
Flask-SocketIO Documentation

Miguel Grinberg

Oct 01, 2021

CONTENTS

1 Installation 3

2 Requirements 5

3 Initialization 7

4 Receiving Messages 9

5 Sending Messages 11

6 Broadcasting 13

7 Rooms 15

8 Connection Events 17

9 Class-Based Namespaces 19

10 Error Handling 21

11 Debugging and Troubleshooting 23

12 Access to Flask’s Context Globals 25

13 Authentication 27
13.1 Using Flask-Login with Flask-SocketIO . 27

14 Deployment 29
14.1 Embedded Server . 29
14.2 Gunicorn Web Server . 29
14.3 uWSGI Web Server . 30
14.4 Using nginx as a WebSocket Reverse Proxy . 30
14.5 Using Multiple Workers . 31
14.6 Emitting from an External Process . 32
14.7 Upgrading to Flask-SocketIO 1.x and 2.x from the 0.x releases . 33

15 Cross-Origin Controls 35

16 API Reference 37

Python Module Index 49

Index 51

i

ii

Flask-SocketIO Documentation

Flask-SocketIO gives Flask applications access to low latency bi-directional communications between the clients and
the server. The client-side application can use any of the SocketIO official clients libraries in Javascript, C++, Java
and Swift, or any compatible client to establish a permanent connection to the server.

CONTENTS 1

http://socket.io

Flask-SocketIO Documentation

2 CONTENTS

CHAPTER

ONE

INSTALLATION

You can install this package in the usual way using pip:

pip install flask-socketio

3

Flask-SocketIO Documentation

4 Chapter 1. Installation

CHAPTER

TWO

REQUIREMENTS

Flask-SocketIO is compatible with Python 3.6+. The asynchronous services that this package relies on can be selected
among three choices:

• eventlet is the best performant option, with support for long-polling and WebSocket transports.

• gevent is supported in a number of different configurations. The long-polling transport is fully supported with
the gevent package, but unlike eventlet, gevent does not have native WebSocket support. To add support for
WebSocket there are currently two options. Installing the gevent-websocket package adds WebSocket support
to gevent or one can use the uWSGI web server, which comes with WebSocket functionality. The use of gevent
is also a performant option, but slightly lower than eventlet.

• The Flask development server based on Werkzeug can be used as well, with the caveat that it lacks the perfor-
mance of the other two options, so it should only be used to simplify the development workflow. This option
only supports the long-polling transport.

The extension automatically detects which asynchronous framework to use based on what is installed. Preference is
given to eventlet, followed by gevent. For WebSocket support in gevent, uWSGI is preferred, followed by gevent-
websocket. If neither eventlet nor gevent are installed, then the Flask development server is used.

If using multiple processes, a message queue service is used by the processes to coordinate operations such as broad-
casting. The supported queues are Redis, RabbitMQ, Kafka, and any other message queues supported by the Kombu
package.

On the client-side, the official Socket.IO Javascript client library versions 1.x or 2.x can be used to establish a connec-
tion to the server (work to support the 3.x release is in progress). There are also official clients written in Swift, Java
and C++. Unofficial clients may also work, as long as they implement the Socket.IO protocol.

5

http://eventlet.net/
http://www.gevent.org/
https://pypi.python.org/pypi/gevent-websocket/
https://uwsgi-docs.readthedocs.io/en/latest/
http://redis.io/
https://www.rabbitmq.com/
http://kafka/apache.org/
http://kombu.readthedocs.org/en/latest/
https://github.com/socketio/socket.io-protocol

Flask-SocketIO Documentation

6 Chapter 2. Requirements

CHAPTER

THREE

INITIALIZATION

The following code example shows how to add Flask-SocketIO to a Flask application:

from flask import Flask, render_template
from flask_socketio import SocketIO

app = Flask(__name__)
app.config['SECRET_KEY'] = 'secret!'
socketio = SocketIO(app)

if __name__ == '__main__':
socketio.run(app)

The init_app() style of initialization is also supported. To start the web server simply execute your script. Note
the way the web server is started. The socketio.run() function encapsulates the start up of the web server and
replaces the app.run() standard Flask development server start up. When the application is in debug mode the
Werkzeug development server is still used and configured properly inside socketio.run(). In production mode
the eventlet web server is used if available, else the gevent web server is used. If eventlet and gevent are not installed,
the Werkzeug development web server is used.

The flask run command introduced in Flask 0.11 can be used to start a Flask-SocketIO development server based
on Werkzeug, but this method of starting the Flask-SocketIO server is not recommended due to lack of WebSocket
support. Previous versions of this package included a customized version of the flask run command that allowed
the use of WebSocket on eventlet and gevent production servers, but this functionality has been discontinued in favor
of the socketio.run(app) startup method shown above which is more robust.

The application must serve a page to the client that loads the Socket.IO library and establishes a connection:

<script src="//cdnjs.cloudflare.com/ajax/libs/socket.io/2.2.0/socket.io.js" integrity=
↪→"sha256-yr4fRk/GU1ehYJPAs8P4JlTgu0Hdsp4ZKrx8bDEDC3I=" crossorigin="anonymous"></
↪→script>
<script type="text/javascript" charset="utf-8">

var socket = io();
socket.on('connect', function() {

socket.emit('my event', {data: 'I\'m connected!'});
});

</script>

7

Flask-SocketIO Documentation

8 Chapter 3. Initialization

CHAPTER

FOUR

RECEIVING MESSAGES

When using SocketIO, messages are received by both parties as events. On the client side Javascript callbacks are
used. With Flask-SocketIO the server needs to register handlers for these events, similarly to how routes are handled
by view functions.

The following example creates a server-side event handler for an unnamed event:

@socketio.on('message')
def handle_message(message):

print('received message: ' + message)

The above example uses string messages. Another type of unnamed events use JSON data:

@socketio.on('json')
def handle_json(json):

print('received json: ' + str(json))

The most flexible type of event uses custom event names. The message data for these events can be string, bytes, int,
or JSON:

@socketio.on('my event')
def handle_my_custom_event(json):

print('received json: ' + str(json))

Custom named events can also support multiple arguments:

@socketio.on('my event')
def handle_my_custom_event(arg1, arg2, arg3):

print('received args: ' + arg1 + arg2 + arg3)

Named events are the most flexible, as they eliminate the need to include additional metadata to describe the message
type. The names message, json, connect and disconnect are reserved and cannot be used for named events.

Flask-SocketIO also supports SocketIO namespaces, which allow the client to multiplex several independent connec-
tions on the same physical socket:

@socketio.on('my event', namespace='/test')
def handle_my_custom_namespace_event(json):

print('received json: ' + str(json))

When a namespace is not specified a default global namespace with the name '/' is used.

