Index

User Documentation for ARKODE, v6.3.0

SUNNonlinSolGetSysFn_FixedPoint (C function),
624

SUNNonlinSolGetSysFn_Newton (C function), 621
SUNNonlinSolGetSysFn_PetscSNES (C function), 628
SUNNonlinSolGetType (C function), 606
SUNNonlinSolInitialize (C function), 606
SUNNonlinSolLSetupFn (C type), 610
SUNNonlinSolLSolveFn (C type), 611
SUNNonlinSolNewEmpty (C function), 613
SUNNonlinSolSetConvTestFn (C function), 608
SUNNonlinSolSetDamping_FixedPoint (C function),

624
SUNNonlinSolSetLSetupFn (C function), 607
SUNNonlinSolSetLSolveFn (C function), 608
SUNNonlinSolSetMaxIters (C function), 608
SUNNonlinSolSetSysFn (C function), 607
SUNNonlinSolSetup (C function), 606
SUNNonlinSolSolve (C function), 606
SUNNonlinSolSysFn (C type), 610
SUNOutputFormat (C enum), 47
SUNProfiler (C type), 62
SUNProfiler_Begin (C function), 63
SUNProfiler_Create (C function), 62
SUNProfiler_End (C function), 63
SUNProfiler_Free (C function), 62
SUNProfiler_GetElapsedTime (C function), 63
SUNProfiler_GetTimerResolution (C function), 63
SUNProfiler_Print (C function), 63
SUNProfiler_Reset (C function), 64
SUNPSetupFn (C type), 549
SUNPSolveFn (C type), 549
sunrealtype (C type), 46
SUNSparseFromBandMatrix (C function), 532
SUNSparseFromDenseMatrix (C function), 532
SUNSparseMatrix (C function), 532
SUNSparseMatrix_Columns (C function), 533
SUNSparseMatrix_Data (C function), 533
SUNSparseMatrix_IndexPointers (C function), 533
SUNSparseMatrix_IndexValues (C function), 533
SUNSparseMatrix_NNZ (C function), 533
SUNSparseMatrix_NP (C function), 533
SUNSparseMatrix_Print (C function), 532
SUNSparseMatrix_Realloc (C function), 532
SUNSparseMatrix_Reallocate (C function), 532
SUNSparseMatrix_Rows (C function), 533
SUNSparseMatrix_SparseType (C function), 533
SUNStepper (C type), 647
SUNStepper_Create (C function), 648
SUNStepper_Destroy (C function), 648
SUNStepper_Evolve (C function), 648
SUNStepper_FullRhs (C function), 649
SUNStepper_GetContent (C function), 651
SUNStepper_GetLastFlag (C function), 652
SUNStepper_GetNumSteps (C function), 651

SUNStepper_OneStep (C function), 649
SUNStepper_ReInit (C function), 649
SUNStepper_Reset (C function), 649
SUNStepper_ResetCheckpointIndex (C function),

650
SUNStepper_SetContent (C function), 651
SUNStepper_SetDestroyFn (C function), 654
SUNStepper_SetEvolveFn (C function), 652
SUNStepper_SetForcing (C function), 650
SUNStepper_SetForcingFn (C function), 654
SUNStepper_SetFullRhsFn (C function), 653
SUNStepper_SetGetNumStepsFn (C function), 654
SUNStepper_SetLastFlag (C function), 652
SUNStepper_SetOneStepFn (C function), 652
SUNStepper_SetReInitFn (C function), 653
SUNStepper_SetResetCheckpointIndexFn (C func-

tion), 653
SUNStepper_SetResetFn (C function), 653
SUNStepper_SetStepDirection (C function), 650
SUNStepper_SetStepDirectionFn (C function), 654
SUNStepper_SetStopTime (C function), 650
SUNStepper_SetStopTimeFn (C function), 653
SUNStepperDestroyFn (C type), 655
SUNStepperEvolveFn (C type), 655
SUNStepperFullRhsFn (C type), 655
SUNStepperGetNumStepsFn (C type), 655
SUNStepperOneStepFn (C type), 655
SUNStepperReInitFn (C type), 655
SUNStepperResetCheckpointIndexFn (C type), 655
SUNStepperResetFn (C type), 655
SUNStepperSetForcingFn (C type), 655
SUNStepperSetStepDirectionFn (C type), 655
SUNStepperSetStopTimeFn (C type), 655
SUNSyclBlockReduceExecPolicy (C++ function), 478
SUNSyclExecPolicy (C++ type), 476
SUNSyclGridStrideExecPolicy (C++ function), 477
SUNSyclThreadDirectExecPolicy (C++ function),

