
groupoids
Calculations with finite groupoids and

their homomorphisms

1.78

18 July 2025

Emma J. Moore

Chris Wensley

Chris Wensley
Email: cdwensley.maths@btinternet.com
Homepage: https://github.com/cdwensley

mailto://cdwensley.maths@btinternet.com
https://github.com/cdwensley

groupoids 2

Abstract
The groupoids package provides functions for computation with groupoids (categories with every arrow invert-
ible) and their morphisms; for graphs of groups, and graphs of groupoids. The most basic structure introduced is
that of magma with objects; followed by semigroup with objects; then monoid with objects; and finally groupoid,
which is a group with objects.

It provides normal forms for Free Products with Amalgamation and for HNN-extensions when the initial
groups have rewrite systems and the subgroups have finite index.

The groupoids package was originally implemented in 2000 (as GraphGpd) when the first author was
studying for a Ph.D. in Bangor.

The package was then renamed Gpd and version 1.07 was released in July 2011, ready for GAP 4.5.
Gpd became an accepted GAP package in May 2015.
In April 2017 the package was renamed again, as groupoids.
Later versions implement many of the constructions described in the paper [AW10] for automorphisms of

groupoids.
Bug reports, comments, suggestions for additional features, and offers to implement some of these, will all

be very welcome.
Please submit any issues at https://github.com/gap-packages/groupoids/issues/ or send an

email to the second author at cdwensley.maths@btinternet.com.

Copyright
© 2000-2025, Emma Moore and Chris Wensley.

The groupoids package is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

Acknowledgements
This documentation was prepared using the GAPDoc [LN17] and AutoDoc [GH17] packages.

The procedure used to produce new releases uses the package GitHubPagesForGAP [Hor17] and the
package ReleaseTools.

https://github.com/gap-packages/groupoids/issues/
mailto://cdwensley.maths@btinternet.com

Contents

1 Introduction 5

2 Many-object structures 6
2.1 Magmas with objects; arrows . 6
2.2 Semigroups with objects . 9
2.3 Monoids with objects . 10
2.4 Generators of magmas with objects . 11
2.5 Structures with more than one piece . 11

3 Mappings of many-object structures 13
3.1 Homomorphisms of magmas with objects . 13
3.2 Homomorphisms of semigroups and monoids with objects 15
3.3 Homomorphisms to more than one piece . 16
3.4 Mappings defined by a function . 17

4 Groupoids 18
4.1 Groupoids: their properties and attributes . 18
4.2 Groupoid elements; stars; costars; homsets . 24
4.3 Subgroupoids . 26
4.4 Left, right and double cosets . 30
4.5 Conjugation . 32
4.6 Groupoids formed using isomorphisms . 34
4.7 Groupoids whose objects form a monoid . 35

5 Homomorphisms of Groupoids 38
5.1 Homomorphisms from a connected groupoid . 38
5.2 Properties and attributes of groupoid homomorphisms 40
5.3 Special types of groupoid homomorphism . 42
5.4 Homomorphisms to a connected groupoid . 45
5.5 Homomorphisms to more than one piece . 47
5.6 Automorphisms of groupoids . 48
5.7 Matrix representations of groupoids . 55

6 Graphs of Groups and Groupoids 57
6.1 Digraphs . 57
6.2 Graphs of Groups . 58
6.3 Words in a Graph of Groups and their normal forms 60

3

groupoids 4

6.4 Free products with amalgamation and HNN extensions 61
6.5 GraphsOfGroupoids and their Words . 64

7 Double Groupoids 68
7.1 Single piece double groupoids . 68
7.2 Double groupoids with more than one piece . 77
7.3 Generators of a double groupoid . 78
7.4 Starting with two groupoids . 79
7.5 Double groupoid homomorphisms . 80

8 Technical Notes 82
8.1 Many object structures . 82
8.2 Many object homomorphisms . 84

9 Development History 85
9.1 Versions of the Package . 85
9.2 What needs to be done next? . 86

References 87

Index 88

Chapter 1

Introduction

Groupoids are mathematical categories in which every arrow is invertible. The groupoids package
provides functions for the computation with groupoids and their morphisms; for graphs of groups and
graphs of groupoids. The package is far from complete, and development continues.

It was used by Emma Moore in her thesis [Moo01] to calculate normal forms for free products
with amalgamation, and for HNN-extensions when the initial groups have rewriting systems.

The package may be obtained as a compressed tar file groupoids-version.number.tar.gz by
ftp from one of the following sites:

• the groupoids GitHub site: https://github.com/gap-packages.github.io/groupoids/.

• any GAP archive, e.g. https://www.gap-system.org/Packages/packages.html;

The package also has a GitHub repository at: https://github.com/gap-packages/groupoids/.
The information parameter InfoGroupoids takes default value 1 which, for the benefit of new

users, causes more messages to be printed out when operations fail. When raised to a higher value,
additional information is printed out.

Help is available in the usual way.
Example

gap> LoadPackage("groupoids");

For version 1.05 the package was completely restructured, starting with magmas with objects and their
mappings, and building up to groupoids via semigroups with objects and monoids with objects. From
version 1.07 the package includes some functions to implement constructions for automorphisms and
homotopies, as described in [AW10]. More functions will be released when time permits.

Once the package is loaded, it is possible to check the installation has pro-
ceeded correctly by running the test suite of the package with the command
ReadPackage("groupoids","tst/testing.g"); . Additional tests may be run using
ReadPackage("groupoids","tst/testextra.g");. (The file "tst/testall.g" is used
for automated testing.)

You may reference this package by mentioning [BMPW02], [Moo01] and [AW10].
Additional information on Computational Higher Dimensional Algebra can be found in the notes

on crossed modules at: https://github.com/cdwensley/xmod-notes.

5

https://github.com/gap-packages.github.io/groupoids/
https://www.gap-system.org/Packages/packages.html
https://github.com/gap-packages/groupoids/
https://github.com/cdwensley/xmod-notes

Chapter 2

Many-object structures

The aim of this package is to provide operations for finite groupoids. A groupoid is constructed from
a group and a set of objects. In order to provide a sequence of categories, with increasing structure,
mimicing those for groups, we introduce in this chapter the notions of magma with objects; semigroup
with objects and monoid with objects. The next chapter introduces morphisms of these structures. At
a first reading of this manual, the user is advised to skip quickly through these first two chapters, and
then move on to groupoids in Chapter 4.

The definitions of the standard properties of groupoids can be found in Philip Higgins’ book
“Categories and Groupoids” [Hig05] (originally published in 1971, reprinted by TAC in 2005), and
in Ronnie Brown’s book “Topology” [Bro88], revised and reissued as “Topology and Groupoids”
[Bro06].

2.1 Magmas with objects; arrows

A magma with objects M consists of a set of objects Ob(M), and a set of arrows Arr(M) together with
tail and head maps t,h : Arr(M)→ Ob(M), and a partial multiplication ∗ : Arr(M)→ Arr(M), with
a∗b defined precisely when the head of a coincides with the tail of b. We write an arrow a with tail u
and head v as (a : u → v).

When this multiplication is associative we obtain a semigroup with objects.
A loop is an arrow whose tail and head are the same object. An identity arrow at object u is a loop

(1u : u → u) such that a∗1u = a and 1u ∗b = b whenever u is the head of a and the tail of b. When M
is a semigroup with objects and every object has an identity arrow, we obtain a monoid with objects,
which is just the usual notion of mathematical category.

An arrow (a : u → v) in a monoid with objects has inverse (a−1 : v → u) provided a ∗ a−1 = 1u

and a−1 ∗a = 1v. A monoid with objects in which every arrow has an inverse is a group with objects,
usually called a groupoid.

2.1.1 MagmaWithObjects

▷ MagmaWithObjects(args) (function)

▷ SinglePieceMagmaWithObjects(magma, obs) (operation)

▷ ObjectList(mwo) (attribute)

▷ RootObject(mwo) (attribute)

6

groupoids 7

The simplest construction for a magma with objects M is to take a magma m and an ordered set s,
and form arrows (u,a,v) for every a in m and u,v in s. Multiplication is defined by (u,a,v)∗(v,b,w) =
(u,a ∗ b,w). In this package we prefer to write (u,a,v) as (a : u → v), so that the multiplication rule
becomes (a : u → v)∗ (b : v → w) = (a∗b : u → w).

Any finite, ordered set is in principle acceptable as the object list of M, but most of the time we
find it convenient to restrict ourselves to sets of non-positive integers.

This is the only construction implemented here for magmas, semigroups, and monoids with ob-
jects, and these all have the property IsDirectProductWithCompleteDigraph. There are other
constructions implemented for groupoids.

The root object of M is the first element in s.
Example

gap> tm := [[1,2,4,3],[1,2,4,3],[3,4,2,1],[3,4,2,1]];;
gap> Display(tm);
[[1, 2, 4, 3],

[1, 2, 4, 3],
[3, 4, 2, 1],
[3, 4, 2, 1]]

gap> m := MagmaByMultiplicationTable(tm);; SetName(m, "m");
gap> m1 := MagmaElement(m,1);; m2 := MagmaElement(m,2);;
gap> m3 := MagmaElement(m,3);; m4 := MagmaElement(m,4);;
gap> M78 := MagmaWithObjects(m, [-8,-7]);
magma with objects :-

magma = m
objects = [-8, -7]

gap> SetName(M78, "M78");
gap> [IsAssociative(M78), IsCommutative(M78)];
[false, false]
gap> [RootObject(M78), ObjectList(M78)];
[-8, [-8, -7]]

2.1.2 IsDomainWithObjects

▷ IsDomainWithObjects(obj) (Category)

▷ IsMagmaWithObjects(obj) (Category)

The output from function MagmaWithObjects lies in the categories IsDomainWithObjects,
IsMagmaWithObjects and CategoryCollections(IsMultiplicativeElementWithObjects).
As composition is only partial, the output does not lie in the category IsMagma.

Example

gap> [IsDomainWithObjects(M78), IsMagmaWithObjects(M78), IsMagma(M78)];
[true, true, false]

2.1.3 Arrow

▷ Arrow(mwo, elt, tail, head) (operation)

▷ ElementOfArrow(arr) (operation)

groupoids 8

▷ TailOfArrow(arr) (operation)

▷ HeadOfArrow(arr) (operation)

Arrows in a magma with objects lie in the category IsMultiplicativeElementWithObjects.
An attempt to multiply two arrows which do not compose resuts in fail being returned. Each
arrow arr = (a : u → v) has three components. The magma element a ∈ m may be ac-
cessed by ElementOfArrow(arr). Similarly, the tail object u and the head object v may
be obtained using TailOfArrow(arr) and HeadOfArrow(arr) respectively. The operation
MultiplicativeElementWithObjects is a synonym for Arrow since this was used in older ver-
sions of the package.

Example

gap> a78 := Arrow(M78, m2, -7, -8);
[m2 : -7 -> -8]
gap> a78 in M78;
true
gap> b87 := Arrow(M78, m4, -8, -7);;
gap> [ElementOfArrow(b87), TailOfArrow(b87), HeadOfArrow(b87)];
[m4, -8, -7]
gap> ba := b87*a78;; ab := a78*b87;; [ba, ab];
[[m4 : -8 -> -8], [m3 : -7 -> -7]]
gap> [a78^2, ba^2, ba^3];
[fail, [m1 : -8 -> -8], [m3 : -8 -> -8]]
gap> ## this demonstrates non-associativity with a78*b87*a78:
gap> [a78*ba, ab*a78, a78*ba=ab*a78];
[[m3 : -7 -> -8], [m4 : -7 -> -8], false]

2.1.4 IsSinglePieceDomain

▷ IsSinglePieceDomain(mwo) (property)

▷ IsSinglePiece(mwo) (property)

▷ IsDirectProductWithCompleteDigraph(mwo) (property)

▷ IsDiscreteMagmaWithObjects(mwo) (property)

If the partial composition is forgotten, then what remains is a digraph (usually with multiple edges
and loops). Thus the notion of connected component may be inherited by magmas with objects from
digraphs. Unfortunately the terms Component and Constituent are already in considerable use
elsewhere in GAP, so (and this may change if a more suitable word is suggested) we use the term
IsSinglePieceDomain to describe an object with an underlying connected digraph. The property
IsSinglePiece is a synonym for IsSinglePieceDomain and IsMagmaWithObjects. When each
connected component has a single object, and there is more than one component, the magma with
objects is discrete.

Example

gap> IsSinglePiece(M78);
true
gap> IsDirectProductWithCompleteDigraph(M78);
true

groupoids 9

gap> IsDiscreteMagmaWithObjects(M78);
false

2.2 Semigroups with objects

2.2.1 SemigroupWithObjects

▷ SemigroupWithObjects(args) (function)

▷ SinglePieceSemigroupWithObjects(sgp, obs) (operation)

▷ MagmaWithSingleObject(dom, obj) (operation)

▷ IsSemigroupWithObjects(obj) (filter)

The constructions in section 2.1 give a SinglePieceSemigroupWithObjects when the magma
is a semigroup. In the following example we use a transformation semigroup and 3 objects.

Example

gap> t := Transformation([1,1,2,3]);;
gap> s := Transformation([2,2,3,3]);;
gap> r := Transformation([2,3,4,4]);;
gap> sgp := Semigroup(t, s, r);;
gap> SetName(sgp, "sgp<t,s,r>");
gap> S123 := SemigroupWithObjects(sgp, [-3,-2,-1]);
semigroup with objects :-

magma = sgp<t,s,r>
objects = [-3, -2, -1]

gap> [IsAssociative(S123), IsCommutative(S123)];
[true, false]
gap> t12 := Arrow(S123, t, -1, -2);
[Transformation([1, 1, 2, 3]) : -1 -> -2]
gap> s23 := Arrow(S123, s, -2, -3);
[Transformation([2, 2, 3, 3]) : -2 -> -3]
gap> r31 := Arrow(S123, r, -3, -1);
[Transformation([2, 3, 4, 4]) : -3 -> -1]
gap> ts13 := t12 * s23;
[Transformation([2, 2, 2, 3]) : -1 -> -3]
gap> sr21 := s23 * r31;
[Transformation([3, 3, 4, 4]) : -2 -> -1]
gap> rt32 := r31 * t12;
[Transformation([1, 2, 3, 3]) : -3 -> -2]
gap> tsr1 := ts13 * r31;
[Transformation([3, 3, 3]) : -1 -> -1]

A magma, semigroup, monoid, or group M can be made into a magma with objects by the addition of
a single object. The two are algebraically isomorphic, and there is one arrow (a loop) for each element
in M. In the example we take the transformation semigroup above, which has size 17 at the object 0.

Example

gap> S0 := MagmaWithSingleObject(sgp, 0);

groupoids 10

semigroup with objects :-
magma = sgp<t,s,r>

objects = [0]
gap> t0 := Arrow(S0, t, 0, 0);
[Transformation([1, 1, 2, 3]) : 0 -> 0]
gap> Size(S0);
17

2.3 Monoids with objects

2.3.1 MonoidWithObjects

▷ MonoidWithObjects(args) (function)

▷ SinglePieceMonoidWithObjects(mon, obs) (operation)

▷ IsMonoidWithObjects(obj) (filter)

The constructions in section 2.1 give a SinglePieceMonoidWithObjects when the magma is a
monoid. The example uses a finitely presented monoid with 2 generators and 2 objects.

Example

gap> fm := FreeMonoid(2, "f");;
gap> em := One(fm);;
gap> gm := GeneratorsOfMonoid(fm);;
gap> mon := fm/[[gm[1]^3,em], [gm[1]*gm[2],gm[2]]];;
gap> M49 := MonoidWithObjects(mon, [-9,-4]);
monoid with objects :-

magma = Monoid([f1, f2])
objects = [-9, -4]

gap> ktpo := KnownTruePropertiesOfObject(M49);
["IsDuplicateFree", "IsAssociative", "IsSinglePieceDomain",

"IsDirectProductWithCompleteDigraphDomain"]
gap> catobj := CategoriesOfObject(M49);;
["IsListOrCollection", "IsCollection", "IsExtLElement",

"CategoryCollections(IsExtLElement)", "IsExtRElement",
"CategoryCollections(IsExtRElement)",
"CategoryCollections(IsMultiplicativeElement)", "IsGeneralizedDomain",
"IsDomainWithObjects",
"CategoryCollections(IsMultiplicativeElementWithObjects)",
"CategoryCollections(IsMultiplicativeElementWithObjectsAndOnes)",
"CategoryCollections(IsMultiplicativeElementWithObjectsAndInverses)",
"IsMagmaWithObjects", "IsSemigroupWithObjects", "IsMonoidWithObjects"]

groupoids 11

2.4 Generators of magmas with objects

2.4.1 GeneratorsOfMagmaWithObjects

▷ GeneratorsOfMagmaWithObjects(mwo) (operation)

▷ GeneratorsOfSemigroupWithObjects(swo) (operation)

▷ GeneratorsOfMonoidWithObjects(mwo) (operation)

For a magma or semigroup with objects, the generating set consists of arrows (g : u → v) for every
pair of objects u,v and every generating element for the magma or semigroup.

For a monoid with objects, the generating set consists of two parts. Firstly, there is a loop at the
root object r for each generator of the monoid. Secondly, for each object u distinct from r, there are
arrows (1 : r → u) and (1 : u → r). (Perhaps only one of each pair is required?) Then

(e : u → v) = (1 : u → r)∗ (e : r → r)∗ (1 : r → v).
Example

gap> GeneratorsOfMagmaWithObjects(M78);
[[m1 : -8 -> -8], [m2 : -8 -> -8], [m3 : -8 -> -8], [m4 : -8 -> -8],

[m1 : -8 -> -7], [m2 : -8 -> -7], [m3 : -8 -> -7], [m4 : -8 -> -7],
[m1 : -7 -> -8], [m2 : -7 -> -8], [m3 : -7 -> -8], [m4 : -7 -> -8],
[m1 : -7 -> -7], [m2 : -7 -> -7], [m3 : -7 -> -7], [m4 : -7 -> -7]]

gap> genS := GeneratorsOfSemigroupWithObjects(S123);;
gap> Length(genS);
27
gap> genM := GeneratorsOfMonoidWithObjects(M49);
[[f1 : -9 -> -9], [f2 : -9 -> -9], [<identity ...> : -9 -> -4],

[<identity ...> : -4 -> -9]]
gap> g1:=genM[2];; g2:=genM[3];; g3:=genM[4];; g4:=genM[5];;
gap> [g4,g2,g1,g3];
[[<identity ...> : -4 -> -9], [f2 : -9 -> -9], [f1 : -9 -> -9],

[<identity ...> : -9 -> -4]]
gap> g4*g2*g1*g3;
[f2*f1 : -4 -> -4]

2.5 Structures with more than one piece

2.5.1 UnionOfPieces (for magmas with objects)

▷ UnionOfPieces(pieces) (operation)

▷ Pieces(mwo) (attribute)

▷ PieceOfObject(mwo, obj) (operation)

A magma with objects whose underlying digraph has two or more connected components can be
constructed by taking the union of two or more connected structures. These, in turn, can be combined
together. The only requirement is that all the object lists should be disjoint. The pieces are ordered by
the order of their root objects.

groupoids 12

Example

gap> N1 := UnionOfPieces([M78, S123]);
magma with objects having 2 pieces :-
1: M78
2: semigroup with objects :-

magma = sgp<t,s,r>
objects = [-3, -2, -1]

gap> ObjectList(N1);
[-8, -7, -3, -2, -1]
gap> Pieces(N1);
[M78, semigroup with objects :-

magma = sgp<t,s,r>
objects = [-3, -2, -1]

]
gap> PieceOfObject(N1, -7);
M78
gap> N2 := UnionOfPieces([M49, S0]);
semigroup with objects having 2 pieces :-
1: monoid with objects :-

magma = Monoid([f1, f2])
objects = [-9, -4]

2: semigroup with objects :-
magma = sgp<t,s,r>

objects = [0]
gap> ObjectList(N2);
[-9, -4, 0]
gap> N3 := UnionOfPieces([N1, N2]);
magma with objects having 4 pieces :-
1: monoid with objects :-

magma = Monoid([f1, f2])
objects = [-9, -4]

2: M78
3: semigroup with objects :-

magma = sgp<t,s,r>
objects = [-3, -2, -1]

4: semigroup with objects :-
magma = sgp<t,s,r>

objects = [0]
gap> ObjectList(N3);
[-9, -8, -7, -4, -3, -2, -1, 0]
gap> Length(GeneratorsOfMagmaWithObjects(N3));
50
gap> ## the next command returns fail since the object sets are not disjoint:
gap> N4 := UnionOfPieces([S123, MagmaWithSingleObject(sgp, -2)]);
fail

Chapter 3

Mappings of many-object structures

A homomorphism f from a magma with objects M to a magma with objects N consists of

• a map fO from the objects of M to those of N,

• a map fA from the arrows of M to those of N.

The map fA is required to be compatible with the tail and head maps and to preserve multiplication:

fA(a : u → v)∗ fA(b : v → w) = fA(a∗b : u → w)

with tail fO(u) and head fO(w).
When the underlying magma of M is a monoid or group, the map fA is required to preserve

identities and inverses.

3.1 Homomorphisms of magmas with objects

3.1.1 MagmaWithObjectsHomomorphism

▷ MagmaWithObjectsHomomorphism(args) (function)

▷ HomomorphismFromSinglePiece(src, rng, hom, imobs) (operation)

▷ HomomorphismToSinglePiece(src, rng, images) (operation)

▷ MappingToSinglePieceData(mwohom) (attribute)

▷ PiecesOfMapping(mwohom) (attribute)

▷ IsomorphismNewObjects(src, objlist) (operation)

There are a variety of homomorphism constructors.
The simplest construction gives a homomorphism M → N with both M and N con-

nected. It is implemented as IsMappingToSinglePieceRep with attributes Source, Range and
MappingToSinglePieceData. The operation requires the following information:

• a magma homomorphism hom from the underlying magma of M to the underlying magma of N,

• a list imobs of the images of the objects of M.

In the first example we construct endomappings of m and M78.

13

groupoids 14

Example

gap> tup1 := [DirectProductElement([m1,m2]), DirectProductElement([m2,m1]),
> DirectProductElement([m3,m4]), DirectProductElement([m4,m3])];;
gap> f1 := GeneralMappingByElements(m, m, tup1);
<general mapping: m -> m >
gap> IsMagmaHomomorphism(f1);
true
gap> hom1 := MagmaWithObjectsHomomorphism(M78, M78, f1, [-7,-8]);
magma with objects homomorphism : M78 -> M78
[[<mapping: m -> m >, [-7, -8]]]
gap> [Source(hom1), Range(hom1)];
[M78, M78]
gap> b87;
[m4 : -8 -> -7]
gap> im1 := ImageElm(hom1, b87);
[m3 : -7 -> -8]
gap> i65 := IsomorphismNewObjects(M78, [-6,-5]);
magma with objects homomorphism : [[IdentityMapping(m), [-6, -5]]]
gap> ib87 := ImageElm(i65, b87);
[m4 : -6 -> -5]
gap> M65 := Range(i65);;
gap> SetName(M65, "M65");
gap> j65 := InverseGeneralMapping(i65);;
gap> ImagesOfObjects(j65);
[-8, -7]
gap> comp := j65 * hom1;
magma with objects homomorphism : M65 -> M78
[[<mapping: m -> m >, [-7, -8]]]
gap> ImageElm(comp, ib87);
[m3 : -7 -> -8]

A homomorphism to a connected magma with objects may have a source with several pieces, and so
is a union of homomorphisms from single pieces.

