Group
Guide to the Secure Configuration of Red Hat Enterprise Linux 7
Group contains 21 groups and 29 rules |
Group
System Settings
Group contains 15 groups and 26 rules |
[ref]
Contains rules that check correct system settings. |
Group
Installing and Maintaining Software
Group contains 2 groups and 7 rules |
[ref]
The following sections contain information on
security-relevant choices during the initial operating system
installation process and the setup of software
updates. |
Group
Sudo
Group contains 2 rules |
[ref]
Sudo , which stands for "su 'do'", provides the ability to delegate authority
to certain users, groups of users, or system administrators. When configured for system
users and/or groups, Sudo can allow a user or group to execute privileged commands
that normally only root is allowed to execute.
For more information on Sudo and addition Sudo configuration options, see
https://www.sudo.ws. |
Rule
Ensure Users Re-Authenticate for Privilege Escalation - sudo NOPASSWD
[ref] | The sudo NOPASSWD tag, when specified, allows a user to execute
commands using sudo without having to authenticate. This should be disabled
by making sure that the NOPASSWD tag does not exist in
/etc/sudoers configuration file or any sudo configuration snippets
in /etc/sudoers.d/ . | Rationale: | Without re-authentication, users may access resources or perform tasks for which they
do not have authorization.
When operating systems provide the capability to escalate a functional capability, it
is critical that the user re-authenticate. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sudo_remove_nopasswd | Identifiers and References | Identifiers:
CCE-80351-0 References:
BP28(R5), BP28(R59), CCI-002038, IA-11, CM-6(a), PR.AC-1, PR.AC-7, SRG-OS-000373-GPOS-00156, SRG-OS-000373-GPOS-00157, SRG-OS-000373-GPOS-00158, SRG-OS-000373-VMM-001470, SRG-OS-000373-VMM-001480, SRG-OS-000373-VMM-001490, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, 4.3.3.5.1, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, DSS05.04, DSS05.10, DSS06.03, DSS06.10, A.18.1.4, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, 1, 12, 15, 16, 5, RHEL-07-010340, SV-204429r603261_rule | |
|
Rule
Ensure Users Re-Authenticate for Privilege Escalation - sudo !authenticate
[ref] | The sudo !authenticate option, when specified, allows a user to execute commands using
sudo without having to authenticate. This should be disabled by making sure that the
!authenticate option does not exist in /etc/sudoers configuration file or
any sudo configuration snippets in /etc/sudoers.d/ . | Rationale: | Without re-authentication, users may access resources or perform tasks for which they
do not have authorization.
When operating systems provide the capability to escalate a functional capability, it
is critical that the user re-authenticate. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sudo_remove_no_authenticate | Identifiers and References | Identifiers:
CCE-80350-2 References:
BP28(R5), BP28(R59), CCI-002038, IA-11, CM-6(a), PR.AC-1, PR.AC-7, SRG-OS-000373-GPOS-00156, SRG-OS-000373-GPOS-00157, SRG-OS-000373-GPOS-00158, SRG-OS-000373-VMM-001470, SRG-OS-000373-VMM-001480, SRG-OS-000373-VMM-001490, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, 4.3.3.5.1, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, DSS05.04, DSS05.10, DSS06.03, DSS06.10, A.18.1.4, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, 1, 12, 15, 16, 5, RHEL-07-010350, SV-204430r603261_rule | |
|
Group
Updating Software
Group contains 5 rules |
[ref]
The yum command line tool is used to install and
update software packages. The system also provides a graphical
software update tool in the System menu, in the Administration submenu,
called Software Update.
Red Hat Enterprise Linux 7 systems contain an installed software catalog called
the RPM database, which records metadata of installed packages. Consistently using
yum or the graphical Software Update for all software installation
allows for insight into the current inventory of installed software on the system.
|
Rule
Ensure gpgcheck Enabled for All yum Package Repositories
[ref] | To ensure signature checking is not disabled for
any repos, remove any lines from files in /etc/yum.repos.d of the form:
gpgcheck=0 | Rationale: | Verifying the authenticity of the software prior to installation validates
the integrity of the patch or upgrade received from a vendor. This ensures
the software has not been tampered with and that it has been provided by a
trusted vendor. Self-signed certificates are disallowed by this
requirement. Certificates used to verify the software must be from an
approved Certificate Authority (CA)." | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_ensure_gpgcheck_never_disabled | Identifiers and References | Identifiers:
CCE-26876-3 References:
SRG-OS-000366-GPOS-00153, SRG-OS-000366-VMM-001430, SRG-OS-000370-VMM-001460, SRG-OS-000404-VMM-001650, 5.10.4.1, 3.4.8, CCI-001749, 164.308(a)(1)(ii)(D), 164.312(b), 164.312(c)(1), 164.312(c)(2), 164.312(e)(2)(i), CM-5(3), SI-7, SC-12, SC-12(3), CM-6(a), SA-12, SA-12(10), CM-11(a), CM-11(b), PR.DS-6, PR.DS-8, PR.IP-1, FPT_TUD_EXT.1, FPT_TUD_EXT.2, Req-6.2, SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 7.6, 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4, APO01.06, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS06.02, A.11.2.4, A.12.1.2, A.12.2.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, 11, 2, 3, 9, BP28(R15) | |
|
Rule
Ensure Red Hat GPG Key Installed
[ref] | To ensure the system can cryptographically verify base software packages
come from Red Hat (and to connect to the Red Hat Network to receive them),
the Red Hat GPG key must properly be installed. To install the Red Hat GPG
key, run:
$ sudo subscription-manager register
If the system is not connected to the Internet or an RHN Satellite, then
install the Red Hat GPG key from trusted media such as the Red Hat
installation CD-ROM or DVD. Assuming the disc is mounted in
/media/cdrom , use the following command as the root user to import
it into the keyring:
$ sudo rpm --import /media/cdrom/RPM-GPG-KEY
Alternatively, the key may be pre-loaded during the RHEL installation. In
such cases, the key can be installed by running the following command:
sudo rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release | Rationale: | Changes to software components can have significant effects on the overall
security of the operating system. This requirement ensures the software has
not been tampered with and that it has been provided by a trusted vendor.