477
SUNTRUE (C macro), 47

U
User main program, 79

V
Vector (C++ class), 482
Vector::~Vector (C++ function), 483
Vector::Convert (C++ function), 483
Vector::exec_space (C++ type), 482
Vector::host_view_type (C++ type), 482
Vector::HostView (C++ function), 483
Vector::Length (C++ function), 483
Vector::memory_space (C++ type), 482
Vector::operator N_Vector (C++ function), 483
Vector::operator= (C++ function), 483

Index 875

User Documentation for ARKODE, v6.3.0

Vector::range_policy (C++ type), 482
Vector::size_type (C++ type), 482
Vector::Vector (C++ function), 482, 483
Vector::View (C++ function), 483
Vector::view_type (C++ type), 482
vector_type (C++ type), 487

W
weighted root-mean-square norm, 22

876 Index

	Introduction
	Changes to SUNDIALS in release 6.3.0
	Reading this User Guide
	SUNDIALS License and Notices
	BSD 3-Clause License
	Additional Notice
	SUNDIALS Release Numbers

	Mathematical Considerations
	Adaptive single-step methods
	Interpolation
	Hermite interpolation module
	Lagrange interpolation module

	ARKStep – Additive Runge–Kutta methods
	ERKStep – Explicit Runge–Kutta methods
	ForcingStep – Forcing method
	LSRKStep – Low-Storage Runge–Kutta methods
	MRIStep – Multirate infinitesimal step methods
	MIS, MRI-GARK, and IMEX-MRI-GARK Methods
	IMEX-MRI-SR Methods
	MERK Methods

	SplittingStep – Operator splitting methods
	SPRKStep – Symplectic Partitioned Runge–Kutta methods
	Error norms
	Time step adaptivity
	Multirate time step adaptivity (MRIStep)
	Multirate temporal controls
	Fast temporal error estimation

	Initial step size estimation
	Initial multirate step sizes

	Explicit stability
	Fixed time stepping
	Algebraic solvers
	Nonlinear solver methods
	Linear solver methods
	Matrix-based linear solvers
	Matrix-free iterative linear solvers
	Updating the linear solver

	Iteration Error Control
	Nonlinear iteration error control
	Linear iteration error control

	Preconditioning
	Implicit predictors
	Trivial predictor
	Maximum order predictor
	Variable order predictor
	Cutoff order predictor
	Bootstrap predictor (M=I only) – deprecated
	Minimum correction predictor (ARKStep, M=I only) – deprecated

	Mass matrix solver (ARKStep only)

	Rootfinding
	Inequality Constraints
	Relaxation Methods
	Adjoint Sensitivity Analysis

	Code Organization
	Getting Started
	Data Types
	Floating point types
	Integer types used for indexing
	Integer type used for counters
	Boolean type
	Output formatting type
	MPI types

	The SUNContext Type
	Implications for task-based programming and multi-threading
	Convenience class for C++ Users

	Error Checking
	Error Handler Functions

	Status and Error Logging
	Enabling Logging
	Logger API
	Example Usage

	Performance Profiling
	Enabling Profiling
	Profiler API
	Example Usage

	Getting Version Information
	Fortran Interface
	Data Types
	Notable Fortran/C usage differences
	Creating generic SUNDIALS objects
	Arrays and pointers
	Passing procedure pointers and user data
	Passing NULL to optional parameters
	Working with N_Vector arrays
	Providing file pointers

