vector-0.13.2.0: Efficient Arrays
Copyright(c) Roman Leshchinskiy 2008-2010
Alexey Kuleshevich 2020-2022
Aleksey Khudyakov 2020-2022
Andrew Lelechenko 2020-2022
LicenseBSD-style
MaintainerHaskell Libraries Team <libraries@haskell.org>
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Vector.Primitive

Description

Unboxed vectors of primitive types. The use of this module is not recommended except in very special cases. Adaptive unboxed vectors defined in Data.Vector.Unboxed are significantly more flexible at no performance cost.

Synopsis

Primitive vectors

data Vector a Source #

Unboxed vectors of primitive types.

Constructors

Vector 

Fields

  • !Int

    offset

  • !Int

    length

  • !ByteArray

    underlying byte array

Instances

Instances details
NFData1 Vector Source #

Since: 0.12.1.0

Instance details

Defined in Data.Vector.Primitive

Methods

liftRnf :: (a -> ()) -> Vector a -> ()

Prim a => Vector Vector a Source # 
Instance details

Defined in Data.Vector.Primitive

Methods

basicUnsafeFreeze :: Mutable Vector s a -> ST s (Vector a) Source #

basicUnsafeThaw :: Vector a -> ST s (Mutable Vector s a) Source #

basicLength :: Vector a -> Int Source #

basicUnsafeSlice :: Int -> Int -> Vector a -> Vector a Source #

basicUnsafeIndexM :: Vector a -> Int -> Box a Source #

basicUnsafeCopy :: Mutable Vector s a -> Vector a -> ST s () Source #

elemseq :: Vector a -> a -> b -> b Source #

(Data a, Prim a) => Data (Vector a) Source # 
Instance details

Defined in Data.Vector.Primitive

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a)

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a)

toConstr :: Vector a -> Constr

dataTypeOf :: Vector a -> DataType

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a))

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a))

gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r

gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u]

gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a)

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a)

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a)

Prim a => Monoid (Vector a) Source # 
Instance details

Defined in Data.Vector.Primitive

Methods

mempty :: Vector a

mappend :: Vector a -> Vector a -> Vector a

mconcat :: [Vector a] -> Vector a

Prim a => Semigroup (Vector a) Source # 
Instance details

Defined in Data.Vector.Primitive

Methods

(<>) :: Vector a -> Vector a -> Vector a

sconcat :: NonEmpty (Vector a) -> Vector a

stimes :: Integral b => b -> Vector a -> Vector a

Prim a => IsList (Vector a) Source # 
Instance details

Defined in Data.Vector.Primitive

Associated Types

type Item (Vector a) 
Instance details

Defined in Data.Vector.Primitive

type Item (Vector a) = a

Methods

fromList :: [Item (Vector a)] -> Vector a

fromListN :: Int -> [Item (Vector a)] -> Vector a

toList :: Vector a -> [Item (Vector a)]

(Read a, Prim a) => Read (Vector a) Source # 
Instance details

Defined in Data.Vector.Primitive

Methods

readsPrec :: Int -> ReadS (Vector a)

readList :: ReadS [Vector a]

readPrec :: ReadPrec (Vector a)

readListPrec :: ReadPrec [Vector a]

(Show a, Prim a) => Show (Vector a) Source # 
Instance details

Defined in Data.Vector.Primitive

Methods

showsPrec :: Int -> Vector a -> ShowS

show :: Vector a -> String

showList :: [Vector a] -> ShowS

NFData (Vector a) Source # 
Instance details

Defined in Data.Vector.Primitive

Methods

rnf :: Vector a -> ()

(Prim a, Eq a) => Eq (Vector a) Source # 
Instance details

Defined in Data.Vector.Primitive

Methods

(==) :: Vector a -> Vector a -> Bool

(/=) :: Vector a -> Vector a -> Bool

(Prim a, Ord a) => Ord (Vector a) Source # 
Instance details

Defined in Data.Vector.Primitive

Methods

compare :: Vector a -> Vector a -> Ordering

(<) :: Vector a -> Vector a -> Bool

(<=) :: Vector a -> Vector a -> Bool

(>) :: Vector a -> Vector a -> Bool

(>=) :: Vector a -> Vector a -> Bool

max :: Vector a -> Vector a -> Vector a

min :: Vector a -> Vector a -> Vector a

type Mutable Vector Source # 
Instance details

Defined in Data.Vector.Primitive

type Item (Vector a) Source # 
Instance details

Defined in Data.Vector.Primitive

type Item (Vector a) = a

data MVector s a Source #

Mutable vectors of primitive types.

Constructors

MVector 

Fields

  • !Int

    offset

  • !Int

    length

  • !(MutableByteArray s)

    underlying mutable byte array

Instances

Instances details
Prim a => MVector MVector a Source # 
Instance details

Defined in Data.Vector.Primitive.Mutable

Methods

basicLength :: MVector s a -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s a -> MVector s a Source #

basicOverlaps :: MVector s a -> MVector s a -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s a) Source #

basicInitialize :: MVector s a -> ST s () Source #

basicUnsafeReplicate :: Int -> a -> ST s (MVector s a) Source #

basicUnsafeRead :: MVector s a -> Int -> ST s a Source #

basicUnsafeWrite :: MVector s a -> Int -> a -> ST s () Source #

basicClear :: MVector s a -> ST s () Source #

basicSet :: MVector s a -> a -> ST s () Source #

basicUnsafeCopy :: MVector s a -> MVector s a -> ST s () Source #

basicUnsafeMove :: MVector s a -> MVector s a -> ST s () Source #

basicUnsafeGrow :: MVector s a -> Int -> ST s (MVector s a) Source #

NFData1 (MVector s) Source # 
Instance details

Defined in Data.Vector.Primitive.Mutable

Methods

liftRnf :: (a -> ()) -> MVector s a -> ()

NFData (MVector s a) Source # 
Instance details

Defined in Data.Vector.Primitive.Mutable

Methods

rnf :: MVector s a -> ()

Accessors

Length information

length :: Prim a => Vector a -> Int Source #

O(1) Yield the length of the vector.

null :: Prim a => Vector a -> Bool Source #

O(1) Test whether a vector is empty.

Indexing

(!) :: Prim a => Vector a -> Int -> a Source #

O(1) Indexing.

(!?) :: Prim a => Vector a -> Int -> Maybe a Source #

O(1) Safe indexing.

head :: Prim a => Vector a -> a Source #

O(1) First element.

last :: Prim a => Vector a -> a Source #

O(1) Last element.

unsafeIndex :: Prim a => Vector a -> Int -> a Source #

O(1) Unsafe indexing without bounds checking.

unsafeHead :: Prim a => Vector a -> a Source #

O(1) First element, without checking if the vector is empty.

unsafeLast :: Prim a => Vector a -> a Source #

O(1) Last element, without checking if the vector is empty.

Monadic indexing

indexM :: (Prim a, Monad m) => Vector a -> Int -> m a Source #

O(1) Indexing in a monad.

The monad allows operations to be strict in the vector when necessary. Suppose vector copying is implemented like this:

copy mv v = ... write mv i (v ! i) ...

For lazy vectors, v ! i would not be evaluated which means that mv would unnecessarily retain a reference to v in each element written.

With indexM, copying can be implemented like this instead:

copy mv v = ... do
                  x <- indexM v i
                  write mv i x

Here, no references to v are retained because indexing (but not the element) is evaluated eagerly.

headM :: (Prim a, Monad m) => Vector a -> m a Source #

O(1) First element of a vector in a monad. See indexM for an explanation of why this is useful.

lastM :: (Prim a, Monad m) => Vector a -> m a Source #

O(1) Last element of a vector in a monad. See indexM for an explanation of why this is useful.

unsafeIndexM :: (Prim a, Monad m) => Vector a -> Int -> m a Source #

O(1) Indexing in a monad, without bounds checks. See indexM for an explanation of why this is useful.

unsafeHeadM :: (Prim a, Monad m) => Vector a -> m a Source #

O(1) First element in a monad, without checking for empty vectors. See indexM for an explanation of why this is useful.

unsafeLastM :: (Prim a, Monad m) => Vector a -> m a Source #

O(1) Last element in a monad, without checking for empty vectors. See indexM for an explanation of why this is useful.

Extracting subvectors (slicing)

slice Source #

Arguments

:: Prim a 
=> Int

i starting index

-> Int

n length

-> Vector a 
-> Vector a 

O(1) Yield a slice of the vector without copying it. The vector must contain at least i+n elements.

init :: Prim a => Vector a -> Vector a Source #

O(1) Yield all but the last element without copying. The vector may not be empty.

tail :: Prim a => Vector a -> Vector a Source #

O(1) Yield all but the first element without copying. The vector may not be empty.

take :: Prim a => Int -> Vector a -> Vector a Source #

O(1) Yield at the first n elements without copying. The vector may contain less than n elements, in which case it is returned unchanged.

drop :: Prim a => Int -> Vector a -> Vector a Source #

O(1) Yield all but the first n elements without copying. The vector may contain less than n elements, in which case an empty vector is returned.

splitAt :: Prim a => Int -> Vector a -> (Vector a, Vector a) Source #

O(1) Yield the first n elements paired with the remainder, without copying.

Note that splitAt n v is equivalent to (take n v, drop n v), but slightly more efficient.

Since: 0.7.1

uncons :: Prim a => Vector a -> Maybe (a, Vector a) Source #

O(1) Yield the head and tail of the vector, or Nothing if the vector is empty.

Since: 0.12.2.0

unsnoc :: Prim a => Vector a -> Maybe (Vector a, a) Source #

O(1) Yield the last and init of the vector, or Nothing if the vector is empty.

Since: 0.12.2.0

unsafeSlice Source #

Arguments

:: Prim a 
=> Int

i starting index

-> Int

n length

-> Vector a 
-> Vector a 

O(1) Yield a slice of the vector without copying. The vector must contain at least i+n elements, but this is not checked.

unsafeInit :: Prim a => Vector a -> Vector a Source #

O(1) Yield all but the last element without copying. The vector may not be empty, but this is not checked.

unsafeTail :: Prim a => Vector a -> Vector a Source #

O(1) Yield all but the first element without copying. The vector may not be empty, but this is not checked.

unsafeTake :: Prim a => Int -> Vector a -> Vector a Source #

O(1) Yield the first n elements without copying. The vector must contain at least n elements, but this is not checked.

unsafeDrop :: Prim a => Int -> Vector a -> Vector a Source #

O(1) Yield all but the first n elements without copying. The vector must contain at least n elements, but this is not checked.

