next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Schubert2 :: PP'

PP' -- make a projective space

Synopsis

Description

i1 : X = PP'^4

o1 = X

o1 : a flag bundle with subquotient ranks {4, 1}
i2 : X.Base

o2 = point

o2 : an abstract variety of dimension 0
i3 : dim X

o3 = 4
The projective space produced adheres to modern "Grothendieck-style" notation, with a tautological quotient bundle of rank 1. For the opposite, "Fulton-style" notation see PP.
i4 : bundles X/rank

o4 = (4, 1)

o4 : Sequence

For the programmer

The object PP' is a scripted functor.