The Red Hat GPG key is necessary to cryptographically verify packages are
from Red Hat. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_ensure_redhat_gpgkey_installed | Identifiers and References | Identifiers:
CCE-26957-1 References:
SRG-OS-000366-GPOS-00153, SRG-OS-000366-VMM-001430, SRG-OS-000370-VMM-001460, SRG-OS-000404-VMM-001650, 5.10.4.1, 3.4.8, CCI-001749, 164.308(a)(1)(ii)(D), 164.312(b), 164.312(c)(1), 164.312(c)(2), 164.312(e)(2)(i), CM-5(3), SI-7, SC-12, SC-12(3), CM-6(a), PR.DS-6, PR.DS-8, PR.IP-1, FPT_TUD_EXT.1, FPT_TUD_EXT.2, Req-6.2, SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 7.6, 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4, APO01.06, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS06.02, A.11.2.4, A.12.1.2, A.12.2.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, 11, 2, 3, 9, BP28(R15), 1.2.3 | |
|
Rule
Ensure gpgcheck Enabled In Main yum Configuration
[ref] | The gpgcheck option controls whether
RPM packages' signatures are always checked prior to installation.
To configure yum to check package signatures before installing
them, ensure the following line appears in /etc/yum.conf in
the [main] section:
gpgcheck=1 | Rationale: | Changes to any software components can have significant effects on the
overall security of the operating system. This requirement ensures the
software has not been tampered with and that it has been provided by a
trusted vendor.
Accordingly, patches, service packs, device drivers, or operating system
components must be signed with a certificate recognized and approved by the
organization.
Verifying the authenticity of the software prior to installation
validates the integrity of the patch or upgrade received from a vendor.
This ensures the software has not been tampered with and that it has been
provided by a trusted vendor. Self-signed certificates are disallowed by
this requirement. Certificates used to verify the software must be from an
approved Certificate Authority (CA). | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_ensure_gpgcheck_globally_activated | Identifiers and References | Identifiers:
CCE-26989-4 References:
5.10.4.1, 3.4.8, CCI-001749, 164.308(a)(1)(ii)(D), 164.312(b), 164.312(c)(1), 164.312(c)(2), 164.312(e)(2)(i), CM-5(3), SI-7, SC-12, SC-12(3), CM-6(a), SA-12, SA-12(10), CM-11(a), CM-11(b), PR.DS-6, PR.DS-8, PR.IP-1, FPT_TUD_EXT.1, FPT_TUD_EXT.2, Req-6.2, SRG-OS-000366-GPOS-00153, SRG-OS-000366-VMM-001430, SRG-OS-000370-VMM-001460, SRG-OS-000404-VMM-001650, SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 7.6, 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4, APO01.06, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS06.02, A.11.2.4, A.12.1.2, A.12.2.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, 11, 2, 3, 9, BP28(R15), RHEL-07-020050, SV-204447r603261_rule, 1.2.2 | |
|
Rule
Ensure gpgcheck Enabled for Local Packages
[ref] | yum should be configured to verify the signature(s) of local packages
prior to installation. To configure yum to verify signatures of local
packages, set the localpkg_gpgcheck to 1 in /etc/yum.conf .
| Rationale: | Changes to any software components can have significant effects to the overall security
of the operating system. This requirement ensures the software has not been tampered and
has been provided by a trusted vendor.
Accordingly, patches, service packs, device drivers, or operating system components must
be signed with a certificate recognized and approved by the organization. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_ensure_gpgcheck_local_packages | Identifiers and References | Identifiers:
CCE-80347-8 References:
3.4.8, CCI-001749, 164.308(a)(1)(ii)(D), 164.312(b), 164.312(c)(1), 164.312(c)(2), 164.312(e)(2)(i), CM-11(a), CM-11(b), CM-6(a), CM-5(3), SA-12, SA-12(10), PR.IP-1, FPT_TUD_EXT.1, FPT_TUD_EXT.2, SRG-OS-000366-GPOS-00153, SRG-OS-000366-VMM-001430, SRG-OS-000370-VMM-001460, SRG-OS-000404-VMM-001650, SR 7.6, 4.3.4.3.2, 4.3.4.3.3, BAI10.01, BAI10.02, BAI10.03, BAI10.05, A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, 11, 3, 9, BP28(R15), RHEL-07-020060, SV-204448r603261_rule | |
|
Rule
Ensure Software Patches Installed
[ref] |
If the system is joined to the Red Hat Network, a Red Hat Satellite Server,
or a yum server, run the following command to install updates:
$ sudo yum update
If the system is not configured to use one of these sources, updates (in the form of RPM packages)
can be manually downloaded from the Red Hat Network and installed using rpm .
NOTE: U.S. Defense systems are required to be patched within 30 days or sooner as local policy
dictates. | Rationale: | Installing software updates is a fundamental mitigation against
the exploitation of publicly-known vulnerabilities. If the most
recent security patches and updates are not installed, unauthorized
users may take advantage of weaknesses in the unpatched software. The
lack of prompt attention to patching could result in a system compromise. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_security_patches_up_to_date | Identifiers and References | Identifiers:
CCE-26895-3 References:
5.10.4.1, CCI-000366, CCI-001227, SI-2(5), SI-2(c), CM-6(a), ID.RA-1, PR.IP-12, FMT_MOF_EXT.1, Req-6.2, SRG-OS-000480-GPOS-00227, SRG-OS-000480-VMM-002000, 4.2.3, 4.2.3.12, 4.2.3.7, 4.2.3.9, APO12.01, APO12.02, APO12.03, APO12.04, BAI03.10, DSS05.01, DSS05.02, A.12.6.1, A.14.2.3, A.16.1.3, A.18.2.2, A.18.2.3, 18, 20, 4, BP28(R08), RHEL-07-020260, SV-204459r603261_rule, 1.8 | |
|
Group
Account and Access Control
Group contains 8 groups and 15 rules |
[ref]
In traditional Unix security, if an attacker gains
shell access to a certain login account, they can perform any action
or access any file to which that account has access. Therefore,
making it more difficult for unauthorized people to gain shell
access to accounts, particularly to privileged accounts, is a
necessary part of securing a system. This section introduces
mechanisms for restricting access to accounts under
Red Hat Enterprise Linux 7. |
Group
Protect Accounts by Configuring PAM
Group contains 4 groups and 11 rules |
[ref]
PAM, or Pluggable Authentication Modules, is a system
which implements modular authentication for Linux programs. PAM provides
a flexible and configurable architecture for authentication, and it should be configured
to minimize exposure to unnecessary risk. This section contains
guidance on how to accomplish that.