Construction

Initialisation

empty :: Prim a => Vector a Source #

O(1) The empty vector.

singleton :: Prim a => a -> Vector a Source #

O(1) A vector with exactly one element.

replicate :: Prim a => Int -> a -> Vector a Source #

O(n) A vector of the given length with the same value in each position.

generate :: Prim a => Int -> (Int -> a) -> Vector a Source #

O(n) Construct a vector of the given length by applying the function to each index.

iterateN :: Prim a => Int -> (a -> a) -> a -> Vector a Source #

O(n) Apply the function \(\max(n - 1, 0)\) times to an initial value, producing a vector of length \(\max(n, 0)\). The 0th element will contain the initial value, which is why there is one less function application than the number of elements in the produced vector.

\( \underbrace{x, f (x), f (f (x)), \ldots}_{\max(0,n)\rm{~elements}} \)

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.iterateN 0 undefined undefined :: VP.Vector Int
[]
>>> VP.iterateN 26 succ 'a'
"abcdefghijklmnopqrstuvwxyz"

Since: 0.7.1

Monadic initialisation

replicateM :: (Monad m, Prim a) => Int -> m a -> m (Vector a) Source #

O(n) Execute the monadic action the given number of times and store the results in a vector.

generateM :: (Monad m, Prim a) => Int -> (Int -> m a) -> m (Vector a) Source #

O(n) Construct a vector of the given length by applying the monadic action to each index.

iterateNM :: (Monad m, Prim a) => Int -> (a -> m a) -> a -> m (Vector a) Source #

O(n) Apply the monadic function \(\max(n - 1, 0)\) times to an initial value, producing a vector of length \(\max(n, 0)\). The 0th element will contain the initial value, which is why there is one less function application than the number of elements in the produced vector.

For a non-monadic version, see iterateN.

Since: 0.12.0.0

create :: Prim a => (forall s. ST s (MVector s a)) -> Vector a Source #

Execute the monadic action and freeze the resulting vector.

create (do { v <- new 2; write v 0 'a'; write v 1 'b'; return v }) = <a,b>

createT :: (Traversable f, Prim a) => (forall s. ST s (f (MVector s a))) -> f (Vector a) Source #

Execute the monadic action and freeze the resulting vectors.

Unfolding

unfoldr :: Prim a => (b -> Maybe (a, b)) -> b -> Vector a Source #

O(n) Construct a vector by repeatedly applying the generator function to a seed. The generator function yields Just the next element and the new seed or Nothing if there are no more elements.

unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10
 = <10,9,8,7,6,5,4,3,2,1>

unfoldrN :: Prim a => Int -> (b -> Maybe (a, b)) -> b -> Vector a Source #

O(n) Construct a vector with at most n elements by repeatedly applying the generator function to a seed. The generator function yields Just the next element and the new seed or Nothing if there are no more elements.

unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8>

unfoldrExactN :: Prim a => Int -> (b -> (a, b)) -> b -> Vector a Source #

O(n) Construct a vector with exactly n elements by repeatedly applying the generator function to a seed. The generator function yields the next element and the new seed.

unfoldrExactN 3 (\n -> (n,n-1)) 10 = <10,9,8>

Since: 0.12.2.0

unfoldrM :: (Monad m, Prim a) => (b -> m (Maybe (a, b))) -> b -> m (Vector a) Source #

O(n) Construct a vector by repeatedly applying the monadic generator function to a seed. The generator function yields Just the next element and the new seed or Nothing if there are no more elements.

unfoldrNM :: (Monad m, Prim a) => Int -> (b -> m (Maybe (a, b))) -> b -> m (Vector a) Source #

O(n) Construct a vector by repeatedly applying the monadic generator function to a seed. The generator function yields Just the next element and the new seed or Nothing if there are no more elements.

unfoldrExactNM :: (Monad m, Prim a) => Int -> (b -> m (a, b)) -> b -> m (Vector a) Source #

O(n) Construct a vector with exactly n elements by repeatedly applying the monadic generator function to a seed. The generator function yields the next element and the new seed.

Since: 0.12.2.0

constructN :: Prim a => Int -> (Vector a -> a) -> Vector a Source #

O(n) Construct a vector with n elements by repeatedly applying the generator function to the already constructed part of the vector.

constructN 3 f = let a = f <> ; b = f <a> ; c = f <a,b> in <a,b,c>

constructrN :: Prim a => Int -> (Vector a -> a) -> Vector a Source #

O(n) Construct a vector with n elements from right to left by repeatedly applying the generator function to the already constructed part of the vector.

constructrN 3 f = let a = f <> ; b = f<a> ; c = f <b,a> in <c,b,a>

Enumeration

enumFromN :: (Prim a, Num a) => a -> Int -> Vector a Source #

O(n) Yield a vector of the given length, containing the values x, x+1 etc. This operation is usually more efficient than enumFromTo.

enumFromN 5 3 = <5,6,7>

enumFromStepN :: (Prim a, Num a) => a -> a -> Int -> Vector a Source #

O(n) Yield a vector of the given length, containing the values x, x+y, x+y+y etc. This operations is usually more efficient than enumFromThenTo.

enumFromStepN 1 2 5 = <1,3,5,7,9>

enumFromTo :: (Prim a, Enum a) => a -> a -> Vector a Source #

O(n) Enumerate values from x to y.

WARNING: This operation can be very inefficient. If possible, use enumFromN instead.

enumFromThenTo :: (Prim a, Enum a) => a -> a -> a -> Vector a Source #

O(n) Enumerate values from x to y with a specific step z.

WARNING: This operation can be very inefficient. If possible, use enumFromStepN instead.

Concatenation

cons :: Prim a => a -> Vector a -> Vector a Source #

O(n) Prepend an element.

snoc :: Prim a => Vector a -> a -> Vector a Source #

O(n) Append an element.

(++) :: Prim a => Vector a -> Vector a -> Vector a infixr 5 Source #

O(m+n) Concatenate two vectors.

concat :: Prim a => [Vector a] -> Vector a Source #

O(n) Concatenate all vectors in the list.

Restricting memory usage

force :: Prim a => Vector a -> Vector a Source #

O(n) Yield the argument, but force it not to retain any extra memory, by copying it.

This is especially useful when dealing with slices. For example:

force (slice 0 2 <huge vector>)

Here, the slice retains a reference to the huge vector. Forcing it creates a copy of just the elements that belong to the slice and allows the huge vector to be garbage collected.

Modifying vectors

Bulk updates

(//) Source #

Arguments

:: Prim a 
=> Vector a

initial vector (of length m)

-> [(Int, a)]

list of index/value pairs (of length n)

-> Vector a 

O(m+n) For each pair (i,a) from the list of index/value pairs, replace the vector element at position i by a.

<5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7>

update_ Source #

Arguments

:: Prim a 
=> Vector a

initial vector (of length m)

-> Vector Int

index vector (of length n1)

-> Vector a

value vector (of length n2)

-> Vector a 

O(m+min(n1,n2)) For each index i from the index vector and the corresponding value a from the value vector, replace the element of the initial vector at position i by a.

update_ <5,9,2,7>  <2,0,2> <1,3,8> = <3,9,8,7>

unsafeUpd :: Prim a => Vector a -> [(Int, a)] -> Vector a Source #

Same as (//), but without bounds checking.

unsafeUpdate_ :: Prim a => Vector a -> Vector Int -> Vector a -> Vector a Source #

Same as update_, but without bounds checking.

Accumulations

accum Source #

Arguments

:: Prim a 
=> (a -> b -> a)

accumulating function f

-> Vector a

initial vector (of length m)

-> [(Int, b)]

list of index/value pairs (of length n)

-> Vector a 

O(m+n) For each pair (i,b) from the list, replace the vector element a at position i by f a b.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.accum (+) (VP.fromList [1000,2000,3000 :: Int]) [(2,4),(1,6),(0,3),(1,10)]
[1003,2016,3004]

accumulate_ Source #

Arguments

:: (Prim a, Prim b) 
=> (a -> b -> a)

accumulating function f

-> Vector a

initial vector (of length m)

-> Vector Int

index vector (of length n1)

-> Vector b

value vector (of length n2)

-> Vector a 

O(m+min(n1,n2)) For each index i from the index vector and the corresponding value b from the value vector, replace the element of the initial vector at position i by f a b.

accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4>

unsafeAccum :: Prim a => (a -> b -> a) -> Vector a -> [(Int, b)] -> Vector a Source #

Same as accum, but without bounds checking.

unsafeAccumulate_ :: (Prim a, Prim b) => (a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a Source #

Same as accumulate_, but without bounds checking.

Permutations

reverse :: Prim a => Vector a -> Vector a Source #

O(n) Reverse a vector.

backpermute :: Prim a => Vector a -> Vector Int -> Vector a Source #

O(n) Yield the vector obtained by replacing each element i of the index vector by xs!i. This is equivalent to map (xs!) is, but is often much more efficient.

backpermute <a,b,c,d> <0,3,2,3,1,0> = <a,d,c,d,b,a>

unsafeBackpermute :: Prim a => Vector a -> Vector Int -> Vector a Source #

Same as backpermute, but without bounds checking.

Safe destructive updates

modify :: Prim a => (forall s. MVector s a -> ST s ()) -> Vector a -> Vector a Source #

Apply a destructive operation to a vector. The operation may be performed in place if it is safe to do so and will modify a copy of the vector otherwise (see New for details).

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> import qualified Data.Vector.Primitive.Mutable as MVP
>>> VP.modify (\v -> MVP.write v 0 'x') $ VP.replicate 4 'a'
"xaaa"

Elementwise operations

Mapping

map :: (Prim a, Prim b) => (a -> b) -> Vector a -> Vector b Source #

O(n) Map a function over a vector.

imap :: (Prim a, Prim b) => (Int -> a -> b) -> Vector a -> Vector b Source #

O(n) Apply a function to every element of a vector and its index.

concatMap :: (Prim a, Prim b) => (a -> Vector b) -> Vector a -> Vector b Source #

Map a function over a vector and concatenate the results.

Monadic mapping

mapM :: (Monad m, Prim a, Prim b) => (a -> m b) -> Vector a -> m (Vector b) Source #

O(n) Apply the monadic action to all elements of the vector, yielding a vector of results.

imapM :: (Monad m, Prim a, Prim b) => (Int -> a -> m b) -> Vector a -> m (Vector b) Source #

O(n) Apply the monadic action to every element of a vector and its index, yielding a vector of results.

Since: 0.12.2.0

mapM_ :: (Monad m, Prim a) => (a -> m b) -> Vector a -> m () Source #

O(n) Apply the monadic action to all elements of a vector and ignore the results.

imapM_ :: (Monad m, Prim a) => (Int -> a -> m b) -> Vector a -> m () Source #

O(n) Apply the monadic action to every element of a vector and its index, ignoring the results.

Since: 0.12.2.0

forM :: (Monad m, Prim a, Prim b) => Vector a -> (a -> m b) -> m (Vector b) Source #

O(n) Apply the monadic action to all elements of the vector, yielding a vector of results. Equivalent to flip mapM.

forM_ :: (Monad m, Prim a) => Vector a -> (a -> m b) -> m () Source #

O(n) Apply the monadic action to all elements of a vector and ignore the results. Equivalent to flip mapM_.

iforM :: (Monad m, Prim a, Prim b) => Vector a -> (Int -> a -> m b) -> m (Vector b) Source #

O(n) Apply the monadic action to all elements of the vector and their indices, yielding a vector of results. Equivalent to flip imapM.