	Important notes on portability
	Common Issues

	Features for GPU Accelerated Computing
	SUNDIALS GPU Programming Model
	Steps for Using GPU Accelerated SUNDIALS

	Using ARKODE
	Access to library and header files
	A skeleton of the user’s main program
	ARKODE User-callable functions
	ARKODE initialization and deallocation functions
	ARKODE tolerance specification functions
	General advice on the choice of tolerances
	Advice on controlling nonphysical negative values

	Linear solver interface functions
	Mass matrix solver specification functions
	Nonlinear solver interface functions
	Rootfinding initialization function
	ARKODE solver function
	Optional input functions
	Optional inputs for ARKODE
	Optional inputs for time step adaptivity
	Optional inputs for implicit stage solves
	Linear solver interface optional input functions
	Optional inputs for the ARKLS linear solver interface
	Optional inputs for matrix-based SUNLinearSolver modules
	Optional inputs for matrix-free SUNLinearSolver modules
	Optional inputs for iterative SUNLinearSolver modules

	Rootfinding optional input functions

	Interpolated output function
	Optional output functions
	Main solver optional output functions
	Implicit solver optional output functions
	Rootfinding optional output functions
	Linear solver interface optional output functions
	General usability functions

	ARKODE reset function
	ARKODE system resize function
	Using an ARKODE solver as an MRIStep “inner” solver
	Using an ARKODE solver as a SUNStepper

	User-supplied functions
	ODE right-hand side
	Error weight function
	Residual weight function
	Time step adaptivity function
	Explicit stability function
	Implicit stage prediction function
	Rootfinding function
	Jacobian construction
	Jacobian-vector product
	Jacobian-vector product setup
	Preconditioner solve
	Preconditioner setup
	Mass matrix construction
	Mass matrix-vector product
	Mass matrix-vector product setup
	Mass matrix preconditioner solve
	Mass matrix preconditioner setup
	Vector resize function
	Pre inner integrator communication function (MRIStep only)
	Post inner integrator communication function (MRIStep only)
	Relaxation function
	Relaxation Jacobian function

	Relaxation Methods
	Enabling or Disabling Relaxation
	Optional Input Functions
	Optional Output Functions

	Preconditioner modules
	A serial banded preconditioner module
	ARKBANDPRE usage
	ARKBANDPRE user-callable functions

	A parallel band-block-diagonal preconditioner module
	ARKBBDPRE user-supplied functions
	ARKBBDPRE usage
	ARKBBDPRE user-callable functions

	Using the ARKStep time-stepping module
	ARKStep User-callable functions
	ARKStep initialization and deallocation functions
	ARKStep tolerance specification functions
	Linear solver interface functions
	Mass matrix solver specification functions
	Nonlinear solver interface functions
	Rootfinding initialization function
	ARKStep solver function
	Optional input functions
	Optional inputs for ARKStep
	Optional inputs for IVP method selection
	Optional inputs for time step adaptivity
	Optional inputs for implicit stage solves
	Linear solver interface optional input functions
	Optional inputs for the ARKLS linear solver interface
	Optional inputs for matrix-based SUNLinearSolver modules
	Optional inputs for matrix-free SUNLinearSolver modules
	Optional inputs for iterative SUNLinearSolver modules

	Rootfinding optional input functions

	Interpolated output function
	Optional output functions
	Main solver optional output functions
	Implicit solver optional output functions
	Rootfinding optional output functions
	Linear solver interface optional output functions
	General usability functions

	ARKStep re-initialization function
	ARKStep reset function
	ARKStep system resize function
	Interfacing with MRIStep

	Relaxation Methods
	Enabling or Disabling Relaxation
	Optional Input Functions
	Optional Output Functions

	Multigrid Reduction in Time with XBraid
	SUNBraid Interface
	SUNBraidApp
	SUNBraidOps
	SUNBraidApp Utility Functions
	SUNBraidVector
	SUNBraid Return Codes

	ARKBraid Interface
	ARKBraid Initialization and Deallocation Functions
	ARKBraid Set Functions
	ARKBraid Get Functions
	ARKBraid Interface Functions