PAM is implemented as a set of shared objects which are
loaded and invoked whenever an application wishes to authenticate a
user. Typically, the application must be running as root in order
to take advantage of PAM, because PAM's modules often need to be able
to access sensitive stores of account information, such as /etc/shadow.
Traditional privileged network listeners
(e.g. sshd) or SUID programs (e.g. sudo) already meet this
requirement. An SUID root application, userhelper, is provided so
that programs which are not SUID or privileged themselves can still
take advantage of PAM.
PAM looks in the directory /etc/pam.d for
application-specific configuration information. For instance, if
the program login attempts to authenticate a user, then PAM's
libraries follow the instructions in the file /etc/pam.d/login
to determine what actions should be taken.
One very important file in /etc/pam.d is
/etc/pam.d/system-auth . This file, which is included by
many other PAM configuration files, defines 'default' system authentication
measures. Modifying this file is a good way to make far-reaching
authentication changes, for instance when implementing a
centralized authentication service. Warning:
Be careful when making changes to PAM's configuration files.
The syntax for these files is complex, and modifications can
have unexpected consequences. The default configurations shipped
with applications should be sufficient for most users. |
Group
Set Password Hashing Algorithm
Group contains 1 rule |
[ref]
The system's default algorithm for storing password hashes in
/etc/shadow is SHA-512. This can be configured in several
locations. |
Rule
Set PAM's Password Hashing Algorithm
[ref] | The PAM system service can be configured to only store encrypted
representations of passwords. In
/etc/pam.d/system-auth ,
the
password section of the file controls which PAM modules execute
during a password change. Set the pam_unix.so module in the
password section to include the argument sha512 , as shown
below:
password sufficient pam_unix.so sha512 other arguments...
This will help ensure when local users change their passwords, hashes for
the new passwords will be generated using the SHA-512 algorithm. This is
the default. | Rationale: | Passwords need to be protected at all times, and encryption is the standard
method for protecting passwords. If passwords are not encrypted, they can
be plainly read (i.e., clear text) and easily compromised. Passwords that
are encrypted with a weak algorithm are no more protected than if they are
kepy in plain text.
This setting ensures user and group account administration utilities are
configured to store only encrypted representations of passwords.
Additionally, the crypt_style configuration option ensures the use
of a strong hashing algorithm that makes password cracking attacks more
difficult. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_set_password_hashing_algorithm_systemauth | Identifiers and References | Identifiers:
CCE-82043-1 References:
5.6.2.2, 3.13.11, CCI-000196, IA-5(c), IA-5(1)(c), CM-6(a), PR.AC-1, PR.AC-6, PR.AC-7, Req-8.2.1, SRG-OS-000073-GPOS-00041, SRG-OS-000480-VMM-002000, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, 1, 12, 15, 16, 5, 0418, 1055, 1402, BP28(R32), RHEL-07-010200, SV-204415r603261_rule, 5.3.4 | |
|
Group
Set Password Quality Requirements
Group contains 1 group and 5 rules |
[ref]
The default pam_pwquality PAM module provides strength
checking for passwords. It performs a number of checks, such as
making sure passwords are not similar to dictionary words, are of
at least a certain length, are not the previous password reversed,
and are not simply a change of case from the previous password. It
can also require passwords to be in certain character classes. The
pam_pwquality module is the preferred way of configuring
password requirements.
The man pages pam_pwquality(8)
provide information on the capabilities and configuration of
each. |
Group
Set Password Quality Requirements with pam_pwquality
Group contains 5 rules |
[ref]
The pam_pwquality PAM module can be configured to meet
requirements for a variety of policies.
For example, to configure pam_pwquality to require at least one uppercase
character, lowercase character, digit, and other (special)
character, make sure that pam_pwquality exists in /etc/pam.d/system-auth :
password requisite pam_pwquality.so try_first_pass local_users_only retry=3 authtok_type=
If no such line exists, add one as the first line of the password section in /etc/pam.d/system-auth .
Next, modify the settings in /etc/security/pwquality.conf to match the following:
difok = 4
minlen = 14
dcredit = -1
ucredit = -1
lcredit = -1
ocredit = -1
maxrepeat = 3
The arguments can be modified to ensure compliance with
your organization's security policy. Discussion of each parameter follows. |
Rule
Ensure PAM Enforces Password Requirements - Minimum Uppercase Characters
[ref] | The pam_pwquality module's ucredit= parameter controls requirements for
usage of uppercase letters in a password. When set to a negative number, any password will be required to
contain that many uppercase characters. When set to a positive number, pam_pwquality will grant +1 additional
length credit for each uppercase character. Modify the ucredit setting in
/etc/security/pwquality.conf to require the use of an uppercase character in passwords. | Rationale: | Use of a complex password helps to increase the time and resources reuiqred to compromise the password.
Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts
at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more
complex the password, the greater the number of possible combinations that need to be tested before
the password is compromised. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_ucredit | Identifiers and References | Identifiers:
CCE-27200-5 References:
CCI-000192, IA-5(c), IA-5(1)(a), CM-6(a), IA-5(4), PR.AC-1, PR.AC-6, PR.AC-7, FMT_MOF_EXT.1, Req-8.2.3, SRG-OS-000069-GPOS-00037, SRG-OS-000069-VMM-000360, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, 1, 12, 15, 16, 5, 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561, BP28(R18), RHEL-07-010120, SV-204407r603261_rule, 5.3.1 | |
|
Rule
Ensure PAM Enforces Password Requirements - Minimum Special Characters
[ref] | The pam_pwquality module's ocredit= parameter controls requirements for
usage of special (or "other") characters in a password. When set to a negative number,
any password will be required to contain that many special characters.
When set to a positive number, pam_pwquality will grant +1
additional length credit for each special character. Modify the ocredit setting
in /etc/security/pwquality.conf to equal -1
to require use of a special character in passwords. | Rationale: | Use of a complex password helps to increase the time and resources required
to compromise the password. Password complexity, or strength, is a measure of
the effectiveness of a password in resisting attempts at guessing and brute-force
attacks.
Password complexity is one factor of several that determines how long it takes
to crack a password. The more complex the password, the greater the number of
possble combinations that need to be tested before the password is compromised.
Requiring a minimum number of special characters makes password guessing attacks
more difficult by ensuring a larger search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_ocredit | Identifiers and References | Identifiers:
CCE-27360-7 References:
CCI-001619, IA-5(c), IA-5(1)(a), CM-6(a), IA-5(4), PR.AC-1, PR.AC-6, PR.AC-7, FMT_MOF_EXT.1, SRG-OS-000266-GPOS-00101, SRG-OS-000266-VMM-000940, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, 1, 12, 15, 16, 5, 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561, BP28(R18), RHEL-07-010150, SV-204410r603261_rule, 5.3.1 | |
|
Rule
Ensure PAM Enforces Password Requirements - Minimum Lowercase Characters
[ref] | The pam_pwquality module's lcredit parameter controls requirements for
usage of lowercase letters in a password. When set to a negative number, any password will be required to
contain that many lowercase characters. When set to a positive number, pam_pwquality will grant +1 additional
length credit for each lowercase character. Modify the lcredit setting in
/etc/security/pwquality.conf to require the use of a lowercase character in passwords. | Rationale: | Use of a complex password helps to increase the time and resources required
to compromise the password. Password complexity, or strength, is a measure of
the effectiveness of a password in resisting attempts at guessing and brute-force
attacks.
Password complexity is one factor of several that determines how long it takes
to crack a password. The more complex the password, the greater the number of
possble combinations that need to be tested before the password is compromised.
Requiring a minimum number of lowercase characters makes password guessing attacks
more difficult by ensuring a larger search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_lcredit | Identifiers and References | Identifiers:
CCE-27345-8 References:
CCI-000193, IA-5(c), IA-5(1)(a), CM-6(a), IA-5(4), PR.AC-1, PR.AC-6, PR.AC-7, FMT_MOF_EXT.1, Req-8.2.3, SRG-OS-000070-GPOS-00038, SRG-OS-000070-VMM-000370, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, 1, 12, 15, 16, 5, 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561, BP28(R18), RHEL-07-010130, SV-204408r603261_rule, 5.3.1 | |
|
Rule
Ensure PAM Enforces Password Requirements - Minimum Digit Characters
[ref] | The pam_pwquality module's dcredit parameter controls requirements for
usage of digits in a password. When set to a negative number, any password will be required to
contain that many digits. When set to a positive number, pam_pwquality will grant +1 additional
length credit for each digit. Modify the dcredit setting in
/etc/security/pwquality.conf to require the use of a digit in passwords. | Rationale: | Use of a complex password helps to increase the time and resources required
to compromise the password. Password complexity, or strength, is a measure of
the effectiveness of a password in resisting attempts at guessing and brute-force
attacks.
Password complexity is one factor of several that determines how long it takes
to crack a password. The more complex the password, the greater the number of
possible combinations that need to be tested before the password is compromised.
Requiring digits makes password guessing attacks more difficult by ensuring a larger
search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_dcredit | Identifiers and References | Identifiers:
CCE-27214-6 References:
CCI-000194, IA-5(c), IA-5(1)(a), CM-6(a), IA-5(4), PR.AC-1, PR.AC-6, PR.AC-7, FMT_MOF_EXT.1, Req-8.2.3, SRG-OS-000071-GPOS-00039, SRG-OS-000071-VMM-000380, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, 1, 12, 15, 16, 5, 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561, BP28(R18), RHEL-07-010140, SV-204409r603261_rule, 5.3.1 | |
|
Rule
Ensure PAM Enforces Password Requirements - Minimum Length
[ref] | The pam_pwquality module's minlen parameter controls requirements for
minimum characters required in a password. Add minlen=18
after pam_pwquality to set minimum password length requirements. | Rationale: | The shorter the password, the lower the number of possible combinations
that need to be tested before the password is compromised.
Password complexity, or strength, is a measure of the effectiveness of a
password in resisting attempts at guessing and brute-force attacks.
Password length is one factor of several that helps to determine strength
and how long it takes to crack a password. Use of more characters in a password
helps to exponentially increase the time and/or resources required to
compromose the password. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_minlen | Identifiers and References | Identifiers:
CCE-27293-0 References:
5.6.2.1.1, CCI-000205, IA-5(c), IA-5(1)(a), CM-6(a), IA-5(4), PR.AC-1, PR.AC-6, PR.AC-7, FMT_MOF_EXT.1, Req-8.2.3, SRG-OS-000078-GPOS-00046, SRG-OS-000072-VMM-000390, SRG-OS-000078-VMM-000450, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, 1, 12, 15, 16, 5, 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561, BP28(R18), RHEL-07-010280, SV-204423r603261_rule, 5.3.1 | |
|
Group
Set Lockouts for Failed Password Attempts
Group contains 5 rules |
[ref]
The pam_faillock PAM module provides the capability to
lock out user accounts after a number of failed login attempts. Its
documentation is available in
/usr/share/doc/pam-VERSION/txts/README.pam_faillock .