Example

gap> M4 := UnionOfPieces([M78, M65]);;
gap> images := [MappingToSinglePieceData(hom1)[1],
> MappingToSinglePieceData(j65)[1]];
[[<mapping: m -> m >, [-7, -8]], [IdentityMapping(m), [-8, -7]]]
gap> map4 := HomomorphismToSinglePiece(M4, M78, images);
magma with objects homomorphism :
[[<mapping: m -> m >, [-7, -8]], [IdentityMapping(m), [-8, -7]]]
gap> ImageElm(map4, b87);
[m3 : -7 -> -8]
gap> ImageElm(map4, ib87);
[m4 : -8 -> -7]

groupoids 15

3.2 Homomorphisms of semigroups and monoids with objects

The next example exhibits a homomorphism between transformation semigroups with objects.
Example

gap> t2 := Transformation([2,2,4,1]);;
gap> s2 := Transformation([1,1,4,4]);;
gap> r2 := Transformation([4,1,3,3]);;
gap> sgp2 := Semigroup([t2, s2, r2]);;
gap> SetName(sgp2, "sgp<t2,s2,r2>");
gap> ## apparently no method for transformation semigroups available for:
gap> ## nat := NaturalHomomorphismByGenerators(sgp, sgp2); so we use:
gap> ## in the function flip below t is a transformation on [1..n]
gap> flip := function(t)
> local i, j, k, L, L2, n;
> n := DegreeOfTransformation(t);
> L := ImageListOfTransformation(t);
> if IsOddInt(n) then n:=n+1; L1:=Concatenation(L,[n]);
> else L1:=L; fi;
> L2 := ShallowCopy(L1);
> for i in [1..n] do
> if IsOddInt(i) then j:=i+1; else j:=i-1; fi;
> k := L1[j];
> if IsOddInt(k) then L2[i]:=k+1; else L2[i]:=k-1; fi;
> od;
> return(Transformation(L2));
> end;;
gap> smap := MappingByFunction(sgp, sgp2, flip);;
gap> ok := RespectsMultiplication(smap);
true
gap> [t, ImageElm(smap, t)];
[Transformation([1, 1, 2, 3]), Transformation([2, 2, 4, 1])]
gap> [s, ImageElm(smap, s)];
[Transformation([2, 2, 3, 3]), Transformation([1, 1, 4, 4])]
gap> [r, ImageElm(smap, r)];
[Transformation([2, 3, 4, 4]), Transformation([4, 1, 3, 3])]
gap> SetName(smap, "smap");
gap> T123 := SemigroupWithObjects(sgp2, [-13,-12,-11]);;
gap> shom := MagmaWithObjectsHomomorphism(S123, T123, smap, [-11,-12,-13]);;
gap> it12 := ImageElm(shom, t12);; [t12, it12];
[[Transformation([1, 1, 2, 3]) : -1 -> -2],

[Transformation([2, 2, 4, 1]) : -13 -> -12]]
gap> is23 := ImageElm(shom, s23);; [s23, is23];
[[Transformation([2, 2, 3, 3]) : -2 -> -3],

[Transformation([1, 1, 4, 4]) : -12 -> -11]]
gap> ir31 := ImageElm(shom, r31);; [r31, ir31];
[[Transformation([2, 3, 4, 4]) : -3 -> -1],

[Transformation([4, 1, 3, 3]) : -11 -> -13]]

groupoids 16

3.3 Homomorphisms to more than one piece

3.3.1 HomomorphismByUnion (for magmas with objects)

▷ HomomorphismByUnion(src, rng, homs) (operation)

When f : M → N and N has more than one connected component, then M also has more than one
component and f is a union of homomorphisms, one for each piece in the range.

See section 5.5 for the equivalent operation with groupoids.
Example

gap> N4 := UnionOfPieces([M78, T123]);;
gap> h14 := HomomorphismByUnionNC(N1, N4, [hom1, shom]);
magma with objects homomorphism :
[magma with objects homomorphism : M78 -> M78

[[<mapping: m -> m >, [-7, -8]]], magma with objects homomorphism :
[[smap, [-11, -12, -13]]]]

gap> ImageElm(h14, a78);
[m1 : -8 -> -7]
gap> ImageElm(h14, r31);
[Transformation([4, 1, 3, 3]) : -11 -> -13]

3.3.2 IsInjectiveOnObjects

▷ IsInjectiveOnObjects(mwohom) (property)

▷ IsSurjectiveOnObjects(mwohom) (property)

▷ IsBijectiveOnObjects(mwohom) (property)

▷ IsEndomorphismWithObjects(mwohom) (property)

▷ IsAutomorphismWithObjects(mwohom) (property)

The meaning of these five properties is obvious.
Example

gap> IsInjectiveOnObjects(h14);
true
gap> IsSurjectiveOnObjects(h14);
true
gap> IsBijectiveOnObjects(h14);
true
gap> IsEndomorphismWithObjects(h14);
false
gap> IsAutomorphismWithObjects(h14);
false

groupoids 17

3.4 Mappings defined by a function

3.4.1 MappingWithObjectsByFunction

▷ MappingWithObjectsByFunction(src, rng, fun, imobs) (operation)

▷ IsMappingWithObjectsByFunction(map) (property)

▷ UnderlyingFunction(map) (attribute)

More general mappings, which need not preserve multiplication, are available using this operation.
See section 5.6 for an application.

Example

gap> swap := function(a) return Arrow(M78,a![1],a![3],a![2]); end;
function(a) ... end
gap> swapmap := MappingWithObjectsByFunction(M78, M78, swap, [-7,-8]);
magma with objects mapping by function : M78 -> M78
function: function (a)

return Arrow(M78, a![1], a![3], a![2]);
end

gap> a78; ImageElm(swapmap, a78);
[m2 : -7 -> -8]
[m2 : -8 -> -7]

Chapter 4

Groupoids

A groupoid is a (mathematical) category in which every element is invertible. It consists of a set of
pieces, each of which is a connected groupoid. The usual terminology is ‘connected component’, but
in GAP ‘component’ is used for ‘record component’, so we use the term single piece.

The simplest form for a single piece groupoid is the direct product of a group and a complete
digraph, and so is determined by a set of objects obs = Ω (the least of which is the root object), and
a root group grp = G. Then the elements of the groupoid are arrows (g : o1 → o2), stored as triples
[g,o1,o2], where g ∈ G and o1,o2 ∈ Ω. The objects will generally be chosen to be consecutive
negative integers, but any suitable ordered set is acceptable, and ‘consecutive’ is not a requirement.
The root group will usually be taken to be a permutation group, but pc-groups, fp-groups and matrix
groups are also supported.

A group may be considered as a single piece groupoid with one object.
A groupoid is a set of one or more single piece groupoids, its pieces, and is represented as

IsGroupoidRep, with attribute PiecesOfGroupoid.
The underlying digraph of a single piece groupoid is a regular, complete digraph on the object set

Ω with |G| arrows from any one object to any other object. It will be convenient to specify a set of
rays consisting of |Ω| arrows (ri : o1 → oi), where o1 is the root object and r1 is the identity in G.
In the simplest examples all the ri will be identity elements, but other rays are useful when forming
subgroupoids (see SubgroupoidWithRays (4.3.3)).

A groupoid is homogeneous if it has two of more isomorphic pieces, with identical groups. The
special case of homogeneous, discrete groupoids, where each piece has a single object, is given its own
representation. These are used in the XMod package as the source of a crossed modules of groupoids.

For the definitions of the standard properties of groupoids we refer to R. Brown’s book “Topology”
[Bro88], recently revised and reissued as “Topology and Groupoids” [Bro06].

4.1 Groupoids: their properties and attributes

4.1.1 SinglePieceGroupoid

▷ SinglePieceGroupoid(grp, obs) (operation)

▷ Groupoid(args) (function)

▷ MagmaWithSingleObject(gp, obj) (operation)

▷ IsGroupoid(mwo) (Category)

18

groupoids 19

The simplest construction of a groupoid is as the direct product of a group and a complete digraph.
Such a groupoid will be called a standard groupoid. Many subgroupoids of such a groupoid do not
have this simple form, and will be considered in section 4.3. The global function Groupoid will
normally find the appropriate constructor to call, the options being:

• the object group and a set of objects;

• a group being converted to a groupoid and a single object;

• a list of groupoids which have already been constructed (see 4.1.4).

Methods for ViewObj, PrintObj and Display are provided for groupoids and the other types
of object in this package. Users are advised to supply names for all the groups and groupoids they
construct.

Example

gap> a4 := Group((1,2,3), (2,3,4));;
gap> d8 := Group((5,6,7,8), (5,7));;
gap> SetName(a4, "a4"); SetName(d8, "d8");
gap> Ga4 := SinglePieceGroupoid(a4, [-15 .. -11]);
single piece groupoid: < a4, [-15 .. -11] >
gap> Gd8 := Groupoid(d8, [-9,-8,-7]);
single piece groupoid: < d8, [-9, -8, -7] >
gap> c6 := Group((11,12,13)(14,15));;
gap> SetName(c6, "c6");
gap> Gc6 := MagmaWithSingleObject(c6, -10);
single piece groupoid: < c6, [-10] >
gap> IsGroupoid(Gc6);
true
gap> SetName(Ga4, "Ga4"); SetName(Gd8, "Gd8"); SetName(Gc6, "Gc6");

More operations for constructing groupoids are described in the following subsections:

• Homogeneous groupoids (see 4.1.5);

• Direct products of groupoids (see 4.1.6);

• A variety of subgroupoid constructions in section 4.3;

• Groupoids formed using group isomorphisms in section 4.6;

• Groupoids whose objects form a monoid in section 4.7.

4.1.2 ObjectList (for groupoids)

▷ ObjectList(gpd) (attribute)

▷ RootObject(gpd) (attribute)

▷ RootGroup(gpd) (attribute)

▷ ObjectGroup(gpd, obj) (operation)

groupoids 20

The ObjectList of a groupoid is the sorted list of its objects. The RootObject in a single-piece
groupoid is the object with the least label. A loop is an arrow of the form (g : o → o), and the loops at
a particular object o form a group, the ObjectGroup at o. The RootGroup is the ObjectGroup at the
RootObject.

In the example, the groupoids Gf2c6 and Gabc illustrate that the objects need not be integers.
Example

gap> ObjectList(Ga4);
[-15 .. -11]
gap> f2 := FreeGroup(2);;
gap> Gf2d8 := Groupoid(d8, GeneratorsOfGroup(f2));
single piece groupoid: < d8, [f1, f2] >
gap> Arrow(Gf2d8, (6,8), f2.1, f2.2);
[(6,8) : f1 -> f2]
gap> Gabc := Groupoid(c6, ["a", "b", "c"]);
single piece groupoid: < c6, ["a", "b", "c"] >
gap> Arrow(Gabc, (14,15), "c", "b");
[(14,15) : c -> b]

4.1.3 IsPermGroupoid

▷ IsPermGroupoid(gpd) (property)

▷ IsPcGroupoid(gpd) (property)

▷ IsFpGroupoid(gpd) (property)

▷ IsMatrixGroupoid(gpd) (property)

▷ IsFreeGroupoid(gpd) (property)

A groupoid is a permutation groupoid if all its pieces have permutation root groups. Most of the
examples in this chapter are permutation groupoids, but in principle any type of group known to GAP
may be used.

In the following example Gf2 is an fp-groupoid and also a free groupoid, Gq8 is a pc-groupoid,
and Gsl43 is a matrix groupoid. See section 5.7 for matrix representations of groupoids.

Example

gap> f2 := FreeGroup(2);;
gap> Gf2 := Groupoid(f2, -20);;
gap> SetName(f2, "f2"); SetName(Gf2, "Gf2");
gap> q8 := QuaternionGroup(8);;
gap> genq8 := GeneratorsOfGroup(q8);;
gap> x := genq8[1];; y := genq8[2];;
gap> Gq8 := Groupoid(q8, [-18, -17]);;
gap> SetName(q8, "q8"); SetName(Gq8, "Gq8");
gap> sl43 := SpecialLinearGroup(4, 3);;
gap> Gsl43 := SinglePieceGroupoid(sl43, [-23,-22,-21]);;
gap> SetName(sl43, "sl43"); SetName(Gsl43, "Gsl43");
gap> [IsMatrixGroupoid(Gsl43), IsFpGroupoid(Gf2), IsFreeGroupoid(Gf2),
> IsPcGroupoid(Gq8), IsPermGroupoid(Ga4)];
[true, true, true, true, true]

groupoids 21

4.1.4 UnionOfPieces (for groupoids)

▷ UnionOfPieces(pieces) (operation)

▷ Pieces(gpd) (attribute)

▷ Size(gpd) (attribute)

▷ ReplaceOnePieceInUnion(U, old_piece, new_piece) (operation)

When a groupoid consists of two or more pieces, we require their object lists to be disjoint.
The operation UnionOfPieces and the attribute Pieces, introduced in section 2.5, are also used
for groupoids. The pieces are sorted by the least object in their object lists. The ObjectList is the
sorted concatenation of the objects in the pieces.

The Size of a groupoid is the number of its arrows. For a single piece groupoid, this is the product
of the size of the group with the square of the number of objects. For a non-connected groupoid, the
size is the sum of the sizes of its pieces.

One of the pieces in a groupoid may be replaced by an alternative piece using the operation
ReplaceOnePieceInUnion. The old_piece may be either the position of the piece to be replaced,
or one of the pieces in U. The objects in the new piece may or may not overlap the objects in the piece
being removed -- we just require that the object lists in the new union are disjoint.

Example

gap> U3 := UnionOfPieces([Ga4, Gc6, Gd8]);;
gap> Display(U3);
groupoid with 3 pieces:
< objects: [-15 .. -11]

group: a4 = <[(1,2,3), (2,3,4)]> >
< objects: [-10]

group: c6 = <[(11,12,13)(14,15)]> >
< objects: [-9, -8, -7]

group: d8 = <[(5,6,7,8), (5,7)]> >
gap> Pieces(U3);
[Ga4, Gc6, Gd8]
gap> ObjectList(U3);
[-15, -14, -13, -12, -11, -10, -9, -8, -7]
gap> [Size(Ga4), Size(Gd8), Size(Gc6), Size(U3)];
[300, 72, 6, 378]
gap> U2 := Groupoid([Gf2, Gq8]);;
gap> [Size(Gf2), Size(Gq8), Size(U2)];
[infinity, 32, infinity]
gap> U5 := UnionOfPieces([U3, U2]);
groupoid with 5 pieces:
[Gf2, Gq8, Ga4, Gc6, Gd8]
gap> V3 := ReplaceOnePieceInUnion(U3, Gd8, Gq8);
groupoid with 3 pieces:
[Gq8, Ga4, Gc6]
gap> ObjectList(V3);
[-18, -17, -15, -14, -13, -12, -11, -10]

groupoids 22

4.1.5 HomogeneousGroupoid

▷ HomogeneousGroupoid(gpd, oblist) (operation)

▷ PieceIsomorphisms(hgpd) (attribute)

▷ HomogeneousDiscreteGroupoid(gp, obs) (operation)

Special functions are provided for the case where a groupoid has more than one connected com-
ponent, and when these components are identical except for their object sets. Such groupoids are said
to be homogeneous.

The operation HomogeneousGroupoid is used when the components each contain more than one
object. The arguments consist of a single piece groupoid gpd and a list of lists of objects oblist, each
of whose lists has the same length as the object list obs of gpd. Note that gpd is not included as one
of the pieces in the output unless obs is included as one of the lists in oblist.

The PieceIsomorphisms of a homogeneous groupoid are isomorphisms from the first piece to
each of the others. See Chapter 5 for details of groupoid isomorphisms.

The operation HomogeneousDiscreteGroupoid is used when the components each have a single
object. In this case the first argument is just a group -- the root group for each component. These
groupoids are used in the XMod package as the source of many crossed modules of groupoids.

Both types of groupoid have the property IsHomogeneousDomainWithObjects. In the latter case
a separate representation IsHomogeneousDiscreteGroupoidRep is used.

Example

gap> HGd8 := HomogeneousGroupoid(Gd8,
> [[-39,-38,-37], [-36,-35,-34], [-33,-32,-31]]);
homogeneous groupoid with 3 pieces:
1: single piece groupoid: < d8, [-39, -38, -37] >
2: single piece groupoid: < d8, [-36, -35, -34] >
3: single piece groupoid: < d8, [-33, -32, -31] >
gap> Size(HGd8); ## 8x3x3 + 8x3x3 + 8x3x3
216
gap> PieceIsomorphisms(HGd8);
[groupoid homomorphism :

[[[(5,6,7,8) : -39 -> -39], [(5,7) : -39 -> -39], [() : -39 -> -38],
[() : -39 -> -37]],

[[(5,6,7,8) : -36 -> -36], [(5,7) : -36 -> -36], [() : -36 -> -35],
[() : -36 -> -34]]], groupoid homomorphism :

[[[(5,6,7,8) : -39 -> -39], [(5,7) : -39 -> -39], [() : -39 -> -38],
[() : -39 -> -37]],

[[(5,6,7,8) : -33 -> -33], [(5,7) : -33 -> -33], [() : -33 -> -32],
[() : -33 -> -31]]]]

gap> HDc6 := HomogeneousDiscreteGroupoid(c6, [-27..-24]);
homogeneous, discrete groupoid: < c6, [-27 .. -24] >
gap> Size(HDc6); ## 6x4
24
gap> RepresentationsOfObject(Gd8);
["IsComponentObjectRep", "IsAttributeStoringRep", "IsMWOSinglePieceRep"]
gap> RepresentationsOfObject(HGd8);
["IsComponentObjectRep", "IsAttributeStoringRep", "IsPiecesRep"]
gap> RepresentationsOfObject(HDc6);
["IsComponentObjectRep", "IsAttributeStoringRep",

"IsHomogeneousDiscreteGroupoidRep"]

groupoids 23

gap> ktpo := KnownTruePropertiesOfObject(HDc6);;
gap> ans :=
> ["IsDuplicateFree", "IsAssociative", "IsCommutative",
> "IsDiscreteDomainWithObjects", "IsHomogeneousDomainWithObjects"];;
gap> ForAll(ans, a -> (a in ktpo));
true

4.1.6 DirectProductOp

▷ DirectProductOp(list, gpd) (operation)

▷ Projection(gpd, pos) (operation)

▷ Embedding(gpd, pos) (operation)

The direct product of groupoids G,H has as root group the direct product of the root groups in G
and H and as object list the cartesian product of their object lists. As usual with DirectProductOp
the two parameters are a list of groupoids followed by the first entry in the list.

Operations Projection and Embedding are as for direct product of groups. See Chapter 5 for
details of groupoid homomorphisms.

Example

gap> prod := DirectProductOp([Gd8,Gc6], Gd8);
single piece groupoid: < Group([(1,2,3,4), (1,3), (5,6,7)(8,9)]),
[[-9, -10], [-8, -10], [-7, -10]] >
gap> Embedding(prod, 2);
groupoid homomorphism :
[[[(11,12,13)(14,15) : -10 -> -10]],

[[(5,6,7)(8,9) : [-9, -10] -> [-9, -10]]]]
gap> ## note that the first embedding has not yet been created
gap> DirectProductInfo(prod);
rec(embeddings := [, groupoid homomorphism :

[[[(11,12,13)(14,15) : -10 -> -10]],
[[(5,6,7)(8,9) : [-9, -10] -> [-9, -10]]]]], first := Gd8,

groupoids := [Gd8, Gc6], groups := [d8, c6],
objectlists := [[-9, -8, -7], [-10]], projections := [])

gap> Projection(prod, 1);
groupoid homomorphism :
[[[(1,2,3,4) : [-9, -10] -> [-9, -10]],

[(1,3) : [-9, -10] -> [-9, -10]],
[(5,6,7)(8,9) : [-9, -10] -> [-9, -10]],
[() : [-9, -10] -> [-8, -10]], [() : [-9, -10] -> [-7, -10]]],

[[(5,6,7,8) : -9 -> -9], [(5,7) : -9 -> -9], [() : -9 -> -9],
[() : -9 -> -8], [() : -9 -> -7]]]

groupoids 24

4.2 Groupoid elements; stars; costars; homsets

4.2.1 GroupoidElement

▷ GroupoidElement(gpd, elt, tail, head) (operation)

▷ ElementOfArrow(elt) (operation)

▷ TailOfArrow(elt) (operation)

▷ HeadOfArrow(elt) (operation)

▷ IsGroupoidElement(arrow) (Category)

The operation GroupoidElement is a synonym for the operation Arrow, as described in subsec-
tion 2.1.3. To recapitulate, an arrow e consists of a group element, ElementOfArrow(e); the tail
(source) object, TailOfArrow(e); and the head (target) object, HeadOfArrow(e). Arrows have a
partial composition: two arrows may be multiplied when the head of the first coincides with the tail
of the second. If an attempt is made to multiply arrows where this condition does not hold, then the
value fail is returned.

Example

gap> e1 := GroupoidElement(Gd8, (5,6,7,8), -9, -8);
[(5,6,7,8) : -9 -> -8]
gap> e2 := Arrow(Gd8, (5,7), -8, -7);
[(5,7) : -8 -> -7]
gap> Print([ElementOfArrow(e1), TailOfArrow(e1), HeadOfArrow(e1)], "\n");
[(5,6,7,8), -9, -8]
gap> IsGroupoidElement(e1);
true
gap> e1e2 := e1*e2;
[(5,6)(7,8) : -9 -> -7]
gap> e2*e1;
fail
gap> e3 := Arrow(Gd8, (6,8), -7, -9);;
gap> loop := e1e2*e3;
[(5,8,7,6) : -9 -> -9]
gap> loop^2;
[(5,7)(6,8) : -9 -> -9]

4.2.2 IdentityArrow

▷ IdentityArrow(gpd, obj) (operation)

The identity arrow 1o of G at object o is (e : o → o) where e is the identity element in the object
group. The inverse arrow e−1 of e = (c : p → q) is (c−1 : q → p), so that e∗e−1 = 1p and e−1 ∗e = 1q.

Example

gap> i8 := IdentityArrow(Gd8, -8);
[() : -8 -> -8]
gap> [e1*i8, i8*e1, e1^-1];
[[(5,6,7,8) : -9 -> -8], fail, [(5,8,7,6) : -8 -> -9]]

groupoids 25

4.2.3 Order

▷ Order(arr) (attribute)

A groupoid element is a loop when the tail and head coincide. In this case the order of the arrow
is defined to be the order of its group element.

Example

gap> [i8, loop];
[[() : -8 -> -8], [(5,8,7,6) : -9 -> -9]]
gap> [Order(i8), Order(loop)];
[1, 4]

4.2.4 ObjectStar

▷ ObjectStar(gpd, obj) (operation)

▷ ObjectCostar(gpd, obj) (operation)

▷ Homset(gpd, tail, head) (operation)

The star at obj is the set of arrows which have obj as tail, while the costar is the set of arrows
which have obj as head. The homset from obj1 to obj2 is the set of arrows with the specified tail and
head, and so is bijective with the elements of the object groups. Indeed, Homset(G,o,o) is the object
group at o. Thus every star and every costar is a union of homsets. The identity arrow at an object is a
left identity for the star and a right identity for the costar at that object.

In order not to create unneccessarily long lists, these operations return objects of type
IsHomsetCosetsRep for which an Iterator is provided. (An Enumerator is not yet implemented.)

Example

gap> star9 := ObjectStar(Gd8, -9);
<star at -9 with vertex group d8>
gap> Size(star9);
24
gap> ## print the elements in star9 from 19 to 24
gap> iter := Iterator(star9);;
gap> for i in [1..18] do a := NextIterator(iter); od;
gap> for i in [19..24] do Print(i, " : ", NextIterator(iter), "\n"); od;
19 : [(5,6,7,8) : -9 -> -9]
20 : [(5,6,7,8) : -9 -> -8]
21 : [(5,6,7,8) : -9 -> -7]
22 : [(5,6)(7,8) : -9 -> -9]
23 : [(5,6)(7,8) : -9 -> -8]
24 : [(5,6)(7,8) : -9 -> -7]
gap> costar12 := ObjectCostar(Ga4, -12);
<costar at -12 with vertex group a4>
gap> Size(costar12);
60
gap> Elements(q8);
[<identity> of ..., x, y, y2, x*y, x*y2, y*y2, x*y*y2]
gap> hsetq8 := Homset(Gq8, -18, -17);

groupoids 26

<homset -18 -> -17 with head group q8>
gap> Perform(hsetq8, Display);
[<identity> of ... : -18 -> -17]
[x : -18 -> -17]
[y : -18 -> -17]
[y2 : -18 -> -17]
[x*y : -18 -> -17]
[x*y2 : -18 -> -17]
[y*y2 : -18 -> -17]
[x*y*y2 : -18 -> -17]

4.3 Subgroupoids

4.3.1 Subgroupoid

▷ Subgroupoid(args) (function)

▷ IsSubgroupoid(gpd, sgpd) (operation)

▷ IsWideSubgroupoid(gpd, sgpd) (operation)

▷ IsFullSubgroupoid(gpd, sgpd) (operation)

Let S be a subgroupoid of a groupoid G. Then the object set of S is a subset of the objects of G,
and the object groups are subgroups of the object groups in G. S is wide in G if both groupoids have
the same object set. S is full if, for any two of its objects, the Homset is the same as that in G. The
arrows of S form a subset of those of G, closed under multiplication and with tails and heads in the
chosen object set.

There are a variety of constructors for a subgroupoid of a standard groupoid, as described in the
following sections. The global function Subgroupoid should call the operation appropriate to the
parameters provided.

4.3.2 SubgroupoidByObjects

▷ SubgroupoidByObjects(gpd, obs) (operation)

▷ SubgroupoidBySubgroup(gpd, sgp) (attribute)

The SubgroupoidByObjects of a groupoid gpd on a subset obs of its objects contains all the
arrows of gpd with tail and head in obs.

The SubgroupoidBySubgroup of a connected groupoid gpd determinded by a subgroup sgp of
the root group is the wide subgroupoid with root group sgp and containing the rays of gpd.