	A skeleton of the user’s main program with XBraid
	Advanced ARKBraid Utility Functions

	Using the ERKStep time-stepping module
	ERKStep User-callable functions
	ERKStep initialization and deallocation functions
	ERKStep tolerance specification functions
	Rootfinding initialization function
	ERKStep solver function
	Optional input functions
	Optional inputs for ERKStep
	Optional inputs for IVP method selection
	Optional inputs for time step adaptivity
	Rootfinding optional input functions

	Interpolated output function
	Optional output functions
	Main solver optional output functions
	Rootfinding optional output functions
	General usability functions

	ERKStep re-initialization function
	ERKStep reset function
	ERKStep system resize function

	Relaxation Methods
	Enabling or Disabling Relaxation
	Optional Input Functions
	Optional Output Functions

	Using the ForcingStep time-stepping module
	ForcingStep User-callable functions
	ForcingStep initialization functions
	Optional output functions
	ForcingStep re-initialization function

	Using the LSRKStep time-stepping module
	LSRKStep User-callable functions
	LSRKStep initialization functions
	Optional input functions
	Optional output functions
	LSRKStep re-initialization function

	User-supplied functions
	The dominant eigenvalue estimation

	Using the MRIStep time-stepping module
	A skeleton of the user’s main program
	MRIStep User-callable functions
	MRIStep initialization and deallocation functions
	MRIStep tolerance specification functions
	Linear solver interface functions
	Nonlinear solver interface functions
	Rootfinding initialization function
	MRIStep solver function
	Optional input functions
	Optional inputs for MRIStep
	Optional inputs for IVP method selection
	Optional inputs for implicit stage solves
	Linear solver interface optional input functions
	Optional inputs for the ARKLS linear solver interface
	Optional inputs for matrix-based SUNLinearSolver modules
	Optional inputs for matrix-free SUNLinearSolver modules
	Optional inputs for iterative SUNLinearSolver modules

	Rootfinding optional input functions

	Interpolated output function
	Optional output functions
	Main solver optional output functions
	Implicit solver optional output functions
	Rootfinding optional output functions
	Linear solver interface optional output functions
	General usability functions

	MRIStep re-initialization function
	MRIStep reset function
	MRIStep system resize function

	MRI Coupling Coefficients Data Structure
	MRIStepCoupling functions
	MRI Coupling Tables

	MRIStep Custom Inner Steppers
	The MRIStepInnerStepper Class
	Base Class Methods
	Creating and Destroying an Object
	Attaching and Accessing the Content Pointer
	Setting Member Functions
	Applying and Accessing Forcing Data

	Implementation Specific Methods
	Required Member Functions
	Optional Member Functions

	Implementing an MRIStepInnerStepper

	Using the SplittingStep time-stepping module
	A skeleton of the user’s main program
	SplittingStep User-callable functions
	SplittingStep initialization functions
	Optional inputs for IVP method selection
	Optional output functions
	SplittingStep re-initialization function

	Operator Splitting Coefficients Data Structure
	SplittingStepCoefficients Functions
	Operator Splitting Coefficients
	Default Operator Splitting Coefficients

	Using the SPRKStep time-stepping module
	SPRKStep User-callable functions
	SPRKStep initialization and deallocation functions
	Rootfinding initialization function
	SPRKStep solver function
	Optional input functions
	Optional inputs for SPRKStep
	Optional inputs for IVP method selection
	Rootfinding optional input functions

	Interpolated output function
	Optional output functions
	Main solver optional output functions
	Rootfinding optional output functions
	General usability functions

	SPRKStep re-initialization function
	SPRKStep reset function

	Adjoint Sensitivity Analysis
	User Callable Functions

	Butcher Table Data Structure
	ARKodeButcherTable functions

	SPRK Method Table Structure
	ARKodeSPRKTable functions

	Vector Data Structures
	Description of the NVECTOR Modules
	NVECTOR Utility Functions
	Implementing a custom NVECTOR
	Support for complex-valued vectors

	Description of the NVECTOR operations
	Standard vector operations
	Fused operations
	Vector array operations
	Local reduction operations
	Single Buffer Reduction Operations
	Exchange operations
	Output operations

