next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Macaulay2Doc :: random(Type)

random(Type) -- random element of a type

Synopsis

Description

Synopsis

  • Usage:
    random T
  • Inputs:
  • Outputs:
    • a random instance of the type T. If the Height option specifies a number h and T is ZZ and , then the integers returned are in the range 0 .. h-1; for QQ the numerator and denominator are in the range 1 .. h.
i1 : random RR

o1 = .341092505323635

o1 : RR (of precision 53)
i2 : random CC_100

o2 = .0197012371146545700092369128884+.979840720398029506224132544663*ii

o2 : CC (of precision 100)
i3 : tally for i to 100 list random GF 11

o3 = Tally{-1 => 1}
           -1 => 1
           -1 => 1
           -1 => 1
           -1 => 1
           -1 => 1
           -1 => 1
           -1 => 1
           -1 => 1
           -1 => 1
           -1 => 1
           -1 => 1
           -2 => 1
           -2 => 1
           -2 => 1
           -2 => 1
           -2 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -4 => 1
           -4 => 1
           -4 => 1
           -4 => 1
           -4 => 1
           -4 => 1
           -5 => 1
           -5 => 1
           -5 => 1
           -5 => 1
           -5 => 1
           -5 => 1
           0 => 1
           0 => 1
           0 => 1
           0 => 1
           0 => 1
           0 => 1
           0 => 1
           0 => 1
           0 => 1
           1 => 1
           1 => 1
           1 => 1
           1 => 1
           1 => 1
           1 => 1
           1 => 1
           1 => 1
           1 => 1
           1 => 1
           2 => 1
           2 => 1
           2 => 1
           2 => 1
           2 => 1
           2 => 1
           2 => 1
           2 => 1
           2 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           4 => 1
           4 => 1
           4 => 1
           4 => 1
           4 => 1
           4 => 1
           4 => 1
           4 => 1
           4 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1

o3 : Tally
i4 : random GF(2,40)

      39    37    36    34    33    31    28    25    24    20    19    18  
o4 = a   + a   + a   + a   + a   + a   + a   + a   + a   + a   + a   + a   +
     ------------------------------------------------------------------------
      17    16    12    10    7    2
     a   + a   + a   + a   + a  + a

o4 : GF 1099511627776

Synopsis

  • Usage:
    random(d,R)
  • Inputs:
  • Outputs:
    • a random homogeneous element of the ring R of degree d
i5 : R = ZZ[x,y];
i6 : random(5,R)

       5     4      3 2     2 3       4     5
o6 = 7x  + 4x y + 4x y  + 5x y  + 4x*y  + 9y

o6 : R
i7 : R = GF(25,Variable=>a)[x,y];
i8 : VerticalList for i to 6 list random(3,R)

     {           3            2        2      3     }
o8 = {(- 2a + 1)x  + (2a + 2)x y - 2x*y  + a*y      }
     { 3      2                2            3       }
     {x  + a*x y + (- a + 2)x*y  + (2a - 2)y        }
     {        3       2               2            3}
     {(a + 2)x  + 2a*x y + (2a + 2)x*y  + (2a + 1)y }
     {        3            2              2      3  }
     {(a - 2)x  + (2a + 1)x y + (a + 1)x*y  + a*y   }
     { 3              2        3                    }
     {x  + (- 2a + 2)x y - 2a*y                     }
     {   3           2               2            3 }
     {- x  + (a + 2)x y + (2a + 1)x*y  + (2a + 1)y  }
     {          3             2                2    }
     {(- a + 1)x  + (- a - 1)x y + (- a - 2)x*y     }

o8 : VerticalList
The length of d, if it's a list, should be the same as degreeLength R.

See also