Example

gap> Ha4 := SubgroupoidByObjects(Ga4, [-14,-13,-12]);
single piece groupoid: < a4, [-14, -13, -12] >
gap> SetName(Ha4, "Ha4");
gap> IsSubgroupoid(Ga4, Ha4);
true
gap> c3a := Subgroup(a4, [(1,2,3)]);;
gap> SetName(c3a, "c3a");

groupoids 27

gap> Hc3a := SubgroupoidBySubgroup(Ha4, c3a);
single piece groupoid: < c3a, [-14, -13, -12] >
gap> [IsWideSubgroupoid(Ga4, Ha4), IsWideSubgroupoid(Ha4, Hc3a)];
[false, true]
gap> [IsFullSubgroupoid(Ga4, Ha4), IsFullSubgroupoid(Ha4, Hc3a)];
[true, false]

4.3.3 SubgroupoidWithRays

▷ SubgroupoidWithRays(gpd, sgp, rays) (operation)

▷ RaysOfGroupoid(gpd) (operation)

▷ RayArrowsOfGroupoid(gpd) (operation)

If groupoid G is of type IsDirectProductWithCompleteDigraph with group g and n objects,
then a typical wide subgroupoid H of G is formed by choosing a subgroup h of g to be the object
group at the root object q, and an arrow r : q → p for each of the objects p. The chosen loop arrow at
q must be the identity arrow. These n arrows are called the ray arrows of the subgroupoid. The arrows
in the homset from p to p′ have the form r−1xr′ where r,r′ are the rays from q to p, p′ respectively,
and x ∈ h.

The operation RayArrowsOfGroupoid returns a list of arrows, one for each object, while the
operation RaysOfGroupoid returns the list of group elements in these arrows.

Note that it is also possible to construct a subgroupoid with rays of a subgroupoid with rays.
In the following example we construct a subgroupoid Gk4 of the groupoid Ga4, and then a second

subgroupoid Gc2. The initial standard groupoid Ga4 is set as the parent for both Gk4 and Gc2.
Example

gap> k4 := Subgroup(a4, [(1,2)(3,4), (1,3)(2,4)]);;
gap> SetName(k4, "k4");
gap> Gk4 := SubgroupoidWithRays(Ga4, k4,
> [(), (1,2,3), (1,2,4), (1,3,4), (2,3,4)]);
single piece groupoid with rays: < k4, [-15 .. -11],
[(), (1,2,3), (1,2,4), (1,3,4), (2,3,4)] >
gap> SetName(Gk4, "Gk4");
gap> RaysOfGroupoid(Gk4);
[(), (1,2,3), (1,2,4), (1,3,4), (2,3,4)]
gap> RayArrowsOfGroupoid(Gk4);
[[() : -15 -> -15], [(1,2,3) : -15 -> -14], [(1,2,4) : -15 -> -13],

[(1,3,4) : -15 -> -12], [(2,3,4) : -15 -> -11]]
gap> IsDirectProductWithCompleteDigraph(Gk4);
false
gap> ObjectGroup(Gk4, -14);
Group([(1,4)(2,3), (1,2)(3,4)])
gap> c2 := Subgroup(k4, [(1,4)(2,3)]);; SetName(c2, "c2");
gap> Gc2 := Subgroupoid(Gk4, c2, [(), (1,3,4), (1,4,3), (1,2,3), (1,3,2)]);
single piece groupoid with rays: < c2, [-15 .. -11],
[(), (1,3,4), (1,4,3), (1,2,3), (1,3,2)] >

groupoids 28

4.3.4 SubgroupoidByPieces

▷ SubgroupoidByPieces(gpd, pieces) (operation)

The most general way to construct a subgroupoid is to use the operation SubgroupoidByPieces.
Its two parameters are a groupoid and a list of pieces, each piece being specified either as a list
[sgp,obs], where sgp is a subgroup of the root group in that piece, and obs is a subset of the objects
in that piece, or as a list [sgp,obs,rays] when a set of rays is required. In the example both types
of piece are used.

Example

gap> Display(Ga4);
perm single piece groupoid: Ga4

objects: [-15 .. -11]
group: a4 = <[(1,2,3), (2,3,4)]>

gap> c3b := Subgroup(a4, [(1,2,4)]);;
gap> SetName(c3b, "c3b");
gap> pieces := [[c3a, [-14]], [c3b, [-13,-12], [(),(1,4)(2,3)]]];;
gap> Jc3 := Subgroupoid(Ha4, pieces);;
gap> SetName(Jc3, "Jc3");
gap> Display(Jc3);
groupoid with 2 pieces:
< objects: [-14]

group: c3a = <[(1,2,3)]> >
< objects: [-13, -12]

parent gpd: single piece groupoid: < a4, [-13, -12] >
root group: c3b = <[(1,2,4)]>

rays: [(), (1,4)(2,3)]
gap> [Parent(Jc3), IsWideSubgroupoid(Ha4, Jc3)];
[Ga4, true]
gap> pJc3 := Pieces(Jc3);;
gap> SetName(pJc3[1], "Jc3a"); SetName(pJc3[2], "Jc3b");
gap> U2;
groupoid with 2 pieces:
[Gf2, Gq8]
gap> genf2b := List(GeneratorsOfGroup(f2), g -> g^2);
[f1^2, f2^2]
gap> f2b := Subgroup(f2, genf2b);;
gap> JU2 := SubgroupoidByPieces(U2, [[f2b,[-20]], [q8,[-17]]]);
groupoid with 2 pieces:
1: single piece groupoid: < Group([f1^2, f2^2]), [-20] >
2: single piece groupoid: < q8, [-17] >
gap> [IsWideSubgroupoid(U2,JU2), IsSubgroupoid(Gf2,Groupoid(f2b,[-20]))];
[false, true]
gap> pJU2 := Pieces(JU2);;
gap> SetName(pJU2[1], "JU2a"); SetName(pJU2[2], "JU2b");

groupoids 29

4.3.5 PiecePositions

▷ PiecePositions(gpd, sgpd) (operation)

When G is a groupoid with a number of pieces and H is a subgroupid of G, it is useful to know for
each piece of H the piece of G of which it is a subgroupoid. The inclusion mapping of H in G will be
described in subsection InclusionMappingGroupoids (5.3.1).

Example

gap> T1 := UnionOfPieces([Ha4,U2]);; Pieces(T1);
[Gf2, Gq8, Ha4]
gap> T2 := UnionOfPieces([Jc3,JU2]);; Pieces(T2);
[JU2a, JU2b, Jc3a, Jc3b]
gap> PiecePositions(T1, T2);
[1, 2, 3, 3]
gap> InclusionMappingGroupoids(T1, T2);
groupoid homomorphism from several pieces :
groupoid homomorphism : JU2a -> Gf2
[[[[f1^2 : -20 -> -20], [f2^2 : -20 -> -20]],

[[f1^2 : -20 -> -20], [f2^2 : -20 -> -20]]]]
groupoid homomorphism : JU2b -> Gq8
[[[[x : -17 -> -17], [y : -17 -> -17], [y2 : -17 -> -17]],

[[x : -17 -> -17], [y : -17 -> -17], [y2 : -17 -> -17]]]]
groupoid homomorphism :
[[[[(1,2,3) : -14 -> -14]], [[(1,2,3) : -14 -> -14]]],

[[[(1,2,4) : -13 -> -13], [(1,4)(2,3) : -13 -> -12]],
[[(1,2,4) : -13 -> -13], [(1,4)(2,3) : -13 -> -12]]]]

4.3.6 FullTrivialSubgroupoid

▷ FullTrivialSubgroupoid(gpd) (attribute)

▷ DiscreteTrivialSubgroupoid(gpd) (attribute)

A trivial subgroupoid has trivial object groups, but need not be discrete. A single piece trivial
groupoid is sometimes called a tree groupoid. (The term identity subgroupoid was used in versions up
to 1.14.) In the example id(G) denot4es the identity subgroup of G.

Example

gap> FullTrivialSubgroupoid(Jc3);
groupoid with 2 pieces:
1: single piece groupoid: < id(c3a), [-14] >
2: single piece groupoid: < id(c3b), [-13, -12] >
gap> DiscreteTrivialSubgroupoid(Gd8);
homogeneous, discrete groupoid: < id(d8), [-9, -8, -7] >

4.3.7 DiscreteSubgroupoid

▷ DiscreteSubgroupoid(gpd, sgps, obs) (operation)

▷ MaximalDiscreteSubgroupoid(gpd) (attribute)

groupoids 30

A subgroupoid is discrete if it is a union of groups. The MaximalDiscreteSubgroupoid of gpd
is the union of all the single-object full subgroupoids of gpd.

Example

gap> U3;
groupoid with 3 pieces:
[Ga4, Gc6, Gd8]
gap> c4 := Subgroup(d8, [(5,6,7,8)]);; SetName(c4, "c4");
gap> DiscreteSubgroupoid(U3, [c3a, c3b, c6, c4], [-15,-13,-10,-7]);
groupoid with 4 pieces:
1: single piece groupoid: < c3a, [-15] >
2: single piece groupoid: < c3b, [-13] >
3: single piece groupoid: < c6, [-10] >
4: single piece groupoid: < c4, [-7] >
gap> MaximalDiscreteSubgroupoid(Jc3);
groupoid with 3 pieces:
1: single piece groupoid: < c3a, [-14] >
2: single piece groupoid: < c3b, [-13] >
3: single piece groupoid: < Group([(1,4,3)]), [-12] >

4.3.8 SinglePieceSubgroupoidByGenerators

▷ SinglePieceSubgroupoidByGenerators(parent, gens) (operation)

A set of arrows generates a groupoid by taking all possible products and inverses. So far, the only
implementation is for the case of loops generating a group at an object o together with a set of rays
from o, where o is not the least object. A suitably large supergroupoid, which must be a direct product
with a complete digraph, should be provided. This is the case needed for ConjugateGroupoid in
section 4.5.2. Other cases will be added as time permits.

Example

gap> a1 := Arrow(Gk4, (1,2)(3,4), -15, -15);;
gap> a2 := Arrow(Gk4, (1,3,2), -15, -13);;
gap> a3 := Arrow(Gk4, (2,3,4), -15, -11);;
gap> SinglePieceSubgroupoidByGenerators(Gk4, [a1,a2,a3]);
single piece groupoid with rays: < Group([(1,2)(3,4)]), [-15, -13, -11],
[(), (1,3,2), (2,3,4)] >

4.4 Left, right and double cosets

4.4.1 RightCoset

▷ RightCoset(G, U, elt) (operation)

▷ RightCosetRepresentatives(G, U) (operation)

▷ RightCosets(G, U) (operation)

▷ LeftCoset(G, U, elt) (operation)

groupoids 31

▷ LeftCosetRepresentatives(G, U) (operation)

▷ LeftCosetRepresentativesFromObject(G, U, obj) (operation)

▷ LeftCosets(G, U) (operation)

▷ DoubleCoset(G, U, V, elt) (operation)

▷ DoubleCosetRepresentatives(G, U, V) (operation)

▷ DoubleCosets(G, U, V) (operation)

If U is a subgroupoid of G, the right cosets Ug of U in G are the equivalence classes for the relation
on the arrows of G where g1 is related to g2 if and only if g2 = u∗g1 for some arrow u of U . The right
coset containing g is written Ug. These right cosets partition the costars of G and, in particular, the
costar U1_o of U at object o. So (unlike groups) U is itself a coset only when G has a single object.

The right coset representatives for U in G form a list containing one arrow for each coset where,
in a particular piece of U , the group element chosen is the right coset representative of the group of U
in the group of G.

Similarly, the left cosets gU refine the stars of G while double cosets are unions of left and right
cosets. The operation LeftCosetRepresentativesFromObject(G, U, obj) is used in Chapter
6, and returns only those representatives which have tail at obj.

As with stars and homsets, these cosets are implemented with representation IsHomsetCosetsRep
and provided with an iterator. Note that, when U has more than one piece, cosets may have differing
lengths.

In the example the representative for the right coset re4 is the seventeenth one in the printed list
rcra4, namely [():-12->-12].

Example

gap> e4 := Arrow(Jc3, (2,4,3), -13, -12);;;
gap> re4 := RightCoset(Ha4, Jc3, e4);
<right coset of Jc3b with representative [(2,4,3) : -13 -> -12]>
gap> Perform(re4, Display);
[(2,4,3) : -13 -> -12]
[(1,3,4) : -12 -> -12]
[(1,3,2) : -13 -> -12]
[(1,4,3) : -12 -> -12]
[(1,4)(2,3) : -13 -> -12]
[() : -12 -> -12]
gap> rcra4 := RightCosetRepresentatives(Ha4, Jc3);
[[() : -14 -> -14], [(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14],

[(1,4)(2,3) : -14 -> -14], [() : -14 -> -13], [(1,2)(3,4) : -14 -> -13],
[(1,3)(2,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -13], [() : -14 -> -12],
[(1,2)(3,4) : -14 -> -12], [(1,3)(2,4) : -14 -> -12],
[(1,4)(2,3) : -14 -> -12], [() : -13 -> -13], [(1,2)(3,4) : -13 -> -13],
[(1,3)(2,4) : -13 -> -13], [(1,4)(2,3) : -13 -> -13], [() : -12 -> -12],
[(1,2)(3,4) : -12 -> -12], [(1,3)(2,4) : -12 -> -12],
[(1,4)(2,3) : -12 -> -12], [() : -13 -> -14], [(1,2)(3,4) : -13 -> -14],
[(1,3)(2,4) : -13 -> -14], [(1,4)(2,3) : -13 -> -14]]

gap> le4 := LeftCoset(Ha4, Jc3, e4);
<left coset of Jc3b with representative [(1,4,2) : -13 -> -13]>
gap> Perform(le4, Display);
[(1,4,2) : -13 -> -13]
[(2,4,3) : -13 -> -12]
[() : -13 -> -13]

groupoids 32

[(1,4)(2,3) : -13 -> -12]
[(1,2,4) : -13 -> -13]
[(1,3,2) : -13 -> -12]
gap> lcra4 := LeftCosetRepresentatives(Ha4, Jc3);
[[() : -14 -> -14], [(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14],

[(1,4)(2,3) : -14 -> -14], [() : -13 -> -14], [(1,2)(3,4) : -13 -> -14],
[(1,3)(2,4) : -13 -> -14], [(1,4)(2,3) : -13 -> -14], [() : -12 -> -14],
[(1,2)(3,4) : -12 -> -14], [(1,3)(2,4) : -12 -> -14],
[(1,4)(2,3) : -12 -> -14], [() : -13 -> -13], [(1,2)(3,4) : -13 -> -13],
[(1,3)(2,4) : -13 -> -13], [(1,4)(2,3) : -13 -> -13], [() : -12 -> -12],
[(1,2)(3,4) : -12 -> -12], [(1,3)(2,4) : -12 -> -12],
[(1,4)(2,3) : -12 -> -12], [() : -14 -> -13], [(1,2)(3,4) : -14 -> -13],
[(1,3)(2,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -13]]

gap> lcr11 := LeftCosetRepresentativesFromObject(Ha4, Jc3, -12);
[[() : -12 -> -14], [(1,2)(3,4) : -12 -> -14], [(1,3)(2,4) : -12 -> -14],

[(1,4)(2,3) : -12 -> -14], [() : -12 -> -12], [(1,2)(3,4) : -12 -> -12],
[(1,3)(2,4) : -12 -> -12], [(1,4)(2,3) : -12 -> -12]]

gap> de4 := DoubleCoset(Ha4, Jc3, Jc3, e4);
<double coset of [Jc3b, Jc3b] with representative [(1,4,2) : -13 -> -13]>
gap> Perform(de4, Display);
[() : -13 -> -13]
[(1,4)(2,3) : -13 -> -12]
[(1,4)(2,3) : -12 -> -13]
[() : -12 -> -12]
[(1,4,2) : -13 -> -13]
[(2,4,3) : -13 -> -12]
[(1,2,3) : -12 -> -13]
[(1,3,4) : -12 -> -12]
[(1,2,4) : -13 -> -13]
[(1,3,2) : -13 -> -12]
[(2,3,4) : -12 -> -13]
[(1,4,3) : -12 -> -12]
gap> dcra4 := DoubleCosetRepresentatives(Ha4, Jc3, Jc3);
[[() : -14 -> -14], [(1,2)(3,4) : -14 -> -14], [() : -14 -> -13],

[(1,2)(3,4) : -14 -> -13], [() : -13 -> -14], [(1,2)(3,4) : -13 -> -14],
[() : -13 -> -13], [(1,2)(3,4) : -13 -> -13]]

4.5 Conjugation

4.5.1 \^

▷ \^(a) (operation)

Conjugation by an arrow a = (c : p → q) is the groupoid inner automorphism (see section 5.6)
defined as follows. There are two cases to consider. In the case p ̸= q,

• objects p,q are interchanged, and the remaining objects are fixed;

• loops at p,q: (b : p → p) 7→ (bc : q → q) and (b : q → q) 7→ (bc−1
: p → p);

• arrows between p and q: (b : p → q) 7→ (c−1bc−1 : q → p) and (b : q → p) 7→ (cbc : p → q);

groupoids 33

• costars at p,q: (b : r → p) 7→ (bc : r → q) and (b : r → q) 7→ (bc−1 : r → p);

• stars at p,q: (b : p → r) 7→ (c−1b :→ q) and (b : q → r) 7→ (cb : p → r);

• the remaining arrows are unchanged.

In the case p = q,

• all the objects are fixed;

• loops at p are conjugated by c, so (b : p → p) 7→ (bc : p → p);

• the rest of the costar and star at p are permuted,

(b : r → p) 7→ (bc : r → p) and (b : p → r) 7→ (c−1b : p → r);

• the remaining arrows are unchanged.

The details of this construction may be found in section 3.2 of [AW10].
Example

gap> p := Arrow(Gd8, (5,7), -9, -9);;
gap> q := Arrow(Gd8, (5,6,7,8), -8, -9);;
gap> r := Arrow(Gd8, (5,6)(7,8), -9, -7);;
gap> s := Arrow(Gd8, (5,6,7,8), -7, -8);;
gap> ## conjugation with elements p, q, and r in Gd8:
gap> p^q;
[(6,8) : -8 -> -8]
gap> p^r;
[(6,8) : -7 -> -7]
gap> q^p;
[() : -8 -> -9]
gap> q^r;
[(6,8) : -8 -> -7]
gap> r^p;
[(5,8,7,6) : -9 -> -7]
gap> r^q;
[(6,8) : -8 -> -7]
gap> s^p;
[(5,6,7,8) : -7 -> -8]
gap> s^q;
[(5,7)(6,8) : -7 -> -9]
gap> s^r;
[(5,7) : -9 -> -8]

4.5.2 ConjugateGroupoid

▷ ConjugateGroupoid(gpd, e) (operation)

When H is a subgroupoid of a groupoid G and a is an arrow of G, then the conjugate of H by a is
the subgroupoid generated by the conjugates of the generators of H.

groupoids 34

Example

gap> a5 := Arrow(Ga4, (1,2,3), -13, -12);
[(1,2,3) : -13 -> -12]
gap> ConjugateGroupoid(Gk4, a5);
single piece groupoid with rays: < Group([(1,2)(3,4), (1,3)(2,4)]),
[-15, -14, -13, -12, -11], [(), (1,2,3), (1,2)(3,4), (1,3)(2,4), (2,3,4)] >

4.6 Groupoids formed using isomorphisms

Here we describe an alternative way of constructing a connected groupoid.
Object groups in a connected groupoid are isomorphic, so we may use a collection of isomor-

phisms to form a groupoid. Let G1,G2, . . . ,Gn be isomorphic groups and, for 2⩽ i⩽ n, let µi : G1 →Gi

be isomorphisms. Then µi j = µ
−1
i ∗µ j is an isomorphism from Gi to G j. If we take {u1, . . . ,un} to be

our set of objects, with Gi the object group at ui, we may consider the arrows in the groupoid to have
the form [[gi,g j] : ui → u j] where gi ∈ Gi and g j = µi j(gi) ∈ G j. The product of [[gi,g j] : ui → u j] and
[[g′j,gk] : u j → uk] is [[µ−1

i j (g jg′j),µ jk(g jg′j)] : ui → uk].

4.6.1 GroupoidByIsomorphisms

▷ GroupoidByIsomorphisms(gp, obs, isos) (operation)

▷ IsGroupoidByIsomorphisms(gpd) (property)

The operation GroupoidByIsomorphisms takes a group G1 as root group; a set of n objects; and a
set of n isomorphisms from the root group, where the first isomorphism should be the identity mapping
on G1. The output is a single piece groupoid of type IsGroupoidByIsomorphisms. Its rays have the
form [One(G1),One(Gi)] where Gi is the image of the i-th isomorphism.

In the example we first take three permutation groups isomorphic to the symmetric group S3.
There follows an isomorphic groupoid whose object groups are a permutation group; a pc-group and
an fp-group.

Example

gap> s3a := Group((1,2), (2,3));;
gap> s3b := Group((4,6,8)(5,7,9), (4,9)(5,8)(6,7));;
gap> s3c := Group((4,6,8)(5,7,9), (5,9)(6,8));;
gap> SetName(s3a, "s3a");;
gap> SetName(s3b, "s3b");;
gap> SetName(s3c, "s3c");;
gap> ida := IdentityMapping(s3a);;
gap> isoab := IsomorphismGroups(s3a, s3b);;
gap> isoac := IsomorphismGroups(s3a, s3c);;
gap> isos1 := [ida, isoab, isoac];;
gap> G1 := GroupoidByIsomorphisms(s3a, [-3,-2,-1], isos1);;
gap> gens1 := GeneratorsOfGroupoid(G1);
[[[(1,2), (1,2)] : -3 -> -3], [[(2,3), (2,3)] : -3 -> -3],

[[(), ()] : -3 -> -2], [[(), ()] : -3 -> -1]]
gap> x1 := ImageElm(isos1[2], (1,2));;
gap> a1 := Arrow(G1, [(1,2), x1], -3, -2);

groupoids 35

[[(1,2), (4,5)(6,9)(7,8)] : -3 -> -2]
gap> a1^-1;
[[(4,5)(6,9)(7,8), (1,2)] : -2 -> -3]
gap> y1 := ImageElm(isos1[2], (2,3));;
gap> z1 := ImageElm(isos1[3], (2,3));;
gap> b1 := Arrow(G1, [y1, z1], -2, -1);
[[(4,9)(5,8)(6,7), (5,9)(6,8)] : -2 -> -1]
gap> c1 := a1*b1;
[[(1,3,2), (4,8,6)(5,9,7)] : -3 -> -1]

gap> isopc := IsomorphismPcGroup(s3a);;
gap> s3p := Image(isopc);;
gap> f2 := FreeGroup(2);;
gap> s3f := f2/[f2.1^3, f2.2^2, (f2.1*f2.2)^2];;
gap> isofp := GroupHomomorphismByImages(s3a,s3f,[(1,2,3),(2,3)],[s3f.1,s3f.2]);;
gap> isos2 := [ida, isopc, isofp];;
gap> G2 := GroupoidByIsomorphisms(s3a, [-6,-5,-4], isos2);;
gap> gens2 := GeneratorsOfGroupoid(G2);
[[[(1,2), (1,2)] : -6 -> -6], [[(2,3), (2,3)] : -6 -> -6],

[[(), <identity> of ...] : -6 -> -5], [[(), <identity ...>] : -6 -> -4]
]

gap> x2 := ImageElm(isos2[2], (1,2));;
gap> a2 := Arrow(G2, [(1,2), x2], -6, -5);
[[(1,2), f1*f2] : -6 -> -5]
gap> a2^-1;
[[f1*f2, (1,2)] : -5 -> -6]
gap> y2 := ImageElm(isos2[2], (2,3));;
gap> z2 := ImageElm(isos2[3], (2,3));;
gap> b2 := Arrow(G2, [y2, z2], -5, -4);
[[f1, f2^-1] : -5 -> -4]
gap> c2 := a2*b2;
[[(1,3,2), f1^2] : -6 -> -4]

4.7 Groupoids whose objects form a monoid

Let M be a monoid with G its maximal subgroup. We may form a groupoid with the elements of M as
its objects and with arrows t → t ∗g for all t ∈ M and g ∈ G.

This construction is used in the XMod package to construct the group-groupoid which corresponds
to a crossed module or cat2-group.

4.7.1 SinglePieceGroupoidWithRays

▷ SinglePieceGroupoidWithRays(gp, obs, rays) (operation)

When M is a group, G = M and the groupoid so constructed is a single piece which represents the
regular representation of G. The ray from 1 to g is just g since 1∗g = g.