	NVECTOR functions required by ARKODE
	The NVECTOR_SERIAL Module
	NVECTOR_SERIAL accessor macros
	NVECTOR_SERIAL functions
	NVECTOR_SERIAL Fortran Interface

	The NVECTOR_PARALLEL Module
	NVECTOR_PARALLEL accessor macros
	NVECTOR_PARALLEL functions
	NVECTOR_PARALLEL Fortran Interface

	The NVECTOR_OPENMP Module
	NVECTOR_OPENMP accessor macros
	NVECTOR_OPENMP functions
	NVECTOR_OPENMP Fortran Interface

	The NVECTOR_PTHREADS Module
	NVECTOR_PTHREADS accessor macros
	NVECTOR_PTHREADS functions
	NVECTOR_PTHREADS Fortran Interface

	The NVECTOR_PARHYP Module
	NVECTOR_PARHYP functions

	The NVECTOR_PETSC Module
	NVECTOR_PETSC functions

	The NVECTOR_CUDA Module
	NVECTOR_CUDA functions
	The SUNCudaExecPolicy Class

	The NVECTOR_HIP Module
	NVECTOR_HIP functions
	The SUNHipExecPolicy Class

	The NVECTOR_SYCL Module
	NVECTOR_SYCL functions
	The SUNSyclExecPolicy Class

	The NVECTOR_RAJA Module
	NVECTOR_RAJA functions

	The NVECTOR_KOKKOS Module
	Using NVECTOR_KOKKOS
	NVECTOR_KOKKOS API

	The NVECTOR_OPENMPDEV Module
	NVECTOR_OPENMPDEV accessor macros
	NVECTOR_OPENMPDEV functions

	The NVECTOR_TRILINOS Module
	NVECTOR_TRILINOS functions

	The NVECTOR_MANYVECTOR Module
	NVECTOR_MANYVECTOR structure
	NVECTOR_MANYVECTOR functions

	The NVECTOR_MPIMANYVECTOR Module
	NVECTOR_MPIMANYVECTOR structure
	NVECTOR_MPIMANYVECTOR functions

	The NVECTOR_MPIPLUSX Module
	NVECTOR_MPIPLUSX structure
	NVECTOR_MPIPLUSX functions

	NVECTOR Examples

	Matrix Data Structures
	Description of the SUNMATRIX Modules
	Description of the SUNMATRIX operations
	The SUNMATRIX_DENSE Module
	The SUNMATRIX_MAGMADENSE Module
	SUNMATRIX_MAGMADENSE Functions
	SUNMATRIX_MAGMADENSE Usage Notes

	The SUNMATRIX_ONEMKLDENSE Module
	SUNMATRIX_ONEMKLDENSE Functions
	Constructors
	Access Matrix Dimensions
	Access Matrix Block Dimensions
	Access Matrix Data
	Access Matrix Block Data
	Copy Data

	SUNMATRIX_ONEMKLDENSE Usage Notes

	The SUNMATRIX_BAND Module
	The SUNMATRIX_CUSPARSE Module
	SUNMATRIX_CUSPARSE Description
	SUNMATRIX_CUSPARSE Functions
	SUNMATRIX_CUSPARSE Usage Notes

	The SUNMATRIX_SPARSE Module
	The SUNMATRIX_SLUNRLOC Module
	SUNMATRIX_SLUNRLOC Functions

	The SUNMATRIX_GINKGO Module
	Compatible Vectors
	Using SUNMATRIX_GINKGO
	SUNMATRIX_GINKGO API

	The SUNMATRIX_KOKKOSDENSE Module
	Using SUNMATRIX_KOKKOSDENSE
	SUNMATRIX_KOKKOSDENSE API

	SUNMATRIX Examples
	SUNMATRIX functions used by ARKODE

	Linear Algebraic Solvers
	The SUNLinearSolver API
	SUNLinearSolver core functions
	SUNLinearSolver “set” functions
	SUNLinearSolver “get” functions
	Functions provided by SUNDIALS packages
	SUNLinearSolver return codes
	The generic SUNLinearSolver module
	Compatibility of SUNLinearSolver modules
	Implementing a custom SUNLinearSolver module
	Intended use cases
	Direct linear solvers
	Matrix-free iterative linear solvers
	Matrix-based iterative linear solvers (reusing A)
	Matrix-based iterative linear solvers (current A)
	Application-specific linear solvers with embedded matrix structure