Warning:
Locking out user accounts presents the
risk of a denial-of-service attack. The lockout policy
must weigh whether the risk of such a
denial-of-service attack outweighs the benefits of thwarting
password guessing attacks. |
Rule
Limit Password Reuse
[ref] | Do not allow users to reuse recent passwords. This can be
accomplished by using the remember option for the pam_unix
or pam_pwhistory PAM modules.
In the file /etc/pam.d/system-auth , append remember=2
to the line which refers to the pam_unix.so or pam_pwhistory.so module, as shown below:
The DoD STIG requirement is 5 passwords. | Rationale: | Preventing re-use of previous passwords helps ensure that a compromised password is not re-used by a user. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_unix_remember | Identifiers and References | Identifiers:
CCE-82030-8 References:
5.6.2.1.1, 3.5.8, CCI-000200, IA-5(f), IA-5(1)(e), PR.AC-1, PR.AC-6, PR.AC-7, Req-8.2.5, SRG-OS-000077-GPOS-00045, SRG-OS-000077-VMM-000440, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, 1, 12, 15, 16, 5, BP28(R18), RHEL-07-010270, SV-204422r603261_rule, 5.3.3 | |
|
Rule
Set Lockout Time for Failed Password Attempts
[ref] | To configure the system to lock out accounts after a number of incorrect login
attempts and require an administrator to unlock the account using pam_faillock.so ,
modify the content of both /etc/pam.d/system-auth and /etc/pam.d/password-auth as follows:
- add the following line immediately
before the pam_unix.so statement in the AUTH section:
auth required pam_faillock.so preauth silent deny=3 unlock_time=900 fail_interval=900 - add the following line immediately
after the pam_unix.so statement in the AUTH section:
auth [default=die] pam_faillock.so authfail deny=3 unlock_time=900 fail_interval=900 - add the following line immediately
before the pam_unix.so statement in the ACCOUNT section:
account required pam_faillock.so
If unlock_time is set to 0 , manual intervention by an administrator is required to unlock a user. | Rationale: | Locking out user accounts after a number of incorrect attempts
prevents direct password guessing attacks. Ensuring that an administrator is
involved in unlocking locked accounts draws appropriate attention to such
situations. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_passwords_pam_faillock_unlock_time | Identifiers and References | Identifiers:
CCE-26884-7 References:
5.5.3, 3.1.8, CCI-000044, CCI-002236, CCI-002237, CCI-002238, CM-6(a), AC-7(b), PR.AC-7, FIA_AFL.1, Req-8.1.7, SRG-OS-000329-GPOS-00128, SRG-OS-000021-GPOS-00005, SRG-OS-000329-VMM-001180, SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, DSS05.04, DSS05.10, DSS06.10, A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3, 1, 12, 15, 16, 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561, BP28(R18), RHEL-07-010320, SV-204427r603824_rule, 5.3.2 | |
|
Rule
Set Deny For Failed Password Attempts
[ref] | To configure the system to lock out accounts after a number of incorrect login
attempts using pam_faillock.so , modify the content of both
/etc/pam.d/system-auth and /etc/pam.d/password-auth as follows:
- add the following line immediately
before the pam_unix.so statement in the AUTH section:
auth required pam_faillock.so preauth silent deny=3 unlock_time=900 fail_interval=900 - add the following line immediately
after the pam_unix.so statement in the AUTH section:
auth [default=die] pam_faillock.so authfail deny=3 unlock_time=900 fail_interval=900 - add the following line immediately
before the pam_unix.so statement in the ACCOUNT section:
account required pam_faillock.so
| Rationale: | Locking out user accounts after a number of incorrect attempts
prevents direct password guessing attacks. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_passwords_pam_faillock_deny | Identifiers and References | Identifiers:
CCE-27350-8 References:
5.5.3, 3.1.8, CCI-000044, CCI-002236, CCI-002237, CCI-002238, CM-6(a), AC-7(a), PR.AC-7, FIA_AFL.1, Req-8.1.6, SRG-OS-000329-GPOS-00128, SRG-OS-000021-GPOS-00005, SRG-OS-000021-VMM-000050, SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, DSS05.04, DSS05.10, DSS06.10, A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3, 1, 12, 15, 16, 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561, BP28(R18), RHEL-07-010320, SV-204427r603824_rule, 5.3.2 | |
|
Rule
Configure the root Account for Failed Password Attempts
[ref] | To configure the system to lock out the root account after a
number of incorrect login attempts using pam_faillock.so , modify
the content of both /etc/pam.d/system-auth and
/etc/pam.d/password-auth as follows:
| Rationale: | By limiting the number of failed logon attempts, the risk of unauthorized system access via user password
guessing, otherwise known as brute-forcing, is reduced. Limits are imposed by locking the account. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_passwords_pam_faillock_deny_root | Identifiers and References | Identifiers:
CCE-80353-6 References:
CCI-002238, CCI-000044, CM-6(a), AC-7(b), IA-5(c), PR.AC-7, FMT_MOF_EXT.1, SRG-OS-000329-GPOS-00128, SRG-OS-000021-GPOS-00005, SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, DSS05.04, DSS05.10, DSS06.10, A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3, 1, 12, 15, 16, 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561, BP28(R18), RHEL-07-010330, SV-204428r603261_rule | |
|
Rule
Set Interval For Counting Failed Password Attempts
[ref] | Utilizing pam_faillock.so , the fail_interval directive
configures the system to lock out an account after a number of incorrect
login attempts within a specified time period. Modify the content of both
/etc/pam.d/system-auth and /etc/pam.d/password-auth
as follows:
- Add the following line immediately
before the
pam_unix.so statement in the AUTH section:
auth required pam_faillock.so preauth silent deny=3 unlock_time=900 fail_interval=900
- Add the following line immediately
after the
pam_unix.so statement in the AUTH section:
auth [default=die] pam_faillock.so authfail deny=3 unlock_time=900 fail_interval=900
- Add the following line immediately
before the
pam_unix.so statement in the ACCOUNT section:
account required pam_faillock.so
| Rationale: | By limiting the number of failed logon attempts the risk of unauthorized system
access via user password guessing, otherwise known as brute-forcing, is reduced.
