We compute nonminimal resolution F of the carpet of type (a,b) over a finite prime field, Lift this to a resolution over ZZ, introduce the fine grading, grep the various blocks of the crucial map in the a-th strand, compute their determinants and return their product.
i1 : a=4,b=4 o1 = (4, 4) o1 : Sequence |
i2 : d=carpetDet(a,b) -- 0.0124549 seconds elapsed -- 0.0231958 seconds elapsed -- 0.00043472 seconds elapsed -- 0.000321621 seconds elapsed -- 0.000316021 seconds elapsed -- 0.000271896 seconds elapsed -- 0.000296647 seconds elapsed -- 0.000326121 seconds elapsed -- 0.000328521 seconds elapsed -- 0.000329996 seconds elapsed -- 0.000307971 seconds elapsed -- 0.000301796 seconds elapsed -- 0.000280147 seconds elapsed -- 0.000284972 seconds elapsed -- 0.000313171 seconds elapsed -- 0.000275946 seconds elapsed -- 0.000293096 seconds elapsed -- 0.000280947 seconds elapsed -- 0.000305721 seconds elapsed -- 0.000300246 seconds elapsed -- 0.000318996 seconds elapsed -- 0.000342271 seconds elapsed -- 0.000324796 seconds elapsed -- 0.000282747 seconds elapsed -- 0.000276521 seconds elapsed -- 0.000279547 seconds elapsed -- 0.000289221 seconds elapsed -- 0.000281171 seconds elapsed (number Of blocks, 26) 1 1 1 1 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 1 1 1 1 o2 = 3131031158784 |
i3 : factor d 32 6 o3 = 2 3 o3 : Expression of class Product |
The object carpetDet is a method function.