For cases when a decorator syntax isn’t convenient, the on_event method can be used:

9

Flask-SocketIO Documentation

def my_function_handler(data):
pass

socketio.on_event('my event', my_function_handler, namespace='/test')

Clients may request an acknowledgement callback that confirms receipt of a message they sent. Any values returned
from the handler function will be passed to the client as arguments in the callback function:

@socketio.on('my event')
def handle_my_custom_event(json):

print('received json: ' + str(json))
return 'one', 2

In the above example, the client callback function will be invoked with two arguments, 'one' and 2. If a handler
function does not return any values, the client callback function will be invoked without arguments.

10 Chapter 4. Receiving Messages

CHAPTER

FIVE

SENDING MESSAGES

SocketIO event handlers defined as shown in the previous section can send reply messages to the connected client
using the send() and emit() functions.

The following examples bounce received events back to the client that sent them:

from flask_socketio import send, emit

@socketio.on('message')
def handle_message(message):

send(message)

@socketio.on('json')
def handle_json(json):

send(json, json=True)

@socketio.on('my event')
def handle_my_custom_event(json):

emit('my response', json)

Note how send() and emit() are used for unnamed and named events respectively.

When working with namespaces, send() and emit() use the namespace of the incoming message by default. A
different namespace can be specified with the optional namespace argument:

@socketio.on('message')
def handle_message(message):

send(message, namespace='/chat')

@socketio.on('my event')
def handle_my_custom_event(json):

emit('my response', json, namespace='/chat')

To send an event with multiple arguments, send a tuple:

@socketio.on('my event')
def handle_my_custom_event(json):

emit('my response', ('foo', 'bar', json), namespace='/chat')

SocketIO supports acknowledgment callbacks that confirm that a message was received by the client:

def ack():
print 'message was received!'

@socketio.on('my event')

(continues on next page)

11

Flask-SocketIO Documentation

(continued from previous page)

def handle_my_custom_event(json):
emit('my response', json, callback=ack)

When using callbacks, the Javascript client receives a callback function to invoke upon receipt of the message. After
the client application invokes the callback function the server invokes the corresponding server-side callback. If the
client-side callback is invoked with arguments, these are provided as arguments to the server-side callback as well.

12 Chapter 5. Sending Messages

CHAPTER

SIX

BROADCASTING

Another very useful feature of SocketIO is the broadcasting of messages. Flask-SocketIO supports this feature with
the broadcast=True optional argument to send() and emit():

@socketio.on('my event')
def handle_my_custom_event(data):

emit('my response', data, broadcast=True)

When a message is sent with the broadcast option enabled, all clients connected to the namespace receive it, including
the sender. When namespaces are not used, the clients connected to the global namespace receive the message. Note
that callbacks are not invoked for broadcast messages.

In all the examples shown until this point the server responds to an event sent by the client. But for some applications,
the server needs to be the originator of a message. This can be useful to send notifications to clients of events that
originated in the server, for example in a background thread. The socketio.send() and socketio.emit()
methods can be used to broadcast to all connected clients:

def some_function():
socketio.emit('some event', {'data': 42})

Note that socketio.send() and socketio.emit() are not the same functions as the context-aware send()
and emit(). Also note that in the above usage there is no client context, so broadcast=True is assumed and
does not need to be specified.

13

Flask-SocketIO Documentation

14 Chapter 6. Broadcasting

CHAPTER

SEVEN

ROOMS

For many applications it is necessary to group users into subsets that can be addressed together. The best example is a
chat application with multiple rooms, where users receive messages from the room or rooms they are in, but not from
other rooms where other users are. Flask-SocketIO supports this concept of rooms through the join_room() and
leave_room() functions:

from flask_socketio import join_room, leave_room

@socketio.on('join')
def on_join(data):

username = data['username']
room = data['room']
join_room(room)
send(username + ' has entered the room.', room=room)

@socketio.on('leave')
def on_leave(data):

username = data['username']
room = data['room']
leave_room(room)
send(username + ' has left the room.', room=room)

The send() and emit() functions accept an optional room argument that cause the message to be sent to all the
clients that are in the given room.

All clients are assigned a room when they connect, named with the session ID of the connection, which can be obtained
from request.sid. A given client can join any rooms, which can be given any names. When a client disconnects it
is removed from all the rooms it was in. The context-free socketio.send() and socketio.emit() functions
also accept a room argument to broadcast to all clients in a room.

Since all clients are assigned a personal room, to address a message to a single client, the session ID of the client can
be used as the room argument.

15

Flask-SocketIO Documentation

16 Chapter 7. Rooms

CHAPTER

EIGHT

CONNECTION EVENTS

Flask-SocketIO also dispatches connection and disconnection events. The following example shows how to register
handlers for them:

@socketio.on('connect')
def test_connect():

emit('my response', {'data': 'Connected'})

@socketio.on('disconnect')
def test_disconnect():

print('Client disconnected')

The connection event handler can return False to reject the connection, or it can also raise ConectionRefusedError.
This is so that the client can be authenticated at this point. When using the exception, any arguments passed to the
exception are returned to the client in the error packet. Examples:

from flask_socketio import ConnectionRefusedError

@socketio.on('connect')
def connect():

if not self.authenticate(request.args):
raise ConnectionRefusedError('unauthorized!')

Note that connection and disconnection events are sent individually on each namespace used.

17

Flask-SocketIO Documentation

18 Chapter 8. Connection Events

CHAPTER

NINE

CLASS-BASED NAMESPACES

As an alternative to the decorator-based event handlers described above, the event handlers that belong to a namespace
can be created as methods of a class. The flask_socketio.Namespace is provided as a base class to create
class-based namespaces:

from flask_socketio import Namespace, emit

class MyCustomNamespace(Namespace):
def on_connect(self):

pass

def on_disconnect(self):
pass

def on_my_event(self, data):
emit('my_response', data)

socketio.on_namespace(MyCustomNamespace('/test'))

When class-based namespaces are used, any events received by the server are dispatched to a method named as the
event name with the on_ prefix. For example, event my_event will be handled by a method named on_my_event.
If an event is received for which there is no corresponding method defined in the namespace class, then the event is
ignored. All event names used in class-based namespaces must use characters that are legal in method names.

As a convenience to methods defined in a class-based namespace, the namespace instance includes versions of sev-
eral of the methods in the flask_socketio.SocketIO class that default to the proper namespace when the
namespace argument is not given.