Since: 0.12.2.0

iforM_ :: (Monad m, Prim a) => Vector a -> (Int -> a -> m b) -> m () Source #

O(n) Apply the monadic action to all elements of the vector and their indices and ignore the results. Equivalent to flip imapM_.

Since: 0.12.2.0

Zipping

zipWith :: (Prim a, Prim b, Prim c) => (a -> b -> c) -> Vector a -> Vector b -> Vector c Source #

O(min(m,n)) Zip two vectors with the given function.

zipWith3 :: (Prim a, Prim b, Prim c, Prim d) => (a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d Source #

Zip three vectors with the given function.

zipWith4 :: (Prim a, Prim b, Prim c, Prim d, Prim e) => (a -> b -> c -> d -> e) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e Source #

zipWith5 :: (Prim a, Prim b, Prim c, Prim d, Prim e, Prim f) => (a -> b -> c -> d -> e -> f) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f Source #

zipWith6 :: (Prim a, Prim b, Prim c, Prim d, Prim e, Prim f, Prim g) => (a -> b -> c -> d -> e -> f -> g) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f -> Vector g Source #

izipWith :: (Prim a, Prim b, Prim c) => (Int -> a -> b -> c) -> Vector a -> Vector b -> Vector c Source #

O(min(m,n)) Zip two vectors with a function that also takes the elements' indices.

izipWith3 :: (Prim a, Prim b, Prim c, Prim d) => (Int -> a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d Source #

Zip three vectors and their indices with the given function.

izipWith4 :: (Prim a, Prim b, Prim c, Prim d, Prim e) => (Int -> a -> b -> c -> d -> e) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e Source #

izipWith5 :: (Prim a, Prim b, Prim c, Prim d, Prim e, Prim f) => (Int -> a -> b -> c -> d -> e -> f) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f Source #

izipWith6 :: (Prim a, Prim b, Prim c, Prim d, Prim e, Prim f, Prim g) => (Int -> a -> b -> c -> d -> e -> f -> g) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f -> Vector g Source #

Monadic zipping

zipWithM :: (Monad m, Prim a, Prim b, Prim c) => (a -> b -> m c) -> Vector a -> Vector b -> m (Vector c) Source #

O(min(m,n)) Zip the two vectors with the monadic action and yield a vector of results.

izipWithM :: (Monad m, Prim a, Prim b, Prim c) => (Int -> a -> b -> m c) -> Vector a -> Vector b -> m (Vector c) Source #

O(min(m,n)) Zip the two vectors with a monadic action that also takes the element index and yield a vector of results.

Since: 0.12.2.0

zipWithM_ :: (Monad m, Prim a, Prim b) => (a -> b -> m c) -> Vector a -> Vector b -> m () Source #

O(min(m,n)) Zip the two vectors with the monadic action and ignore the results.

izipWithM_ :: (Monad m, Prim a, Prim b) => (Int -> a -> b -> m c) -> Vector a -> Vector b -> m () Source #

O(min(m,n)) Zip the two vectors with a monadic action that also takes the element index and ignore the results.

Since: 0.12.2.0

Working with predicates

Filtering

filter :: Prim a => (a -> Bool) -> Vector a -> Vector a Source #

O(n) Drop all elements that do not satisfy the predicate.

ifilter :: Prim a => (Int -> a -> Bool) -> Vector a -> Vector a Source #

O(n) Drop all elements that do not satisfy the predicate which is applied to the values and their indices.

filterM :: (Monad m, Prim a) => (a -> m Bool) -> Vector a -> m (Vector a) Source #

O(n) Drop all elements that do not satisfy the monadic predicate.

uniq :: (Prim a, Eq a) => Vector a -> Vector a Source #

O(n) Drop repeated adjacent elements. The first element in each group is returned.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.uniq $ VP.fromList [1,3,3,200,3 :: Int]
[1,3,200,3]

mapMaybe :: (Prim a, Prim b) => (a -> Maybe b) -> Vector a -> Vector b Source #

O(n) Map the values and collect the Just results.

imapMaybe :: (Prim a, Prim b) => (Int -> a -> Maybe b) -> Vector a -> Vector b Source #

O(n) Map the indices/values and collect the Just results.

mapMaybeM :: (Monad m, Prim a, Prim b) => (a -> m (Maybe b)) -> Vector a -> m (Vector b) Source #

O(n) Apply the monadic function to each element of the vector and discard elements returning Nothing.

Since: 0.12.2.0

imapMaybeM :: (Monad m, Prim a, Prim b) => (Int -> a -> m (Maybe b)) -> Vector a -> m (Vector b) Source #

O(n) Apply the monadic function to each element of the vector and its index. Discard elements returning Nothing.

Since: 0.12.2.0

takeWhile :: Prim a => (a -> Bool) -> Vector a -> Vector a Source #

O(n) Yield the longest prefix of elements satisfying the predicate. The current implementation is not copy-free, unless the result vector is fused away.

dropWhile :: Prim a => (a -> Bool) -> Vector a -> Vector a Source #

O(n) Drop the longest prefix of elements that satisfy the predicate without copying.

Partitioning

partition :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a) Source #

O(n) Split the vector in two parts, the first one containing those elements that satisfy the predicate and the second one those that don't. The relative order of the elements is preserved at the cost of a sometimes reduced performance compared to unstablePartition.

unstablePartition :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a) Source #

O(n) Split the vector in two parts, the first one containing those elements that satisfy the predicate and the second one those that don't. The order of the elements is not preserved, but the operation is often faster than partition.

partitionWith :: (Prim a, Prim b, Prim c) => (a -> Either b c) -> Vector a -> (Vector b, Vector c) Source #

O(n) Split the vector into two parts, the first one containing the Left elements and the second containing the Right elements. The relative order of the elements is preserved.

Since: 0.12.1.0

span :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a) Source #

O(n) Split the vector into the longest prefix of elements that satisfy the predicate and the rest without copying.

Does not fuse.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.span (<4) $ VP.generate 10 id
([0,1,2,3],[4,5,6,7,8,9])

break :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a) Source #

O(n) Split the vector into the longest prefix of elements that do not satisfy the predicate and the rest without copying.

Does not fuse.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.break (>4) $ VP.generate 10 id
([0,1,2,3,4],[5,6,7,8,9])

spanR :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a) Source #

O(n) Split the vector into the longest prefix of elements that satisfy the predicate and the rest without copying.

Does not fuse.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.spanR (>4) $ VP.generate 10 id
([5,6,7,8,9],[0,1,2,3,4])

breakR :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a) Source #

O(n) Split the vector into the longest prefix of elements that do not satisfy the predicate and the rest without copying.

Does not fuse.

@since NEXT_VERSION

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.breakR (<5) $ VP.generate 10 id
([5,6,7,8,9],[0,1,2,3,4])

groupBy :: Prim a => (a -> a -> Bool) -> Vector a -> [Vector a] Source #

O(n) Split a vector into a list of slices, using a predicate function.

The concatenation of this list of slices is equal to the argument vector, and each slice contains only equal elements, as determined by the equality predicate function.

Does not fuse.

>>> import qualified Data.Vector.Primitive as VP
>>> import           Data.Char (isUpper)
>>> VP.groupBy (\a b -> isUpper a == isUpper b) (VP.fromList "Mississippi River")
["M","ississippi ","R","iver"]

See also groupBy, group.

Since: 0.13.0.1

group :: (Prim a, Eq a) => Vector a -> [Vector a] Source #

O(n) Split a vector into a list of slices of the input vector.

The concatenation of this list of slices is equal to the argument vector, and each slice contains only equal elements.

Does not fuse.

This is the equivalent of 'groupBy (==)'.

>>> import qualified Data.Vector.Primitive as VP
>>> VP.group (VP.fromList "Mississippi")
["M","i","ss","i","ss","i","pp","i"]

See also group.

Since: 0.13.0.1

Searching

elem :: (Prim a, Eq a) => a -> Vector a -> Bool infix 4 Source #

O(n) Check if the vector contains an element.

notElem :: (Prim a, Eq a) => a -> Vector a -> Bool infix 4 Source #

O(n) Check if the vector does not contain an element (inverse of elem).

find :: Prim a => (a -> Bool) -> Vector a -> Maybe a Source #

O(n) Yield Just the first element matching the predicate or Nothing if no such element exists.

findIndex :: Prim a => (a -> Bool) -> Vector a -> Maybe Int Source #

O(n) Yield Just the index of the first element matching the predicate or Nothing if no such element exists.

findIndexR :: Prim a => (a -> Bool) -> Vector a -> Maybe Int Source #

O(n) Yield Just the index of the last element matching the predicate or Nothing if no such element exists.

Does not fuse.

findIndices :: Prim a => (a -> Bool) -> Vector a -> Vector Int Source #

O(n) Yield the indices of elements satisfying the predicate in ascending order.

elemIndex :: (Prim a, Eq a) => a -> Vector a -> Maybe Int Source #

O(n) Yield Just the index of the first occurrence of the given element or Nothing if the vector does not contain the element. This is a specialised version of findIndex.

elemIndices :: (Prim a, Eq a) => a -> Vector a -> Vector Int Source #

O(n) Yield the indices of all occurrences of the given element in ascending order. This is a specialised version of findIndices.

Folding

foldl :: Prim b => (a -> b -> a) -> a -> Vector b -> a Source #

O(n) Left fold.

foldl1 :: Prim a => (a -> a -> a) -> Vector a -> a Source #

O(n) Left fold on non-empty vectors.

foldl' :: Prim b => (a -> b -> a) -> a -> Vector b -> a Source #

O(n) Left fold with strict accumulator.

foldl1' :: Prim a => (a -> a -> a) -> Vector a -> a Source #

O(n) Left fold on non-empty vectors with strict accumulator.

foldr :: Prim a => (a -> b -> b) -> b -> Vector a -> b Source #

O(n) Right fold.

foldr1 :: Prim a => (a -> a -> a) -> Vector a -> a Source #

O(n) Right fold on non-empty vectors.

foldr' :: Prim a => (a -> b -> b) -> b -> Vector a -> b Source #

O(n) Right fold with a strict accumulator.

foldr1' :: Prim a => (a -> a -> a) -> Vector a -> a Source #

O(n) Right fold on non-empty vectors with strict accumulator.

ifoldl :: Prim b => (a -> Int -> b -> a) -> a -> Vector b -> a Source #

O(n) Left fold using a function applied to each element and its index.

ifoldl' :: Prim b => (a -> Int -> b -> a) -> a -> Vector b -> a Source #

O(n) Left fold with strict accumulator using a function applied to each element and its index.

ifoldr :: Prim a => (Int -> a -> b -> b) -> b -> Vector a -> b Source #

O(n) Right fold using a function applied to each element and its index.

ifoldr' :: Prim a => (Int -> a -> b -> b) -> b -> Vector a -> b Source #

O(n) Right fold with strict accumulator using a function applied to each element and its index.

foldMap :: (Monoid m, Prim a) => (a -> m) -> Vector a -> m Source #

O(n) Map each element of the structure to a monoid and combine the results. It uses the same implementation as the corresponding method of the Foldable type cless. Note that it's implemented in terms of foldr and won't fuse with functions that traverse the vector from left to right (map, generate, etc.).