Example

gap> d8 := Group((5,6,7,8), (5,7));;

groupoids 36

gap> ed8 := Elements(d8);;
gap> Rd8 := SinglePieceGroupoidWithRays(d8, ed8, ed8);
single piece groupoid with rays: < Group([(5,6,7,8), (5,7)]),
[(), (6,8), (5,6)(7,8), (5,6,7,8), (5,7), (5,7)(6,8), (5,8,7,6), (5,8)(6,7)
], [(), (6,8), (5,6)(7,8), (5,6,7,8), (5,7), (5,7)(6,8), (5,8,7,6),
(5,8)(6,7)] >

gap> Homset(Rd8, (6,8), (5,7));
<homset (6,8) -> (5,7) with head group Group([(5,8,7,6), (5,7)])>
gap> Display(last);
<homset (6,8) -> (5,7) with elements:
[(5,7)(6,8) : (6,8) -> (5,7)]
[(5,7) : (6,8) -> (5,7)]
[() : (6,8) -> (5,7)]
[(6,8) : (6,8) -> (5,7)]
[(5,8,7,6) : (6,8) -> (5,7)]
[(5,8)(6,7) : (6,8) -> (5,7)]
[(5,6,7,8) : (6,8) -> (5,7)]
[(5,6)(7,8) : (6,8) -> (5,7)]

4.7.2 RightActionGroupoid

▷ RightActionGroupoid(mon) (operation)

▷ IsGroupoidWithMonoidObjects(gpd) (property)

When M is a monoid, rather than a group, this construction produces several components. One of
these has as objects the elements of the group G.

When M is a group, this operation gives the same result as SinglePieceGroupoidWithRays.
As a simple example we take a monoid M of size 13 generated by 2 transformations of degree

4. The groupoid has 8 components, of which 3 have a single object and group C2 generated by
Transformation([1,2,4,3]), while 5 have two objects and trivial group.

Example

gap> M := Monoid(Transformation([1,1,2,3]), Transformation([1,2,4,3]));
<transformation monoid of degree 4 with 2 generators>
gap> rag := RightActionGroupoid(M);
groupoid with 8 pieces:
1: single piece groupoid with rays: < Group(
[IdentityTransformation, Transformation([1, 2, 4, 3])]),
[Transformation([1, 1, 1, 1])], [IdentityTransformation] >
2: single piece groupoid with rays: < Group(
[IdentityTransformation, Transformation([1, 2, 4, 3])]),
[Transformation([1, 1, 1, 2])], [IdentityTransformation] >
3: single piece groupoid with rays: < Group([IdentityTransformation]),
[Transformation([1, 1, 1, 3]), Transformation([1, 1, 1])],
[IdentityTransformation, Transformation([1, 2, 4, 3])] >
4: single piece groupoid with rays: < Group(
[IdentityTransformation, Transformation([1, 2, 4, 3])]),
[Transformation([1, 1, 2, 1])], [IdentityTransformation] >
5: single piece groupoid with rays: < Group([IdentityTransformation]),
[Transformation([1, 1, 2, 3]), Transformation([1, 1, 2])],

groupoids 37

[IdentityTransformation, Transformation([1, 2, 4, 3])] >
6: single piece groupoid with rays: < Group([IdentityTransformation]),
[Transformation([1, 1, 3, 1]), Transformation([1, 1, 4, 1])],
[IdentityTransformation, Transformation([1, 2, 4, 3])] >
7: single piece groupoid with rays: < Group([IdentityTransformation]),
[Transformation([1, 1, 3, 2]), Transformation([1, 1, 4, 2])],
[IdentityTransformation, Transformation([1, 2, 4, 3])] >
8: single piece groupoid with rays: < Group([IdentityTransformation]),
[IdentityTransformation, Transformation([1, 2, 4, 3])],
[IdentityTransformation, Transformation([1, 2, 4, 3])] >
gap> IsGroupoidWithMonoidObjects(rag);
true
gap> orag := ObjectList(rag);;
gap> hs := Homset(rag, orag[3], orag[4]);;
gap> Display(hs);
<homset Transformation([1, 1, 1, 3]) -> Transformation([1, 1, 1])

with elements:
[Transformation([1, 2, 4, 3]) : Transformation([1, 1, 1, 3]) ->
Transformation([1, 1, 1])]

Chapter 5

Homomorphisms of Groupoids

A homomorphism m from a groupoid G to a groupoid H consists of a map from the objects of G to
those of H together with a map from the elements of G to those of H which is compatible with tail
and head and which preserves multiplication:

m(g1 : o1 → o2)∗m(g2 : o2 → o3) = m(g1∗g2 : o1 → o3).

Note that when a homomorphism is not injective on objects, the image of the source need not be a
subgroupoid of the range. A simple example of this is given by a homomorphism from the two-object,
four-element groupoid with trivial group to the free group ⟨a⟩ on one generator, when the image is
[1,an,a−n] for some n > 0.

A variety of homomorphism operations are available.

• The basic construction is a homomorphism φ : G → H from a connected groupoid G to a con-
nected groupoid H, constructed using GroupoidHomomorphismFromSinglePiece, (see 5.1).

• Since more than one connected groupoid may be mapped to the same range, we then have the
operation GroupoidHomomorphismToSinglePiece, (see 5.4).

• The third case arises when both source and range are unions of connected groupoids, in which
case HomomorphismByUnion is called, (see 5.5).

• Fourthly, there are is an additional operation for the case where the source is homogeneous and
discrete, GroupoidHomomorphismFromHomogeneousDiscrete, (see 5.4.2).

• Finally, there are special operations for inclusion mappings, restricted mappings (see 5.3). and
groupoid automorphisms (see 5.6).

5.1 Homomorphisms from a connected groupoid

5.1.1 GroupoidHomomorphismFromSinglePiece

▷ GroupoidHomomorphismFromSinglePiece(src, rng, gens, images) (operation)

▷ GroupoidHomomorphism(args) (function)

▷ IsGroupoidHomomorphism(mwohom) (Category)

38

groupoids 39

The simplest groupoid homomorphism is a mapping φ : G → H from a connected groupoid G to
a connected groupoid H. There are two equivalent sets of input data which may be used. Both require
the Source G and the Range H. The first then requires:

• the set of generating arrows, genG = GeneratorsOfGroupoid(G);

• a list of image arrows imphi in H.

This may be implemented by the call GroupoidHomomorphismFromSinglePiece(G,H,genG,imphi),
and the data is stored in the attribute MappingGeneratorsImages. Alternatively, use the global
function GroupoidHomomorphism with the same four parameters.

The alternative input data consists of:

• a homomorphism rhom from the root group of G to the group at the image object in H;

• a list imobs of the images of the objects of G;

• a list imrays of the elements in the images of the rays of G, so that the image φ(ri : o1 → oi) of
the i-th ray is (imrays[i]:imobs[1]→imobs[i]).

This data is stored in the attribute MappingToSinglePieceData.
So an alternative way to construct this homomorphism of groupoids is to make a call of the form

GroupoidHomomorphism(G,H,rhom,imobs,imrays).
In the following example the same homomorphism is constructed using both methods.

Example

gap> Kk4 := SubgroupoidWithRays(Ha4, k4, [(), (1,3,4), (1,4)(2,3)]);;
gap> SetName(Kk4, "Kk4");
gap> gen1 := GeneratorsOfGroupoid(Gd8);
[[(5,6,7,8) : -9 -> -9], [(5,7) : -9 -> -9], [() : -9 -> -8],

[() : -9 -> -7]]
gap> gen2 := GeneratorsOfGroupoid(Kk4);
[[(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14],

[(1,3,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -12]]
gap> images := [gen2[1]*gen2[2], gen2[1]^2, gen2[3], gen2[4]];
[[(1,4)(2,3) : -14 -> -14], [() : -14 -> -14], [(1,3,4) : -14 -> -13],
[(1,4)(2,3) : -14 -> -12]]

gap> hom8 := GroupoidHomomorphismFromSinglePiece(Gd8, Kk4, gen1, images);
groupoid homomorphism : Gd8 -> Kk4
[[[(5,6,7,8) : -9 -> -9], [(5,7) : -9 -> -9], [() : -9 -> -8],

[() : -9 -> -7]],
[[(1,4)(2,3) : -14 -> -14], [() : -14 -> -14], [(1,3,4) : -14 -> -13],

[(1,4)(2,3) : -14 -> -12]]]
gap> gend8 := GeneratorsOfGroup(d8);;
gap> imh := [(1,4)(2,3), ()];;
gap> h := GroupHomomorphismByImages(d8, a4, gend8, imh);
[(5,6,7,8), (5,7)] -> [(1,4)(2,3), ()]
gap> hom9 := GroupoidHomomorphism(Gd8, Kk4, h, [-14,-13,-12],
> [(), (1,3,4), (1,4)(2,3)]);;
gap> hom8 = hom9;
true
gap> e1 := Arrow(Gd8, (5,6,7,8), -7, -8);;

groupoids 40

gap> ImageElm(hom8, e1);
[(1,3,4) : -12 -> -13]
gap> IsGroupoidHomomorphism(hom8);
true

5.2 Properties and attributes of groupoid homomorphisms

5.2.1 Properties of a groupoid homomorphism

The properties listed in subsection 3.3 for homomorphisms of magmas with objects also apply to
groupoid homomorphisms.

Example

gap> [IsInjectiveOnObjects(hom8), IsSurjectiveOnObjects(hom8)];
[true, true]
gap> [IsInjective(hom8), IsSurjective(hom8)];
[false, false]
gap> ad8 := GroupHomomorphismByImages(d8, d8,
> [(5,6,7,8), (5,7)], [(5,8,7,6), (6,8)]);;
gap> md8 := GroupoidHomomorphism(Gd8, Gd8, ad8,
> [-7,-9,-8], [(),(5,7),(6,8)]);
groupoid homomorphism : Gd8 -> Gd8
[[[(5,6,7,8) : -9 -> -9], [(5,7) : -9 -> -9], [() : -9 -> -8],

[() : -9 -> -7]],
[[(5,8,7,6) : -7 -> -7], [(6,8) : -7 -> -7], [(5,7) : -7 -> -9],

[(6,8) : -7 -> -8]]]
gap> IsBijectiveOnObjects(md8);
true
gap> [IsInjective(md8), IsSurjective(md8)];
[true, true]
gap> [IsEndomorphismWithObjects(md8), IsAutomorphismWithObjects(md8)];
[true, true]

5.2.2 Attributes of a groupoid homomorphism

The attributes of a groupoid homomorphism mor from a single piece groupoid cover both forms of
construction defined above.

• S = Source(mor) is the source groupoid of the homomorphism;

• R = Range(mor) is the range groupoid of the homomorphism;

• RootGroupHomomorphism(mor) is the group homomorphism from the root group of S to the
group at the image object in R of the root object in S;

• ImagesOfObjects(mor) is the list of objects in R which are the images of the objects in S;

• ImageElementsOfRays(mor) is the list of group elements in those arrows in R which are the
images of the rays in S;

groupoids 41

• MappingGeneratorsImages(mor) is the two element list containing the list of generators in S
and the list of their images in R;

• MappingToSinglePieceData(mor) is a list with three elements: the root group homomor-
phism; the images of the objects; and the images of the rays.

For other types of homomorphism the attributes are very similar.
The function ObjectGroupHomomorphism, though an operation, is included in this section for

convenience.

5.2.3 RootGroupHomomorphism

▷ RootGroupHomomorphism(hom) (attribute)

This is the group homomorphism from the root group of the source groupoid to the group at the
image object in the range groupoid of the root object in the source.

5.2.4 ImagesOfObjects

▷ ImagesOfObjects(hom) (attribute)

This is the list of objects in the range groupoid which are the images of the objects in the source.

5.2.5 ImageElementsOfRays

▷ ImageElementsOfRays(hom) (attribute)

This is the list of group elements in those arrows in the range groupoid which are the images of
the rays in the source.

Example

gap> RootGroupHomomorphism(hom8);
[(5,6,7,8), (5,7)] -> [(1,4)(2,3), ()]
gap> ImagesOfObjects(hom8);
[-14, -13, -12]
gap> ImageElementsOfRays(hom8);
[(), (1,3,4), (1,4)(2,3)]

5.2.6 MappingToSinglePieceData (for groupoids)

▷ MappingToSinglePieceData(map) (attribute)

As mentioned earlier, this attribute stores the root group homomorphism; a list of the images of
the objects; and a list of the elements in the images of the rays.

Example

gap> MappingGeneratorsImages(hom8);
[[[(5,6,7,8) : -9 -> -9], [(5,7) : -9 -> -9], [() : -9 -> -8],

groupoids 42

[() : -9 -> -7]],
[[(1,4)(2,3) : -14 -> -14], [() : -14 -> -14], [(1,3,4) : -14 -> -13],

[(1,4)(2,3) : -14 -> -12]]]
gap> MappingToSinglePieceData(hom8);
[[[(5,6,7,8), (5,7)] -> [(1,4)(2,3), ()], [-14, -13, -12],

[(), (1,3,4), (1,4)(2,3)]]]

5.2.7 ObjectGroupHomomorphism

▷ ObjectGroupHomomorphism(gpdhom, obj) (operation)

For a given groupoid homomorphism, this operation gives the group homomorphism from an
object group of the source to the object group at the image object in the range.

Example

gap> ObjectGroupHomomorphism(hom8, -8);
[(5,6,7,8), (5,7)] -> [(1,3)(2,4), ()]

5.3 Special types of groupoid homomorphism

In this section we mention inclusion mappings of subgroupoids; and mappings restricted to a source
subgroupoid. We also discuss various types of isomorphism: to a different set of objects; to a permu-
tation groupoid; to a pc-groupoid.

5.3.1 InclusionMappingGroupoids

▷ InclusionMappingGroupoids(gpd, sgpd) (operation)

The operation InclusionMappingGroupoids(gpd,sgpd) returns the inclusion homomorphism
from the subgroupoid sgpd to gpd.

Example

gap> incKk4 := InclusionMappingGroupoids(Ha4, Kk4);
groupoid homomorphism : Kk4 -> Ha4
[[[(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14],

[(1,3,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -12]],
[[(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14],

[(1,3,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -12]]]

For another example, refer back to subsection PiecePositions (4.3.5).

groupoids 43

5.3.2 RestrictedMappingGroupoids

▷ RestrictedMappingGroupoids(mor, sgpd) (operation)

▷ ParentMappingGroupoids(mor) (attribute)

The operation RestrictedMappingGroupoids(mor,sgpd) returns the restriction of the homo-
morphism mor to the subgroupoid sgpd of its source. The range is usually set to the ImagesSource
of the restriction. The restriction is assigned the attribute ParentMappingGroupoids with value mor
(or that of mor is one exists). For another example see section 5.7.

Example

gap> Gc4 := Subgroupoid(Gd8, c4);; SetName(Gc4, "Gc4");
gap> res4 := RestrictedMappingGroupoids(hom8, Gc4);
groupoid homomorphism :
[[[(5,6,7,8) : -9 -> -9], [() : -9 -> -8], [() : -9 -> -7]],

[[(1,4)(2,3) : -14 -> -14], [(1,3,4) : -14 -> -13],
[(1,4)(2,3) : -14 -> -12]]]

gap> ParentMappingGroupoids(res4) = hom8;
true

5.3.3 IsomorphismNewObjects (for groupoids)

▷ IsomorphismNewObjects(src, objlist) (operation)

The operation IsomorphismNewObjects(gpd,obs) returns the isomorphism from a groupoid
gpd to a groupoid with the same object group and ray elements but with a different set obs of objects.

We then compute the composite homomorphism, mor8 : Gd8 -> Kk4 -> Ha4 -> Ga4.
Example

gap> isoHa4 := IsomorphismNewObjects(Ha4, [-30,-29,-28]);
groupoid homomorphism :
[[[(1,2,3) : -14 -> -14], [(2,3,4) : -14 -> -14], [() : -14 -> -13],

[() : -14 -> -12]],
[[(1,2,3) : -30 -> -30], [(2,3,4) : -30 -> -30], [() : -30 -> -29],

[() : -30 -> -28]]]
gap> Ka4 := Range(isoHa4); SetName(Ka4, "Ka4");
single piece groupoid: < a4, [-30, -29, -28] >
gap> IsSubgroupoid(Gk4, Kk4);
true
gap> incHa4 := InclusionMappingGroupoids(Ga4, Ha4);;
gap> mor8 := hom8 * incKk4 * incHa4;
groupoid homomorphism : Gd8 -> Ga4
[[[(5,6,7,8) : -9 -> -9], [(5,7) : -9 -> -9], [() : -9 -> -8],

[() : -9 -> -7]],
[[(1,4)(2,3) : -14 -> -14], [() : -14 -> -14], [(1,3,4) : -14 -> -13],

[(1,4)(2,3) : -14 -> -12]]]
gap> ImageElm(mor8, e1);
[(1,3,4) : -12 -> -13]

groupoids 44

5.3.4 IsomorphismStandardGroupoid

▷ IsomorphismStandardGroupoid(gpd, obs) (operation)

The operation IsomorphismStandardGroupoid(gpd,obs) returns the isomorphism from a
groupoid with rays to the groupoid of type IsDirectProductWithCompleteDigraphDomain on the
given set obs of objects. Gk4, a subgroupoid of Ga4, was our first example of a groupoid with rays
(see SubgroupoidWithRays (4.3.3)), and a standard isomorphic copy is formed here.

Example

gap> isoGk4 := IsomorphismStandardGroupoid(Gk4, [-45..-41]);
groupoid homomorphism :
[[[(1,2)(3,4) : -15 -> -15], [(1,3)(2,4) : -15 -> -15],

[(1,2,3) : -15 -> -14], [(1,2,4) : -15 -> -13], [(1,3,4) : -15 -> -12],
[(2,3,4) : -15 -> -11]],

[[(1,2)(3,4) : -45 -> -45], [(1,3)(2,4) : -45 -> -45], [() : -45 -> -44],
[() : -45 -> -43], [() : -45 -> -42], [() : -45 -> -41]]]

gap> G2k4 := Image(isoGk4); SetName(G2k4, "G2k4");
single piece groupoid: < k4, [-45 .. -41] >
gap> e5 := Arrow(Gk4, (1,2,4) , -13, -12);
[(1,2,4) : -13 -> -12]
gap> ImageElm(isoGk4, e5);
[(1,3)(2,4) : -43 -> -42]
gap> invGk4 := InverseGeneralMapping(isoGk4);
groupoid homomorphism :
[[[(1,2)(3,4) : -45 -> -45], [(1,3)(2,4) : -45 -> -45], [() : -45 -> -44],

[() : -45 -> -43], [() : -45 -> -42], [() : -45 -> -41]],
[[(1,2)(3,4) : -15 -> -15], [(1,3)(2,4) : -15 -> -15],

[(1,2,3) : -15 -> -14], [(1,2,4) : -15 -> -13], [(1,3,4) : -15 -> -12],
[(2,3,4) : -15 -> -11]]]

This operation may also be used to provide a standard form for groupoids of type
IsGroupoidByIsomorphisms as described in subsection GroupoidByIsomorphisms (4.6.1).

Example

gap> G2;
single piece groupoid with rays: < s3a, [-6, -5, -4],
[[(), ()], [(), <identity> of ...], [(), <identity ...>]] >
gap> isoG2 := IsomorphismStandardGroupoid(G2, [-44,-43,-42]);
groupoid homomorphism :
[[[[(1,2), (1,2)] : -6 -> -6], [[(2,3), (2,3)] : -6 -> -6],

[[(), <identity> of ...] : -6 -> -5], [[(), <identity ...>] : -6 ->
-4]],

[[(1,2) : -44 -> -44], [(2,3) : -44 -> -44], [() : -44 -> -43],
[() : -44 -> -42]]]

groupoids 45

5.3.5 IsomorphismPermGroupoid

▷ IsomorphismPermGroupoid(gpd) (attribute)

▷ RegularActionHomomorphismGroupoid(gpd) (attribute)

▷ IsomorphismPcGroupoid(gpd) (attribute)

The attribute IsomorphismPermGroupoid(gpd) returns an isomorphism from a groupoid gpd to
a groupoid with the same objects but with an isomorphic permutation group.

The attribute RegularActionHomomorphismGroupoid returns an isomorphism from a groupoid
gpd to a groupoid with the same objects but with an isomorphic regular presentation. In the example
below these two operations produce equivalent permutation groupoids. Only the second is printed as
the first is liable to change from one run to the next.

Similarly, the attribute IsomorphismPcGroupoid(gpd) attempts to return an isomorphism from
the group to a pc-group with the same objects.

Example

gap> isoGq8 := IsomorphismPermGroupoid(Gq8);;
gap> regGq8 := RegularActionHomomorphismGroupoid(Gq8);
groupoid homomorphism :
[[[x : -19 -> -19], [y : -19 -> -19], [y2 : -19 -> -19],

[<identity> of ... : -19 -> -18], [<identity> of ... : -19 -> -17]],
[[(1,2,4,6)(3,8,7,5) : -19 -> -19], [(1,3,4,7)(2,5,6,8) : -19 -> -19],

[(1,4)(2,6)(3,7)(5,8) : -19 -> -19], [() : -19 -> -18],
[() : -19 -> -17]]]

gap> Pq8 := Image(regGq8); SetName(Pq8, "Pq8");
single piece groupoid: < Group([(1,2,4,6)(3,8,7,5), (1,3,4,7)(2,5,6,8),

(1,4)(2,6)(3,7)(5,8)]), [-19, -18, -17] >
gap> e7 := Arrow(Gq8, x*y, -18, -17);;
gap> ImageElm(regGq8, e7);
[(1,5,4,8)(2,7,6,3) : -18 -> -17]
gap> Gc4 := Subgroupoid(Gd8, c4); SetName(Gc4, "Gc4");
single piece groupoid: < c4, [-9, -8, -7] >
gap> isoGc4 := IsomorphismPcGroupoid(Gc4);
groupoid homomorphism :
[[[(5,6,7,8) : -9 -> -9], [() : -9 -> -8], [() : -9 -> -7]],

[[f1 : -9 -> -9], [<identity> of ... : -9 -> -8],
[<identity> of ... : -9 -> -7]]]
[<identity> of ... : -9 -> -7]]]

5.4 Homomorphisms to a connected groupoid

5.4.1 HomomorphismToSinglePiece (for groupoids)

▷ HomomorphismToSinglePiece(src, rng, piecehoms) (operation)

When G is made up of two or more pieces, all of which get mapped to a connected groupoid, we
have a homomorphism to a single piece. The third input parameter in this case is a list of the individual
homomorphisms from the single pieces (in the correct order!). See section 3.1 for the corresponding
operation on homomorphisms of magmas with objects.

groupoids 46

In the following example the source V2 of homV2 has two pieces, and both of the component
homomorphisms are isomorphisms.

Example

gap> V2 := UnionOfPieces(Gq8, Gc4);;
gap> imGc4 := [genPq8[1], genPq8[4], genPq8[5]];
[[(1,2,4,6)(3,8,7,5) : -19 -> -19], [() : -19 -> -18], [() : -19 -> -17]]
gap> homGc4 := GroupoidHomomorphism(Gc4, Pq8, genGc4, imGc4);
groupoid homomorphism : Gc4 -> Pq8
[[[(5,6,7,8) : -9 -> -9], [() : -9 -> -8], [() : -9 -> -7]],

[[(1,2,4,6)(3,8,7,5) : -19 -> -19], [() : -19 -> -18], [() : -19 -> -17]]]
gap> homV2 := HomomorphismToSinglePiece(V2, Pq8, [regGq8, homGc4]);
groupoid homomorphism :
[[[[x : -19 -> -19], [y : -19 -> -19], [y2 : -19 -> -19],

[<identity> of ... : -19 -> -18], [<identity> of ... : -19 -> -17]],
[[(1,2,4,6)(3,8,7,5) : -19 -> -19], [(1,3,4,7)(2,5,6,8) : -19 -> -19],

[(1,4)(2,6)(3,7)(5,8) : -19 -> -19], [() : -19 -> -18],
[() : -19 -> -17]]],

[[[(5,6,7,8) : -9 -> -9], [() : -9 -> -8], [() : -9 -> -7]],
[[(1,2,4,6)(3,8,7,5) : -19 -> -19], [() : -19 -> -18],

[() : -19 -> -17]]]]
gap> ImageElm(homV2, e7);
[(1,5,4,8)(2,7,6,3) : -18 -> -17]

5.4.2 GroupoidHomomorphismFromHomogeneousDiscrete

▷ GroupoidHomomorphismFromHomogeneousDiscrete(src, rng, homs, oims) (operation)

This operation requires the source; the range; a list of homomorphisms from the object groups
to the image object groups; and a list of the image objects. The source must be homogeneous and
discrete, and the range must be a single piece. The example uses the groupoid HDc6 constructed in
subsection HomogeneousGroupoid (4.1.5).