	ARKODE SUNLinearSolver interface
	Lagged matrix information
	Iterative linear solver tolerance
	Providing a custom SUNLinearSolver

	The SUNLinSol_Band Module
	SUNLinSol_Band Usage
	SUNLinSol_Band Description

	The SUNLinSol_Dense Module
	SUNLinSol_Dense Usage
	SUNLinSol_Dense Description

	The SUNLinSol_KLU Module
	SUNLinSol_KLU Usage
	SUNLinSol_KLU Description

	The SUNLinSol_LapackBand Module
	SUNLinSol_LapackBand Usage
	SUNLinSol_LapackBand Description

	The SUNLinSol_LapackDense Module
	SUNLinSol_LapackDense Usage
	SUNLinSol_LapackDense Description

	The SUNLinSol_MagmaDense Module
	SUNLinearSolver_MagmaDense Description
	SUNLinearSolver_MagmaDense Functions
	SUNLinearSolver_MagmaDense Content

	The SUNLinSol_OneMklDense Module
	SUNLinearSolver_OneMklDense Functions
	SUNLinearSolver_OneMklDense Usage Notes

	The SUNLinSol_PCG Module
	SUNLinSol_PCG Usage
	SUNLinSol_PCG Description

	The SUNLinSol_SPBCGS Module
	SUNLinSol_SPBCGS Usage
	SUNLinSol_SPBCGS Description

	The SUNLinSol_SPFGMR Module
	SUNLinSol_SPFGMR Usage
	SUNLinSol_SPFGMR Description

	The SUNLinSol_SPGMR Module
	SUNLinSol_SPGMR Usage
	SUNLinSol_SPGMR Description

	The SUNLinSol_SPTFQMR Module
	SUNLinSol_SPTFQMR Usage
	SUNLinSol_SPTFQMR Description

	The SUNLinSol_SuperLUDIST Module
	SUNLinSol_SuperLUDIST Usage
	SUNLinSol_SuperLUDIST Description

	The SUNLinSol_SuperLUMT Module
	SUNLinSol_SuperLUMT Usage
	SUNLinSol_SuperLUMT Description

	The SUNLinSol_cuSolverSp_batchQR Module
	SUNLinSol_cuSolverSp_batchQR description
	SUNLinSol_cuSolverSp_batchQR functions
	SUNLinSol_cuSolverSp_batchQR content

	The SUNLINEARSOLVER_GINKGO Module
	Using SUNLINEARSOLVER_GINKGO
	SUNLINEARSOLVER_GINKGO API

	The SUNLINEARSOLVER_KOKKOSDENSE Module
	Using SUNLINEARSOLVER_KOKKOSDENSE
	SUNLINEARSOLVER_KOKKOSDENSE API

	SUNLinearSolver Examples

	Nonlinear Algebraic Solvers
	The SUNNonlinearSolver API
	SUNNonlinearSolver core functions
	SUNNonlinearSolver “set” functions
	SUNNonlinearSolver “get” functions
	Functions provided by SUNDIALS integrators
	SUNNonlinearSolver return codes
	The generic SUNNonlinearSolver module
	Implementing a Custom SUNNonlinearSolver Module

	ARKODE SUNNonlinearSolver interface
	ARKODE advanced output functions
	ARKStep advanced output functions (deprecated)
	MRIStep advanced output functions (deprecated)

	The SUNNonlinSol_Newton implementation
	SUNNonlinSol_Newton description
	SUNNonlinSol_Newton functions
	SUNNonlinSol_Newton content

	The SUNNonlinSol_FixedPoint implementation
	SUNNonlinSol_FixedPoint description
	SUNNonlinSol_FixedPoint functions
	SUNNonlinSol_FixedPoint content