Since: 0.12.2.0

foldMap' :: (Monoid m, Prim a) => (a -> m) -> Vector a -> m Source #

O(n) Like foldMap, but strict in the accumulator. It uses the same implementation as the corresponding method of the Foldable type class. Note that it's implemented in terms of foldl', so it fuses in most contexts.

Since: 0.12.2.0

Specialised folds

all :: Prim a => (a -> Bool) -> Vector a -> Bool Source #

O(n) Check if all elements satisfy the predicate.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.all even $ VP.fromList [2, 4, 12 :: Int]
True
>>> VP.all even $ VP.fromList [2, 4, 13 :: Int]
False
>>> VP.all even (VP.empty :: VP.Vector Int)
True

any :: Prim a => (a -> Bool) -> Vector a -> Bool Source #

O(n) Check if any element satisfies the predicate.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.any even $ VP.fromList [1, 3, 7 :: Int]
False
>>> VP.any even $ VP.fromList [3, 2, 13 :: Int]
True
>>> VP.any even (VP.empty :: VP.Vector Int)
False

sum :: (Prim a, Num a) => Vector a -> a Source #

O(n) Compute the sum of the elements.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.sum $ VP.fromList [300,20,1 :: Int]
321
>>> VP.sum (VP.empty :: VP.Vector Int)
0

product :: (Prim a, Num a) => Vector a -> a Source #

O(n) Compute the product of the elements.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.product $ VP.fromList [1,2,3,4 :: Int]
24
>>> VP.product (VP.empty :: VP.Vector Int)
1

maximum :: (Prim a, Ord a) => Vector a -> a Source #

O(n) Yield the maximum element of the vector. The vector may not be empty. In case of a tie, the first occurrence wins.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.maximum $ VP.fromList [2, 1 :: Int]
2

maximumBy :: Prim a => (a -> a -> Ordering) -> Vector a -> a Source #

O(n) Yield the maximum element of the vector according to the given comparison function. The vector may not be empty. In case of a tie, the first occurrence wins. This behavior is different from maximumBy which returns the last tie.

maximumOn :: (Ord b, Prim a) => (a -> b) -> Vector a -> a Source #

O(n) Yield the maximum element of the vector by comparing the results of a key function on each element. In case of a tie, the first occurrence wins. The vector may not be empty.

Since: 0.13.0.0

minimum :: (Prim a, Ord a) => Vector a -> a Source #

O(n) Yield the minimum element of the vector. The vector may not be empty. In case of a tie, the first occurrence wins.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.minimum $ VP.fromList [2, 1 :: Int]
1

minimumBy :: Prim a => (a -> a -> Ordering) -> Vector a -> a Source #

O(n) Yield the minimum element of the vector according to the given comparison function. The vector may not be empty. In case of a tie, the first occurrence wins.

minimumOn :: (Ord b, Prim a) => (a -> b) -> Vector a -> a Source #

O(n) Yield the minimum element of the vector by comparing the results of a key function on each element. In case of a tie, the first occurrence wins. The vector may not be empty.

Since: 0.13.0.0

minIndex :: (Prim a, Ord a) => Vector a -> Int Source #

O(n) Yield the index of the minimum element of the vector. The vector may not be empty.

minIndexBy :: Prim a => (a -> a -> Ordering) -> Vector a -> Int Source #

O(n) Yield the index of the minimum element of the vector according to the given comparison function. The vector may not be empty.

maxIndex :: (Prim a, Ord a) => Vector a -> Int Source #

O(n) Yield the index of the maximum element of the vector. The vector may not be empty.

maxIndexBy :: Prim a => (a -> a -> Ordering) -> Vector a -> Int Source #

O(n) Yield the index of the maximum element of the vector according to the given comparison function. The vector may not be empty. In case of a tie, the first occurrence wins.

Monadic folds

foldM :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m a Source #

O(n) Monadic fold.

ifoldM :: (Monad m, Prim b) => (a -> Int -> b -> m a) -> a -> Vector b -> m a Source #

O(n) Monadic fold using a function applied to each element and its index.

Since: 0.12.2.0

foldM' :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m a Source #

O(n) Monadic fold with strict accumulator.

ifoldM' :: (Monad m, Prim b) => (a -> Int -> b -> m a) -> a -> Vector b -> m a Source #

O(n) Monadic fold with strict accumulator using a function applied to each element and its index.

Since: 0.12.2.0

fold1M :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m a Source #

O(n) Monadic fold over non-empty vectors.

fold1M' :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m a Source #

O(n) Monadic fold over non-empty vectors with strict accumulator.

foldM_ :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m () Source #

O(n) Monadic fold that discards the result.

ifoldM_ :: (Monad m, Prim b) => (a -> Int -> b -> m a) -> a -> Vector b -> m () Source #

O(n) Monadic fold that discards the result using a function applied to each element and its index.

Since: 0.12.2.0

foldM'_ :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m () Source #

O(n) Monadic fold with strict accumulator that discards the result.

ifoldM'_ :: (Monad m, Prim b) => (a -> Int -> b -> m a) -> a -> Vector b -> m () Source #

O(n) Monadic fold with strict accumulator that discards the result using a function applied to each element and its index.

Since: 0.12.2.0

fold1M_ :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m () Source #

O(n) Monadic fold over non-empty vectors that discards the result.

fold1M'_ :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m () Source #

O(n) Monadic fold over non-empty vectors with strict accumulator that discards the result.

Scans

prescanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a Source #

O(n) Left-to-right prescan.

prescanl f z = init . scanl f z

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.prescanl (+) 0 (VP.fromList [1,2,3,4 :: Int])
[0,1,3,6]

prescanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a Source #

O(n) Left-to-right prescan with strict accumulator.

postscanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a Source #

O(n) Left-to-right postscan.

postscanl f z = tail . scanl f z

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.postscanl (+) 0 (VP.fromList [1,2,3,4 :: Int])
[1,3,6,10]

postscanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a Source #

O(n) Left-to-right postscan with strict accumulator.

scanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a Source #

O(n) Left-to-right scan.

scanl f z <x1,...,xn> = <y1,...,y(n+1)>
  where y1 = z
        yi = f y(i-1) x(i-1)

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.scanl (+) 0 (VP.fromList [1,2,3,4 :: Int])
[0,1,3,6,10]

scanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a Source #

O(n) Left-to-right scan with strict accumulator.

scanl1 :: Prim a => (a -> a -> a) -> Vector a -> Vector a Source #

O(n) Initial-value free left-to-right scan over a vector.

scanl f <x1,...,xn> = <y1,...,yn>
  where y1 = x1
        yi = f y(i-1) xi

Note: Since 0.13, application of this to an empty vector no longer results in an error; instead it produces an empty vector.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.scanl1 min $ VP.fromListN 5 [4,2,4,1,3 :: Int]
[4,2,2,1,1]
>>> VP.scanl1 max $ VP.fromListN 5 [1,3,2,5,4 :: Int]
[1,3,3,5,5]
>>> VP.scanl1 min (VP.empty :: VP.Vector Int)
[]

scanl1' :: Prim a => (a -> a -> a) -> Vector a -> Vector a Source #

O(n) Initial-value free left-to-right scan over a vector with a strict accumulator.

Note: Since 0.13, application of this to an empty vector no longer results in an error; instead it produces an empty vector.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.scanl1' min $ VP.fromListN 5 [4,2,4,1,3 :: Int]
[4,2,2,1,1]
>>> VP.scanl1' max $ VP.fromListN 5 [1,3,2,5,4 :: Int]
[1,3,3,5,5]
>>> VP.scanl1' min (VP.empty :: VP.Vector Int)
[]

iscanl :: (Prim a, Prim b) => (Int -> a -> b -> a) -> a -> Vector b -> Vector a Source #

O(n) Left-to-right scan over a vector with its index.

Since: 0.12.2.0

iscanl' :: (Prim a, Prim b) => (Int -> a -> b -> a) -> a -> Vector b -> Vector a Source #

O(n) Left-to-right scan over a vector (strictly) with its index.

Since: 0.12.2.0

prescanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b Source #

O(n) Right-to-left prescan.

prescanr f z = reverse . prescanl (flip f) z . reverse

prescanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b Source #

O(n) Right-to-left prescan with strict accumulator.

postscanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b Source #

O(n) Right-to-left postscan.

postscanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b Source #

O(n) Right-to-left postscan with strict accumulator.

scanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b Source #

O(n) Right-to-left scan.

scanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b Source #

O(n) Right-to-left scan with strict accumulator.

scanr1 :: Prim a => (a -> a -> a) -> Vector a -> Vector a Source #

O(n) Right-to-left, initial-value free scan over a vector.

Note: Since 0.13, application of this to an empty vector no longer results in an error; instead it produces an empty vector.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.scanr1 min $ VP.fromListN 5 [3,1,4,2,4 :: Int]
[1,1,2,2,4]
>>> VP.scanr1 max $ VP.fromListN 5 [4,5,2,3,1 :: Int]
[5,5,3,3,1]
>>> VP.scanr1 min (VP.empty :: VP.Vector Int)
[]

scanr1' :: Prim a => (a -> a -> a) -> Vector a -> Vector a Source #

O(n) Right-to-left, initial-value free scan over a vector with a strict accumulator.

Note: Since 0.13, application of this to an empty vector no longer results in an error; instead it produces an empty vector.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.scanr1' min $ VP.fromListN 5 [3,1,4,2,4 :: Int]
[1,1,2,2,4]
>>> VP.scanr1' max $ VP.fromListN 5 [4,5,2,3,1 :: Int]
[5,5,3,3,1]
>>> VP.scanr1' min (VP.empty :: VP.Vector Int)
[]

iscanr :: (Prim a, Prim b) => (Int -> a -> b -> b) -> b -> Vector a -> Vector b Source #

O(n) Right-to-left scan over a vector with its index.

Since: 0.12.2.0

iscanr' :: (Prim a, Prim b) => (Int -> a -> b -> b) -> b -> Vector a -> Vector b Source #

O(n) Right-to-left scan over a vector (strictly) with its index.

Since: 0.12.2.0

Comparisons

eqBy :: (Prim a, Prim b) => (a -> b -> Bool) -> Vector a -> Vector b -> Bool Source #

O(n) Check if two vectors are equal using the supplied equality predicate.