If an event has a handler in a class-based namespace, and also a decorator-based function handler, only the decorated
function handler is invoked.

19

Flask-SocketIO Documentation

20 Chapter 9. Class-Based Namespaces

CHAPTER

TEN

ERROR HANDLING

Flask-SocketIO can also deal with exceptions:

@socketio.on_error() # Handles the default namespace
def error_handler(e):

pass

@socketio.on_error('/chat') # handles the '/chat' namespace
def error_handler_chat(e):

pass

@socketio.on_error_default # handles all namespaces without an explicit error handler
def default_error_handler(e):

pass

Error handler functions take the exception object as an argument.

The message and data arguments of the current request can also be inspected with the request.event variable,
which is useful for error logging and debugging outside the event handler:

from flask import request

@socketio.on("my error event")
def on_my_event(data):

raise RuntimeError()

@socketio.on_error_default
def default_error_handler(e):

print(request.event["message"]) # "my error event"
print(request.event["args"]) # (data,)

21

Flask-SocketIO Documentation

22 Chapter 10. Error Handling

CHAPTER

ELEVEN

DEBUGGING AND TROUBLESHOOTING

To help you debug issues, the server can be configured to output logs to the terminal:

socketio = SocketIO(logger=True, engineio_logger=True)

The logger argument controls logging related to the Socket.IO protocol, while engineio_logger controls logs
that originate in the low-level Engine.IO transport. These arguments can be set to True to output logs to stderr,
or to an object compatible with Python’s logging package where the logs should be emitted to. A value of False
disables logging.

Logging can help identify the cause of connection problems, 400 responses, bad performance and other issues.

23

Flask-SocketIO Documentation

24 Chapter 11. Debugging and Troubleshooting

CHAPTER

TWELVE

ACCESS TO FLASK’S CONTEXT GLOBALS

Handlers for SocketIO events are different than handlers for routes and that introduces a lot of confusion around what
can and cannot be done in a SocketIO handler. The main difference is that all the SocketIO events generated for a
client occur in the context of a single long running request.

In spite of the differences, Flask-SocketIO attempts to make working with SocketIO event handlers easier by making
the environment similar to that of a regular HTTP request. The following list describes what works and what doesn’t:

• An application context is pushed before invoking an event handler making current_app and g available to
the handler.

• A request context is also pushed before invoking a handler, also making request and session available.
But note that WebSocket events do not have individual requests associated with them, so the request context that
started the connection is pushed for all the events that are dispatched during the life of the connection.

• The request context global is enhanced with a sid member that is set to a unique session ID for the connec-
tion. This value is used as an initial room where the client is added.

• The request context global is enhanced with namespace and event members that contain the currently
handled namespace and event arguments. The event member is a dictionary with message and args keys.

• The session context global behaves in a different way than in regular requests. A copy of the user session
at the time the SocketIO connection is established is made available to handlers invoked in the context of
that connection. If a SocketIO handler modifies the session, the modified session will be preserved for future
SocketIO handlers, but regular HTTP route handlers will not see these changes. Effectively, when a SocketIO
handler modifies the session, a “fork” of the session is created exclusively for these handlers. The technical
reason for this limitation is that to save the user session a cookie needs to be sent to the client, and that requires
HTTP request and response, which do not exist in a SocketIO connection. When using server-side sessions such
as those provided by the Flask-Session or Flask-KVSession extensions, changes made to the session in HTTP
route handlers can be seen by SocketIO handlers, as long as the session is not modified in the SocketIO handlers.

• The before_request and after_request hooks are not invoked for SocketIO event handlers.

• SocketIO handlers can take custom decorators, but most Flask decorators will not be appropriate to use for a
SocketIO handler, given that there is no concept of a Response object during a SocketIO connection.

25

Flask-SocketIO Documentation

26 Chapter 12. Access to Flask’s Context Globals

CHAPTER

THIRTEEN

AUTHENTICATION

A common need of applications is to validate the identity of their users. The traditional mechanisms based on web
forms and HTTP requests cannot be used in a SocketIO connection, since there is no place to send HTTP requests and
responses. If necessary, an application can implement a customized login form that sends credentials to the server as
a SocketIO message when the submit button is pressed by the user.

However, in most cases it is more convenient to perform the traditional authentication process before the SocketIO
connection is established. The user’s identity can then be recorded in the user session or in a cookie, and later when
the SocketIO connection is established that information will be accessible to SocketIO event handlers.

13.1 Using Flask-Login with Flask-SocketIO

Flask-SocketIO can access login information maintained by Flask-Login. After a regular Flask-Login authentication is
performed and the login_user() function is called to record the user in the user session, any SocketIO connections
will have access to the current_user context variable:

@socketio.on('connect')
def connect_handler():

if current_user.is_authenticated:
emit('my response',

{'message': '{0} has joined'.format(current_user.name)},
broadcast=True)

else:
return False # not allowed here

Note that the login_required decorator cannot be used with SocketIO event handlers, but a custom decorator that
disconnects non-authenticated users can be created as follows:

import functools
from flask import request
from flask_login import current_user
from flask_socketio import disconnect, emit

def authenticated_only(f):
@functools.wraps(f)
def wrapped(*args, **kwargs):

if not current_user.is_authenticated:
disconnect()

else:
return f(*args, **kwargs)

return wrapped

(continues on next page)

27

https://flask-login.readthedocs.org/en/latest/

Flask-SocketIO Documentation

(continued from previous page)

@socketio.on('my event')
@authenticated_only
def handle_my_custom_event(data):

emit('my response', {'message': '{0} has joined'.format(current_user.name)},
broadcast=True)

28 Chapter 13. Authentication

CHAPTER

FOURTEEN

DEPLOYMENT

There are many options to deploy a Flask-SocketIO server, ranging from simple to the insanely complex. In this
section, the most commonly used options are described.

14.1 Embedded Server

The simplest deployment strategy is to have eventlet or gevent installed, and start the web server by calling
socketio.run(app) as shown in examples above. This will run the application on the eventlet or gevent web
servers, whichever is installed.

Note that socketio.run(app) runs a production ready server when eventlet or gevent are installed. If neither
of these are installed, then the application runs on Flask’s development web server, which is not appropriate for
production use.

Unfortunately this option is not available when using gevent with uWSGI. See the uWSGI section below for informa-
tion on this option.