	The SUNNonlinSol_PetscSNES implementation
	SUNNonlinSol_PetscSNES description
	SUNNonlinearSolver_PetscSNES functions
	SUNNonlinearSolver_PetscSNES content

	Time Step Adaptivity Controllers
	The SUNAdaptController API
	SUNAdaptController Types
	SUNAdaptController Operations
	C/C++ API Usage

	The SUNAdaptController_Soderlind Module
	The SUNAdaptController_ImExGus Module
	The SUNAdaptController_MRIHTol Module
	Mathematical motivation
	Implementation
	Usage

	Stepper Data Structure
	The SUNStepper API
	Base Class Methods
	Creating and Destroying an Object
	Stepping Functions
	The Right-Hand Side Evaluation Mode
	Attaching and Accessing the Content Pointer
	Handling Warnings and Errors
	Setting Member Functions

	Implementation Specific Methods

	Implementing a SUNStepper

	Adjoint Sensitivity Analysis
	Introduction to Adjoint Sensitivity Analysis
	Discrete vs. Continuous Adjoint Method

	The SUNAdjointStepper Class
	Class Methods
	User-Supplied Functions

	The SUNAdjointCheckpointScheme Class
	Base Class Methods
	Implementation Specific Methods
	Setting Content and Member Functions

	The SUNAdjointCheckpointScheme_Fixed Module
	Base-class Method Overrides
	Implementation Specific Methods

	Tools for Memory Management
	The SUNMemoryHelper API
	Implementation defined operations
	Utility Functions
	Implementation overridable operations with defaults
	Implementing a custom SUNMemoryHelper

	The SUNMemoryHelper_Sys Implementation
	SUNMemoryHelper_Sys API Functions

	The SUNMemoryHelper_Cuda Implementation
	SUNMemoryHelper_Cuda API Functions

	The SUNMemoryHelper_Hip Implementation
	SUNMemoryHelper_Hip API Functions

	The SUNMemoryHelper_Sycl Implementation
	SUNMemoryHelper_Sycl API Functions

	Installing SUNDIALS
	Installing with Spack
	Installing with CMake
	Linux/Unix systems
	Windows Systems
	HPC Clusters
	Frontier

	Configuration options
	Build Type
	Compilers and Compiler Flags
	C Compiler
	C++ Compiler
	Fortran Compiler

	Install Location
	Shared and Static Libraries
	Index Size
	Precision
	Math Library
	SUNDIALS Packages
	Example Programs
	Fortran Interfaces
	Error Checking
	Logging
	Monitoring
	Profiling
	Building with Adiak
	Building with Caliper
	Building with CUDA
	Building with Ginkgo
	Building with HIP
	Building with hypre
	Building with KLU
	Building with Kokkos
	Building with KokkosKernels
	Building with LAPACK
	Building with MAGMA
	Building with MPI
	Building with oneMKL
	Building with OpenMP
	Building with OpenMP Device Offloading
	Building with PETSc
	Building with PThreads
	Building with RAJA
	Building with SuperLU_DIST
	Building with SuperLU_MT
	Building with SYCL
	Building with Trilinos
	Building with XBraid
	Building with xSDK Defaults
	Building with External Addons

	Testing the Build and Installation
	Building and Running Examples
	Using SUNDIALS In Your Project
	CMake Projects

	Libraries and Header Files
	SUNDIALS Core
	SUNDIALS Packages
	CVODE
	CVODES
	ARKODE
	IDA
	IDAS
	KINSOL

	Vectors
	Serial
	ManyVector
	Parallel (MPI)
	MPI ManyVector
	MPI+X
	OpenMP
	OpenMPDEV
	PThreads
	hypre (ParHyp)
	PETSc
	CUDA
	HIP
	RAJA
	SYCL
	Trilinos (Tpetra)
	Kokkos

	Matrices
	Banded
	cuSPARSE
	Dense
	Ginkgo
	KokkosKernels Dense
	MAGMA Dense
	oneMKL Dense
	Sparse
	SuperLU_DIST (SLUNRloc)