Example

gap> c3a := Subgroup(a4, [(1,2,3)]);; c3b := Subgroup(a4, [(1,2,4)]);;
gap> c3c := Subgroup(a4, [(1,3,4)]);; c3d := Subgroup(a4, [(2,3,4)]);;
gap> hc6a := GroupHomomorphismByImages(c6, c3a,
> [(11,12,13)(14,15)], [(1,2,3)]);;
gap> hc6b := GroupHomomorphismByImages(c6, c3b,
> [(11,12,13)(14,15)], [(1,2,4)]);;
gap> hc6c := GroupHomomorphismByImages(c6, c3c,
> [(11,12,13)(14,15)], [(1,3,4)]);;
gap> hc6d := GroupHomomorphismByImages(c6, c3d,
> [(11,12,13)(14,15)], [(2,3,4)]);;
gap> mor6 := GroupoidHomomorphismFromHomogeneousDiscrete(HDc6, Ga4,
> [hc6a, hc6b, hc6c, hc6d], [-15,-14,-12,-11]);
groupoid homomorphism : HDc6 -> Ga4
gap> e6 := Arrow(HDc6, (11,12,13), -25, -25);;
gap> ImageElm(mor6, e6);

groupoids 47

[(1,3,4) : -12 -> -12]

5.5 Homomorphisms to more than one piece

5.5.1 HomomorphismByUnion (for groupoids)

▷ HomomorphismByUnion(src, rng, homs) (operation)

As in section 3.3, when the range H has more than one connected component, a homomorphism
is a union of homomorphisms, one for each piece in the range.

Example

gap> W1 := UnionOfPieces(Ha4, Gd8);;
gap> W2 := UnionOfPieces(Ka4, Kk4);;
gap> SetName(W1, "[Ha4,Gd8]"); SetName(W2, "[Ka4,Kk4]");
gap> homW := HomomorphismByUnion(W1, W2, [isoHa4, hom8]);;
gap> Display(homW);
groupoid homomorphism: [Ha4,Gd8] -> [Ka4,Kk4] with pieces :
homomorphism to single piece groupoid: Ha4 -> Ka4
root group homomorphism:
(1,2,3) -> (1,2,3)
(2,3,4) -> (2,3,4)
object map: [-14, -13, -12] -> [-30, -29, -28]
ray images: [(), (), ()]
homomorphism to single piece groupoid: Gd8 -> Kk4
root group homomorphism:
(5,6,7,8) -> (1,4)(2,3)
(5,7) -> ()
object map: [-9, -8, -7] -> [-14, -13, -12]
ray images: [(), (1,3,4), (1,4)(2,3)]

5.5.2 IsomorphismGroupoids

▷ IsomorphismGroupoids(A, B) (operation)

When A,B are two single piece groupoids, they are isomorphic provided they have the same num-
ber of objects and the root groups are isomorphic.

When A = [A1, . . . ,An], B = [B1, . . . ,Bn] are both unions of connected groupoids, they are isomor-
phic if there is a permutation π of [1, . . . ,n] such that Ai is isomorphic to Bπ(i) for all i.

Example

gap> s3b := Group((4,6,8)(5,7,9), (4,9)(5,8)(6,7));;
gap> s3c := Group((4,6,8)(5,7,9), (5,9)(6,8));;
gap> Gb := SinglePieceGroupoid(s3b, [-6,-5,-4]);;
gap> Gc := SinglePieceGroupoid(s3c, [-16,-15,-14]);;
gap> SetName(Gb, "Gb"); SetName(Gc, "Gc");
gap> c6b := Group((1,2,3,4,5,6));;

groupoids 48

gap> c6c := Group((7,8)(9,10,11));;
gap> Hb := SinglePieceGroupoid(c6b, [-10,-9,-8,-7]);;
gap> Hc := SinglePieceGroupoid(c6c, [-20,-19,-18,-17]);;
gap> SetName(Hb, "Hb"); SetName(Hc, "Hc");
gap> IsomorphismGroupoids(Gb, Gc);
groupoid homomorphism : Gb -> Gc
[[[(4,6,8)(5,7,9) : -6 -> -6], [(4,9)(5,8)(6,7) : -6 -> -6],

[() : -6 -> -5], [() : -6 -> -4]],
[[(4,6,8)(5,7,9) : -16 -> -16], [(5,9)(6,8) : -16 -> -16],

[() : -16 -> -15], [() : -16 -> -14]]]
gap> IsomorphismGroupoids(Gb, Hb);
fail
gap> B := UnionOfPieces([Gb, Hb]);;
gap> C := UnionOfPieces([Gc, Hc]);;
gap> isoBC := IsomorphismGroupoids(B, C);;
gap> Print(List(PiecesOfMapping(isoBC), p -> [Source(p),Range(p)]));
[[Hb, Hc], [Gb, Gc]]

5.6 Automorphisms of groupoids

In this section we consider automorphisms of single piece groupoids; then homogeneous discrete
groupoids; and finally homogeneous groupoids.

5.6.1 GroupoidAutomorphismByObjectPerm

▷ GroupoidAutomorphismByObjectPerm(gpd, imobs) (operation)

▷ GroupoidAutomorphismByGroupAuto(gpd, gpiso) (operation)

▷ GroupoidAutomorphismByRayShifts(gpd, imrays) (operation)

▷ GroupoidInnerAutomorphism(gpd, arrow) (operation)

We first describe automorphisms of a groupoid G where G is the direct product of a group g
and a complete digraph with n objects.. The automorphism group is generated by three types of
automorphism:

• given a permutation π of the n objects, we define

π : G → G, (g : oi → o j) 7→ (g : oπi → oπ j);

• given an automorphism α of the root group g, we define

α : G → G, (g : oi → o j) 7→ (αg : oi → o j);

• given L = [1,g2,g3, . . . ,gn] ∈ gn we define

θL : G → G, (g : oi → o j) 7→ (g−1
i gg j : oi → o j)

so, in particular, ∀ j the rays (r j : o1 → o j) are shifted by g j : they map to (r jg j : o1 → o j);

groupoids 49

• given an arrow a ∈ G, the inner automorphism of G by a is the mapping g 7→ ga where conju-
gation of arrows is defined in section 4.5.

Example

gap> perm1 := [-13,-12,-14];;
gap> aut1 := GroupoidAutomorphismByObjectPerm(Ha4, perm1);;
gap> Display(aut1);
homomorphism to single piece groupoid: Ha4 -> Ha4
root group homomorphism:
(1,2,3) -> (1,2,3)
(2,3,4) -> (2,3,4)
object map: [-14, -13, -12] -> [-13, -12, -14]
ray images: [(), (), ()]
gap> d := Arrow(Ha4, (1,3,4), -12, -13);
[(1,3,4) : -12 -> -13]
gap> d1 := ImageElm(aut1, d);
[(1,3,4) : -14 -> -12]
gap> gensa4 := GeneratorsOfGroup(a4);;
gap> alpha2 := GroupHomomorphismByImages(a4, a4, gensa4, [(2,3,4), (1,3,4)]);;
gap> aut2 := GroupoidAutomorphismByGroupAuto(Ha4, alpha2);;
gap> Display(aut2);
homomorphism to single piece groupoid: Ha4 -> Ha4
root group homomorphism:
(1,2,3) -> (2,3,4)
(2,3,4) -> (1,3,4)
object map: [-14, -13, -12] -> [-14, -13, -12]
ray images: [(), (), ()]
gap> d2 := ImageElm(aut2, d1);
[(1,2,4) : -14 -> -12]
gap> L3 := [(), (1,3,2), (2,4,3)];;
gap> aut3 := GroupoidAutomorphismByRayShifts(Ha4, L3);;
gap> Display(aut3);
homomorphism to single piece groupoid: Ha4 -> Ha4
root group homomorphism:
(1,2,3) -> (1,2,3)
(2,3,4) -> (2,3,4)
object map: [-14, -13, -12] -> [-14, -13, -12]
ray images: [(), (1,3,2), (2,4,3)]
gap> d3 := ImageElm(aut3, d2);
[(1,4)(2,3) : -14 -> -12]
gap> h4 := Arrow(Ha4, (2,3,4), -12, -13);;
gap> aut4 := GroupoidInnerAutomorphism(Ha4, h4);;
gap> Display(aut4);
homomorphism to single piece groupoid: Ha4 -> Ha4
root group homomorphism:
(1,2,3) -> (1,2,3)
(2,3,4) -> (2,3,4)
object map: [-14, -13, -12] -> [-14, -12, -13]
ray images: [(), (2,4,3), (2,3,4)]
gap> d4 := ImageElm(aut4, d3);
[(1,2,4) : -14 -> -13]
gap> aut1234 := aut1*aut2*aut3*aut4;;
gap> Display(aut1234);

groupoids 50

homomorphism to single piece groupoid: Ha4 -> Ha4
root group homomorphism:
(1,2,3) -> (1,4,3)
(2,3,4) -> (2,4,3)
object map: [-14, -13, -12] -> [-12, -13, -14]
ray images: [(), (1,2)(3,4), (1,2)(3,4)]
gap> d4 = ImageElm(aut1234, d);
true
gap> inv1234 := InverseGeneralMapping(aut1234);;
gap> Display(inv1234);
homomorphism to single piece groupoid: Ha4 -> Ha4
root group homomorphism:
(1,2,3) -> (1,2,4)
(2,3,4) -> (1,2,3)
object map: [-14, -13, -12] -> [-12, -13, -14]
ray images: [(), (), (1,4)(2,3)]

5.6.2 Automorphisms of a groupoid with rays

Let S be a wide subgroupoid with rays of a standard groupoid G.
An automorphism α of the root group H extends to the whole of S with the rays fixed by the

automorphism: (r−1
i hr j : oi → o j) 7→ (r−1

i (αh)r j : oi → o j).
An automorphism of G obtained by permuting the objects may map S to a different subgroupoid.

So we construct an isomorphism ι from S to a standard groupoid T , construct α permuting the objects
of T , and return ι ∗α ∗ ι−1.

For an automorphism by ray shifts we require that the shifts are elements of the root group of S.
Example

gap> ## (1) automorphism by group auto
gap> a5 := GroupHomomorphismByImages(k4, k4,
> [(1,2)(3,4), (1,3)(2,4)], [(1,3)(2,4), (1,4)(2,3)]);;
gap> aut5 := GroupoidAutomorphismByGroupAuto(Kk4, a5);
groupoid homomorphism : Kk4 -> Kk4
[[[(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14],

[(1,3,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -12]],
[[(1,3)(2,4) : -14 -> -14], [(1,4)(2,3) : -14 -> -14],

[(1,3,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -12]]]
gap> a := Arrow(Kk4, (1,3)(2,4), -12, -12);;
gap> ImageElm(aut5, a);
[(1,4)(2,3) : -12 -> -12]
gap> b := Arrow(Kk4, (1,4,2), -12, -13);;
gap> ImageElm(aut5, b);
[(1,2,3) : -12 -> -13]
gap> ## (2) automorphism by object perm
gap> aut6 := GroupoidAutomorphismByObjectPerm(Kk4, [-13,-12,-14]);
groupoid homomorphism : Kk4 -> Kk4
[[[(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14],

[(1,3,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -12]],
[[(1,4)(2,3) : -13 -> -13], [(1,2)(3,4) : -13 -> -13],

[(2,3,4) : -13 -> -12], [(1,4,3) : -13 -> -14]]]

groupoids 51

gap> ImageElm(aut6, a);
[(1,3)(2,4) : -14 -> -14]
gap> ImageElm(aut6, b);
[(1,3)(2,4) : -14 -> -12]
gap> ## (3) automorphism by ray shifts
gap> aut7 := GroupoidAutomorphismByRayShifts(Kk4,
> [(), (1,4)(2,3), (1,3)(2,4)]);
groupoid homomorphism : Kk4 -> Kk4
[[[(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14],

[(1,3,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -12]],
[[(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14],

[(1,2,3) : -14 -> -13], [(1,2)(3,4) : -14 -> -12]]]
gap> ImageElm(aut7, a);
[(1,3)(2,4) : -12 -> -12]
gap> ImageElm(aut7, b);
[(1,2,3) : -12 -> -13]
gap> ## (4) combine these three automorphisms
gap> aut567 := aut5 * aut6 * aut7;
groupoid homomorphism : Kk4 -> Kk4
[[[(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14],

[(1,3,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -12]],
[[(1,2)(3,4) : -13 -> -13], [(1,3)(2,4) : -13 -> -13],

[(1,4,3) : -13 -> -12], [(1,3,2) : -13 -> -14]]]
gap> ImageElm(aut567, a);
[(1,4)(2,3) : -14 -> -14]
gap> ImageElm(aut567, b);
[(1,4)(2,3) : -14 -> -12]
gap> ## (5) conjgation by an arrow
gap> e8 := Arrow(Kk4, (1,3)(2,4), -14, -12);;
gap> aut8 := GroupoidInnerAutomorphism(Kk4, e8);
groupoid homomorphism : Kk4 -> Kk4
[[[(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14],

[(1,3,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -12]],
[[(1,2)(3,4) : -12 -> -12], [(1,3)(2,4) : -12 -> -12],

[(1,4,2) : -12 -> -13], [(1,4)(2,3) : -12 -> -14]]]

5.6.3 AutomorphismGroupOfGroupoid

▷ AutomorphismGroupOfGroupoid(gpd) (operation)

▷ NiceObjectAutoGroupGroupoid(gpd, aut) (operation)

As above, let G be the direct product of a group g and a complete digraph with n objects. The
AutomorphismGroup Aut(G) of G is isomorphic to the quotient of Sn×A×gn by a subgroup isomor-
phic to g, where A is the automorphism group of g and Sn is the symmetric group on the n objects.
This is one of the main topics in [AW10].

If H is the union of k groupoids, all isomorphic to G, then Aut(H) is isomorphic to Sk ⋉Aut(G).
The function NiceObjectAutoGroupGroupoid takes a groupoid and a subgroup of its automor-

phism group and retuns a nice monomorphism from this automorphism group to a pc-group, if one is
available. The current implementation is experimental. Note that ImageElm at present only works on

groupoids 52

generating elements.
Example

gap> AHa4 := AutomorphismGroupOfGroupoid(Ha4);
Aut(Ha4)
gap> Agens := GeneratorsOfGroup(AHa4);;
gap> Length(Agens);
8
gap> NHa4 := NiceObject(AHa4);;
gap> MHa4 := NiceMonomorphism(AHa4);;
gap> Size(AHa4); ## (3!)x24x(12^2)
20736
gap> SetName(AHa4, "AHa4");
gap> SetName(NHa4, "NHa4");
gap> ## either of these names may be returned
gap> names := ["(((A4 x A4 x A4) : C2) : C3) : C2",
> "(C2 x C2 x C2 x C2 x C2 x C2) : (((C3 x C3 x C3) : C3) : (C2 x C2))"];;
gap> StructureDescription(NHa4) in names;
true
gap> ## cannot test images of Agens because of random variations
gap> ## Now do some tests!
gap> mgi := MappingGeneratorsImages(MHa4);;
gap> autgen := mgi[1];;
gap> pcgen := mgi[2];;
gap> ngen := Length(autgen);;
gap> ForAll([1..ngen], i -> Order(autgen[i]) = Order(pcgen[i]));
true

5.6.4 Inner automorphisms

The inner automorphism subgroup Inn(G) of the automorphism group of G is the group of inner
automorphisms ∧a : b 7→ ba for a ∈ G. It is not the case that the map G → Inn(G),a 7→ ∧a preserves
multiplication. Indeed, when a = (o,g, p),b = (p,h,r) ∈ G with objects p,q,r all distict, then

∧(ab) = (∧a)(∧b)(∧a) = (∧b)(∧a)(∧b).

(Compare this with the permutation identity (pq)(qr)(pq) = (pr) = (qr)(pq)(qr).) So the map G →
Inn(G) is of type IsMappingWithObjectsByFunction.

In the example we convert the automorphism group AGa4 into a single object groupoid, and then
define the inner automorphism map.

Example

gap> AHa40 := Groupoid(AHa4, [0]);
single piece groupoid: < Aut(Ha4), [0] >
gap> conj := function(a)
> return ArrowNC(Ha4, true, GroupoidInnerAutomorphism(Ha4,a), 0, 0);
> end;;
gap> inner := MappingWithObjectsByFunction(Ha4, AHa40, conj, [0,0,0]);;
gap> a1 := Arrow(Ha4, (1,2,3), -14, -13);;
gap> inn1 := ImageElm(inner, a1);;

groupoids 53

gap> a2 := Arrow(Ha4, (2,3,4), -13, -12);;
gap> inn2 := ImageElm(inner, a2);;
gap> a3 := a1*a2;
[(1,3)(2,4) : -14 -> -12]
gap> inn3 := ImageElm(inner, a3);
[groupoid homomorphism : Ha4 -> Ha4
[[[(1,2,3) : -14 -> -14], [(2,3,4) : -14 -> -14], [() : -14 -> -13],

[() : -14 -> -12]],
[[(1,3,4) : -12 -> -12], [(1,2,4) : -12 -> -12], [(1,3)(2,4) : -12 -> -13],

[() : -12 -> -14]]] : 0 -> 0]
gap> (inn3 = inn1*inn2*inn1) and (inn3 = inn2*inn1*inn2);
true

5.6.5 GroupoidAutomorphismByGroupAutos

▷ GroupoidAutomorphismByGroupAutos(gpd, auts) (operation)

Homogeneous, discrete groupoids are the second type of groupoid for which a method
is provided for AutomorphismGroupOfGroupoid. This is used in the XMod package for
constructing crossed modules of groupoids. The two types of generating automorphism are
GroupoidAutomorphismByGroupAutos, which requires a list of group automorphisms, one for each
object group, and GroupoidAutomorphismByObjectPerm, which permutes the objects. So, if the
object groups g have automorphism group Aut(g) and there are n objects, the autmorphism group of
the groupoid has size n!|Aut(g)|n.

Example

gap> Dd8 := HomogeneousDiscreteGroupoid(d8, [-13..-10]);
homogeneous, discrete groupoid: < d8, [-13 .. -10] >
gap> aut9 := GroupoidAutomorphismByObjectPerm(Dd8, [-12,-10,-11,-13]);
groupoid homomorphism : morphism from a homogeneous discrete groupoid:
[-13, -12, -11, -10] -> [-12, -10, -11, -13]
object homomorphisms:
IdentityMapping(d8)
IdentityMapping(d8)
IdentityMapping(d8)
IdentityMapping(d8)
gap> gend8 := GeneratorsOfGroup(d8);;
gap> g1 := gend8[1];;
gap> g2 := gend8[2];;
gap> b1 := IdentityMapping(d8);;
gap> b2 := GroupHomomorphismByImages(d8, d8, gend8, [g1, g2*g1]);;
gap> b3 := GroupHomomorphismByImages(d8, d8, gend8, [g1^g2, g2]);;
gap> b4 := GroupHomomorphismByImages(d8, d8, gend8, [g1^g2, g2^(g1*g2)]);;
gap> aut10 := GroupoidAutomorphismByGroupAutos(Dd8, [b1,b2,b3,b4]);
groupoid homomorphism : morphism from a homogeneous discrete groupoid:
[-13, -12, -11, -10] -> [-13, -12, -11, -10]
object homomorphisms:
IdentityMapping(d8)
GroupHomomorphismByImages(d8, d8, [(5,6,7,8), (5,7)],
[(5,6,7,8), (5,8)(6,7)])

groupoids 54

GroupHomomorphismByImages(d8, d8, [(5,6,7,8), (5,7)], [(5,8,7,6), (5,7)])
GroupHomomorphismByImages(d8, d8, [(5,6,7,8), (5,7)], [(5,8,7,6), (6,8)])
gap> ADd8 := AutomorphismGroupOfGroupoid(Dd8);
<group with 4 generators>
gap> Size(ADd8); ## 4!*8^4
98304
gap> genADd8 := GeneratorsOfGroup(ADd8);;
gap> Length(genADd8);
4
gap> w := GroupoidAutomorphismByGroupAutos(Dd8, [b2,b1,b1,b1]);;
gap> x := GroupoidAutomorphismByGroupAutos(Dd8, [b3,b1,b1,b1]);;
gap> y := GroupoidAutomorphismByObjectPerm(Dd8, [-12, -11, -10, -13]);;
gap> z := GroupoidAutomorphismByObjectPerm(Dd8, [-12, -13, -11, -10]);;
gap> ok := ForAll(genADd8, a -> a in[w, x, y, z]);
true
gap> NADd8 := NiceObject(ADd8);;
gap> MADd8 := NiceMonomorphism(ADd8);;
gap> w1 := ImageElm(MADd8, w);;
gap> x1 := ImageElm(MADd8, x);;
gap> y1 := ImageElm(MADd8, y);;
gap> z1 := ImageElm(MADd8, z);;
gap> u := z*w*y*x*z;
groupoid homomorphism : morphism from a homogeneous discrete groupoid:
[-13, -12, -11, -10] -> [-11, -13, -10, -12]
object homomorphisms:
IdentityMapping(d8)
GroupHomomorphismByImages(d8, d8, [(5,6,7,8), (5,7)],
[(5,6,7,8), (5,8)(6,7)])
IdentityMapping(d8)
GroupHomomorphismByImages(d8, d8, [(5,6,7,8), (5,7)], [(5,8,7,6), (5,7)])
gap> u1 := z1*w1*y1*x1*z1;
(1,2,4,3)(5,17,23,11,6,18,24,16)(7,19,25,15,9,21,27,13)(8,20,26,14,10,22,28,12)
gap> imu := ImageElm(MADd8, u);;
gap> u1 = imu;
true

5.6.6 AutomorphismGroupoidOfGroupoid

▷ AutomorphismGroupoidOfGroupoid(gpd) (attribute)

If G is a single piece groupoid with automorphism group Aut(G), and if H is the union of k
pieces, all isomorphic to G, then the automorphism group of H is the wreath product Sk ⋉Aut(G).
However, we find it more convenient to construct the automorphism groupoid of H. This is a single
piece groupoid AUT(H) with k objects - the object lists of the pieces of H - and root group Aut(G).
Isomorphisms between the root groups of the k pieces may be applied to the generators of Aut(G) to
construct automorphism groups of these pieces, and then isomorphisms between these automorphism
groups. We then construct AUT(H) using GroupoidByIsomorphisms.

In the special case that H is homogeneous, there is no need to construct a collection of automor-
phism groups. Rather, the rays of AUT(H) are given by IsomorphismNewObjects. For the example

groupoids 55

we use HGd8 constructed in subsection HomogeneousGroupoid (4.1.5).
Example

gap> HGd8 := HomogeneousGroupoid(Gd8,
> [[-39,-38,-37], [-36,-35,-34], [-33,-32,-31]]);;
gap> SetName(HGd8, "HGd8");
gap> AHGd8 := AutomorphismGroupoidOfGroupoid(HGd8);
Aut(HGd8)
gap> ObjectList(AHGd8);
[[-39, -38, -37], [-36, -35, -34], [-33, -32, -31]]
gap> RaysOfGroupoid(AHGd8){[2..3]};
[groupoid homomorphism :

[[[(5,6,7,8) : -39 -> -39], [(5,7) : -39 -> -39], [() : -39 -> -38],
[() : -39 -> -37]],

[[(5,6,7,8) : -36 -> -36], [(5,7) : -36 -> -36], [() : -36 -> -35],
[() : -36 -> -34]]], groupoid homomorphism :

[[[(5,6,7,8) : -39 -> -39], [(5,7) : -39 -> -39], [() : -39 -> -38],
[() : -39 -> -37]],

[[(5,6,7,8) : -33 -> -33], [(5,7) : -33 -> -33], [() : -33 -> -32],
[() : -33 -> -31]]]]

gap> obgp := ObjectGroup(AHGd8, [-36, -35, -34]);;
gap> Size(obgp); ## 3!*8^3
3072

5.7 Matrix representations of groupoids

Suppose that gpd is the direct product of a group G and a complete digraph, and that ρ : G → M is an
isomorphism to a matrix group M. Then, if rep is the isomorphic groupoid with the same objects and
root group M, there is an isomorphism µ from gpd to rep mapping (g : i → j) to (ρg : i → j).

When gpd is a groupoid with rays, a representation can be obtained by restricting a representation
of its parent.