Since: 0.12.2.0

cmpBy :: (Prim a, Prim b) => (a -> b -> Ordering) -> Vector a -> Vector b -> Ordering Source #

O(n) Compare two vectors using the supplied comparison function for vector elements. Comparison works the same as for lists.

cmpBy compare == compare

Since: 0.12.2.0

Conversions

Lists

toList :: Prim a => Vector a -> [a] Source #

O(n) Convert a vector to a list.

fromList :: Prim a => [a] -> Vector a Source #

O(n) Convert a list to a vector. During the operation, the vector’s capacity will be doubling until the list's contents are in the vector. Depending on the list’s size, up to half of the vector’s capacity might be empty. If you’d rather avoid this, you can use fromListN, which will provide the exact space the list requires but will prevent list fusion, or force . fromList, which will create the vector and then copy it without the superfluous space.

Since: 0.4

fromListN :: Prim a => Int -> [a] -> Vector a Source #

O(n) Convert the first n elements of a list to a vector. It's expected that the supplied list will be exactly n elements long. As an optimization, this function allocates a buffer for n elements, which could be used for DoS-attacks by exhausting the memory if an attacker controls that parameter.

fromListN n xs = fromList (take n xs)

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> VP.fromListN 3 [1,2,3,4,5 :: Int]
[1,2,3]
>>> VP.fromListN 3 [1 :: Int]
[1]

Other vector types

convert :: (Vector v a, Vector w a) => v a -> w a Source #

O(n) Convert between different vector types.

unsafeCast :: (HasCallStack, Prim a, Prim b) => Vector a -> Vector b Source #

O(1) Unsafely cast a vector from one element type to another. This operation just changes the type of the vector and does not modify the elements.

This function will throw an error if elements are of mismatching sizes.

| @since 0.13.0.0

unsafeCoerceVector :: Coercible a b => Vector a -> Vector b Source #

O(1) Unsafely coerce an immutable vector from one element type to another, representationally equal type. The operation just changes the type of the underlying pointer and does not modify the elements.

This is marginally safer than unsafeCast, since this function imposes an extra Coercible constraint. The constraint guarantees that the element types are representationally equal. It however cannot guarantee that their respective Prim instances are compatible.

Mutable vectors

freeze :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> m (Vector a) Source #

O(n) Yield an immutable copy of the mutable vector.

thaw :: (Prim a, PrimMonad m) => Vector a -> m (MVector (PrimState m) a) Source #

O(n) Yield a mutable copy of an immutable vector.

copy :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m () Source #

O(n) Copy an immutable vector into a mutable one. The two vectors must have the same length.

unsafeFreeze :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> m (Vector a) Source #

O(1) Unsafely convert a mutable vector to an immutable one without copying. The mutable vector may not be used after this operation.

unsafeThaw :: (Prim a, PrimMonad m) => Vector a -> m (MVector (PrimState m) a) Source #

O(1) Unsafely convert an immutable vector to a mutable one without copying. Note that this is a very dangerous function and generally it's only safe to read from the resulting vector. In this case, the immutable vector could be used safely as well.

Problems with mutation happen because GHC has a lot of freedom to introduce sharing. As a result mutable vectors produced by unsafeThaw may or may not share the same underlying buffer. For example:

foo = do
  let vec = V.generate 10 id
  mvec <- V.unsafeThaw vec
  do_something mvec

Here GHC could lift vec outside of foo which means that all calls to do_something will use same buffer with possibly disastrous results. Whether such aliasing happens or not depends on the program in question, optimization levels, and GHC flags.

All in all, attempts to modify a vector produced by unsafeThaw fall out of domain of software engineering and into realm of black magic, dark rituals, and unspeakable horrors. The only advice that could be given is: "Don't attempt to mutate a vector produced by unsafeThaw unless you know how to prevent GHC from aliasing buffers accidentally. We don't."

unsafeCopy :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m () Source #

O(n) Copy an immutable vector into a mutable one. The two vectors must have the same length. This is not checked.

Re-exports

class Prim a #

Minimal complete definition

(sizeOfType# | sizeOf#), (alignmentOfType# | alignment#), indexByteArray#, readByteArray#, writeByteArray#, indexOffAddr#, readOffAddr#, writeOffAddr#

Instances

Instances details
Prim CBool 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CBool -> Int#

sizeOf# :: CBool -> Int#

alignmentOfType# :: Proxy CBool -> Int#

alignment# :: CBool -> Int#

indexByteArray# :: ByteArray# -> Int# -> CBool

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CBool #)

writeByteArray# :: MutableByteArray# s -> Int# -> CBool -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CBool -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CBool

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CBool #)

writeOffAddr# :: Addr# -> Int# -> CBool -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CBool -> State# s -> State# s

Prim CChar 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CChar -> Int#

sizeOf# :: CChar -> Int#

alignmentOfType# :: Proxy CChar -> Int#

alignment# :: CChar -> Int#

indexByteArray# :: ByteArray# -> Int# -> CChar

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CChar #)

writeByteArray# :: MutableByteArray# s -> Int# -> CChar -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CChar -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CChar

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CChar #)

writeOffAddr# :: Addr# -> Int# -> CChar -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CChar -> State# s -> State# s

Prim CClock 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CClock -> Int#

sizeOf# :: CClock -> Int#

alignmentOfType# :: Proxy CClock -> Int#

alignment# :: CClock -> Int#

indexByteArray# :: ByteArray# -> Int# -> CClock

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CClock #)

writeByteArray# :: MutableByteArray# s -> Int# -> CClock -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CClock -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CClock

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CClock #)

writeOffAddr# :: Addr# -> Int# -> CClock -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CClock -> State# s -> State# s

Prim CDouble 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CDouble -> Int#

sizeOf# :: CDouble -> Int#

alignmentOfType# :: Proxy CDouble -> Int#

alignment# :: CDouble -> Int#

indexByteArray# :: ByteArray# -> Int# -> CDouble

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CDouble #)

writeByteArray# :: MutableByteArray# s -> Int# -> CDouble -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CDouble -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CDouble

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CDouble #)

writeOffAddr# :: Addr# -> Int# -> CDouble -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CDouble -> State# s -> State# s

Prim CFloat 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CFloat -> Int#

sizeOf# :: CFloat -> Int#

alignmentOfType# :: Proxy CFloat -> Int#

alignment# :: CFloat -> Int#

indexByteArray# :: ByteArray# -> Int# -> CFloat

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CFloat #)

writeByteArray# :: MutableByteArray# s -> Int# -> CFloat -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CFloat -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CFloat

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CFloat #)

writeOffAddr# :: Addr# -> Int# -> CFloat -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CFloat -> State# s -> State# s

Prim CInt 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CInt -> Int#

sizeOf# :: CInt -> Int#

alignmentOfType# :: Proxy CInt -> Int#

alignment# :: CInt -> Int#

indexByteArray# :: ByteArray# -> Int# -> CInt

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CInt #)

writeByteArray# :: MutableByteArray# s -> Int# -> CInt -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CInt -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CInt

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CInt #)

writeOffAddr# :: Addr# -> Int# -> CInt -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CInt -> State# s -> State# s

Prim CIntMax 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CIntMax -> Int#

sizeOf# :: CIntMax -> Int#

alignmentOfType# :: Proxy CIntMax -> Int#

alignment# :: CIntMax -> Int#

indexByteArray# :: ByteArray# -> Int# -> CIntMax

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CIntMax #)

writeByteArray# :: MutableByteArray# s -> Int# -> CIntMax -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CIntMax -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CIntMax

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CIntMax #)

writeOffAddr# :: Addr# -> Int# -> CIntMax -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CIntMax -> State# s -> State# s

Prim CIntPtr 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CIntPtr -> Int#

sizeOf# :: CIntPtr -> Int#

alignmentOfType# :: Proxy CIntPtr -> Int#

alignment# :: CIntPtr -> Int#

indexByteArray# :: ByteArray# -> Int# -> CIntPtr

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CIntPtr #)

writeByteArray# :: MutableByteArray# s -> Int# -> CIntPtr -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CIntPtr -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CIntPtr

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CIntPtr #)

writeOffAddr# :: Addr# -> Int# -> CIntPtr -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CIntPtr -> State# s -> State# s

Prim CLLong 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CLLong -> Int#

sizeOf# :: CLLong -> Int#

alignmentOfType# :: Proxy CLLong -> Int#

alignment# :: CLLong -> Int#

indexByteArray# :: ByteArray# -> Int# -> CLLong

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CLLong #)

writeByteArray# :: MutableByteArray# s -> Int# -> CLLong -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CLLong -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CLLong

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CLLong #)

writeOffAddr# :: Addr# -> Int# -> CLLong -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CLLong -> State# s -> State# s

Prim CLong 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CLong -> Int#

sizeOf# :: CLong -> Int#

alignmentOfType# :: Proxy CLong -> Int#

alignment# :: CLong -> Int#

indexByteArray# :: ByteArray# -> Int# -> CLong

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CLong #)

writeByteArray# :: MutableByteArray# s -> Int# -> CLong -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CLong -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CLong

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CLong #)

writeOffAddr# :: Addr# -> Int# -> CLong -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CLong -> State# s -> State# s

Prim CPtrdiff 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CPtrdiff -> Int#

sizeOf# :: CPtrdiff -> Int#

alignmentOfType# :: Proxy CPtrdiff -> Int#

alignment# :: CPtrdiff -> Int#

indexByteArray# :: ByteArray# -> Int# -> CPtrdiff

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CPtrdiff #)

writeByteArray# :: MutableByteArray# s -> Int# -> CPtrdiff -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CPtrdiff -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CPtrdiff

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CPtrdiff #)

writeOffAddr# :: Addr# -> Int# -> CPtrdiff -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CPtrdiff -> State# s -> State# s

Prim CSChar 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CSChar -> Int#

sizeOf# :: CSChar -> Int#

alignmentOfType# :: Proxy CSChar -> Int#

alignment# :: CSChar -> Int#

indexByteArray# :: ByteArray# -> Int# -> CSChar

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CSChar #)

writeByteArray# :: MutableByteArray# s -> Int# -> CSChar -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CSChar -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CSChar

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CSChar #)

writeOffAddr# :: Addr# -> Int# -> CSChar -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CSChar -> State# s -> State# s

Prim CSUSeconds 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CSUSeconds -> Int#

sizeOf# :: CSUSeconds -> Int#

alignmentOfType# :: Proxy CSUSeconds -> Int#

alignment# :: CSUSeconds -> Int#

indexByteArray# :: ByteArray# -> Int# -> CSUSeconds

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CSUSeconds #)

writeByteArray# :: MutableByteArray# s -> Int# -> CSUSeconds -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CSUSeconds -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CSUSeconds

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CSUSeconds #)

writeOffAddr# :: Addr# -> Int# -> CSUSeconds -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CSUSeconds -> State# s -> State# s