14.2 Gunicorn Web Server

An alternative to socketio.run(app) is to use gunicorn as web server, using the eventlet or gevent workers. For
this option, eventlet or gevent need to be installed, in addition to gunicorn. The command line that starts the eventlet
server via gunicorn is:

gunicorn --worker-class eventlet -w 1 module:app

If you prefer to use gevent, the command to start the server is:

gunicorn -k gevent -w 1 module:app

When using gunicorn with the gevent worker and the WebSocket support provided by gevent-websocket, the command
that starts the server must be changed to select a custom gevent web server that supports the WebSocket protocol. The
modified command is:

gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker -w 1 module:app

In all these commands, module is the Python module or package that defines the application instance, and app is the
application instance itself.

Due to the limited load balancing algorithm used by gunicorn, it is not possible to use more than one worker process
when using this web server. For that reason, all the examples above include the -w 1 option.

29

http://gunicorn.org/

Flask-SocketIO Documentation

14.3 uWSGI Web Server

When using the uWSGI server in combination with gevent, the Socket.IO server can take advantage of uWSGI’s native
WebSocket support.

A complete explanation of the configuration and usage of the uWSGI server is beyond the scope of this documentation.
The uWSGI server is a fairly complex package that provides a large and comprehensive set of options. It must be
compiled with WebSocket and SSL support for the WebSocket transport to be available. As way of an introduction,
the following command starts a uWSGI server for the example application app.py on port 5000:

$ uwsgi --http :5000 --gevent 1000 --http-websockets --master --wsgi-file app.py --
↪→callable app

14.4 Using nginx as a WebSocket Reverse Proxy

It is possible to use nginx as a front-end reverse proxy that passes requests to the application. However, only releases
of nginx 1.4 and newer support proxying of the WebSocket protocol. Below is a basic nginx configuration that proxies
HTTP and WebSocket requests:

server {
listen 80;
server_name _;

location / {
include proxy_params;
proxy_pass http://127.0.0.1:5000;

}

location /static {
alias <path-to-your-application>/static;
expires 30d;

}

location /socket.io {
include proxy_params;
proxy_http_version 1.1;
proxy_buffering off;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";
proxy_pass http://127.0.0.1:5000/socket.io;

}
}

The next example adds the support for load balancing multiple Socket.IO servers:

upstream socketio_nodes {
ip_hash;

server 127.0.0.1:5000;
server 127.0.0.1:5001;
server 127.0.0.1:5002;
to scale the app, just add more nodes here!

}

(continues on next page)

30 Chapter 14. Deployment

Flask-SocketIO Documentation

(continued from previous page)

server {
listen 80;
server_name _;

location / {
include proxy_params;
proxy_pass http://127.0.0.1:5000;

}

locaton /static {
alias <path-to-your-application>/static;
expires 30d;

}

location /socket.io {
include proxy_params;
proxy_http_version 1.1;
proxy_buffering off;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";
proxy_pass http://socketio_nodes/socket.io;

}
}

While the above examples can work as an initial configuration, be aware that a production install of nginx will need a
more complete configuration covering other deployment aspects such as serving static file assets and SSL support.

14.5 Using Multiple Workers

Flask-SocketIO supports multiple workers behind a load balancer starting with release 2.0. Deploying multiple work-
ers gives applications that use Flask-SocketIO the ability to spread the client connections among multiple processes
and hosts, and in this way scale to support very large numbers of concurrent clients.

There are two requirements to use multiple Flask-SocketIO workers:

• The load balancer must be configured to forward all HTTP requests from a given client always to the same
worker. This is sometimes referenced as “sticky sessions”. For nginx, use the ip_hash directive to achieve
this. Gunicorn cannot be used with multiple workers because its load balancer algorithm does not support sticky
sessions.

• Since each of the servers owns only a subset of the client connections, a message queue such as Redis or
RabbitMQ is used by the servers to coordinate complex operations such as broadcasting and rooms.

When working with a message queue, there are additional dependencies that need to be installed:

• For Redis, the package redis must be installed (pip install redis).

• For RabbitMQ, the package kombu must be installed (pip install kombu).

• For Kafka, the package kafka-python must be installed (pip install kafka-python).

• For other message queues supported by Kombu, see the Kombu documentation to find out what dependencies
are needed.

• If eventlet or gevent are used, then monkey patching the Python standard library is normally required to force
the message queue package to use coroutine friendly functions and classes.

For eventlet, monkey patching is done with:

14.5. Using Multiple Workers 31

http://docs.celeryproject.org/projects/kombu/en/latest/introduction.html#transport-comparison

Flask-SocketIO Documentation

import eventlet
eventlet.monkey_patch()

For gevent, you can monkey patch the standard library with:

from gevent import monkey
monkey.patch_all()

In both cases it is recommended that you apply the monkey patching at the top of your main script, even above your
imports.

To start multiple Flask-SocketIO servers, you must first ensure you have the message queue service running. To start
a Socket.IO server and have it connect to the message queue, add the message_queue argument to the SocketIO
constructor:

socketio = SocketIO(app, message_queue='redis://')

The value of the message_queue argument is the connection URL of the queue service that is used. For a redis
queue running on the same host as the server, the 'redis://' URL can be used. Likewise, for a default Rab-
bitMQ queue the 'amqp://' URL can be used. For Kafka, use a kafka:// URL. The Kombu package has a
documentation section that describes the format of the URLs for all the supported queues.

14.6 Emitting from an External Process

For many types of applications, it is necessary to emit events from a process that is not the SocketIO server, for an
example a Celery worker. If the SocketIO server or servers are configured to listen on a message queue as shown in
the previous section, then any other process can create its own SocketIO instance and use it to emit events in the
same way the server does.

For example, for an application that runs on an eventlet web server and uses a Redis message queue, the following
Python script broadcasts an event to all clients:

socketio = SocketIO(message_queue='redis://')
socketio.emit('my event', {'data': 'foo'}, namespace='/test')

When using the SocketIO instance in this way, the Flask application instance is not passed to the constructor.

The channel argument to SocketIO can be used to select a specific channel of communication through the message
queue. Using a custom channel name is necessary when there are multiple independent SocketIO services sharing the
same queue.

Flask-SocketIO does not apply monkey patching when eventlet or gevent are used. But when working with a message
queue, it is very likely that the Python package that talks to the message queue service will hang if the Python standard
library is not monkey patched.

It is important to note that an external process that wants to connect to a SocketIO server does not need to use eventlet
or gevent like the main server. Having a server use a coroutine framework, while an external process is not a problem.
For example, Celery workers do not need to be configured to use eventlet or gevent just because the main server does.
But if your external process does use a coroutine framework for whatever reason, then monkey patching is likely
required, so that the message queue accesses coroutine friendly functions and classes.