Example

gap> reps := IrreducibleRepresentations(a4);;
gap> rep4 := reps[4];
Pcgs([(2,4,3), (1,3)(2,4), (1,2)(3,4)]) ->
[[[0, 0, 1], [1, 0, 0], [0, 1, 0]],

[[-1, 0, 0], [0, 1, 0], [0, 0, -1]],
[[1, 0, 0], [0, -1, 0], [0, 0, -1]]]

gap> Ra4 := Groupoid(Image(rep4), Ga4!.objects);;
gap> ObjectList(Ra4) = [-15 .. -11];
true
gap> gens := GeneratorsOfGroupoid(Ga4);
[[(1,2,3) : -15 -> -15], [(2,3,4) : -15 -> -15], [() : -15 -> -14],

[() : -15 -> -13], [() : -15 -> -12], [() : -15 -> -11]]
gap> images := List(gens,
> g -> Arrow(Ra4, ImageElm(rep4,g![2]), g![3], g![4]));
[[[[0, 0, -1], [1, 0, 0], [0, -1, 0]] : -15 -> -15],

[[[0, 1, 0], [0, 0, 1], [1, 0, 0]] : -15 -> -15],

groupoids 56

[[[1, 0, 0], [0, 1, 0], [0, 0, 1]] : -15 -> -14],
[[[1, 0, 0], [0, 1, 0], [0, 0, 1]] : -15 -> -13],
[[[1, 0, 0], [0, 1, 0], [0, 0, 1]] : -15 -> -12],
[[[1, 0, 0], [0, 1, 0], [0, 0, 1]] : -15 -> -11]]

gap> mor := GroupoidHomomorphismFromSinglePiece(Ga4, Ra4, gens, images);
groupoid homomorphism :
[[[(1,2,3) : -15 -> -15], [(2,3,4) : -15 -> -15], [() : -15 -> -14],

[() : -15 -> -13], [() : -15 -> -12], [() : -15 -> -11]],
[[[[0, 0, -1], [1, 0, 0], [0, -1, 0]] : -15 -> -15],

[[[0, 1, 0], [0, 0, 1], [1, 0, 0]] : -15 -> -15],
[[[1, 0, 0], [0, 1, 0], [0, 0, 1]] : -15 -> -14],
[[[1, 0, 0], [0, 1, 0], [0, 0, 1]] : -15 -> -13],
[[[1, 0, 0], [0, 1, 0], [0, 0, 1]] : -15 -> -12],
[[[1, 0, 0], [0, 1, 0], [0, 0, 1]] : -15 -> -11]]]

gap> IsMatrixGroupoid(Ra4);
true
gap> a := Arrow(Ha4, (1,4,2), -12, -13);
[(1,4,2) : -12 -> -13]
gap> ImageElm(mor, a);
[[[0, 0, 1], [-1, 0, 0], [0, -1, 0]] : -12 -> -13]
gap> rmor := RestrictedMappingGroupoids(mor, Ha4);
groupoid homomorphism :
[[[(1,2,3) : -14 -> -14], [(2,3,4) : -14 -> -14], [() : -14 -> -13],

[() : -14 -> -12]],
[[[[0, 0, -1], [1, 0, 0], [0, -1, 0]] : -14 -> -14],

[[[0, 1, 0], [0, 0, 1], [1, 0, 0]] : -14 -> -14],
[[[1, 0, 0], [0, 1, 0], [0, 0, 1]] : -14 -> -13],
[[[1, 0, 0], [0, 1, 0], [0, 0, 1]] : -14 -> -12]]]

gap> ParentMappingGroupoids(rmor) = mor;
true

Chapter 6

Graphs of Groups and Groupoids

This package was originally designed to implement graphs of groups, a notion introduced by Serre in
[Ser80]. It was only when this was extended to graphs of groupoids that the functions for groupoids,
described in the previous chapters, were required. The methods described here are based on Philip
Higgins’ paper [Hig76]. For further details see Chapter 2 of [Moo01]. Since a graph of groups
involves a directed graph, with a group associated to each vertex and arc, we first define digraphs with
edges weighted by the generators of a free group.

6.1 Digraphs

6.1.1 FpWeightedDigraph

▷ FpWeightedDigraph(verts, arcs) (attribute)

▷ IsFpWeightedDigraph(dig) (attribute)

▷ InvolutoryArcs(dig) (attribute)

A weighted digraph is a record with two components: vertices, which are usually taken to be
positive integers (to distinguish them from the objects in a groupoid); and arcs, which take the form
of 3-element lists [weight,tail,head]. The tail and head are the two vertices of the arc. The
weight is taken to be an element of a finitely presented group, so as to produce digraphs of type
IsFpWeightedDigraph.

Example

gap> V1 := [5, 6];;
gap> fg1 := FreeGroup("y");;
gap> y := fg1.1;;
gap> A1 := [[y, 5, 6], [y^-1, 6, 5]];
gap> D1 := FpWeightedDigraph(fg1, V1, A1);
weighted digraph with vertices: [5, 6]
and arcs: [[y, 5, 6], [y^-1, 6, 5]]
gap> inv1 := InvolutoryArcs(D1);
[2, 1]

The example illustrates the fact that we require arcs to be defined in involutory pairs, as though they
were inverse elements in a groupoid. We may in future decide just to give [y,5,6] as the data and

57

groupoids 58

get the function to construct the reverse edge. The attribute InvolutoryArcs returns a list of the
positions of each inverse arc in the list of arcs. In the second example the graph is a complete digraph
on three vertices.

Example

gap> fg3 := FreeGroup(3, "z");;
gap> z1 := fg3.1;; z2 := fg3.2;; z3 := fg3.3;;
gap> ob3 := [7, 8, 9];;
gap> A3 := [[z1,7,8],[z2,8,9],[z3,9,7],[z1^-1,8,7],[z2^-1,9,8],[z3^-1,7,9]];;
gap> D3 := FpWeightedDigraph(fg3, ob3, A3);
weighted digraph with vertices: [7, 8, 9]
and arcs: [[z1, 7, 8], [z2, 8, 9], [z3, 9, 7], [z1^-1, 8, 7],

[z2^-1, 9, 8], [z3^-1, 7, 9]]
[gap> inob3 := InvolutoryArcs(D3);
[4, 5, 6, 1, 2, 3]

6.2 Graphs of Groups

6.2.1 GraphOfGroups

▷ GraphOfGroups(dig, gps, isos) (operation)

▷ DigraphOfGraphOfGroups(gg) (attribute)

▷ GroupsOfGraphOfGroups(gg) (attribute)

▷ IsomorphismsOfGraphOfGroups(gg) (attribute)

▷ IsGraphOfGroups(dig) (Category)

A graph of groups is traditionally defined as consisting of:

• a digraph with involutory pairs of arcs;

• a vertex group associated to each vertex;

• a group associated to each pair of arcs;

• an injective homomorphism from each arc group to the group at the head of the arc.

We have found it more convenient to associate to each arc:

• a subgroup of the vertex group at the tail;

• a subgroup of the vertex group at the head;

• an isomorphism between these subgroups, such that each involutory pair of arcs determines
inverse isomorphisms.

These two viewpoints are clearly equivalent.
In this implementation we require that all subgroups are of finite index in the vertex groups.
The three attributes provide a means of calling the three items of data in the construction of a graph

of groups.

groupoids 59

We shall be representing free products with amalgamation of groups and HNN extensions of
groups in Section 6.4. So we take as our first example the trefoil group with generators a,b and
relation a3 = b2. For this we take digraph D1 above with an infinite cyclic group at each vertex, gen-
erated by a and b respectively. The two subgroups will be generated by a3 and b2 with the obvious
isomorphisms.

Example

gap> ## free vertex group at 5
gap> fa := FreeGroup("a");;
gap> a := fa.1;;
gap> SetName(fa, "fa");
gap> hy := Subgroup(fa, [a^3]);;
gap> SetName(hy, "hy");
gap> ## free vertex group at 6
gap> fb := FreeGroup("b");;
gap> b := fb.1;;
gap> SetName(fb, "fb");
gap> hybar := Subgroup(fb, [b^2]);;
gap> SetName(hybar, "hybar");
gap> ## isomorphisms between subgroups
gap> homy := GroupHomomorphismByImagesNC(hy, hybar, [a^3], [b^2]);;
gap> homybar := GroupHomomorphismByImagesNC(hybar, hy, [b^2], [a^3]);;
gap> ## defining graph of groups G1
gap> G1 := GraphOfGroups(D1, [fa,fb], [homy,homybar]);
Graph of Groups: 2 vertices; 2 arcs; groups [fa, fb]
gap> Display(G1);
Graph of Groups with :-

vertices: [5, 6]
arcs: [[y, 5, 6], [y^-1, 6, 5]]

groups: [fa, fb]
isomorphisms: [[[a^3], [b^2]], [[b^2], [a^3]]]
gap> IsGraphOfGroups(G1);
true

6.2.2 IsGraphOfFpGroups

▷ IsGraphOfFpGroups(gg) (property)

▷ IsGraphOfPcGroups(gg) (property)

▷ IsGraphOfPermGroups(gg) (property)

This is a list of properties to be expected of a graph of groups. In principle any type of group
known to GAP may be used as vertex groups, though these types are not normally mixed in a single
structure.

Example

gap> IsGraphOfFpGroups(G1);
true
gap> IsomorphismsOfGraphOfGroups(G1);
[[a^3] -> [b^2], [b^2] -> [a^3]]

groupoids 60

6.2.3 RightTransversalsOfGraphOfGroups

▷ RightTransversalsOfGraphOfGroups(gg) (attribute)

▷ LeftTransversalsOfGraphOfGroups(gg) (attribute)

Computation with graph of groups words will require, for each arc subgroup ha, a set of represen-
tatives for the left cosets of ha in the tail vertex group. As already pointed out, we require subgroups
of finite index. Since GAP prefers to provide right cosets, we obtain the right representatives first, and
then invert them.

When the vertex groups are of type FpGroup we shall require normal forms for these groups, so
we assume that such vertex groups are provided with Knuth Bendix rewriting systems using functions
from the main GAP library, (e.g. IsomorphismFpSemigroup).

Example

gap> RTG1 := RightTransversalsOfGraphOfGroups(G1);
[[<identity ...>, a, a^2], [<identity ...>, b]]
gap> LTG1 := LeftTransversalsOfGraphOfGroups(G1);
[[<identity ...>, a^-1, a^-2], [<identity ...>, b^-1]]

6.3 Words in a Graph of Groups and their normal forms

6.3.1 GraphOfGroupsWord

▷ GraphOfGroupsWord(gg, tv, list) (operation)

▷ IsGraphOfGroupsWord(w) (property)

▷ GraphOfGroupsOfWord(w) (attribute)

▷ WordOfGraphOfGroupsWord(w) (attribute)

▷ TailOfGraphOfGroupsWord(w) (attribute)

▷ HeadOfGraphOfGroupsWord(w) (attribute)

If G is a graph of groups with underlying digraph D, the following groupoids may be considered.
First there is the free groupoid or path groupoid on D. Since we want each involutory pair of arcs to
represent inverse elements in the groupoid, we quotient out by the relations y^-1 = ybar to obtain
PG(D). Secondly, there is the discrete groupoid VG(D), namely the union of all the vertex groups.
Since these two groupoids have the same object set (the vertices of D) we can form A(G), the free
product of PG(D) and VG(D) amalgamated over the vertices. For further details of this universal
groupoid construction see [Moo01]. (Note that these groupoids are not implemented in this package.)

An element of A(G) is a graph of groups word which may be represented by a list of the form
w = [g1,y1,g2,y2, ...,gn,yn,gn+1]. Here each yi is an arc of D; the head of yi−1 is a vertex vi which is
also the tail of yi; and gi is an element of the vertex group at vi.

So a graph of groups word requires as data the graph of groups; the tail vertex for the word; and a
list of arcs and group elements. We may specify each arc by its position in the list of arcs.

groupoids 61

In the following example, where gw1 is a word in the trefoil graph of groups, the yi are specified
by their positions in A1. Both arcs are traversed twice, so the resulting word is a loop at vertex 5.

Example

gap> L1 := [a^7, 1, b^-6, 2, a^-11, 1, b^9, 2, a^7];;
gap> gw1 := GraphOfGroupsWord(G1, 5, L1);
(5)a^7.y.b^-6.y^-1.a^-11.y.b^9.y^-1.a^7(5)
gap> IsGraphOfGroupsWord(gw1);
true
gap> [TailOfGraphOfGroupsWord(gw1), HeadOfGraphOfGroupsWord(gw1)];
[5, 5]
gap> GraphOfGroupsOfWord(gw1);
Graph of Groups: 2 vertices; 2 arcs; groups [fa, fb]
gap> WordOfGraphOfGroupsWord(gw1);
[a^7, 1, b^-6, 2, a^-11, 1, b^9, 2, a^7]

6.3.2 ReducedGraphOfGroupsWord

▷ ReducedGraphOfGroupsWord(w) (operation)

▷ IsReducedGraphOfGroupsWord(w) (property)

A graph of groups word may be reduced in two ways, to give a normal form. Firstly, if part of
the word has the form [yi, identity, yibar] then this subword may be omitted. This is known
as a length reduction. Secondly there are coset reductions. Working from the left-hand end of the
word, subwords of the form [gi,yi,gi+1] are replaced by [ti,yi,mi(hi) ∗ gi+1] where gi = ti ∗ hi is the
unique factorisation of gi as a left coset representative times an element of the arc subgroup, and mi

is the isomorphism associated to yi. Thus we may consider a coset reduction as passing a subgroup
element along an arc. The resulting normal form (if no length reductions have taken place) is then
[t1,y1, t2,y2, ..., tn,yn,k] for some k in the head group of yn. For further details see Section 2.2 of
[Moo01].

The reduction of the word gw1 in our example includes one length reduction. The four stages of
the reduction are as follows:

a7b−6a−11b9a7 7→ a−2b0a−11b9a7 7→ a−13b9a7 7→ a−1b−8b9a7 7→ a−1b−1a10.
Example

gap> nw1 := ReducedGraphOfGroupsWord(gw1);
(5)a^-1.y.b^-1.y^-1.a^10(5)

6.4 Free products with amalgamation and HNN extensions

6.4.1 FreeProductWithAmalgamation

▷ FreeProductWithAmalgamation(gp1, gp2, iso) (operation)

▷ FreeProductWithAmalgamationInfo(fpa) (attribute)

▷ IsFreeProductWithAmalgamation(fpa) (property)

groupoids 62

▷ GraphOfGroupsRewritingSystem(fpa) (attribute)

▷ NormalFormGGRWS(fpa, word) (attribute)

As we have seen with the trefoil group example in Section 6.2, graphs of groups can be used to
obtain a normal form for free products with amalgamation G1 ∗H G2 when G1,G2 both have rewrite
systems, and H is of finite index in both G1 and G2.

When gp1 and gp2 are fp-groups, the operation FreeProductWithAmalgamation constructs
the required fp-group. When the two groups are permutation groups, the IsomorphismFpGroup
operation is called on both gp1 and gp2, and the resulting isomorphism is transported to one between
the two new subgroups.

The attribute GraphOfGroupsRewritingSystem of fpa is the graph of groups which has under-
lying digraph D1, with two vertices and two arcs; the two groups as vertex groups; and the specified
isomorphisms on the arcs. Despite the name, graphs of groups constructed in this way do not belong
to the category IsRewritingSystem. This anomaly may be dealt with when time permits.

The example below shows a computation in the the free product of the symmetric s3 and the
alternating a4, amalgamated over a cyclic subgroup c3.

Example

gap> ## set up the first group s3 and a subgroup c3=<a1>
gap> fg2 := FreeGroup(2, "a");;
gap> rel1 := [fg2.1^3, fg2.2^2, (fg2.1*fg2.2)^2];;
gap> s3 := fg2/rel1;;
gap> gs3 := GeneratorsOfGroup(s3);;
gap> SetName(s3, "s3");
gap> a1 := gs3[1];; a2 := gs3[2];;
gap> H1 := Subgroup(s3,[a1]);;
gap> ## then the second group a4 and subgroup c3=<b1>
gap> f2 := FreeGroup(2, "b");;
gap> rel2 := [f2.1^3, f2.2^3, (f2.1*f2.2)^2];;
gap> a4 := f2/rel2;;
gap> ga4 := GeneratorsOfGroup(a4);;
gap> SetName(a4, "a4");
gap> b1 := ga4[1]; b2 := ga4[2];;
gap> H2 := Subgroup(a4,[b1]);;
gap> ## form the isomorphism and the fpa group
gap> iso := GroupHomomorphismByImages(H1,H2,[a1],[b1]);;
gap> inv := InverseGeneralMapping(iso);;
gap> fpa := FreeProductWithAmalgamation(s3, a4, iso);
<fp group on the generators [f1, f2, f3, f4]>
gap> RelatorsOfFpGroup(fpa);
[f1^2, f2^3, (f2*f1)^2, f3^3, f4^3, (f4*f3)^2, f2*f3^-1]
gap> gg1 := GraphOfGroupsRewritingSystem(fpa);;
gap> Display(gg1);
Graph of Groups with :-

vertices: [5, 6]
arcs: [[y, 5, 6], [y^-1, 6, 5]]

groups: [s3, a4]
isomorphisms: [[[a1], [b1]], [[b1], [a1]]]
gap> LeftTransversalsOfGraphOfGroups(gg1);
[[<identity ...>, a2^-1], [<identity ...>, b2^-1, b1^-1*b2^-1, b1*b2^-1]
]

groupoids 63

gap> gfpa := GeneratorsOfGroup(fpa);;
gap> w2 := (gfpa[1]*gfpa[2]*gfpa[3]^gfpa[4])^3;
(f1*f2*f4^-1*f3*f4)^3
gap> n2 := NormalFormGGRWS(fpa, w2);
f2*f3*(f4^-1*f2)^2*f4^-1*f3

6.4.2 ReducedImageElm

▷ ReducedImageElm(hom, eml) (operation)

▷ IsMappingToGroupWithGGRWS(map) (property)

▷ Embedding(fpa, num) (method)

All fpa-groups are provided with a record attribute, FreeProductWithAmalgamationInfo(fpa)
which is a record storing the groups, subgroups and isomorphism involved in their construction. This
information record also contains the embeddings of the two groups into the product. The operation
ReducedImageElm, applied to a homomorphism h of type IsMappingToGroupWithGGRWS and an
element x of the source, finds the usual ImageElm(h,x) and then reduces this to its normal form
using the graph of groups rewriting system.

Example

gap> fpainfo;
rec(embeddings := [[a2, a1] -> [f1, f2], [b1, b2] -> [f3, f4]],

groups := [s3, a4], isomorphism := [a1] -> [b1],
positions := [[1, 2], [3, 4]],
subgroups := [Group([a1]), Group([b1])])

gap> emb2 := Embedding(fpa, 2);
[b1, b2] -> [f3, f4]
gap> ImageElm(emb2, b1^b2);
f4^-1*f3*f4
gap> ReducedImageElm(emb2, b1^b2);
f4*f3^-1

6.4.3 HnnExtension

▷ HnnExtension(gp, iso) (operation)

▷ HnnExtensionInfo(gp, iso) (attribute)

▷ IsHnnExtension(hnn) (property)

For HNN extensions, the appropriate graph of groups has underlying digraph with just one vertex
and one pair of loops, weighted with FpGroup generators z,z−1. There is one vertex group G, two
isomorphic subgroups H1,H2 of G, with the isomorphism and its inverse on the loops. The presentation
of the extension has one more generator than that of G and corresponds to the generator z.

The functions GraphOfGroupsRewritingSystem and NormalFormGGRWS may be applied to
hnn-groups as well as to fpa-groups.

In the example we take G=a4 and the two subgroups are cyclic groups of order 3.

groupoids 64

Example

gap> H3 := Subgroup(a4,[b2]);;
gap> i23 := GroupHomomorphismByImages(H2, H3, [b1], [b2]);;
gap> hnn := HnnExtension(a4, i23);
<fp group on the generators [fe1, fe2, fe3]>
gap> phnn := PresentationFpGroup(hnn);;
gap> TzPrint(phnn);
#I generators: [fe1, fe2, fe3]
#I relators:
#I 1. 3 [1, 1, 1]
#I 2. 3 [2, 2, 2]
#I 3. 4 [1, 2, 1, 2]
#I 4. 4 [-3, 1, 3, -2]
gap> gg2 := GraphOfGroupsRewritingSystem(hnn);
Graph of Groups: 1 vertices; 2 arcs; groups [a4]
gap> LeftTransversalsOfGraphOfGroups(gg2);
[[<identity ...>, b2^-1, b1^-1*b2^-1, b1*b2^-1],

[<identity ...>, b1^-1, b1, b2^-1*b1]]
gap> gh := GeneratorsOfGroup(hnn);;
gap> w3 := (gh[1]^gh[2])*gh[3]^-1*(gh[1]*gh[3]*gh[2]^2)^2*gh[3]*gh[2];
fe2^-1*fe1*fe2*fe3^-1*(fe1*fe3*fe2^2)^2*fe3*fe2
gap> n3 := NormalFormGGRWS(hnn, w3);
(fe2*fe1*fe3)^2

As with fpa-groups, hnn-groups are provided with a record attribute, HnnExtensionInfo(hnn),
storing the group, subgroups and isomorphism involved in their construction.

Example

gap> hnninfo := HnnExtensionInfo(hnn);
rec(embeddings := [[b1, b2] -> [fe1, fe2]], group := a4,

isomorphism := [b1] -> [b2],
subgroups := [Group([b1]), Group([b2])])

gap> emb := Embedding(hnn, 1);
[b1, b2] -> [fe1, fe2]
gap> ImageElm(emb, b1^b2);
fe2^-1*fe1*fe2
gap> ReducedImageElm(emb, b1^b2);
fe2*fe1^-1

6.5 GraphsOfGroupoids and their Words

6.5.1 GraphOfGroupoids

▷ GraphOfGroupoids(dig, gpds, subgpds, isos) (operation)

▷ IsGraphOfPermGroupoids(gg) (property)

▷ IsGraphOfFpGroupoids(gg) (property)

▷ GroupoidsOfGraphOfGroupoids(gg) (attribute)

groupoids 65

▷ DigraphOfGraphOfGroupoids(gg) (attribute)

▷ SubgroupoidsOfGraphOfGroupoids(gg) (attribute)

▷ IsomorphismsOfGraphOfGroupoids(gg) (attribute)

▷ RightTransversalsOfGraphOfGroupoids(gg) (attribute)

▷ LeftTransversalsOfGraphOfGroupoids(gg) (attribute)

▷ IsGraphOfGroupoids(dig) (Category)

Graphs of groups generalise naturally to graphs of groupoids, forming the class
IsGraphOfGroupoids. There is now a groupoid at each vertex and the isomorphism on an arc identi-
fies wide subgroupoids at the tail and at the head. Since all subgroupoids are wide, every groupoid in
a connected constituent of the graph has the same number of objects, but there is no requirement that
the object sets are all the same.

The example below generalises the trefoil group example in subsection 4.4.1, taking at each vertex
of D1 a two-object groupoid with a free group on one generator, and full subgroupoids with groups
⟨a3⟩ and ⟨b2⟩.

Example

gap> Gfa := SinglePieceGroupoid(fa, [-2,-1]);;
gap> ofa := One(fa);;
gap> SetName(Gfa, "Gfa");
gap> Uhy := Subgroupoid(Gfa, [[hy, [-2,-1]]]);;
gap> SetName(Uhy, "Uhy");
gap> Gfb := SinglePieceGroupoid(fb, [-4,-3]);;
gap> ofb := One(fb);;
gap> SetName(Gfb, "Gfb");
gap> Uhybar := Subgroupoid(Gfb, [[hybar, [-4,-3]]]);;
gap> SetName(Uhybar, "Uhybar");
gap> gens := GeneratorsOfGroupoid(Uhy);;
gap> gensbar := GeneratorsOfGroupoid(Uhybar);;
gap> mory := GroupoidHomomorphismFromSinglePiece(
> Uhy, Uhybar, gens, gensbar);
groupoid homomorphism : Uhy -> Uhybar
[[[a^3 : -2 -> -2], [<identity ...> : -2 -> -1]],

[[b^2 : -4 -> -4], [<identity ...> : -4 -> -3]]]
gap> morybar := InverseGeneralMapping(mory);
groupoid homomorphism : Uhybar -> Uhy
[[[b^2 : -4 -> -4], [<identity ...> : -4 -> -3]],

[[a^3 : -2 -> -2], [<identity ...> : -2 -> -1]]]
gap> gg3 := GraphOfGroupoids(D1, [Gfa,Gfb], [Uhy,Uhybar], [mory,morybar]);;
gap> Display(gg3);
Graph of Groupoids with :-

vertices: [5, 6]
arcs: [[y, 5, 6], [y^-1, 6, 5]]

groupoids:
fp single piece groupoid: Gfa

objects: [-2, -1]
group: fa = <[a]>

fp single piece groupoid: Gfb
objects: [-4, -3]

group: fb = <[b]>
subgroupoids: single piece groupoid: Uhy

groupoids 66

objects: [-2, -1]
group: hy = <[a^3]>

single piece groupoid: Uhybar
objects: [-4, -3]

group: hybar = <[b^2]>
isomorphisms: [groupoid homomorphism : Uhy -> Uhybar

[[[a^3 : -2 -> -2], [<identity ...> : -2 -> -1]],
[[b^2 : -4 -> -4], [<identity ...> : -4 -> -3]]],

groupoid homomorphism : Uhybar -> Uhy
[[[b^2 : -4 -> -4], [<identity ...> : -4 -> -3]],

[[a^3 : -2 -> -2], [<identity ...> : -2 -> -1]]]]
gap> IsGraphOfGroupoids(gg3);
true

6.5.2 GraphOfGroupoidsWord

▷ GraphOfGroupoidsWord(gg, tv, list) (operation)

▷ IsGraphOfGroupoidsWord(w) (property)

▷ GraphOfGroupoidsOfWord(w) (attribute)

▷ WordOfGraphOfGroupoidsWord(w) (attribute)

▷ ReducedGraphOfGroupoidsWord(w) (operation)

▷ IsReducedGraphOfGroupoidsWord(w) (property)

Having produced the graph of groupoids gg3, we may construct left coset representatives; choose
a graph of groupoids word; and reduce this to normal form. Analogous to the word a7b−6a−11b9a7 in
subsection ReducedGraphOfGroupsWord (6.3.2) we shall consider

(a7 : −1 →−2) (b−6 : −4 →−4) (a−11 : −2 →−1) (b9 : −3 →−4) (a7 : −2 →−1).