Prim CShort 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CShort -> Int#

sizeOf# :: CShort -> Int#

alignmentOfType# :: Proxy CShort -> Int#

alignment# :: CShort -> Int#

indexByteArray# :: ByteArray# -> Int# -> CShort

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CShort #)

writeByteArray# :: MutableByteArray# s -> Int# -> CShort -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CShort -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CShort

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CShort #)

writeOffAddr# :: Addr# -> Int# -> CShort -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CShort -> State# s -> State# s

Prim CSigAtomic 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CSigAtomic -> Int#

sizeOf# :: CSigAtomic -> Int#

alignmentOfType# :: Proxy CSigAtomic -> Int#

alignment# :: CSigAtomic -> Int#

indexByteArray# :: ByteArray# -> Int# -> CSigAtomic

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CSigAtomic #)

writeByteArray# :: MutableByteArray# s -> Int# -> CSigAtomic -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CSigAtomic -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CSigAtomic

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CSigAtomic #)

writeOffAddr# :: Addr# -> Int# -> CSigAtomic -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CSigAtomic -> State# s -> State# s

Prim CSize 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CSize -> Int#

sizeOf# :: CSize -> Int#

alignmentOfType# :: Proxy CSize -> Int#

alignment# :: CSize -> Int#

indexByteArray# :: ByteArray# -> Int# -> CSize

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CSize #)

writeByteArray# :: MutableByteArray# s -> Int# -> CSize -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CSize -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CSize

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CSize #)

writeOffAddr# :: Addr# -> Int# -> CSize -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CSize -> State# s -> State# s

Prim CTime 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CTime -> Int#

sizeOf# :: CTime -> Int#

alignmentOfType# :: Proxy CTime -> Int#

alignment# :: CTime -> Int#

indexByteArray# :: ByteArray# -> Int# -> CTime

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CTime #)

writeByteArray# :: MutableByteArray# s -> Int# -> CTime -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CTime -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CTime

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CTime #)

writeOffAddr# :: Addr# -> Int# -> CTime -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CTime -> State# s -> State# s

Prim CUChar 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CUChar -> Int#

sizeOf# :: CUChar -> Int#

alignmentOfType# :: Proxy CUChar -> Int#

alignment# :: CUChar -> Int#

indexByteArray# :: ByteArray# -> Int# -> CUChar

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CUChar #)

writeByteArray# :: MutableByteArray# s -> Int# -> CUChar -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CUChar -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CUChar

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CUChar #)

writeOffAddr# :: Addr# -> Int# -> CUChar -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CUChar -> State# s -> State# s

Prim CUInt 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CUInt -> Int#

sizeOf# :: CUInt -> Int#

alignmentOfType# :: Proxy CUInt -> Int#

alignment# :: CUInt -> Int#

indexByteArray# :: ByteArray# -> Int# -> CUInt

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CUInt #)

writeByteArray# :: MutableByteArray# s -> Int# -> CUInt -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CUInt -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CUInt

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CUInt #)

writeOffAddr# :: Addr# -> Int# -> CUInt -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CUInt -> State# s -> State# s

Prim CUIntMax 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CUIntMax -> Int#

sizeOf# :: CUIntMax -> Int#

alignmentOfType# :: Proxy CUIntMax -> Int#

alignment# :: CUIntMax -> Int#

indexByteArray# :: ByteArray# -> Int# -> CUIntMax

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CUIntMax #)

writeByteArray# :: MutableByteArray# s -> Int# -> CUIntMax -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CUIntMax -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CUIntMax

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CUIntMax #)

writeOffAddr# :: Addr# -> Int# -> CUIntMax -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CUIntMax -> State# s -> State# s

Prim CUIntPtr 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CUIntPtr -> Int#

sizeOf# :: CUIntPtr -> Int#

alignmentOfType# :: Proxy CUIntPtr -> Int#

alignment# :: CUIntPtr -> Int#

indexByteArray# :: ByteArray# -> Int# -> CUIntPtr

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CUIntPtr #)

writeByteArray# :: MutableByteArray# s -> Int# -> CUIntPtr -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CUIntPtr -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CUIntPtr

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CUIntPtr #)

writeOffAddr# :: Addr# -> Int# -> CUIntPtr -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CUIntPtr -> State# s -> State# s

Prim CULLong 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CULLong -> Int#

sizeOf# :: CULLong -> Int#

alignmentOfType# :: Proxy CULLong -> Int#

alignment# :: CULLong -> Int#

indexByteArray# :: ByteArray# -> Int# -> CULLong

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CULLong #)

writeByteArray# :: MutableByteArray# s -> Int# -> CULLong -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CULLong -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CULLong

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CULLong #)

writeOffAddr# :: Addr# -> Int# -> CULLong -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CULLong -> State# s -> State# s

Prim CULong 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CULong -> Int#

sizeOf# :: CULong -> Int#

alignmentOfType# :: Proxy CULong -> Int#

alignment# :: CULong -> Int#

indexByteArray# :: ByteArray# -> Int# -> CULong

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CULong #)

writeByteArray# :: MutableByteArray# s -> Int# -> CULong -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CULong -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CULong

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CULong #)

writeOffAddr# :: Addr# -> Int# -> CULong -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CULong -> State# s -> State# s

Prim CUSeconds 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CUSeconds -> Int#

sizeOf# :: CUSeconds -> Int#

alignmentOfType# :: Proxy CUSeconds -> Int#

alignment# :: CUSeconds -> Int#

indexByteArray# :: ByteArray# -> Int# -> CUSeconds

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CUSeconds #)

writeByteArray# :: MutableByteArray# s -> Int# -> CUSeconds -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CUSeconds -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CUSeconds

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CUSeconds #)

writeOffAddr# :: Addr# -> Int# -> CUSeconds -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CUSeconds -> State# s -> State# s

Prim CUShort 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CUShort -> Int#

sizeOf# :: CUShort -> Int#

alignmentOfType# :: Proxy CUShort -> Int#

alignment# :: CUShort -> Int#

indexByteArray# :: ByteArray# -> Int# -> CUShort

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CUShort #)

writeByteArray# :: MutableByteArray# s -> Int# -> CUShort -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CUShort -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CUShort

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CUShort #)

writeOffAddr# :: Addr# -> Int# -> CUShort -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CUShort -> State# s -> State# s

Prim CWchar 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CWchar -> Int#

sizeOf# :: CWchar -> Int#

alignmentOfType# :: Proxy CWchar -> Int#

alignment# :: CWchar -> Int#

indexByteArray# :: ByteArray# -> Int# -> CWchar

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CWchar #)

writeByteArray# :: MutableByteArray# s -> Int# -> CWchar -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CWchar -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CWchar

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CWchar #)

writeOffAddr# :: Addr# -> Int# -> CWchar -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CWchar -> State# s -> State# s

Prim IntPtr 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy IntPtr -> Int#

sizeOf# :: IntPtr -> Int#

alignmentOfType# :: Proxy IntPtr -> Int#

alignment# :: IntPtr -> Int#

indexByteArray# :: ByteArray# -> Int# -> IntPtr

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, IntPtr #)

writeByteArray# :: MutableByteArray# s -> Int# -> IntPtr -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> IntPtr -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> IntPtr

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, IntPtr #)

writeOffAddr# :: Addr# -> Int# -> IntPtr -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> IntPtr -> State# s -> State# s

Prim WordPtr 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy WordPtr -> Int#

sizeOf# :: WordPtr -> Int#

alignmentOfType# :: Proxy WordPtr -> Int#

alignment# :: WordPtr -> Int#

indexByteArray# :: ByteArray# -> Int# -> WordPtr

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, WordPtr #)

writeByteArray# :: MutableByteArray# s -> Int# -> WordPtr -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> WordPtr -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> WordPtr

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, WordPtr #)

writeOffAddr# :: Addr# -> Int# -> WordPtr -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> WordPtr -> State# s -> State# s

Prim Int16 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy Int16 -> Int#

sizeOf# :: Int16 -> Int#

alignmentOfType# :: Proxy Int16 -> Int#

alignment# :: Int16 -> Int#

indexByteArray# :: ByteArray# -> Int# -> Int16

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Int16 #)

writeByteArray# :: MutableByteArray# s -> Int# -> Int16 -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Int16 -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Int16

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Int16 #)

writeOffAddr# :: Addr# -> Int# -> Int16 -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Int16 -> State# s -> State# s

Prim Int32 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy Int32 -> Int#

sizeOf# :: Int32 -> Int#

alignmentOfType# :: Proxy Int32 -> Int#

alignment# :: Int32 -> Int#

indexByteArray# :: ByteArray# -> Int# -> Int32

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Int32 #)

writeByteArray# :: MutableByteArray# s -> Int# -> Int32 -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Int32 -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Int32

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Int32 #)

writeOffAddr# :: Addr# -> Int# -> Int32 -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Int32 -> State# s -> State# s

Prim Int64 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy Int64 -> Int#

sizeOf# :: Int64 -> Int#

alignmentOfType# :: Proxy Int64 -> Int#

alignment# :: Int64 -> Int#

indexByteArray# :: ByteArray# -> Int# -> Int64

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Int64 #)

writeByteArray# :: MutableByteArray# s -> Int# -> Int64 -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Int64 -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Int64

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Int64 #)

writeOffAddr# :: Addr# -> Int# -> Int64 -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Int64 -> State# s -> State# s

Prim Int8 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy Int8 -> Int#

sizeOf# :: Int8 -> Int#

alignmentOfType# :: Proxy Int8 -> Int#

alignment# :: Int8 -> Int#

indexByteArray# :: ByteArray# -> Int# -> Int8

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Int8 #)

writeByteArray# :: MutableByteArray# s -> Int# -> Int8 -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Int8 -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Int8

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Int8 #)

writeOffAddr# :: Addr# -> Int# -> Int8 -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Int8 -> State# s -> State# s

Prim Word16 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy Word16 -> Int#

sizeOf# :: Word16 -> Int#

alignmentOfType# :: Proxy Word16 -> Int#

alignment# :: Word16 -> Int#

indexByteArray# :: ByteArray# -> Int# -> Word16

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Word16 #)

writeByteArray# :: MutableByteArray# s -> Int# -> Word16 -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Word16 -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Word16

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Word16 #)

writeOffAddr# :: Addr# -> Int# -> Word16 -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Word16 -> State# s -> State# s

Prim Word32 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy Word32 -> Int#

sizeOf# :: Word32 -> Int#

alignmentOfType# :: Proxy Word32 -> Int#

alignment# :: Word32 -> Int#

indexByteArray# :: ByteArray# -> Int# -> Word32

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Word32 #)

writeByteArray# :: MutableByteArray# s -> Int# -> Word32 -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Word32 -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Word32

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Word32 #)

writeOffAddr# :: Addr# -> Int# -> Word32 -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Word32 -> State# s -> State# s