Limits are imposed by locking the account. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_passwords_pam_faillock_interval | Identifiers and References | Identifiers:
CCE-27297-1 References:
CCI-000044, CCI-002236, CCI-002237, CCI-002238, CM-6(a), AC-7(a), PR.AC-7, FIA_AFL.1, SRG-OS-000329-GPOS-00128, SRG-OS-000021-GPOS-00005, SRG-OS-000021-VMM-000050, SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, DSS05.04, DSS05.10, DSS06.10, A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3, 1, 12, 15, 16, 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561, BP28(R18), RHEL-07-010320, SV-204427r603824_rule | |
|
Group
Protect Accounts by Restricting Password-Based Login
Group contains 2 groups and 4 rules |
[ref]
Conventionally, Unix shell accounts are accessed by
providing a username and password to a login program, which tests
these values for correctness using the /etc/passwd and
/etc/shadow files. Password-based login is vulnerable to
guessing of weak passwords, and to sniffing and man-in-the-middle
attacks against passwords entered over a network or at an insecure
console. Therefore, mechanisms for accessing accounts by entering
usernames and passwords should be restricted to those which are
operationally necessary. |
Group
Set Password Expiration Parameters
Group contains 2 rules |
[ref]
The file /etc/login.defs controls several
password-related settings. Programs such as passwd ,
su , and
login consult /etc/login.defs to determine
behavior with regard to password aging, expiration warnings,
and length. See the man page login.defs(5) for more information.
Users should be forced to change their passwords, in order to
decrease the utility of compromised passwords. However, the need to
change passwords often should be balanced against the risk that
users will reuse or write down passwords if forced to change them
too often. Forcing password changes every 90-360 days, depending on
the environment, is recommended. Set the appropriate value as
PASS_MAX_DAYS and apply it to existing accounts with the
-M flag.
The PASS_MIN_DAYS ( -m ) setting prevents password
changes for 7 days after the first change, to discourage password
cycling. If you use this setting, train users to contact an administrator
for an emergency password change in case a new password becomes
compromised. The PASS_WARN_AGE ( -W ) setting gives
users 7 days of warnings at login time that their passwords are about to expire.
For example, for each existing human user USER, expiration parameters
could be adjusted to a 180 day maximum password age, 7 day minimum password
age, and 7 day warning period with the following command:
$ sudo chage -M 180 -m 7 -W 7 USER |
Rule
Set Password Maximum Age
[ref] | To specify password maximum age for new accounts,
edit the file /etc/login.defs
and add or correct the following line:
PASS_MAX_DAYS 90
A value of 180 days is sufficient for many environments.
The DoD requirement is 60.
The profile requirement is 90 . | Rationale: | Any password, no matter how complex, can eventually be cracked. Therefore, passwords
need to be changed periodically. If the operating system does not limit the lifetime
of passwords and force users to change their passwords, there is the risk that the
operating system passwords could be compromised.
Setting the password maximum age ensures users are required to
periodically change their passwords. Requiring shorter password lifetimes
increases the risk of users writing down the password in a convenient
location subject to physical compromise. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_maximum_age_login_defs | Identifiers and References | Identifiers:
CCE-27051-2 References:
5.6.2.1, 3.5.6, CCI-000199, IA-5(f), IA-5(1)(d), CM-6(a), PR.AC-1, PR.AC-6, PR.AC-7, Req-8.2.4, SRG-OS-000076-GPOS-00044, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, 1, 12, 15, 16, 5, 0418, 1055, 1402, BP28(R18), RHEL-07-010250, SV-204420r603261_rule, 5.4.1.1 | |
|
Rule
Set Password Minimum Length in login.defs
[ref] | To specify password length requirements for new accounts, edit the file
/etc/login.defs and add or correct the following line:
PASS_MIN_LEN 18
The DoD requirement is 15 .
The FISMA requirement is 12 .
The profile requirement is
18 .
If a program consults /etc/login.defs and also another PAM module
(such as pam_pwquality ) during a password change operation, then
the most restrictive must be satisfied. See PAM section for more
information about enforcing password quality requirements. | Rationale: | Requiring a minimum password length makes password
cracking attacks more difficult by ensuring a larger
search space. However, any security benefit from an onerous requirement
must be carefully weighed against usability problems, support costs, or counterproductive
behavior that may result. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_minlen_login_defs | Identifiers and References | Identifiers:
CCE-82049-8 References:
5.6.2.1, 3.5.7, IA-5(f), IA-5(1)(a), CM-6(a), PR.AC-1, PR.AC-6, PR.AC-7, FMT_MOF_EXT.1, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, 1, 12, 15, 16, 5, SRG-OS-000078-GPOS-00046, 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561, BP28(R18), CCI-000205 | |
|
Group
Verify Proper Storage and Existence of Password
Hashes
Group contains 2 rules |
[ref]
By default, password hashes for local accounts are stored
in the second field (colon-separated) in
/etc/shadow . This file should be readable only by
processes running with root credentials, preventing users from
casually accessing others' password hashes and attempting
to crack them.
However, it remains possible to misconfigure the system
and store password hashes
in world-readable files such as /etc/passwd , or
to even store passwords themselves in plaintext on the system.
Using system-provided tools for password change/creation
should allow administrators to avoid such misconfiguration. |
Rule
Set number of Password Hashing Rounds - system-auth
[ref] | Configure the number or rounds for the password hashing algorithm. This can be
accomplished by using the rounds option for the pam_unix PAM module.