32 Chapter 14. Deployment

http://docs.celeryproject.org/projects/kombu/en/latest/userguide/connections.html?highlight=urls#urls

Flask-SocketIO Documentation

14.7 Upgrading to Flask-SocketIO 1.x and 2.x from the 0.x releases

Older versions of Flask-SocketIO had a completely different set of requirements. Those old versions had a dependency
on gevent-socketio and gevent-websocket, which are not required in release 1.0.

In spite of the change in dependencies, there aren’t many significant changes introduced in version 1.0. Below is a
detailed list of the actual differences:

• Release 1.0 drops support for Python 2.6, and adds support for Python 3.3, Python 3.4, and pypy.

• Releases 0.x required an old version of the Socket.IO Javascript client. Starting with release 1.0, the current re-
leases of Socket.IO and Engine.IO are supported. Releases of the Socket.IO client prior to 1.0 are no supported.
The Swift and C++ official Socket.IO clients are now supported as well.

• The 0.x releases depended on gevent, gevent-socketio and gevent-websocket. In release 1.0 gevent-socketio is
not used anymore, and gevent is one of three options for backend web server, with eventlet and any regular
multi-threaded WSGI server, including Flask’s development web server.

• The Socket.IO server options have changed in release 1.0. They can be provided in the SocketIO constructor, or
in the run() call. The options provided in these two are merged before they are used.

• The 0.x releases exposed the gevent-socketio connection as request.namespace. In release 1.0 this is not
available anymore. The request object defines request.namespace as the name of the namespace being
handled, and adds request.sid, defined as the unique session ID for the client connection, and request.
event, which contains the event name and arguments.

• To get the list of rooms a client was in the 0.x release required the application to use a private structure of
gevent-socketio, with the expression request.namespace.rooms. This is not available in release 1.0,
which includes a proper rooms() function.

• The recommended “trick” to send a message to an individual client was to put each client in a separate room,
then address messages to the desired room. This was formalized in release 1.0, where clients are assigned a
room automatically when they connect.

• The 'connect' event for the global namespace did not fire on releases prior to 1.0. This has been fixed and
now this event fires as expected.

• Support for client-side callbacks was introduced in release 1.0.

To upgrade to the newer Flask-SocketIO releases, you need to upgrade your Socket.IO client to a client that is com-
patible with the Socket.IO 1.0 protocol. For the JavaScript client, the 1.3.x and 1.4.x releases have been extensively
tested and found compatible.

On the server side, there are a few points to consider:

• If you wish to continue using gevent, then uninstall gevent-socketio from your virtual environment, as this
package is not used anymore and may collide with its replacement, python-socketio.

• If you want to have slightly better performance and stability, then it is recommended that you switch to eventlet.
To do this, uninstall gevent, gevent-socketio and gevent-websocket, and install eventlet.

• If your application uses monkey patching and you switched to eventlet, call eventlet.monkey_patch() instead of
gevent’s monkey.patch_all(). Also, any calls to gevent must be replaced with equivalent calls to eventlet.

• Any uses of request.namespace must be replaced with direct calls into the Flask-SocketIO functions. For exam-
ple, request.namespace.rooms must be replaced with the rooms() function.

• Any uses of internal gevent-socketio objects must be removed, as this package is not a dependency anymore.

14.7. Upgrading to Flask-SocketIO 1.x and 2.x from the 0.x releases 33

https://gevent-socketio.readthedocs.org/en/latest/
https://pypi.python.org/pypi/gevent-websocket/

Flask-SocketIO Documentation

34 Chapter 14. Deployment

CHAPTER

FIFTEEN

CROSS-ORIGIN CONTROLS

For security reasons, this server enforces a same-origin policy by default. In practical terms, this means the following:

• If an incoming HTTP or WebSocket request includes the Origin header, this header must match the scheme
and host of the connection URL. In case of a mismatch, a 400 status code response is returned and the connection
is rejected.

• No restrictions are imposed on incoming requests that do not include the Origin header.

If necessary, the cors_allowed_origins option can be used to allow other origins. This argument can be set
to a string to set a single allowed origin, or to a list to allow multiple origins. A special value of '*' can be used to
instruct the server to allow all origins, but this should be done with care, as this could make the server vulnerable to
Cross-Site Request Forgery (CSRF) attacks.

35

Flask-SocketIO Documentation

36 Chapter 15. Cross-Origin Controls

CHAPTER

SIXTEEN

API REFERENCE

class flask_socketio.SocketIO(app=None, **kwargs)
Create a Flask-SocketIO server.

Parameters

• app – The flask application instance. If the application instance isn’t known at the time this
class is instantiated, then call socketio.init_app(app) once the application instance
is available.

• manage_session – If set to True, this extension manages the user session for Socket.IO
events. If set to False, Flask’s own session management is used. When using Flask’s
cookie based sessions it is recommended that you leave this set to the default of True.
When using server-side sessions, a False setting enables sharing the user session between
HTTP routes and Socket.IO events.

• message_queue – A connection URL for a message queue service the server can use for
multi-process communication. A message queue is not required when using a single server
process.

• channel – The channel name, when using a message queue. If a channel isn’t specified, a
default channel will be used. If multiple clusters of SocketIO processes need to use the same
message queue without interfering with each other, then each cluster should use a different
channel.

• path – The path where the Socket.IO server is exposed. Defaults to 'socket.io'.
Leave this as is unless you know what you are doing.

• resource – Alias to path.

• kwargs – Socket.IO and Engine.IO server options.

The Socket.IO server options are detailed below:

Parameters

• client_manager – The client manager instance that will manage the client list. When
this is omitted, the client list is stored in an in-memory structure, so the use of multiple
connected servers is not possible. In most cases, this argument does not need to be set
explicitly.

• logger – To enable logging set to True or pass a logger object to use. To disable logging
set to False. The default is False. Note that fatal errors will be logged even when
logger is False.

• binary – True to support binary payloads, False to treat all payloads as text. On Python
2, if this is set to True, unicode values are treated as text, and str and bytes values

37

Flask-SocketIO Documentation

are treated as binary. This option has no effect on Python 3, where text and binary payloads
are always automatically discovered.

• json – An alternative json module to use for encoding and decoding packets. Custom
json modules must have dumps and loads functions that are compatible with the standard
library versions. To use the same json encoder and decoder as a Flask application, use
flask.json.

• async_handlers – If set to True, event handlers for a client are executed in separate
threads. To run handlers for a client synchronously, set to False. The default is True.

• always_connect – When set to False, new connections are provisory until the con-
nect handler returns something other than False, at which point they are accepted. When
set to True, connections are immediately accepted, and then if the connect handler returns
False a disconnect is issued. Set to True if you need to emit events from the connect han-
dler and your client is confused when it receives events before the connection acceptance.
In any other case use the default of False.