Prim Word64 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy Word64 -> Int#

sizeOf# :: Word64 -> Int#

alignmentOfType# :: Proxy Word64 -> Int#

alignment# :: Word64 -> Int#

indexByteArray# :: ByteArray# -> Int# -> Word64

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Word64 #)

writeByteArray# :: MutableByteArray# s -> Int# -> Word64 -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Word64 -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Word64

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Word64 #)

writeOffAddr# :: Addr# -> Int# -> Word64 -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Word64 -> State# s -> State# s

Prim Word8 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy Word8 -> Int#

sizeOf# :: Word8 -> Int#

alignmentOfType# :: Proxy Word8 -> Int#

alignment# :: Word8 -> Int#

indexByteArray# :: ByteArray# -> Int# -> Word8

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Word8 #)

writeByteArray# :: MutableByteArray# s -> Int# -> Word8 -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Word8 -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Word8

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Word8 #)

writeOffAddr# :: Addr# -> Int# -> Word8 -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Word8 -> State# s -> State# s

Prim CBlkCnt 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CBlkCnt -> Int#

sizeOf# :: CBlkCnt -> Int#

alignmentOfType# :: Proxy CBlkCnt -> Int#

alignment# :: CBlkCnt -> Int#

indexByteArray# :: ByteArray# -> Int# -> CBlkCnt

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CBlkCnt #)

writeByteArray# :: MutableByteArray# s -> Int# -> CBlkCnt -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CBlkCnt -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CBlkCnt

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CBlkCnt #)

writeOffAddr# :: Addr# -> Int# -> CBlkCnt -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CBlkCnt -> State# s -> State# s

Prim CBlkSize 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CBlkSize -> Int#

sizeOf# :: CBlkSize -> Int#

alignmentOfType# :: Proxy CBlkSize -> Int#

alignment# :: CBlkSize -> Int#

indexByteArray# :: ByteArray# -> Int# -> CBlkSize

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CBlkSize #)

writeByteArray# :: MutableByteArray# s -> Int# -> CBlkSize -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CBlkSize -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CBlkSize

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CBlkSize #)

writeOffAddr# :: Addr# -> Int# -> CBlkSize -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CBlkSize -> State# s -> State# s

Prim CCc 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CCc -> Int#

sizeOf# :: CCc -> Int#

alignmentOfType# :: Proxy CCc -> Int#

alignment# :: CCc -> Int#

indexByteArray# :: ByteArray# -> Int# -> CCc

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CCc #)

writeByteArray# :: MutableByteArray# s -> Int# -> CCc -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CCc -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CCc

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CCc #)

writeOffAddr# :: Addr# -> Int# -> CCc -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CCc -> State# s -> State# s

Prim CClockId 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CClockId -> Int#

sizeOf# :: CClockId -> Int#

alignmentOfType# :: Proxy CClockId -> Int#

alignment# :: CClockId -> Int#

indexByteArray# :: ByteArray# -> Int# -> CClockId

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CClockId #)

writeByteArray# :: MutableByteArray# s -> Int# -> CClockId -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CClockId -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CClockId

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CClockId #)

writeOffAddr# :: Addr# -> Int# -> CClockId -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CClockId -> State# s -> State# s

Prim CDev 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CDev -> Int#

sizeOf# :: CDev -> Int#

alignmentOfType# :: Proxy CDev -> Int#

alignment# :: CDev -> Int#

indexByteArray# :: ByteArray# -> Int# -> CDev

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CDev #)

writeByteArray# :: MutableByteArray# s -> Int# -> CDev -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CDev -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CDev

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CDev #)

writeOffAddr# :: Addr# -> Int# -> CDev -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CDev -> State# s -> State# s

Prim CFsBlkCnt 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CFsBlkCnt -> Int#

sizeOf# :: CFsBlkCnt -> Int#

alignmentOfType# :: Proxy CFsBlkCnt -> Int#

alignment# :: CFsBlkCnt -> Int#

indexByteArray# :: ByteArray# -> Int# -> CFsBlkCnt

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CFsBlkCnt #)

writeByteArray# :: MutableByteArray# s -> Int# -> CFsBlkCnt -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CFsBlkCnt -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CFsBlkCnt

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CFsBlkCnt #)

writeOffAddr# :: Addr# -> Int# -> CFsBlkCnt -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CFsBlkCnt -> State# s -> State# s

Prim CFsFilCnt 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CFsFilCnt -> Int#

sizeOf# :: CFsFilCnt -> Int#

alignmentOfType# :: Proxy CFsFilCnt -> Int#

alignment# :: CFsFilCnt -> Int#

indexByteArray# :: ByteArray# -> Int# -> CFsFilCnt

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CFsFilCnt #)

writeByteArray# :: MutableByteArray# s -> Int# -> CFsFilCnt -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CFsFilCnt -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CFsFilCnt

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CFsFilCnt #)

writeOffAddr# :: Addr# -> Int# -> CFsFilCnt -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CFsFilCnt -> State# s -> State# s

Prim CGid 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CGid -> Int#

sizeOf# :: CGid -> Int#

alignmentOfType# :: Proxy CGid -> Int#

alignment# :: CGid -> Int#

indexByteArray# :: ByteArray# -> Int# -> CGid

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CGid #)

writeByteArray# :: MutableByteArray# s -> Int# -> CGid -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CGid -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CGid

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CGid #)

writeOffAddr# :: Addr# -> Int# -> CGid -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CGid -> State# s -> State# s

Prim CId 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CId -> Int#

sizeOf# :: CId -> Int#

alignmentOfType# :: Proxy CId -> Int#

alignment# :: CId -> Int#

indexByteArray# :: ByteArray# -> Int# -> CId

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CId #)

writeByteArray# :: MutableByteArray# s -> Int# -> CId -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CId -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CId

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CId #)

writeOffAddr# :: Addr# -> Int# -> CId -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CId -> State# s -> State# s

Prim CIno 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CIno -> Int#

sizeOf# :: CIno -> Int#

alignmentOfType# :: Proxy CIno -> Int#

alignment# :: CIno -> Int#

indexByteArray# :: ByteArray# -> Int# -> CIno

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CIno #)

writeByteArray# :: MutableByteArray# s -> Int# -> CIno -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CIno -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CIno

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CIno #)

writeOffAddr# :: Addr# -> Int# -> CIno -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CIno -> State# s -> State# s

Prim CKey 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CKey -> Int#

sizeOf# :: CKey -> Int#

alignmentOfType# :: Proxy CKey -> Int#

alignment# :: CKey -> Int#

indexByteArray# :: ByteArray# -> Int# -> CKey

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CKey #)

writeByteArray# :: MutableByteArray# s -> Int# -> CKey -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CKey -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CKey

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CKey #)

writeOffAddr# :: Addr# -> Int# -> CKey -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CKey -> State# s -> State# s

Prim CMode 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CMode -> Int#

sizeOf# :: CMode -> Int#

alignmentOfType# :: Proxy CMode -> Int#

alignment# :: CMode -> Int#

indexByteArray# :: ByteArray# -> Int# -> CMode

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CMode #)

writeByteArray# :: MutableByteArray# s -> Int# -> CMode -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CMode -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CMode

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CMode #)

writeOffAddr# :: Addr# -> Int# -> CMode -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CMode -> State# s -> State# s

Prim CNlink 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CNlink -> Int#

sizeOf# :: CNlink -> Int#

alignmentOfType# :: Proxy CNlink -> Int#

alignment# :: CNlink -> Int#

indexByteArray# :: ByteArray# -> Int# -> CNlink

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CNlink #)

writeByteArray# :: MutableByteArray# s -> Int# -> CNlink -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CNlink -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CNlink

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CNlink #)

writeOffAddr# :: Addr# -> Int# -> CNlink -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CNlink -> State# s -> State# s

Prim COff 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy COff -> Int#

sizeOf# :: COff -> Int#

alignmentOfType# :: Proxy COff -> Int#

alignment# :: COff -> Int#

indexByteArray# :: ByteArray# -> Int# -> COff

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, COff #)

writeByteArray# :: MutableByteArray# s -> Int# -> COff -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> COff -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> COff

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, COff #)

writeOffAddr# :: Addr# -> Int# -> COff -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> COff -> State# s -> State# s

Prim CPid 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CPid -> Int#

sizeOf# :: CPid -> Int#

alignmentOfType# :: Proxy CPid -> Int#

alignment# :: CPid -> Int#

indexByteArray# :: ByteArray# -> Int# -> CPid

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CPid #)

writeByteArray# :: MutableByteArray# s -> Int# -> CPid -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CPid -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CPid

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CPid #)

writeOffAddr# :: Addr# -> Int# -> CPid -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CPid -> State# s -> State# s

Prim CRLim 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CRLim -> Int#

sizeOf# :: CRLim -> Int#

alignmentOfType# :: Proxy CRLim -> Int#

alignment# :: CRLim -> Int#

indexByteArray# :: ByteArray# -> Int# -> CRLim

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CRLim #)

writeByteArray# :: MutableByteArray# s -> Int# -> CRLim -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CRLim -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CRLim

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CRLim #)

writeOffAddr# :: Addr# -> Int# -> CRLim -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CRLim -> State# s -> State# s

Prim CSpeed 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CSpeed -> Int#

sizeOf# :: CSpeed -> Int#

alignmentOfType# :: Proxy CSpeed -> Int#

alignment# :: CSpeed -> Int#

indexByteArray# :: ByteArray# -> Int# -> CSpeed

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CSpeed #)

writeByteArray# :: MutableByteArray# s -> Int# -> CSpeed -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CSpeed -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CSpeed

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CSpeed #)

writeOffAddr# :: Addr# -> Int# -> CSpeed -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CSpeed -> State# s -> State# s

Prim CSsize 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CSsize -> Int#

sizeOf# :: CSsize -> Int#

alignmentOfType# :: Proxy CSsize -> Int#

alignment# :: CSsize -> Int#

indexByteArray# :: ByteArray# -> Int# -> CSsize

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CSsize #)

writeByteArray# :: MutableByteArray# s -> Int# -> CSsize -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CSsize -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CSsize

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CSsize #)

writeOffAddr# :: Addr# -> Int# -> CSsize -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CSsize -> State# s -> State# s

Prim CTcflag 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CTcflag -> Int#

sizeOf# :: CTcflag -> Int#

alignmentOfType# :: Proxy CTcflag -> Int#

alignment# :: CTcflag -> Int#

indexByteArray# :: ByteArray# -> Int# -> CTcflag

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CTcflag #)

writeByteArray# :: MutableByteArray# s -> Int# -> CTcflag -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CTcflag -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CTcflag

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CTcflag #)

writeOffAddr# :: Addr# -> Int# -> CTcflag -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CTcflag -> State# s -> State# s

