This function attempts to write f in terms of the generators of subR. Internally, this function calculates a Groebner basis. This function should be considered experimental.
i1 : gndR = QQ[x]; |
i2 : A = subring sagbi subring {x^4+x^3, x^2+x} o2 = subring of gndR o2 : Subring |
i3 : gens A o3 = | x2+x x3-x | 1 2 o3 : Matrix gndR <--- gndR |
i4 : f = x^3 + x^2 3 2 o4 = x + x o4 : gndR |
i5 : g = f//A o5 = p + p 2 1 o5 : QQ[p ..p ] 0 2 |
i6 : (A#"presentation"#"fullSubstitution")(g) == f o6 = true |