The Engine.IO server configuration supports the following settings:

Parameters

• async_mode – The asynchronous model to use. See the Deployment section in the doc-
umentation for a description of the available options. Valid async modes are threading,
eventlet, gevent and gevent_uwsgi. If this argument is not given, eventlet is
tried first, then gevent_uwsgi, then gevent, and finally threading. The first async
mode that has all its dependencies installed is then one that is chosen.

• ping_timeout – The time in seconds that the client waits for the server to respond before
disconnecting. The default is 60 seconds.

• ping_interval – The interval in seconds at which the client pings the server. The
default is 25 seconds.

• max_http_buffer_size – The maximum size of a message when using the polling
transport. The default is 100,000,000 bytes.

• allow_upgrades – Whether to allow transport upgrades or not. The default is True.

• http_compression – Whether to compress packages when using the polling transport.
The default is True.

• compression_threshold – Only compress messages when their byte size is greater
than this value. The default is 1024 bytes.

• cookie – Name of the HTTP cookie that contains the client session id. If set to None, a
cookie is not sent to the client. The default is 'io'.

• cors_allowed_origins – Origin or list of origins that are allowed to connect to this
server. Only the same origin is allowed by default. Set this argument to '*' to allow all
origins, or to [] to disable CORS handling.

• cors_credentials – Whether credentials (cookies, authentication) are allowed in re-
quests to this server. The default is True.

• monitor_clients – If set to True, a background task will ensure inactive clients are
closed. Set to False to disable the monitoring task (not recommended). The default is
True.

• engineio_logger – To enable Engine.IO logging set to True or pass a logger object
to use. To disable logging set to False. The default is False. Note that fatal errors are
logged even when engineio_logger is False.

38 Chapter 16. API Reference

Flask-SocketIO Documentation

on(message, namespace=None)
Decorator to register a SocketIO event handler.

This decorator must be applied to SocketIO event handlers. Example:

@socketio.on('my event', namespace='/chat')
def handle_my_custom_event(json):

print('received json: ' + str(json))

Parameters

• message – The name of the event. This is normally a user defined string, but a few
event names are already defined. Use 'message' to define a handler that takes a string
payload, 'json' to define a handler that takes a JSON blob payload, 'connect' or
'disconnect' to create handlers for connection and disconnection events.

• namespace – The namespace on which the handler is to be registered. Defaults to the
global namespace.

on_error(namespace=None)
Decorator to define a custom error handler for SocketIO events.

This decorator can be applied to a function that acts as an error handler for a namespace. This handler
will be invoked when a SocketIO event handler raises an exception. The handler function must accept one
argument, which is the exception raised. Example:

@socketio.on_error(namespace='/chat')
def chat_error_handler(e):

print('An error has occurred: ' + str(e))

Parameters namespace – The namespace for which to register the error handler. Defaults to
the global namespace.

on_error_default(exception_handler)
Decorator to define a default error handler for SocketIO events.

This decorator can be applied to a function that acts as a default error handler for any namespaces that do
not have a specific handler. Example:

@socketio.on_error_default
def error_handler(e):

print('An error has occurred: ' + str(e))

on_event(message, handler, namespace=None)
Register a SocketIO event handler.

on_event is the non-decorator version of 'on'.

Example:

def on_foo_event(json):
print('received json: ' + str(json))

socketio.on_event('my event', on_foo_event, namespace='/chat')

Parameters

39

Flask-SocketIO Documentation

• message – The name of the event. This is normally a user defined string, but a few
event names are already defined. Use 'message' to define a handler that takes a string
payload, 'json' to define a handler that takes a JSON blob payload, 'connect' or
'disconnect' to create handlers for connection and disconnection events.

• handler – The function that handles the event.

• namespace – The namespace on which the handler is to be registered. Defaults to the
global namespace.

emit(event, *args, **kwargs)
Emit a server generated SocketIO event.

This function emits a SocketIO event to one or more connected clients. A JSON blob can be attached to
the event as payload. This function can be used outside of a SocketIO event context, so it is appropriate to
use when the server is the originator of an event, outside of any client context, such as in a regular HTTP
request handler or a background task. Example:

@app.route('/ping')
def ping():

socketio.emit('ping event', {'data': 42}, namespace='/chat')

Parameters

• event – The name of the user event to emit.

• args – A dictionary with the JSON data to send as payload.

• namespace – The namespace under which the message is to be sent. Defaults to the
global namespace.

• room – Send the message to all the users in the given room. If this parameter is not
included, the event is sent to all connected users.

• include_self – True to include the sender when broadcasting or addressing a room,
or False to send to everyone but the sender.

• skip_sid – The session id of a client to ignore when broadcasting or addressing a room.
This is typically set to the originator of the message, so that everyone except that client
receive the message. To skip multiple sids pass a list.

• callback – If given, this function will be called to acknowledge that the client has
received the message. The arguments that will be passed to the function are those provided
by the client. Callback functions can only be used when addressing an individual client.

send(data, json=False, namespace=None, room=None, callback=None, include_self=True,
skip_sid=None, **kwargs)

Send a server-generated SocketIO message.

This function sends a simple SocketIO message to one or more connected clients. The message can be a
string or a JSON blob. This is a simpler version of emit(), which should be preferred. This function can
be used outside of a SocketIO event context, so it is appropriate to use when the server is the originator of
an event.

Parameters

• data – The message to send, either a string or a JSON blob.

• json – True if message is a JSON blob, False otherwise.

• namespace – The namespace under which the message is to be sent. Defaults to the
global namespace.

40 Chapter 16. API Reference

Flask-SocketIO Documentation

• room – Send the message only to the users in the given room. If this parameter is not
included, the message is sent to all connected users.

• include_self – True to include the sender when broadcasting or addressing a room,
or False to send to everyone but the sender.

• skip_sid – The session id of a client to ignore when broadcasting or addressing a room.
This is typically set to the originator of the message, so that everyone except that client
receive the message. To skip multiple sids pass a list.

• callback – If given, this function will be called to acknowledge that the client has
received the message. The arguments that will be passed to the function are those provided
by the client. Callback functions can only be used when addressing an individual client.

close_room(room, namespace=None)
Close a room.

This function removes any users that are in the given room and then deletes the room from the server. This
function can be used outside of a SocketIO event context.

Parameters

• room – The name of the room to close.

• namespace – The namespace under which the room exists. Defaults to the global names-
pace.

run(app, host=None, port=None, **kwargs)
Run the SocketIO web server.

Parameters

• app – The Flask application instance.