Prim CTimer 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CTimer -> Int#

sizeOf# :: CTimer -> Int#

alignmentOfType# :: Proxy CTimer -> Int#

alignment# :: CTimer -> Int#

indexByteArray# :: ByteArray# -> Int# -> CTimer

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CTimer #)

writeByteArray# :: MutableByteArray# s -> Int# -> CTimer -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CTimer -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CTimer

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CTimer #)

writeOffAddr# :: Addr# -> Int# -> CTimer -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CTimer -> State# s -> State# s

Prim CUid 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy CUid -> Int#

sizeOf# :: CUid -> Int#

alignmentOfType# :: Proxy CUid -> Int#

alignment# :: CUid -> Int#

indexByteArray# :: ByteArray# -> Int# -> CUid

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, CUid #)

writeByteArray# :: MutableByteArray# s -> Int# -> CUid -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> CUid -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> CUid

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, CUid #)

writeOffAddr# :: Addr# -> Int# -> CUid -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> CUid -> State# s -> State# s

Prim Fd 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy Fd -> Int#

sizeOf# :: Fd -> Int#

alignmentOfType# :: Proxy Fd -> Int#

alignment# :: Fd -> Int#

indexByteArray# :: ByteArray# -> Int# -> Fd

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Fd #)

writeByteArray# :: MutableByteArray# s -> Int# -> Fd -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Fd -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Fd

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Fd #)

writeOffAddr# :: Addr# -> Int# -> Fd -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Fd -> State# s -> State# s

Prim Char 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy Char -> Int#

sizeOf# :: Char -> Int#

alignmentOfType# :: Proxy Char -> Int#

alignment# :: Char -> Int#

indexByteArray# :: ByteArray# -> Int# -> Char

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Char #)

writeByteArray# :: MutableByteArray# s -> Int# -> Char -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Char -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Char

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Char #)

writeOffAddr# :: Addr# -> Int# -> Char -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Char -> State# s -> State# s

Prim Double 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy Double -> Int#

sizeOf# :: Double -> Int#

alignmentOfType# :: Proxy Double -> Int#

alignment# :: Double -> Int#

indexByteArray# :: ByteArray# -> Int# -> Double

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Double #)

writeByteArray# :: MutableByteArray# s -> Int# -> Double -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Double -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Double

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Double #)

writeOffAddr# :: Addr# -> Int# -> Double -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Double -> State# s -> State# s

Prim Float 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy Float -> Int#

sizeOf# :: Float -> Int#

alignmentOfType# :: Proxy Float -> Int#

alignment# :: Float -> Int#

indexByteArray# :: ByteArray# -> Int# -> Float

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Float #)

writeByteArray# :: MutableByteArray# s -> Int# -> Float -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Float -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Float

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Float #)

writeOffAddr# :: Addr# -> Int# -> Float -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Float -> State# s -> State# s

Prim Int 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy Int -> Int#

sizeOf# :: Int -> Int#

alignmentOfType# :: Proxy Int -> Int#

alignment# :: Int -> Int#

indexByteArray# :: ByteArray# -> Int# -> Int

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Int #)

writeByteArray# :: MutableByteArray# s -> Int# -> Int -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Int -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Int

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Int #)

writeOffAddr# :: Addr# -> Int# -> Int -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Int -> State# s -> State# s

Prim Word 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy Word -> Int#

sizeOf# :: Word -> Int#

alignmentOfType# :: Proxy Word -> Int#

alignment# :: Word -> Int#

indexByteArray# :: ByteArray# -> Int# -> Word

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Word #)

writeByteArray# :: MutableByteArray# s -> Int# -> Word -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Word -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Word

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Word #)

writeOffAddr# :: Addr# -> Int# -> Word -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Word -> State# s -> State# s

Prim a => Prim (Complex a) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy (Complex a) -> Int#

sizeOf# :: Complex a -> Int#

alignmentOfType# :: Proxy (Complex a) -> Int#

alignment# :: Complex a -> Int#

indexByteArray# :: ByteArray# -> Int# -> Complex a

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Complex a #)

writeByteArray# :: MutableByteArray# s -> Int# -> Complex a -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Complex a -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Complex a

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Complex a #)

writeOffAddr# :: Addr# -> Int# -> Complex a -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Complex a -> State# s -> State# s

Prim a => Prim (Identity a) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy (Identity a) -> Int#

sizeOf# :: Identity a -> Int#

alignmentOfType# :: Proxy (Identity a) -> Int#

alignment# :: Identity a -> Int#

indexByteArray# :: ByteArray# -> Int# -> Identity a

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Identity a #)

writeByteArray# :: MutableByteArray# s -> Int# -> Identity a -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Identity a -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Identity a

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Identity a #)

writeOffAddr# :: Addr# -> Int# -> Identity a -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Identity a -> State# s -> State# s

Prim a => Prim (Down a) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy (Down a) -> Int#

sizeOf# :: Down a -> Int#

alignmentOfType# :: Proxy (Down a) -> Int#

alignment# :: Down a -> Int#

indexByteArray# :: ByteArray# -> Int# -> Down a

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Down a #)

writeByteArray# :: MutableByteArray# s -> Int# -> Down a -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Down a -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Down a

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Down a #)

writeOffAddr# :: Addr# -> Int# -> Down a -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Down a -> State# s -> State# s

Prim a => Prim (First a) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy (First a) -> Int#

sizeOf# :: First a -> Int#

alignmentOfType# :: Proxy (First a) -> Int#

alignment# :: First a -> Int#

indexByteArray# :: ByteArray# -> Int# -> First a

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, First a #)

writeByteArray# :: MutableByteArray# s -> Int# -> First a -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> First a -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> First a

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, First a #)

writeOffAddr# :: Addr# -> Int# -> First a -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> First a -> State# s -> State# s

Prim a => Prim (Last a) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy (Last a) -> Int#

sizeOf# :: Last a -> Int#

alignmentOfType# :: Proxy (Last a) -> Int#

alignment# :: Last a -> Int#

indexByteArray# :: ByteArray# -> Int# -> Last a

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Last a #)

writeByteArray# :: MutableByteArray# s -> Int# -> Last a -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Last a -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Last a

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Last a #)

writeOffAddr# :: Addr# -> Int# -> Last a -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Last a -> State# s -> State# s

Prim a => Prim (Max a) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy (Max a) -> Int#

sizeOf# :: Max a -> Int#

alignmentOfType# :: Proxy (Max a) -> Int#

alignment# :: Max a -> Int#

indexByteArray# :: ByteArray# -> Int# -> Max a

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Max a #)

writeByteArray# :: MutableByteArray# s -> Int# -> Max a -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Max a -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Max a

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Max a #)

writeOffAddr# :: Addr# -> Int# -> Max a -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Max a -> State# s -> State# s

Prim a => Prim (Min a) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy (Min a) -> Int#

sizeOf# :: Min a -> Int#

alignmentOfType# :: Proxy (Min a) -> Int#

alignment# :: Min a -> Int#

indexByteArray# :: ByteArray# -> Int# -> Min a

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Min a #)

writeByteArray# :: MutableByteArray# s -> Int# -> Min a -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Min a -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Min a

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Min a #)

writeOffAddr# :: Addr# -> Int# -> Min a -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Min a -> State# s -> State# s

Prim a => Prim (Dual a) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy (Dual a) -> Int#

sizeOf# :: Dual a -> Int#

alignmentOfType# :: Proxy (Dual a) -> Int#

alignment# :: Dual a -> Int#

indexByteArray# :: ByteArray# -> Int# -> Dual a

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Dual a #)

writeByteArray# :: MutableByteArray# s -> Int# -> Dual a -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Dual a -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Dual a

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Dual a #)

writeOffAddr# :: Addr# -> Int# -> Dual a -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Dual a -> State# s -> State# s

Prim a => Prim (Product a) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy (Product a) -> Int#

sizeOf# :: Product a -> Int#

alignmentOfType# :: Proxy (Product a) -> Int#

alignment# :: Product a -> Int#

indexByteArray# :: ByteArray# -> Int# -> Product a

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Product a #)

writeByteArray# :: MutableByteArray# s -> Int# -> Product a -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Product a -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Product a

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Product a #)

writeOffAddr# :: Addr# -> Int# -> Product a -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Product a -> State# s -> State# s

Prim a => Prim (Sum a) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy (Sum a) -> Int#

sizeOf# :: Sum a -> Int#

alignmentOfType# :: Proxy (Sum a) -> Int#

alignment# :: Sum a -> Int#

indexByteArray# :: ByteArray# -> Int# -> Sum a

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Sum a #)

writeByteArray# :: MutableByteArray# s -> Int# -> Sum a -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Sum a -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Sum a

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Sum a #)

writeOffAddr# :: Addr# -> Int# -> Sum a -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Sum a -> State# s -> State# s

Prim (FunPtr a) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy (FunPtr a) -> Int#

sizeOf# :: FunPtr a -> Int#

alignmentOfType# :: Proxy (FunPtr a) -> Int#

alignment# :: FunPtr a -> Int#

indexByteArray# :: ByteArray# -> Int# -> FunPtr a

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, FunPtr a #)

writeByteArray# :: MutableByteArray# s -> Int# -> FunPtr a -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> FunPtr a -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> FunPtr a

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, FunPtr a #)

writeOffAddr# :: Addr# -> Int# -> FunPtr a -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> FunPtr a -> State# s -> State# s

Prim (Ptr a) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy (Ptr a) -> Int#

sizeOf# :: Ptr a -> Int#

alignmentOfType# :: Proxy (Ptr a) -> Int#

alignment# :: Ptr a -> Int#

indexByteArray# :: ByteArray# -> Int# -> Ptr a

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Ptr a #)

writeByteArray# :: MutableByteArray# s -> Int# -> Ptr a -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Ptr a -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Ptr a

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Ptr a #)

writeOffAddr# :: Addr# -> Int# -> Ptr a -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Ptr a -> State# s -> State# s

Prim (StablePtr a) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy (StablePtr a) -> Int#

sizeOf# :: StablePtr a -> Int#

alignmentOfType# :: Proxy (StablePtr a) -> Int#

alignment# :: StablePtr a -> Int#

indexByteArray# :: ByteArray# -> Int# -> StablePtr a

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, StablePtr a #)

writeByteArray# :: MutableByteArray# s -> Int# -> StablePtr a -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> StablePtr a -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> StablePtr a

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, StablePtr a #)

writeOffAddr# :: Addr# -> Int# -> StablePtr a -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> StablePtr a -> State# s -> State# s

Prim a => Prim (Const a b) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOfType# :: Proxy (Const a b) -> Int#

sizeOf# :: Const a b -> Int#

alignmentOfType# :: Proxy (Const a b) -> Int#

alignment# :: Const a b -> Int#

indexByteArray# :: ByteArray# -> Int# -> Const a b

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Const a b #)

writeByteArray# :: MutableByteArray# s -> Int# -> Const a b -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Const a b -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Const a b

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Const a b #)

writeOffAddr# :: Addr# -> Int# -> Const a b -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Const a b -> State# s -> State# s