next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

               2           2      2     2        2 2        2   2         2 2
o2 = ideal (q*r  - i*k, i*j  - r*t , a*h v - g, q t x - e, l n*t  - f, e*g k 
     ------------------------------------------------------------------------
               2 2
     - i, c*f*o t  - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 3 3 2 2 3      4 3 3   3 2 4 3   4 2    3 3 4   3 4 3 4 2 4  
o3 = ideal (c l m n p r  - a*e v w , a b c k r*w x  - g l n , d e l p v x  -
     ------------------------------------------------------------------------
      3 3 4 3   4 4 4 3 4 3    3 4 2 4
     b c g j , a d h i l v  - b j k n )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.