• host – The hostname or IP address for the server to listen on. Defaults to 127.0.0.1.

• port – The port number for the server to listen on. Defaults to 5000.

• debug – True to start the server in debug mode, False to start in normal mode.

• use_reloader – True to enable the Flask reloader, False to disable it.

• extra_files – A list of additional files that the Flask reloader should watch. Defaults
to None

• log_output – If True, the server logs all incomming connections. If False logging
is disabled. Defaults to True in debug mode, False in normal mode. Unused when the
threading async mode is used.

• kwargs – Additional web server options. The web server options are specific to the server
used in each of the supported async modes. Note that options provided here will not be
seen when using an external web server such as gunicorn, since this method is not called
in that case.

stop()
Stop a running SocketIO web server.

This method must be called from a HTTP or SocketIO handler function.

start_background_task(target, *args, **kwargs)
Start a background task using the appropriate async model.

This is a utility function that applications can use to start a background task using the method that is
compatible with the selected async mode.

41

Flask-SocketIO Documentation

Parameters

• target – the target function to execute.

• args – arguments to pass to the function.

• kwargs – keyword arguments to pass to the function.

This function returns an object compatible with the Thread class in the Python standard library. The start()
method on this object is already called by this function.

sleep(seconds=0)
Sleep for the requested amount of time using the appropriate async model.

This is a utility function that applications can use to put a task to sleep without having to worry about using
the correct call for the selected async mode.

test_client(app, namespace=None, query_string=None, headers=None, flask_test_client=None)
The Socket.IO test client is useful for testing a Flask-SocketIO server. It works in a similar way to the
Flask Test Client, but adapted to the Socket.IO server.

Parameters

• app – The Flask application instance.

• namespace – The namespace for the client. If not provided, the client connects to the
server on the global namespace.

• query_string – A string with custom query string arguments.

• headers – A dictionary with custom HTTP headers.

• flask_test_client – The instance of the Flask test client currently in use. Passing
the Flask test client is optional, but is necessary if you want the Flask user session and any
other cookies set in HTTP routes accessible from Socket.IO events.

flask_socketio.emit(event, *args, **kwargs)
Emit a SocketIO event.

This function emits a SocketIO event to one or more connected clients. A JSON blob can be attached to the
event as payload. This is a function that can only be called from a SocketIO event handler, as in obtains some
information from the current client context. Example:

@socketio.on('my event')
def handle_my_custom_event(json):

emit('my response', {'data': 42})

Parameters

• event – The name of the user event to emit.

• args – A dictionary with the JSON data to send as payload.

• namespace – The namespace under which the message is to be sent. Defaults to the
namespace used by the originating event. A '/' can be used to explicitly specify the global
namespace.

• callback – Callback function to invoke with the client’s acknowledgement.

• broadcast – True to send the message to all clients, or False to only reply to the
sender of the originating event.

• room – Send the message to all the users in the given room. If this argument is set, then
broadcast is implied to be True.

42 Chapter 16. API Reference

Flask-SocketIO Documentation

• include_self – True to include the sender when broadcasting or addressing a room,
or False to send to everyone but the sender.

• skip_sid – The session id of a client to ignore when broadcasting or addressing a room.
This is typically set to the originator of the message, so that everyone except that client
receive the message. To skip multiple sids pass a list.

• ignore_queue – Only used when a message queue is configured. If set to True, the
event is emitted to the clients directly, without going through the queue. This is more ef-
ficient, but only works when a single server process is used, or when there is a single ad-
dressee. It is recommended to always leave this parameter with its default value of False.

flask_socketio.send(message, **kwargs)
Send a SocketIO message.

This function sends a simple SocketIO message to one or more connected clients. The message can be a string
or a JSON blob. This is a simpler version of emit(), which should be preferred. This is a function that can
only be called from a SocketIO event handler.

Parameters

• message – The message to send, either a string or a JSON blob.

• json – True if message is a JSON blob, False otherwise.

• namespace – The namespace under which the message is to be sent. Defaults to the
namespace used by the originating event. An empty string can be used to use the global
namespace.

• callback – Callback function to invoke with the client’s acknowledgement.

• broadcast – True to send the message to all connected clients, or False to only reply
to the sender of the originating event.

• room – Send the message to all the users in the given room.

• include_self – True to include the sender when broadcasting or addressing a room,
or False to send to everyone but the sender.

• skip_sid – The session id of a client to ignore when broadcasting or addressing a room.
This is typically set to the originator of the message, so that everyone except that client
receive the message. To skip multiple sids pass a list.

• ignore_queue – Only used when a message queue is configured. If set to True, the
event is emitted to the clients directly, without going through the queue. This is more ef-
ficient, but only works when a single server process is used, or when there is a single ad-
dressee. It is recommended to always leave this parameter with its default value of False.

flask_socketio.join_room(room, sid=None, namespace=None)
Join a room.

This function puts the user in a room, under the current namespace. The user and the namespace are obtained
from the event context. This is a function that can only be called from a SocketIO event handler. Example:

@socketio.on('join')
def on_join(data):

username = session['username']
room = data['room']
join_room(room)
send(username + ' has entered the room.', room=room)

Parameters

43

Flask-SocketIO Documentation

• room – The name of the room to join.

• sid – The session id of the client. If not provided, the client is obtained from the request
context.

• namespace – The namespace for the room. If not provided, the namespace is obtained
from the request context.

flask_socketio.leave_room(room, sid=None, namespace=None)
Leave a room.

This function removes the user from a room, under the current namespace. The user and the namespace are
obtained from the event context. Example:

@socketio.on('leave')
def on_leave(data):

username = session['username']
room = data['room']
leave_room(room)
send(username + ' has left the room.', room=room)

Parameters

• room – The name of the room to leave.

• sid – The session id of the client. If not provided, the client is obtained from the request
context.

• namespace – The namespace for the room. If not provided, the namespace is obtained
from the request context.

flask_socketio.close_room(room, namespace=None)
Close a room.

This function removes any users that are in the given room and then deletes the room from the server.

Parameters

• room – The name of the room to close.

• namespace – The namespace for the room. If not provided, the namespace is obtained
from the request context.

flask_socketio.rooms(sid=None, namespace=None)
Return a list of the rooms the client is in.

This function returns all the rooms the client has entered, including its own room, assigned by the Socket.IO
server.

Parameters

• sid – The session id of the client. If not provided, the client is obtained from the request
context.

• namespace – The namespace for the room. If not provided, the namespace is obtained
from the request context.

flask_socketio.disconnect(sid=None, namespace=None, silent=False)
Disconnect the client.