Compare the normal form nw3 below with the normal form nw1 above.
Example

gap> f1 := Arrow(Gfa, a^7, -1, -2);;
gap> f2 := Arrow(Gfb, b^-6, -4, -4);;
gap> f3 := Arrow(Gfa, a^-11, -2, -1);;
gap> f4 := Arrow(Gfb, b^9, -3, -4);;
gap> f5 := Arrow(Gfa, a^7, -2, -2);;
gap> L3 := [f1, 1, f2, 2, f3, 1, f4, 2, f5];
[[a^7 : -1 -> -2], 1, [b^-6 : -4 -> -4], 2, [a^-11 : -2 -> -1], 1,

[b^9 : -3 -> -4], 2, [a^7 : -2 -> -2]]
gap> gw3 := GraphOfGroupoidsWord(gg3, 5, L3);
(5)[a^7 : -1 -> -2].y.[b^-6 : -4 -> -4].y^-1.[a^-11 : -2 -> -1].y.[b^9 :
-3 -> -4].y^-1.[a^7 : -2 -> -2](5)
gap> nw3 := ReducedGraphOfGroupoidsWord(gw3);
(5)[a^-1 : -1 -> -1].y.[b^-1 : -3 -> -3].y^-1.[a^10 : -1 -> -2](5)

The reduction proceeds as follows.

• [a7 : −1 →−2] = [a−2 : −1 →−1]∗ [a9 : −1 →−2]
y→ [a−2 : −1 →−1]∗ [b6 : −3 →−4]

groupoids 67

• [b6 : −3 →−4]∗ [b−6 : −4 →−4] = [id : −3 →−4]
ȳ→ [id : −1 →−2]

• [a−2 : −1 →−1]∗ [id : −1 →−2]∗ [a−11 : −2 →−1] = [a−13 : −1 →−1]

• [a−13 : −1 →−1] = [a−1 : −1 →−1]∗ [a−12 : −1 →−1]
y→ [a−1 : −1 →−1]∗ [b−8 : −3 →−3]

• [b−8 :−3→−3]∗ [b9 :−3→−4] = [b−1 :−3→−3]∗ [b2 :−3→−4]
ȳ→ [b−1 :−3→−3]∗ [a3 :

−1 →−2]

• [a3 :=−1 →−2]∗ [a7 : −2 →−2] = [a10 : −1 →−2]

So the resulting word is (a−1 : −1,−1)(b−1 : −3,−3)(a10 : −1,−2). Notice that all the arrows except
the final one are loops.

Chapter 7

Double Groupoids

A double groupoid is a double category in which all the category structures are groupoids. For the
most general type of double groupoid there is also an associated pre-crossed module. In this package
we consider only basic double groupoids, which do not involve pre-crossed modules. The more
general case will be discussed in the XMod package.

In a double groupoid, as well as objects and arrows, we need a set of squares. A square is bounded
by four arrows, two horizontal and two vertical, and there is a horizontal groupoid structure and a
vertical groupoid structure on these squares.

Double groupoids can be considered where the vertical arrows come from one groupoid, and the
horizontal arrows from another. The double groupoids constructed here are special in that all four
arrows come from the same groupoid. We call these edge-symmetric double groupoids.

This addition to the package is very experimental, and will be extended as time permits.

7.1 Single piece double groupoids

7.1.1 SinglePieceBasicDoubleGroupoid

▷ SinglePieceBasicDoubleGroupoid(gpd) (operation)

▷ DoubleGroupoid(args) (function)

▷ IsDoubleGroupoid(mwo) (Category)

▷ IsBasicDoubleGroupoid(dgpd) (Category)

Let G be a connected groupoid with object set Ω. The double groupoid □(G) on G is constructed
by the operation SinglePieceBasicDoubleGroupoid(G).

The global function DoubleGroupoid may be used instead of this operation, and will work with
various other input parameters.

Example

gap> DGd8 := SinglePieceBasicDoubleGroupoid(Gd8);;
gap> DGd8!.groupoid;
Gd8
gap> DGd8!.objects;
[-9, -8, -7]
gap> SetName(DGd8, "DGd8");
gap> [IsDoubleGroupoid(DGd8), IsBasicDoubleGroupoid(DGd8)];

68

groupoids 69

[true, true]

7.1.2 SquareOfArrows

▷ SquareOfArrows(gpd, up, lt, rt, dn) (operation)

▷ UpArrow(sq) (attribute)

▷ LeftArrow(sq) (attribute)

▷ RightArrow(sq) (attribute)

▷ DownArrow(sq) (attribute)

▷ BoundaryOfSquare(sq) (operation)

▷ DoubleGroupoidOfSquare(sq) (operation)

▷ IsDoubleGroupoidElement(arrow) (Category)

Let □(G) be the set of squares with objects from Ω at each corner; plus two vertical arrows and
two horizontal arrows from Arr(G). The following picture illustrates a square s1:

u1
a1 //

b1

��

v1

c1

��
w1 d1

// x1

We name the four arrows UpArrow(s), LeftArrow(s), RightArrow(s) and DownArrow(s).
We think of the square s1 being based at the bottom, right-hand corner, x1.
The boundary of the square is the loop (x1,d−1

1 b−1
1 a1c1,x1) = (x1,δ (s1),x1). The number of

squares in a double groupoid is the product of the number of objects with the size of the group all
raised to the fourth power. When viewing or printing a square, the boundary element is shown in the
centre.

Example

gap> [Size(DGd8), (3*8)^4];
[331776, 331776]
gap> a1 := Arrow(Gd8, (5,7), -7, -8);;
gap> b1 := Arrow(Gd8, (6,8), -7, -7);;
gap> c1 := Arrow(Gd8, (5,6)(7,8), -8, -9);;
gap> d1 := Arrow(Gd8, (5,6,7,8), -7, -9);;
gap> bdy1 := d1^-1 * b1^-1 * a1 * c1;
[(6,8) : -9 -> -9]
gap> sq1 := SquareOfArrows(DGd8, a1, b1, c1, d1);
[-7] ------- (5,7) ------> [-8]

| |
(6,8) (6,8) (5,6)(7,8)

V V
[-7] ----- (5,6,7,8) ----> [-9]
gap> sq1 in DGd8;
true
gap> UpArrow(sq1);

groupoids 70

[(5,7) : -7 -> -8]
gap> LeftArrow(sq1);
[(6,8) : -7 -> -7]
gap> RightArrow(sq1);
[(5,6)(7,8) : -8 -> -9]
gap> DownArrow(sq1);
[(5,6,7,8) : -7 -> -9]
gap> BoundaryOfSquare(sq1);
[(6,8) : -9 -> -9]
gap> DoubleGroupoidOfSquare(sq1);
DGd8
gap> IsDoubleGroupoidElement(sq1);
true

7.1.3 IsCommutingSquare

▷ IsCommutingSquare(sq) (property)

The square s1 is commuting if a1 ∗ c1 = b1 ∗ d1, so that its boundary is the identity. The set of
commutative squares in □(G) forms the commutative sub-double groupoid of □(G).

Example

gap> a2 := Arrow(Gd8, (6,8), -8, -9);;
gap> c2 := Arrow(Gd8, (5,7)(6,8), -9, -8);;
gap> d2 := Arrow(Gd8, (5,6,7,8), -9, -8);;
gap> sq2 := SquareOfArrows(DGd8, a2, c1, c2, d2);
[-8] -------- (6,8) -------> [-9]

| |
(5,6)(7,8) () (5,7)(6,8)

V V
[-9] ------ (5,6,7,8) -----> [-8]
gap> bdy2 := BoundaryOfSquare(sq2);
[() : -8 -> -8]
gap> [IsCommutingSquare(sq1), IsCommutingSquare(sq2)];
[false, true]

7.1.4 TransposedSquare

▷ TransposedSquare(sq) (operation)

▷ IsClosedUnderTransposition(sq) (property)

The transpose of the square s1, as with matrix transposition, is obtained by interchanging a1 with
b1 and c1 with d1. Its boundary is the inverse of the boundary of s1.

Example

gap> tsq1 := TransposedSquare(sq1);
[-7] ------- (6,8) ------> [-7]

| |

groupoids 71

(5,7) (6,8) (5,6,7,8)
V V

[-8] ---- (5,6)(7,8) ---> [-9]
gap> IsClosedUnderTransposition(sq1);
false

7.1.5 HorizontalProduct

▷ HorizontalProduct(sq1, sq2) (operation)

When RightArrow(s1) = LeftArrow(s2) we may compose s1 and s2 horizontally to form the
square s1(→)s2 = HorizontalProduct(s1,s2) as illustrated here:

u1
a1 //

b1

��

v1
a2 //

c1

��

v2

c2

��

=

u1
a1a2 //

b1

��

v2

c2

��
w1 d1

// x1 d2

// x2 w1 d1d2

// x2

Notice that the boundary of the composite satisfies the identity:

δ (s1(→)s2) = (d1d2)
−1b−1

1 (a1a2)c2 = d−1
2 (d−1

1 b−1
1 a1c1)d2(d−1

2 c−1
1 a2c2) = (δ s1)

d2(δ s2).

(This operation was called LeftRightProduct in versions up to 1.76.)
Example

gap> LeftArrow(sq2) = RightArrow(sq1);
true
gap> sq12 := HorizontalProduct(sq1, sq2);
[-7] ----- (5,7)(6,8) ----> [-9]

| |
(6,8) (5,7) (5,7)(6,8)

V V
[-7] ----- (5,7)(6,8) ----> [-8]
gap> bdy12 := BoundaryOfSquare(sq12);
[(5,7) : -8 -> -8]
gap> (bdy1^d2) * bdy2 = bdy12;
true

7.1.6 VerticalProduct

▷ VerticalProduct(sq1, sq3) (operation)

groupoids 72

When DownArrow(s1) = UpArrow(s3) we may compose s1 and s3 vertically to form s1(↓)s3 =
VerticalProduct(s1,s3) illustrated by:

u1
a1 //

b1

��

v1

c1

��

u1
a1 //

b1b3

��

v1

c1c3

��

w1 d1

//

b3

��

x1

c3

��

=

w3 d3

// x3

w3 d3

// x3

This time the boundary condition satisfies the identity:

δ (s1(↓)s3) = d−1
3 (b1b3)

−1a1(c1c3) = (d−1
3 b−1

3 d1c3)c−1
3 (d−1

1 b−1
1 a1c1)c3 = (δ s3)(δ s1)

c3 .

(This operation was called UpDownProduct in versions up to 1.76.)
Example

gap> b3 := Arrow(Gd8, (5,7), -7, -9);;
gap> c3 := Arrow(Gd8, (6,8), -9, -8);;
gap> d3 := Arrow(Gd8, (5,8)(6,7), -9, -8);;
gap> sq3 := SquareOfArrows(DGd8, d1, b3, c3, d3);
[-7] ---- (5,6,7,8) ---> [-9]

| |
(5,7) (6,8) (6,8)

V V
[-9] ---- (5,8)(6,7) ---> [-8]
gap> bdy3 := BoundaryOfSquare(sq3);
[(6,8) : -8 -> -8]
gap> UpArrow(sq3) = DownArrow(sq1);
true
gap> sq13 := VerticalProduct(sq1, sq3);
[-7] -------- (5,7) -------> [-8]

| |
(5,7)(6,8) () (5,8,7,6)

V V
[-9] ----- (5,8)(6,7) ----> [-8]

groupoids 73

Vertical and horizontal compositions commute, so we may construct products such as:

u1
a1 //

b1

��

v1
a2 //

c1

��

v2

c2

��

u1
a1a2 //

b1b3

��

v2

c2c4

��

w1 d1 //

b3

��

x1 d2 //

c3

��

x2

c4

��

=

w3 d3d4

// x4

w3 d3

// x3 d4

// x4

In our example, after adding c4 and d4, it is routine to check that the two ways of computing the
product of four squares give the same answer.

−7
(5,7) //

(6,8)

��

−8
(6,8) //

(5,6)(7,8)

��

−9

(5,7)(6,8)

��

−7
(5,7)(6,8) //

(5,7)(6,8)

��

−9

(5,8,7,6)

��

−7 (5,6,7,8) //

(5,7)

��

−9 (5,6,7,8) //

(6,8)

��

−8

(5,6,7,8)

��

=

−9
(5,7)(6,8)

// −7

−9
(5,8)(6,7)

// −8
(5,6)(7,8)

// −7

Example

gap> c4 := Arrow(Gd8, (5,6,7,8), -8, -7);;
gap> d4 := Arrow(Gd8, (5,6)(7,8), -8, -7);;
gap> sq4 := SquareOfArrows(DGd8, d2, c3, c4, d4);
[-9] ------- (5,6,7,8) ------> [-8]

| |
(6,8) (5,6,7,8) (5,6,7,8)

V V
[-8] ------ (5,6)(7,8) -----> [-7]
gap> UpArrow(sq4) = DownArrow(sq2);
true
gap> LeftArrow(sq4) = RightArrow(sq3);
true

gap> sq34 := HorizontalProduct(sq3, sq4);
[-7] ------- (5,7)(6,8) ------> [-8]

| |

groupoids 74

(5,7) (5,8)(6,7) (5,6,7,8)
V V

[-9] ------- (5,7)(6,8) ------> [-7]

gap> sq1234 := VerticalProduct(sq12, sq34);
[-7] --------- (5,7)(6,8) --------> [-9]

| |
(5,7)(6,8) (5,6,7,8) (5,8,7,6)

V V
[-9] --------- (5,7)(6,8) --------> [-7]

gap> sq24 := VerticalProduct(sq2, sq4);
[-8] ----------- (6,8) ----------> [-9]

| |
(5,8,7,6) (5,6,7,8) (5,8,7,6)

V V
[-8] -------- (5,6)(7,8) -------> [-7]

gap> sq1324 := HorizontalProduct(sq13, sq24);;
gap> sq1324 = sq1234;
true

7.1.7 HorizontalIdentities

▷ HorizontalIdentities(sq) (operation)

▷ VerticalIdentities(sq) (operation)

▷ HorizontalInverses(sq) (operation)

▷ VerticalInverses(sq) (operation)

There is no single identity for the operations HorizontalProduct and VerticalProduct but
there are, for each square, a left identity, a right identity, an up identity and a down identity. The
composite of the three squares shown below is equal to the central square s, and the other two squares
are the left identity 1L(s) and the right identity 1R(s) for s.

u 1 //

b

��

u a //

b

��

v 1 //

c

��

v

c

��
w

1
// w

d
// x

1
// x

Example

gap> hid := HorizontalIdentities(sq24);;
gap> hid[1]; Print("\n"); hid[2];
[-8] --------- () --------> [-8]

| |
(5,8,7,6) () (5,8,7,6)

V V
[-8] --------- () --------> [-8]

groupoids 75

[-9] --------- () --------> [-9]
| |

(5,8,7,6) () (5,8,7,6)
V V

[-7] --------- () --------> [-7]
gap> HorizontalProduct(hid[1], sq24) = sq24;
true
gap> HorizontalProduct(sq24, hid[2]) = sq24;
true

Similarly, here are the up identity 1U(s) and the down identity 1D(s) of s:

u a //

1

��

v

1

��

w d //

1

��

x

1

��
u a

// v w
d

// x

Example

gap> vid := VerticalIdentities(sq24);;
gap> vid[1]; Print("\n"); vid[2];
[-8] ---- (6,8) ---> [-9]

| |
() () ()

V V
[-8] ---- (6,8) ---> [-9]

[-8] ---- (5,6)(7,8) ---> [-7]
| |

() () ()
V V

[-8] ---- (5,6)(7,8) ---> [-7]
gap> VerticalProduct(vid[1], sq24) = sq24;
true
gap> VerticalProduct(sq24, vid[2]) = sq24;
true

Confusingly, s has a horizontal inverse s−1
H whose product with s is the left identity or right identity:

s(→)s−1
H = 1L(s), s−1

H (→)s = 1R(s).

groupoids 76

The boundary of s−1
H is dc−1a−1b = (δ (s)−1)d−1

. Here are the two products:

u a //

b

��

v a−1
//

c

��

u

b

��

v a−1
//

c

��

u a //

b

��

v

c

��
w

d
// x

d−1
// w x

d−1
// w

d
// x

Example

gap> hinv := HorizontalInverse(sq24);
[-9] ----------- (6,8) ----------> [-8]

| |
(5,8,7,6) (5,6,7,8) (5,8,7,6)

V V
[-7] -------- (5,6)(7,8) -------> [-8]
gap> HorizontalProduct(hinv, sq24) = hid[2];
true
gap> HorizontalProduct(sq24, hinv) = hid[1];
true

Similarly, s has a vertical inverse s−1
V whose product with s is an up or down identity: s(↓)s−1

V = 1U(s)
and s−1

V (↓)s = 1D(s). The boundary is a−1bdc−1 = (δ (s)−1)c−1
.

w d //

b−1

��

x

c−1

��
u a

// v

Example

gap> vinv := VerticalInverse(sq24);
[-8] -------- (5,6)(7,8) -------> [-7]

| |
(5,6,7,8) (5,8,7,6) (5,6,7,8)

V V
[-8] ----------- (6,8) ----------> [-9]
gap> VerticalProduct(vinv, sq24) = vid[2];
true
gap> VerticalProduct(sq24, vinv) = vid[1];
true

7.1.8 Horizontal and vertical groupoids in □(G)

Now □(G) is the maximal double groupoid determined by G, but in general many substructures may
be formed. The horizontal groupoid structure □H(G) on □(G) has the vertical arrows as objects, and

groupoids 77

considers the usual square s
u a //

b

��

v

c

��
w

d
// x

as an arrow from b to c. So the arrows in □H(G) are effectively pairs of horizontal arrows [a,d]. The
vertex groups are isomorphic to G×G; the identity arrow at b is 1L(s); and the inverse arrow of s is
s−1

H .
Similarly the vertical groupoid structure □V (G) on □(G) has the horizontal arrows as objects and

pairs of vertical arrows as arrows. The identity arrow at a is 1U(s), and the inverse arrow of s is s−1
V .

These groupoid structures have not been implemented in this package.

7.2 Double groupoids with more than one piece

As with groupoids, double groupoids may comprise a union of single piece double groupoids with
disjoint object sets.

7.2.1 UnionOfPieces (for double groupoids)

▷ UnionOfPieces(pieces) (operation)

▷ Pieces(dgpd) (attribute)

The operation UnionOfPieces and the attribute Pieces, introduced in section 2.5, are also used
for double groupoids. The pieces are sorted by the least object in their object lists. The ObjectList
is the sorted concatenation of the objects in the pieces.

The example shows that, as well as taking the union of two double groupoids, the same object may
be constructed directly from the underlying groupoids.

Example

gap> DGc6 := SinglePieceBasicDoubleGroupoid(Gc6);;
gap> DGa4 := SinglePieceBasicDoubleGroupoid(Ga4);;
gap> DGc6s4 := DoubleGroupoid([DGc6, DGa4]);
double groupoid having 2 pieces :-
1: single piece double groupoid with:
groupoid = Ga4

group = a4
objects = [-15 .. -11]

2: single piece double groupoid with:
groupoid = Gc6

group = c6
objects = [-10]

gap> DGa4c6 := DoubleGroupoid([Ga4, Gc6]);;
gap> Pieces(DGa4c6);
[single piece double groupoid with:

groupoid = Ga4

groupoids 78

group = a4
objects = [-15 .. -11], single piece double groupoid with:

groupoid = Gc6
group = c6

objects = [-10]]

7.3 Generators of a double groupoid

Before considering the general case we investigate two special cases:

• a basic double groupoid with identity group;

• a basic double groupoid with a single object.

7.3.1 DoubleGroupoidWithTrivialGroup

▷ DoubleGroupoidWithTrivialGroup(obs) (operation)

When |Ω| = n the double groupoid with trivial permutation group on these n objects contains n4

squares of the form:

u
() //

()

��

v

()

��
w

()
// x

Example

gap> DGtriv := DoubleGroupoidWithTrivialGroup([-19..-17]);
single piece double groupoid with:
groupoid = single piece groupoid: < Group([()]), [-19 .. -17] >

group = Group([()])
objects = [-19 .. -17]

gap> Size(DGtriv);
81

7.3.2 DoubleGroupoidWithSingleObject

▷ DoubleGroupoidWithSingleObject(gp, obj) (operation)

Given a group G we can form the corresponding groupoid with a single object, and from that a
double groupoid on that object. The number of squares is |G|4.

Example

gap> DGc4 := DoubleGroupoidWithSingleObject(Group((1,2,3,4)), 0);

groupoids 79

single piece double groupoid with:
groupoid = single piece groupoid: < Group([(1,2,3,4)]), [0] >

group = Group([(1,2,3,4)])
objects = [0]

gap> Size(DGc4);
256

7.3.3 What is the double groupoid generated by a set of squares?

This is a very experimental section. Let us consider the following list of three squares
[sU(a,u,v), 1U(v,u), sU(a,u,u)]. What is generated by the single square sU(a,u,v)?

u a //

1

��

v

1

��

v 1 //

1

��

u

1

��

u a //

1

��

u

1

��
u

1
// v v

1
// u u

1
// u

The first square does not compose with itself, so cannot generate anything. When constructing
a group from generators there is never any need to include an identity - that is always assumed
to be included. Perhaps, when constructing a double groupoid, it should be assumed that the
DoubleGroupoidWithTrivialGroup on the given objects should be automatically included? In
that case the square 1U(v,u) is available and can compose on the right to give sU(a,u,u). This then
composes with itself to produce squares sU(ai,u,u). Then, composing with identities, we obtain
SinglePieceBasicDoubleGroupoid(G) where G is the groupoid with group ⟨a⟩ and objects [u,v].
More work on this area is required!

7.4 Starting with two groupoids

In the literature on double groupoids the construction often starts with two groupoids G1,G2, and
squares have horizontal arrows chosen from G1 and vertical arrows chosen from G2. When that is the
case, the boundary of a square is not defined, since arrows from G1 do not compose with those from
G2. This situation may be modelled here by constructing the direct product groupoid G = G1 ×G2
and forming a double groupoid on G in which squares have the form:

[u1,u2]
[a,1] //

[1,b]

��

[v1,v2]

[1,c]

��
[w1,w2]

[d,1]
// [x1,x2]

Example

gap> Gd8c6 := DirectProduct(Gd8, Gc6);

groupoids 80

single piece groupoid: < Group([(1,2,3,4), (1,3), (5,6,7)(8,9)]),
[[-9, -10], [-8, -10], [-7, -10]] >
gap> SetName(Gd8c6, "Gd8c6");
gap> DGd8c6 := SinglePieceBasicDoubleGroupoid(Gd8c6);
single piece double groupoid with:
groupoid = Gd8c6

group = Group([(1,2,3,4), (1,3), (5,6,7)(8,9)])
objects = [[-9, -10], [-8, -10], [-7, -10]]

gap> emb1 := Embedding(Gd8c6, 1);;
gap> emb2 := Embedding(Gd8c6, 2);;
gap> a5 := Arrow(Gd8, (5,7), -9, -7);;
gap> a6 := ImageElm(emb1, a5);
[(1,3) : [-9, -10] -> [-7, -10]]
gap> d5 := Arrow(Gd8, (6,8), -9, -8);;
gap> d6 := ImageElm(emb1, d5);
[(2,4) : [-9, -10] -> [-8, -10]]
gap> b5 := Arrow(Gc6, (11,12,13), -10, -10);;
gap> b6 := ImageElm(emb2, b5);
[(5,6,7) : [-9, -10] -> [-9, -10]]
gap> c6 := Arrow(Gd8c6, (8,9), [-7,-10], [-8,-10]);;
gap> sq := SquareOfArrows(DGd8c6, a6, b6, c6, d6);
[[-9, -10]] ----- (1,3) ----> [[-7, -10]]

| |
(5,6,7) (1,3)(2,4)(5,7,6)(8,9) (8,9)

V V
[[-9, -10]] ----- (2,4) ----> [[-8, -10]]

7.5 Double groupoid homomorphisms

7.5.1 DoubleGroupoidHomomorphism

▷ DoubleGroupoidHomomorphism(src, rng, hom) (operation)

▷ IsDoubleGroupoidHomomorphism(mwohom) (Category)

A homomorphism of double groupoids is determined by a homomorphism mor between the un-
derlying groupoids since mor determines the images of the four arrows in every square.