	Linear Solvers
	Banded
	cuSPARSE Batched QR
	Dense
	Ginkgo
	KLU
	KokkosKernels Dense
	LAPACK Banded
	LAPACK Dense
	MAGMA Dense
	oneMKL Dense
	Preconditioned Conjugate Gradient (PCG)
	Scaled, Preconditioned Bi-Conjugate Gradient, Stabilized (SPBCGS)
	Scaled, Preconditioned, Flexible, Generalized Minimum Residual (SPFGMR)
	Scaled, Preconditioned, Generalized Minimum Residual (SPGMR)
	Scaled, Preconditioned, Transpose-Free Quasi-Minimum Residual (SPTFQMR)
	SuperLU_DIST
	SuperLU_MT

	Nonlinear Solvers
	Newton
	Fixed-point
	PETSc SNES

	Memory Helpers
	System
	CUDA
	HIP
	SYCL

	Execution Policies
	CUDA
	HIP
	SYCL

	Adjoint Sensitivity Checkpointing
	Fixed ASA checkpointing

	ARKODE Constants
	Butcher Tables
	Explicit Butcher tables
	Implicit Butcher tables
	Additive Butcher tables
	Symplectic Partitioned Butcher tables

	Release History
	Changelog
	Changes to SUNDIALS in release 7.3.0
	Changes to SUNDIALS in release 7.2.1
	Changes to SUNDIALS in release 7.2.0
	Changes to SUNDIALS in release 7.1.1
	Changes to SUNDIALS in release 7.1.0
	Changes to SUNDIALS in release 7.0.0
	Changes to SUNDIALS in release 6.7.0
	Changes to SUNDIALS in release 6.6.2
	Changes to SUNDIALS in release 6.6.1
	Changes to SUNDIALS in release 6.6.0
	Changes to SUNDIALS in release 6.5.1
	Changes to SUNDIALS in release 6.5.0
	Changes to SUNDIALS in release 6.4.1
	Changes to SUNDIALS in release 6.4.0
	Changes to SUNDIALS in release 6.3.0
	Changes to SUNDIALS in release 6.2.0
	Changes to SUNDIALS in release 6.1.1
	Changes to SUNDIALS in release 6.1.0
	Changes to SUNDIALS in release 6.0.0
	Changes to SUNDIALS in release 5.8.0
	Changes to SUNDIALS in release 5.7.0
	Changes to SUNDIALS in release 5.6.1
	Changes to SUNDIALS in release 5.6.0
	Changes to SUNDIALS in release 5.5.0
	Changes to SUNDIALS in release 5.4.0
	Changes to SUNDIALS in release 5.3.0
	Changes to SUNDIALS in release 5.2.0
	Changes to SUNDIALS in release 5.1.0
	Changes to SUNDIALS in release 5.0.0
	Changes to SUNDIALS in release 4.1.0
	Changes to SUNDIALS in release 4.0.2
	Changes to SUNDIALS in release 4.0.1
	Changes to SUNDIALS in release 4.0.0
	Changes to SUNDIALS in release 3.2.1
	Changes to SUNDIALS in release 3.2.0
	Changes to SUNDIALS in release 3.1.2
	Changes to SUNDIALS in release 3.1.1
	Changes to SUNDIALS in release 3.1.0
	Changes to SUNDIALS in release 3.0.0
	Changes to SUNDIALS in release 2.7.0
	Changes to SUNDIALS in release 2.6.2
	Changes to SUNDIALS in release 2.6.1
	Changes to SUNDIALS in release 2.6.0
	Changes to SUNDIALS in release 2.5.0
	Changes to SUNDIALS in release 2.4.0
	Changes to SUNDIALS in release 2.3.0
	Changes to SUNDIALS in release 2.2.0
	Changes to SUNDIALS in release 2.1.1
	Changes to SUNDIALS in release 2.1.0
	Changes to SUNDIALS in release 2.0.2
	Changes to SUNDIALS in release 2.0.1
	Changes to SUNDIALS in release 2.0.0

	Bibliography
	Index