This function terminates the connection with the client. As a result of this call the client will receive a disconnect
event. Example:

44 Chapter 16. API Reference

Flask-SocketIO Documentation

@socketio.on('message')
def receive_message(msg):

if is_banned(session['username']):
disconnect()

else:
...

Parameters

• sid – The session id of the client. If not provided, the client is obtained from the request
context.

• namespace – The namespace for the room. If not provided, the namespace is obtained
from the request context.

• silent – this option is deprecated.

class flask_socketio.Namespace(namespace=None)

trigger_event(event, *args)
Dispatch an event to the proper handler method.

In the most common usage, this method is not overloaded by subclasses, as it performs the routing of
events to methods. However, this method can be overriden if special dispatching rules are needed, or if
having a single method that catches all events is desired.

emit(event, data=None, room=None, include_self=True, namespace=None, callback=None)
Emit a custom event to one or more connected clients.

send(data, room=None, include_self=True, namespace=None, callback=None)
Send a message to one or more connected clients.

close_room(room, namespace=None)
Close a room.

class flask_socketio.SocketIOTestClient(app, socketio, namespace=None,
query_string=None, headers=None,
flask_test_client=None)

This class is useful for testing a Flask-SocketIO server. It works in a similar way to the Flask Test Client, but
adapted to the Socket.IO server.

Parameters

• app – The Flask application instance.

• socketio – The application’s SocketIO instance.

• namespace – The namespace for the client. If not provided, the client connects to the
server on the global namespace.

• query_string – A string with custom query string arguments.

• headers – A dictionary with custom HTTP headers.

• flask_test_client – The instance of the Flask test client currently in use. Passing
the Flask test client is optional, but is necessary if you want the Flask user session and any
other cookies set in HTTP routes accessible from Socket.IO events.

is_connected(namespace=None)
Check if a namespace is connected.

45

Flask-SocketIO Documentation

Parameters namespace – The namespace to check. The global namespace is assumed if this
argument is not provided.

connect(namespace=None, query_string=None, headers=None)
Connect the client.

Parameters

• namespace – The namespace for the client. If not provided, the client connects to the
server on the global namespace.

• query_string – A string with custom query string arguments.

• headers – A dictionary with custom HTTP headers.

Note that it is usually not necessary to explicitly call this method, since a connection is automatically
established when an instance of this class is created. An example where it this method would be useful is
when the application accepts multiple namespace connections.

disconnect(namespace=None)
Disconnect the client.

Parameters namespace – The namespace to disconnect. The global namespace is assumed if
this argument is not provided.

emit(event, *args, **kwargs)
Emit an event to the server.

Parameters

• event – The event name.

• *args – The event arguments.

• callback – True if the client requests a callback, False if not. Note that client-side
callbacks are not implemented, a callback request will just tell the server to provide the
arguments to invoke the callback, but no callback is invoked. Instead, the arguments that
the server provided for the callback are returned by this function.

• namespace – The namespace of the event. The global namespace is assumed if this
argument is not provided.

send(data, json=False, callback=False, namespace=None)
Send a text or JSON message to the server.

Parameters

• data – A string, dictionary or list to send to the server.

• json – True to send a JSON message, False to send a text message.

• callback – True if the client requests a callback, False if not. Note that client-side
callbacks are not implemented, a callback request will just tell the server to provide the
arguments to invoke the callback, but no callback is invoked. Instead, the arguments that
the server provided for the callback are returned by this function.

• namespace – The namespace of the event. The global namespace is assumed if this
argument is not provided.

get_received(namespace=None)
Return the list of messages received from the server.

Since this is not a real client, any time the server emits an event, the event is simply stored. The test code
can invoke this method to obtain the list of events that were received since the last call.

46 Chapter 16. API Reference

Flask-SocketIO Documentation

Parameters namespace – The namespace to get events from. The global namespace is as-
sumed if this argument is not provided.

47

Flask-SocketIO Documentation

48 Chapter 16. API Reference

PYTHON MODULE INDEX

f
flask_socketio, 37

49

Flask-SocketIO Documentation

50 Python Module Index

INDEX

C
close_room() (flask_socketio.Namespace method),

45
close_room() (flask_socketio.SocketIO method), 41
close_room() (in module flask_socketio), 44
connect() (flask_socketio.SocketIOTestClient

method), 46

D
disconnect() (flask_socketio.SocketIOTestClient

method), 46
disconnect() (in module flask_socketio), 44

E
emit() (flask_socketio.Namespace method), 45
emit() (flask_socketio.SocketIO method), 40
emit() (flask_socketio.SocketIOTestClient method), 46
emit() (in module flask_socketio), 42

F
flask_socketio

module, 37

G
get_received() (flask_socketio.SocketIOTestClient

method), 46

I
is_connected() (flask_socketio.SocketIOTestClient

method), 45

J
join_room() (in module flask_socketio), 43

L
leave_room() (in module flask_socketio), 44

M
module

flask_socketio, 37

N
Namespace (class in flask_socketio), 45

O
on() (flask_socketio.SocketIO method), 38
on_error() (flask_socketio.SocketIO method), 39
on_error_default() (flask_socketio.SocketIO

method), 39
on_event() (flask_socketio.SocketIO method), 39

R
rooms() (in module flask_socketio), 44
run() (flask_socketio.SocketIO method), 41

S
send() (flask_socketio.Namespace method), 45
send() (flask_socketio.SocketIO method), 40
send() (flask_socketio.SocketIOTestClient method), 46
send() (in module flask_socketio), 43
sleep() (flask_socketio.SocketIO method), 42
SocketIO (class in flask_socketio), 37
SocketIOTestClient (class in flask_socketio), 45
start_background_task()

(flask_socketio.SocketIO method), 41
stop() (flask_socketio.SocketIO method), 41

T
test_client() (flask_socketio.SocketIO method), 42
trigger_event() (flask_socketio.Namespace

method), 45

51

	Installation
	Requirements
	Initialization
	Receiving Messages
	Sending Messages
	Broadcasting
	Rooms
	Connection Events
	Class-Based Namespaces
	Error Handling
	Debugging and Troubleshooting
	Access to Flask’s Context Globals
	Authentication
	Using Flask-Login with Flask-SocketIO

	Deployment
	Embedded Server
	Gunicorn Web Server
	uWSGI Web Server
	Using nginx as a WebSocket Reverse Proxy
	Using Multiple Workers
	Emitting from an External Process
	Upgrading to Flask-SocketIO 1.x and 2.x from the 0.x releases

	Cross-Origin Controls
	API Reference
	Python Module Index
	Index