In the example we take the endomorphism md8 of Gd8, constructed in section 5.2.1, to produce an
endomorphism of DGd8.

Example

gap> ad8 := GroupHomomorphismByImages(d8, d8,
> [(5,6,7,8), (5,7)], [(5,8,7,6), (6,8)]);;
gap> md8 := GroupoidHomomorphism(Gd8, Gd8, ad8,
> [-7,-9,-8], [(),(5,7),(6,8)]);;
gap> endDGd8 := DoubleGroupoidHomomorphism(DGd8, DGd8, md8);;
gap> Display(endDGd8);
double groupoid homomorphism: [DGd8] -> [DGd8]
with underlying groupoid homomorphism:

groupoids 81

homomorphism to single piece groupoid: Gd8 -> Gd8
root group homomorphism:
(5,6,7,8) -> (5,8,7,6)
(5,7) -> (6,8)
object map: [-9, -8, -7] -> [-7, -9, -8]
ray images: [(), (5,7), (6,8)]
gap> IsDoubleGroupoidHomomorphism(endDGd8);
true
gap> sq1;
[-7] ------- (5,7) ------> [-8]

| |
(6,8) (6,8) (5,6)(7,8)

V V
[-7] ----- (5,6,7,8) ----> [-9]
gap> ImageElm(endDGd8, sq1);
[-8] ------- (5,7) ------> [-9]

| |
(5,7) (5,7) (5,8,7,6)

V V
[-8] ---- (5,8)(6,7) ---> [-7]

Chapter 8

Technical Notes

This short chapter is included for the benefit of anyone wishing to implement some other variety
of many-object structures, for example ringoids, which are rings with many objects; Lie groupoids,
which are Lie groups with many objects; and so on.

8.1 Many object structures

Structures with many objects, and their elements, are defined in a manner similar to the single object
case. For elements we have:

• DeclareCategory("IsMultiplicativeElementWithObjects",
IsMultiplicativeElement);

• DeclareCategory("IsMultiplicativeElementWithObjectsAndOnes",
IsMultiplicativeElementWithObjects);

• DeclareCategory("IsMultiplicativeElementWithObjectsAndInverses",
IsMultiplicativeElementWithObjectsAndOnes);

• DeclareCategory("IsGroupoidElement",

IsMultiplicativeElementWithObjectsAndInverses);

as well as various category collections. For the various structures we have:

• DeclareCategory("IsDomainWithObjects", IsDomain);

• DeclareCategory("IsMagmaWithObjects", IsDomainWithObjects and
IsMultiplicativeElementWithObjectsCollection);

• DeclareCategory("IsSemigroupWithObjects", IsMagmaWithObjects and
IsAssociative);

• DeclareCategory("IsMonoidWithObjects", IsSemigroupWithObjects and
IsMultiplicativeElementWithObjectsAndOnesCollection);

IsMultiplicativeElementWithObjectsAndInversesCollection);

• DeclareCategory("IsGroupoid", IsMonoidWithObjects and
IsGroupoidElementCollection);

82

groupoids 83

Among the groupoids constructed earlier are the single piece Gd8 and the five component union U5:
Example

gap> CategoriesOfObject(Gd8);
["IsListOrCollection", "IsCollection", "IsExtLElement",

"CategoryCollections(IsExtLElement)", "IsExtRElement",
"CategoryCollections(IsExtRElement)",
"CategoryCollections(IsMultiplicativeElement)", "IsGeneralizedDomain",
"IsMagma", "IsDomainWithObjects",
"CategoryCollections(IsMultiplicativeElementWithObjects)",
"CategoryCollections(IsMultiplicativeElementWithObjectsAndOnes)",
"CategoryCollections(IsMultiplicativeElementWithObjectsAndInverses)\

", "CategoryCollections(IsGroupoidElement)", "IsMagmaWithObjects",
"IsMagmaWithObjectsAndOnes", "IsMagmaWithObjectsAndInverses",
"IsGroupoid"]

gap> FamilyObj(Gd8); ## these numbers vary from one run to another
NewFamily("GroupoidFamily", [2722], [53, 54, 79, 80, 81, 82, 92, 93, 116,

117, 119, 120, 123, 205, 501, 2690, 2703, 2707, 2711, 2715, 2718, 2720,
2721, 2722])

gap> KnownAttributesOfObject(Gd8);
["Name", "Size", "ObjectList", "GeneratorsOfMagmaWithObjects",

"GeneratorsOfGroupoid"]
gap> KnownTruePropertiesOfObject(Gd8);
["IsNonTrivial", "IsFinite", "IsDuplicateFree", "IsAssociative",

"IsSinglePieceDomain", "IsDirectProductWithCompleteDigraphDomain"]
gap> RepresentationsOfObject(Gd8);
["IsComponentObjectRep", "IsAttributeStoringRep", "IsMWOSinglePieceRep"]
gap> RepresentationsOfObject(U5);
["IsComponentObjectRep", "IsAttributeStoringRep", "IsPiecesRep"]

Similarly, for arrows, we have:
Example

gap> [a78, e2];
[[m2 : -7 -> -8], [(1,3) : -8 -> -7]]
gap> CategoriesOfObject(a78);
["IsExtLElement", "IsExtRElement", "IsMultiplicativeElement",

"IsMultiplicativeElementWithObjects"]
gap> FamilyObj(a78); ## again these numbers vary
NewFamily("MultiplicativeElementWithObjectsFamily", [2702],
[79, 80, 81, 82, 116, 119, 122, 2702])
gap> CategoriesOfObject(e2);
["IsExtLElement", "IsExtRElement", "IsMultiplicativeElement",

"IsMultiplicativeElementWithObjects",
"IsMultiplicativeElementWithObjectsAndOnes",
"IsMultiplicativeElementWithObjectsAndInverses",
"IsGroupoidElement"]

gap> FamilyObj(e2);
NewFamily("GroupoidElementFamily", [2714],
[79, 80, 81, 82, 116, 119, 122, 2702, 2706, 2710, 2714])

groupoids 84

8.2 Many object homomorphisms

Homomorphisms of structures with many objects have a similar heirarchy. A few examples:

• DeclareCategory("IsGeneralMappingWithObjects", IsGeneralMapping);

• DeclareSynonymAttr("IsMagmaWithObjectsGeneralMapping",
IsGeneralMappingWithObjects and RespectsMultiplication);

• DeclareSynonymAttr("IsMagmaWithObjectsHomomorphism",
IsMagmaWithObjectsGeneralMapping and IsMapping);

• DeclareCategory("IsGroupoidHomomorphism",IsMagmaWithObjectsHomomorphism);

Two forms of representation are used: for mappings to a single piece; and for unions of such
mappings:

• DeclareRepresentation("IsMappingToSinglePieceRep",
IsMagmaWithObjectsHomomorphism and IsAttributeStoringRep and
IsGeneralMapping, ["Source", "Range", "SinglePieceMappingData"]);

• DeclareRepresentation("IsMappingWithObjectsRep",
IsMagmaWithObjectsHomomorphism and IsAttributeStoringRep and
IsGeneralMapping, ["Source", "Range", "PiecesOfMapping"]);

In previous chapters, hom1 was an endofunction on M78; homd8 was a homomorphism
from Gd8 to Gs3; and aut3 was an automorphism of Ga4. All homomorphisms have family
GeneralMappingWithObjectsFamily. Perhaps it would be better to have separate families for each
structure?

Example

gap> FamilyObj(hom1);
NewFamily("GeneralMappingWithObjectsFamily", [2726],
[79, 80, 81, 82, 116, 119, 122, 126, 130, 149, 412, 2726])
gap> KnownAttributesOfObject(hom1);
["Range", "Source", "SinglePieceMappingData"]
gap> KnownTruePropertiesOfObject(hom1);
["CanEasilyCompareElements", "CanEasilySortElements", "IsTotal",

"IsSingleValued", "RespectsMultiplication", "IsGeneralMappingToSinglePiece",
"IsGeneralMappingFromSinglePiece", "IsInjectiveOnObjects",
"IsSurjectiveOnObjects"]

gap> CategoriesOfObject(homd8);
["IsExtLElement", "IsExtRElement", "IsMultiplicativeElement",

"IsMultiplicativeElementWithOne", "IsMultiplicativeElementWithInverse",
"IsAssociativeElement", "IsGeneralMapping", "IsGeneralMappingWithObjects",
"IsGroupoidHomomorphism"]

gap> KnownAttributesOfObject(homd8);
["Range", "Source", "SinglePieceMappingData", "ImagesOfObjects", "ImageElementsOfRays",

"ObjectTransformationOfGroupoidHomomorphism", "RootGroupHomomorphism"]
gap> KnownAttributesOfObject(aut3);
["Order", "Range", "Source", "SinglePieceMappingData", "ImagesOfObjects",

"ImageElementsOfRays", "ObjectTransformationOfGroupoidHomomorphism",
"RootGroupHomomorphism"]

Chapter 9

Development History

9.1 Versions of the Package

The first version, GraphGpd 1.001, formed part of Emma Moore’s thesis [Moo01] in December 2000,
but was not made generally available.

Version 1.002 of GraphGpd was prepared to run under GAP 4.4 in January 2004; was submitted
to the GAP council to be considered as an accepted package; but suggestions from the referee were
not followed up.

In April 2006 the manual was converted to GAPDoc format. Variables Star, Costar and
CoveringGroup were found to conflict with usage in other packages, and were renamed VertexStar,
VertexCostar and CoveringGroupOfGroupoid respectively. Similarly, the Vertices and Arcs of
an FpWeightedDigraph were changed from attributes to record components.

In the spring of 2006 the package was extensively rewritten and renamed Gpd. Version 1.01
was submitted as a deposited package in June 2006. Version 1.03, of October 2007, fixed some file
protections, and introduced the test file gpd_manual.tst.

Version 1.05, of November 2008, was released when the website at Bangor changed.
Since then, the package has been rewritten again, introducing magmas with objects and their

mappings. Functions to implement constructions contained in [AW10] have been added, but this is
ongoing work.

Versions 1.09 to 1.15 were prepared for the anticipated release of GAP 4.5 in June 2012.
Gpd became an accepted GAP package in May 2015.
In April 2017 the package was renamed again, as groupoids.
In August 2017 the implementation of groupoid homomorphisms was completely revised with the

emphasis now on a mapping from a set of generating arrows to their images.
In September 2017 various functions were revised so that, at last, the operation

DiscreteNormalPreXModWithObjects in XMod works again. This constructs a crossed module
of groupoids with a connected range and a homogeneous, discrete source.

In recent versions there have been a number of changes of function name, such as IsDigraph
becoming IsGroupoidDigraph. This is in order to avoid conflicts with the Digraphs package.

In version 1.62 of October 2018 there were significant changes to the operations constructing free
products with amalgamation and HNN extensions. There was a plan to move this material to a new
package Rewriting, but that has not happened.

Version 1.71 of August 2022 contains a complete revision of right, left and double cosets of
groupoids. (The initial declaration of LeftCoset was moved to the Utils package.)

85

groupoids 86

Version 1.73 of February 2023 contained a first attempt at an implementation of double groupoids,
as described in Chapter 7. This was then extensively revised in version 1.77 of July 2025. This exper-
imental material is liable to be changed and extended. A more general version of double groupoids
has been introduced in the XMod package.

9.2 What needs to be done next?

• more work on automorphism groups of groupoids;

• normal subgroupoids and quotient groupoids;

• more methods for morphisms of groupoids, particularly when the range is not connected;

• ImageElm and ImagesSource for the cases of groupoid morphisms not yet covered;

• Enumerator for IsHomsetCosetsRep;

• free groupoid on a graph;

• convert GraphOfGroupsRewritingSystem to the category IsRewritingSystem;

• in XMod, continue to work on crossed modules over groupoids;

References

[AW10] M. Alp and C. D. Wensley. Automorphisms and homotopies of groupoids and crossed
modules. Applied Categorical Structures, 18:473–495, 2010. 2, 5, 33, 51, 85

[BMPW02] R. Brown, E. J. Moore, T. Porter, and C. D. Wensley. Crossed complexes, and free crossed
resolutions for amalgamated sums and hnn-extensions of groups. Georgian Math. J.,
9:623–644, 2002. 5

[Bro88] R. Brown. Topology: a geometric account of general topology, homotopy types, and the
fundamental groupoid. Ellis Horwood, Chichester, 1988. 6, 18

[Bro06] R. Brown. Topology and groupoids. Booksurge LLC, S.Carolina, 2006. 6, 18

[GH17] S. Gutsche and M. Horn. AutoDoc - Generate documentation from GAP source code
(Version 2017.09.15), 2017. GAP package, https://github.com/gap-packages/
AutoDoc. 2

[Hig76] P. Higgins. The fundamental groupoid of a graph of groups. J. London Math. Soc.,
13:145–149, 1976. 57

[Hig05] P. Higgins. Categories and groupoids. Reprints in Theory and Applications of Cate-
gories, 2005. http://www.tac.mta.ca/tac/reprints/articles/7/tr7abs.html.
6

[Hor17] M. Horn. GitHubPagesForGAP - Template for easily using GitHub Pages within
GAP packages (Version 0.2), 2017. GAP package, https://gap-system.github.io/
GitHubPagesForGAP/. 2

[LN17] F. Lübeck and M. Neunhöffer. GAPDoc (version 1.6). RWTH Aachen, 2017. GAP pack-
age, http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html.
2

[Moo01] E. J. Moore. Graphs of Groups: Word Computations and Free Crossed Resolutions.
PhD thesis, University of Wales, Bangor, 2001. http://www.maths.bangor.ac.uk/
research/ftp/theses/moore.ps.gz. 5, 57, 60, 61, 85

[Ser80] J. Serre. Trees. Springer-Verlag, Berlin, 1980. 57

87

https://github.com/gap-packages/AutoDoc
https://github.com/gap-packages/AutoDoc
http://www.tac.mta.ca/tac/reprints/articles/7/tr7abs.html
https://gap-system.github.io/GitHubPagesForGAP/
https://gap-system.github.io/GitHubPagesForGAP/
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html
http://www.maths.bangor.ac.uk/research/ftp/theses/moore.ps.gz
http://www.maths.bangor.ac.uk/research/ftp/theses/moore.ps.gz

Index

* for groupoid elements, 24
\^, 32
\^

for arrows, 32
for groupoids, 33

Arrow, 7
Arrow

for groupoid elements, 24
AutomorphismGroup, 51
AutomorphismGroupOfGroupoid, 51
AutomorphismGroupoidOfGroupoid, 54

BoundaryOfSquare, 69

ConjugateGroupoid, 33
Cosets (left,right,double), 30
costar, 25

DigraphOfGraphOfGroupoids, 64
DigraphOfGraphOfGroups, 58
DirectProductOp, 23
DiscreteSubgroupoid, 29
DiscreteTrivialSubgroupoid, 29
double coset, 30
DoubleCoset, 31
DoubleCosetRepresentatives, 31
DoubleCosets, 31
DoubleGroupoid, 68
DoubleGroupoidHomomorphism, 80
DoubleGroupoidOfSquare, 69
DoubleGroupoidWithSingleObject, 78
DoubleGroupoidWithTrivialGroup, 78
DownArrow, 69

ElementOfArrow
for groupoids, 24
for magmas with objects, 7

Embedding
for fpa-groups, 63

for groupoids, 23

FpWeightedDigraph, 57
FreeProductWithAmalgamation, 61
FreeProductWithAmalgamationInfo, 61
FullTrivialSubgroupoid, 29

GeneratorsOfMagmaWithObjects, 11
GeneratorsOfMonoidWithObjects, 11
GeneratorsOfSemigroupWithObjects, 11
GraphOfGroupoids, 64
GraphOfGroupoidsOfWord, 66
GraphOfGroupoidsWord, 66
GraphOfGroups, 58
GraphOfGroupsOfWord, 60
GraphOfGroupsRewritingSystem, 61
GraphOfGroupsWord, 60
Groupoid, 18
GroupoidAutomorphismByGroupAuto, 48
GroupoidAutomorphismByGroupAutos, 53
GroupoidAutomorphismByObjectPerm, 48
GroupoidAutomorphismByRayShifts, 48
GroupoidByIsomorphisms, 34
GroupoidElement, 24
GroupoidHomomorphism, 38
GroupoidHomomorphismFromHomogeneous-

Discrete, 46
GroupoidHomomorphismFromSinglePiece, 38
GroupoidInnerAutomorphism, 48
GroupoidsOfGraphOfGroupoids, 64
GroupsOfGraphOfGroups, 58

HeadOfArrow
for groupoids, 24
for magmas with objects, 8

HeadOfGraphOfGroupsWord, 60
HnnExtension, 63
HnnExtensionInfo, 63
HomogeneousDiscreteGroupoid, 22
HomogeneousGroupoid, 22

88

groupoids 89

HomomorphismByUnion
for groupoids, 47
for magmas with objects, 16

HomomorphismFromSinglePiece, 13
HomomorphismToSinglePiece

for groupoids, 45
for magmas with objects, 13

Homset, 25
horizontal groupoid, 76
HorizontalIdentities, 74
HorizontalInverses, 74
HorizontalProduct, 71

identity subgroupoid, 29
IdentityArrow, 24
ImageElementsOfRays, 41
ImagesOfObjects, 41
InclusionMappingGroupoids, 42
inner automorphism, 49
inner automorphism group, 52
inverse arrow, 24
InvolutoryArcs, 57
IsAutomorphismWithObjects

for groupoid homomorphisms, 40
IsAutomorphismWithObjects, 16
IsBasicDoubleGroupoid, 68
IsBijectiveOnObjects

for groupoid homomorphisms, 40
IsBijectiveOnObjects, 16
IsClosedUnderTransposition, 70
IsCommutingSquare, 70
IsDirectProductWithCompleteDigraph, 8
IsDiscreteMagmaWithObjects, 8
IsDomainWithObjects, 7
IsDoubleGroupoid, 68
IsDoubleGroupoidElement, 69
IsDoubleGroupoidHomomorphism, 80
IsEndomorphismWithObjects

for groupoid homomorphisms, 40
IsEndomorphismWithObjects, 16
IsFpGroupoid, 20
IsFpWeightedDigraph, 57
IsFreeGroupoid, 20
IsFreeProductWithAmalgamation, 61
IsFullSubgroupoid, 26
IsGraphOfFpGroupoids, 64
IsGraphOfFpGroups, 59

IsGraphOfGroupoids, 65
IsGraphOfGroupoidsWord, 66
IsGraphOfGroups, 58
IsGraphOfGroupsWord, 60
IsGraphOfPcGroups, 59
IsGraphOfPermGroupoids, 64
IsGraphOfPermGroups, 59
IsGroupoid, 18
IsGroupoidByIsomorphisms, 34
IsGroupoidElement, 24
IsGroupoidHomomorphism, 38
IsGroupoidWithMonoidObjects, 36
IsHnnExtension, 63
IsHomogeneousDomainWithObjects, 22
IsHomogeneousDiscreteGroupoidRep, 22
IsInjective

for groupoid homomorphisms, 40
IsInjectiveOnObjects

for groupoid homomorphisms, 40
IsInjectiveOnObjects, 16
IsMagmaWithObjects, 7
IsMappingToGroupWithGGRWS, 63
IsMappingToSinglePieceRep, 13
IsMappingWithObjectsByFunction, 17
IsMatrixGroupoid, 20
IsMonoidWithObjects, 10
IsMultiplicativeElementWithObjects, 8
IsomorphismGroupoids, 47
IsomorphismNewObjects

for groupoids, 43
for magmas with objects, 13

IsomorphismPcGroupoid, 45
IsomorphismPermGroupoid, 45
IsomorphismsOfGraphOfGroupoids, 64
IsomorphismsOfGraphOfGroups, 58
IsomorphismStandardGroupoid, 44
IsPcGroupoid, 20
IsPermGroupoid, 20
IsReducedGraphOfGroupoidsWord, 66
IsReducedGraphOfGroupsWord, 61
IsSemigroupWithObjects, 9
IsSinglePiece, 8
IsSinglePieceDomain, 8
IsSubgroupoid, 26
IsSurjective

for groupoid homomorphisms, 40

groupoids 90

IsSurjectiveOnObjects
for groupoid homomorphisms, 40

IsSurjectiveOnObjects, 16
IsWideSubgroupoid, 26

LeftArrow, 69
LeftCoset, 30
LeftCosetRepresentatives, 31
LeftCosetRepresentativesFromObject, 31
LeftCosets, 31
LeftTransversalsOfGraphOfGroupoids, 65
LeftTransversalsOfGraphOfGroups, 60
loop, 25

MagmaWithObjects, 6
MagmaWithObjectsHomomorphism, 13
MagmaWithSingleObject

for groups, 18
for semigroups, 9

MappingToSinglePieceData
for groupoids, 41
for magmas with objects, 13

MappingWithObjectsByFunction, 17
matrix representation, 55
MaximalDiscreteSubgroupoid, 29
MonoidWithObjects, 10

NiceObjectAutoGroupGroupoid, 51
NormalFormGGRWS, 62

ObjectCostar, 25
ObjectGroup, 19
ObjectGroupHomomorphism, 42
ObjectList

for groupoids, 19
for magmas with objects, 6

ObjectList
for groupoids, 21

ObjectStar, 25
Order, 25

ParentMappingGroupoids, 43
PieceIsomorphisms, 22
PieceOfObject, 11
PiecePositions, 29
Pieces

for double groupoids, 77
for groupoids, 21

for magmas with objects, 11
PiecesOfMapping, 13
Projection

for groupoids, 23

Range, 13
RayArrowsOfGroupoid, 27
rays, 18
RaysOfGroupoid, 27
ReducedGraphOfGroupoidsWord, 66
ReducedGraphOfGroupsWord, 61
ReducedImageElm, 63
RegularActionHomomorphismGroupoid, 45
ReplaceOnePieceInUnion, 21
representation by matrices, 55
RestrictedMappingGroupoids, 43
RightActionGroupoid, 36
RightArrow, 69
RightCoset, 30
RightCosetRepresentatives, 30
RightCosets, 30
RightTransversalsOfGraphOfGroupoids, 65
RightTransversalsOfGraphOfGroups, 60
RootGroup, 19
RootGroupHomomorphism, 41
RootObject

for groupoids, 19
for magmas with objects, 6

SemigroupWithObjects, 9
SinglePieceBasicDoubleGroupoid, 68
SinglePieceGroupoid, 18
SinglePieceGroupoidWithRays, 35
SinglePieceMagmaWithObjects, 6
SinglePieceMonoidWithObjects, 10
SinglePieceSemigroupWithObjects, 9
SinglePieceSubgroupoidByGenerators, 30
Size, 21
Source, 13
SquareOfArrows, 69
standard groupoid, 19
star, 25
Subgroupoid, 26
SubgroupoidByObjects, 26
SubgroupoidByPieces, 28
SubgroupoidBySubgroup, 26
SubgroupoidsOfGraphOfGroupoids, 64

groupoids 91

SubgroupoidWithRays, 27

TailOfArrow
for groupoids, 24
for magmas with objects, 8

TailOfGraphOfGroupsWord, 60
TransposedSquare, 70
tree groupoid, 29
trivial subgroupoid, 29

UnderlyingFunction, 17
UnionOfPieces

for double groupoids, 77
for groupoids, 21
for magmas with objects, 11

UpArrow, 69

vertical groupoid, 77
VerticalIdentities, 74
VerticalInverses, 74
VerticalProduct, 71

WordOfGraphOfGroupoidsWord, 66
WordOfGraphOfGroupsWord, 60

	Introduction
	Many45object structures
	Magmas with objects; arrows
	Semigroups with objects
	Monoids with objects
	Generators of magmas with objects
	Structures with more than one piece

	Mappings of many45object structures
	Homomorphisms of magmas with objects
	Homomorphisms of semigroups and monoids with objects
	Homomorphisms to more than one piece
	Mappings defined by a function

	Groupoids
	Groupoids: their properties and attributes
	Groupoid elements; stars; costars; homsets
	Subgroupoids
	Left, right and double cosets
	Conjugation
	Groupoids formed using isomorphisms
	Groupoids whose objects form a monoid

	Homomorphisms of Groupoids
	Homomorphisms from a connected groupoid
	Properties and attributes of groupoid homomorphisms
	Special types of groupoid homomorphism
	Homomorphisms to a connected groupoid
	Homomorphisms to more than one piece
	Automorphisms of groupoids
	Matrix representations of groupoids

	Graphs of Groups and Groupoids
	Digraphs
	Graphs of Groups
	Words in a Graph of Groups and their normal forms
	Free products with amalgamation and HNN extensions
	GraphsOfGroupoids and their Words

	Double Groupoids
	Single piece double groupoids
	Double groupoids with more than one piece
	Generators of a double groupoid
	Starting with two groupoids
	Double groupoid homomorphisms

	Technical Notes
	Many object structures
	Many object homomorphisms

	Development History
	Versions of the Package
	What needs to be done next?

	References
	Index

