Top
Back: definingBinomialIdeal
Forward: groebnerBasis
FastBack:
FastForward:
Up: normaliz_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.25.8 latticeIdeal

Procedure from library normaliz.lib (see normaliz_lib).

Usage:
latticeIdeal(ideal I);

Return:
Returns the lattice ideal defined by the elements of I which have to be binomials. The lattice ideal is
the restriction to the polynomial ring of the ideal of the Laurent polynomial ring generated by I

Note:
This function requires the previous setting of an NmzFilename. The function does not delete the written files.

Example:
 
LIB "normaliz.lib";
setNmzFilename("binomials");
ring S = 37,(u,v,w,x,y,z),dp;
ideal I = u2-v2, x2-y2, y2-vw, z2-xy;
latticeIdeal(I);
==> 1
==> normaliz: ./libnormaliz/vector_operations.h:923: Integer libnormaliz::pos\
   _degree(const std::vector<Integer>&, std::vector<Integer>) [with Integer \
   = long long int]: Assertion `to_test.size() == grading.size()' failed.
==> 1
==> _[1]=-wx+vy
==> _[2]=-vx+uy
==> _[3]=vw-ux
==> _[4]=-v2+uw
==> _[5]=-x2+wy
==> _[6]=w2-vx
See also: intmat2binomials.


Top Back: definingBinomialIdeal Forward: groebnerBasis FastBack: FastForward: Up: normaliz_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.4.1, 2025, generated by texi2html.