In file /etc/pam.d/system-auth append rounds=65536
to the pam_unix.so file, as shown below:
password sufficient pam_unix.so ...existing_options... rounds=65536
The system's default number of rounds is 5000. Warning:
Setting a high number of hashing rounds makes it more difficult to brute force the password,
but requires more CPU resources to authenticate users. | Rationale: | Using a higher number of rounds makes password cracking attacks more difficult. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_unix_rounds_system_auth | Identifiers and References | Identifiers:
CCE-83384-8 References:
BP28(R32), SRG-OS-000073-GPOS-00041, CCI-000196 | |
|
Rule
Set number of Password Hashing Rounds - password-auth
[ref] | Configure the number or rounds for the password hashing algorithm. This can be
accomplished by using the rounds option for the pam_unix PAM module.
In file /etc/pam.d/password-auth append rounds=65536
to the pam_unix.so file, as shown below:
password sufficient pam_unix.so ...existing_options... rounds=65536
The system's default number of rounds is 5000. Warning:
Setting a high number of hashing rounds makes it more difficult to brute force the password,
but requires more CPU resources to authenticate users. | Rationale: | Using a higher number of rounds makes password cracking attacks more difficult. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_unix_rounds_password_auth | Identifiers and References | Identifiers:
CCE-83402-8 References:
BP28(R32), SRG-OS-000073-GPOS-00041, CCI-000196 | |
|
Group
File Permissions and Masks
Group contains 1 group and 2 rules |
[ref]
Traditional Unix security relies heavily on file and
directory permissions to prevent unauthorized users from reading or
modifying files to which they should not have access.
Several of the commands in this section search filesystems
for files or directories with certain characteristics, and are
intended to be run on every local partition on a given system.
When the variable PART appears in one of the commands below,
it means that the command is intended to be run repeatedly, with the
name of each local partition substituted for PART in turn.
The following command prints a list of all xfs partitions on the local
system, which is the default filesystem for Red Hat Enterprise Linux 7
installations:
$ mount -t xfs | awk '{print $3}'
For any systems that use a different
local filesystem type, modify this command as appropriate. |
Group
Verify Permissions on Important Files and
Directories
Group contains 2 rules |
[ref]
Permissions for many files on a system must be set
restrictively to ensure sensitive information is properly protected.
This section discusses important
permission restrictions which can be verified
to ensure that no harmful discrepancies have
arisen. |
Rule
Ensure All SGID Executables Are Authorized
[ref] | The SGID (set group id) bit should be set only on files that were
installed via authorized means. A straightforward means of identifying
unauthorized SGID files is determine if any were not installed as part of an
RPM package, which is cryptographically verified. Investigate the origin
of any unpackaged SGID files.
This configuration check considers authorized SGID files which were installed via RPM.
It is assumed that when an individual has sudo access to install an RPM
and all packages are signed with an organizationally-recognized GPG key,
the software should be considered an approved package on the system.
Any SGID file not deployed through an RPM will be flagged for further review. | Rationale: | Executable files with the SGID permission run with the privileges of
the owner of the file. SGID files of uncertain provenance could allow for
unprivileged users to elevate privileges. The presence of these files should be
strictly controlled on the system. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_unauthorized_sgid | Identifiers and References | Identifiers:
CCE-80132-4 References:
BP28(R37), BP28(R38), CM-6(a), AC-6(1), PR.AC-4, PR.DS-5, SR 2.1, SR 5.2, 4.3.3.7.3, APO01.06, DSS05.04, DSS05.07, DSS06.02, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, 12, 13, 14, 15, 16, 18, 3, 5, 6.1.14 | |
|
Rule
Ensure All SUID Executables Are Authorized
[ref] | The SUID (set user id) bit should be set only on files that were
installed via authorized means. A straightforward means of identifying
unauthorized SUID files is determine if any were not installed as part of an
RPM package, which is cryptographically verified. Investigate the origin
of any unpackaged SUID files.
This configuration check considers authorized SUID files which were installed via RPM.
It is assumed that when an individual has sudo access to install an RPM
and all packages are signed with an organizationally-recognized GPG key,
the software should be considered an approved package on the system.
Any SUID file not deployed through an RPM will be flagged for further review. | Rationale: | Executable files with the SUID permission run with the privileges of
the owner of the file. SUID files of uncertain provenance could allow for
unprivileged users to elevate privileges. The presence of these files should be
strictly controlled on the system. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_unauthorized_suid | Identifiers and References | Identifiers:
CCE-80133-2 References:
BP28(R37), BP28(R38), CM-6(a), AC-6(1), PR.AC-4, PR.DS-5, SR 2.1, SR 5.2, 4.3.3.7.3, APO01.06, DSS05.04, DSS05.07, DSS06.02, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, 12, 13, 14, 15, 16, 18, 3, 5, 6.1.13 | |
|
Group
Configure Syslog
Group contains 2 rules |
[ref]
The syslog service has been the default Unix logging mechanism for
many years. It has a number of downsides, including inconsistent log format,
lack of authentication for received messages, and lack of authentication,
encryption, or reliable transport for messages sent over a network. However,
due to its long history, syslog is a de facto standard which is supported by
almost all Unix applications.
In Red Hat Enterprise Linux 7, rsyslog has replaced ksyslogd as the
syslog daemon of choice, and it includes some additional security features
such as reliable, connection-oriented (i.e. TCP) transmission of logs, the
option to log to database formats, and the encryption of log data en route to
a central logging server.
This section discusses how to configure rsyslog for
best effect, and how to use tools provided with the system to maintain and
monitor logs. |
Rule
Ensure rsyslog is Installed
[ref] | Rsyslog is installed by default. The rsyslog package can be installed with the following command: $ sudo yum install rsyslog | Rationale: | The rsyslog package provides the rsyslog daemon, which provides
system logging services. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_rsyslog_installed | Identifiers and References | Identifiers:
CCE-80187-8 References:
BP28(R5), NT28(R46), CCI-001311, CCI-001312, CCI-000366, 164.312(a)(2)(ii), A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, CM-6(a), PR.PT-1, SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, APO11.04, BAI03.05, DSS05.04, DSS05.07, MEA02.01, 1, 14, 15, 16, 3, 5, 6, SRG-OS-000479-GPOS-00224, SRG-OS-000051-GPOS-00024, SRG-OS-000480-GPOS-00227, 4.2.3 | |
|
Rule
Enable rsyslog Service
[ref] | The rsyslog service provides syslog-style logging by default on Red Hat Enterprise Linux 7.
The rsyslog service can be enabled with the following command:
$ sudo systemctl enable rsyslog.service | Rationale: | The rsyslog service must be running in order to provide
logging services, which are essential to system administration. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_service_rsyslog_enabled | Identifiers and References | Identifiers:
CCE-80188-6 References:
BP28(R5), NT28(R46), CCI-001311, CCI-001312, CCI-001557, CCI-001851, CCI-000366, 164.312(a)(2)(ii), A.12.1.3, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.14.2.7, A.15.2.1, A.15.2.2, A.17.2.1, CM-6(a), AU-4(1), DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.DS-4, PR.PT-1, SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 6.1, SR 6.2, SR 7.1, SR 7.2, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO13.01, BAI03.05, BAI04.04, DSS01.03, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 1, 12, 13, 14, 15, 16, 2, 3, 5, 6, 7, 8, 9, SRG-OS-000480-GPOS-00227, 4.2.1.1 | |
|
Group
Services
Group contains 4 groups and 3 rules |
[ref]
The best protection against vulnerable software is running less software. This section describes how to review
the software which Red Hat Enterprise Linux 7 installs on a system and disable software which is not needed. It
then enumerates the software packages installed on a default Red Hat Enterprise Linux 7 system and provides guidance about which
ones can be safely disabled.
Red Hat Enterprise Linux 7 provides a convenient minimal install option that essentially installs the bare necessities for a functional
system. When building Red Hat Enterprise Linux 7 systems, it is highly recommended to select the minimal packages and then build up
the system from there. |
Group
Mail Server Software
Group contains 1 rule |
[ref]
Mail servers are used to send and receive email over the network.
Mail is a very common service, and Mail Transfer Agents (MTAs) are obvious
targets of network attack.
Ensure that systems are not running MTAs unnecessarily,
and configure needed MTAs as defensively as possible.
Very few systems at any site should be configured to directly receive email over the
network. Users should instead use mail client programs to retrieve email
from a central server that supports protocols such as IMAP or POP3.
However, it is normal for most systems to be independently capable of sending email,
for instance so that cron jobs can report output to an administrator.
Most MTAs, including Postfix, support a submission-only mode in which mail can be sent from
the local system to a central site MTA (or directly delivered to a local account),
but the system still cannot receive mail directly over a network.
The alternatives program in Red Hat Enterprise Linux 7 permits selection of other mail server software
(such as Sendmail), but Postfix is the default and is preferred.
Postfix was coded with security in mind and can also be more effectively contained by
SELinux as its modular design has resulted in separate processes performing specific actions.
More information is available on its website,
http://www.postfix.org. |
Rule
Uninstall Sendmail Package
[ref] | Sendmail is not the default mail transfer agent and is
not installed by default.
The sendmail package can be removed with the following command:
$ sudo yum erase sendmail | Rationale: | The sendmail software was not developed with security in mind and
its design prevents it from being effectively contained by SELinux. Postfix
should be used instead. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_sendmail_removed | Identifiers and References | Identifiers:
CCE-80288-4 References:
CM-7(a), CM-7(b), CM-6(a), PR.IP-1, PR.PT-3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.05, DSS06.06, A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.9.1.2, 11, 14, 3, 9, BP28(R1), SRG-OS-000480-GPOS-00227, SRG-OS-000095-GPOS-00049, CCI-000381 | |
|
Group
DHCP
Group contains 1 group and 1 rule |
[ref]
The Dynamic Host Configuration Protocol (DHCP) allows
systems to request and obtain an IP address and other configuration
parameters from a server.
This guide recommends configuring networking on clients by manually editing
the appropriate files under /etc/sysconfig . Use of DHCP can make client
systems vulnerable to compromise by rogue DHCP servers, and should be avoided
unless necessary. If using DHCP is necessary, however, there are best practices
that should be followed to minimize security risk. |
Group
Disable DHCP Server
Group contains 1 rule |
[ref]
The DHCP server dhcpd is not installed or activated by
default. If the software was installed and activated, but the
system does not need to act as a DHCP server, it should be disabled
and removed. |
Rule
Uninstall DHCP Server Package
[ref] | If the system does not need to act as a DHCP server,
the dhcp package can be uninstalled.
The dhcp package can be removed with the following command:
$ sudo yum erase dhcp | Rationale: | Removing the DHCP server ensures that it cannot be easily or
accidentally reactivated and disrupt network operation. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_dhcp_removed | Identifiers and References | Identifiers:
CCE-80331-2 References:
CCI-000366, CM-7(a), CM-7(b), CM-6(a), PR.IP-1, PR.PT-3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.05, DSS06.06, A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.9.1.2, 11, 14, 3, 9, BP28(R1) | |
|
Group
Deprecated services
Group contains 1 rule |
[ref]
Some deprecated software services impact the overall system security due to their behavior (leak of
confidentiality in network exchange, usage as uncontrolled communication channel, risk associated with the service due to its old age, etc. |
Rule
Uninstall the telnet server
[ref] | The telnet daemon should be uninstalled. | Rationale: | telnet allows clear text communications, and does not protect
any data transmission between client and server. Any confidential data
can be listened and no integrity checking is made.'
| Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_package_telnetd_removed | Identifiers and References | Identifiers:
CCE-82461-5 References:
CM-7(a), CM-7(b), CM-6(a), SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.04, DSS05.02, DSS05.03, DSS05.05, DSS06.06, A.11.2.6, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.2.1, A.6.2.2, A.9.1.2, 11, 12, 14, 15, 3, 8, 9, PR.AC-3, PR.IP-1, PR.PT-3, PR.PT-4, BP28(R1), NT007(R03) | |
|