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Prefaces

When I tell people about my LibTom projects and that I release them as public
domain they are often puzzled. They ask why I did it and especially why I
continue to work on them for free. The best I can explain it is “Because I can.”
Which seems odd and perhaps too terse for adult conversation. I often qualify
it with “I am able, I am willing.” which perhaps explains it better. I am the
first to admit there is not anything that special with what I have done. Perhaps
others can see that too and then we would have a society to be proud of. My
LibTom projects are what I am doing to give back to society in the form of tools
and knowledge that can help others in their endeavours.

I started writing this book because it was the most logical task to further my
goal of open academia. The LibTomMath source code itself was written to be
easy to follow and learn from. There are times, however, where pure C source
code does not explain the algorithms properly. Hence this book. The book
literally starts with the foundation of the library and works itself outwards to
the more complicated algorithms. The use of both pseudo—code and verbatim
source code provides a duality of “theory” and “practice” that the computer
science students of the world shall appreciate. I never deviate too far from
relatively straightforward algebra and I hope that this book can be a valuable
learning asset,.

This book and indeed much of the LibTom projects would not exist in their
current form if it was not for a plethora of kind people donating their time,
resources and kind words to help support my work. Writing a text of significant
length (along with the source code) is a tiresome and lengthy process. Currently
the LibTom project is four years old, comprises of literally thousands of users
and over 100,000 lines of source code, TeX and other material. People like
Mads and Greg were there at the beginning to encourage me to work well. It
is amazing how timely validation from others can boost morale to continue the
project. Definitely my parents were there for me by providing room and board
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during the many months of work in 2003.

To my many friends whom I have met through the years I thank you for the
good times and the words of encouragement. I hope I honour your kind gestures
with this project.

Open Source. Open Academia. Open Minds.

Tom St Denis



I found the opportunity to work with Tom appealing for several reasons, not
only could I broaden my own horizons, but also contribute to educate others
facing the problem of having to handle big number mathematical calculations.

This book is Tom’s child and he has been caring and fostering the project
ever since the beginning with a clear mind of how he wanted the project to turn
out. I have helped by proofreading the text and we have had several discussions
about the layout and language used.

I hold a masters degree in cryptography from the University of Southern
Denmark and have always been interested in the practical aspects of cryptog-
raphy.

Having worked in the security consultancy business for several years in Sao
Paulo, Brazil, I have been in touch with a great deal of work in which multiple
precision mathematics was needed. Understanding the possibilities for speeding
up multiple precision calculations is often very important since we deal with
outdated machine architecture where modular reductions, for example, become
painfully slow.

This text is for people who stop and wonder when first examining algorithms
such as RSA for the first time and asks themselves, “You tell me this is only
secure for large numbers, fine; but how do you implement these numbers?”

Mads Rasmussen
Sao Paulo - SP
Brazil



It’s all because I broke my leg. That just happened to be at about the
same time that Tom asked for someone to review the section of the book about
Karatsuba multiplication. I was laid up, alone and immobile, and thought “Why
not?” I vaguely knew what Karatsuba multiplication was, but not really, so I
thought I could help, learn, and stop myself from watching daytime cable TV,
all at once.

At the time of writing this, I've still not met Tom or Mads in meatspace. I've
been following Tom’s progress since his first splash on the sci.crypt Usenet news
group. I watched him go from a clueless newbie, to the cryptographic equivalent
of a reformed smoker, to a real contributor to the field, over a period of about
two years. I've been impressed with his obvious intelligence, and astounded by
his productivity. Of course, he’s young enough to be my own child, so he doesn’t
have my problems with staying awake.

When I reviewed that single section of the book, in its very earliest form,
I was very pleasantly surprised. So I decided to collaborate more fully, and at
least review all of it, and perhaps write some bits too. There’s still a long way
to go with it, and I have watched a number of close friends go through the mill
of publication, so I think that the way to go is longer than Tom thinks it is.
Nevertheless, it’s a good effort, and I'm pleased to be involved with it.

Greg Rose, Sydney, Australia, June 2003.



Chapter 1

Introduction

1.1 Multiple Precision Arithmetic

1.1.1 What is Multiple Precision Arithmetic?

When we think of long-hand arithmetic such as addition or multiplication we
rarely consider the fact that we instinctively raise or lower the precision of the
numbers we are dealing with. For example, in decimal we almost immediate can
reason that 7 times 6 is 42. However, 42 has two digits of precision as opposed
to one digit we started with. Further multiplications of say 3 result in a larger
precision result 126. In these few examples we have multiple precisions for the
numbers we are working with. Despite the various levels of precision a single
subsetfl] of algorithms can be designed to accomodate them.

By way of comparison a fixed or single precision operation would lose pre-
cision on various operations. For example, in the decimal system with fixed
precision 6 - 7 = 2.

Essentially at the heart of computer based multiple precision arithmetic are
the same long-hand algorithms taught in schools to manually add, subtract,
multiply and divide.

1.1.2 The Need for Multiple Precision Arithmetic

The most prevalent need for multiple precision arithmetic, often referred to
as “bignum” math, is within the implementation of public-key cryptography

IWith the occasional optimization.
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algorithms. Algorithms such as RSA [T1] and Diffie-Hellman [I2] require integers
of significant magnitude to resist known cryptanalytic attacks. For example, at
the time of this writing a typical RSA modulus would be at least greater than
10399, However, modern programming languages such as ISO C [I8] and Java
[19] only provide instrinsic support for integers which are relatively small and
single precision.

Data Type Range
char —128...127
short —32768 ...32767
long —2147483648 . .. 2147483647
long long | —9223372036854775808 . ..9223372036854775807

Figure 1.1: Typical Data Types for the C Programming Language

The largest data type guaranteed to be provided by the ISO C programming
1anguageﬁ can only represent values up to 10'° as shown in figure [L1l On its
own the C language is insufficient to accomodate the magnitude required for
the problem at hand. An RSA modulus of magnitude 10'° could be trivially
factoredd on the average desktop computer, rendering any protocol based on
the algorithm insecure. Multiple precision algorithms solve this very problem
by extending the range of representable integers while using single precision
data types.

Most advancements in fast multiple precision arithmetic stem from the need
for faster and more efficient cryptographic primitives. Faster modular reduction
and exponentiation algorithms such as Barrett’s algorithm, which have appeared
in various cryptographic journals, can render algorithms such as RSA and Diffie-
Hellman more efficient. In fact, several major companies such as RSA Security,
Certicom and Entrust have built entire product lines on the implementation
and deployment of efficient algorithms.

However, cryptography is not the only field of study that can benefit from
fast multiple precision integer routines. Another auxiliary use of multiple pre-
cision integers is high precision floating point data types. The basic IEEE [13]
standard floating point type is made up of an integer mantissa ¢, an exponent
e and a sign bit s. Numbers are given in the form n = ¢ - ¢ - —1° where b = 2

2As per the ISO C standard. However, each compiler vendor is allowed to augment the
precision as they see fit.
3A Pollard-Rho factoring would take only 216 time.
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is the most common base for IEEE. Since IEEE floating point is meant to be
implemented in hardware the precision of the mantissa is often fairly small (23,
48 and 64 bits). The mantissa is merely an integer and a multiple precision in-
teger could be used to create a mantissa of much larger precision than hardware
alone can efficiently support. This approach could be useful where scientific
applications must minimize the total output error over long calculations.

Yet another use for large integers is within arithmetic on polynomials of large
characteristic (i.e. GF(p)[z] for large p). In fact the library discussed within
this text has already been used to form a polynomial basis libraryﬁ.

1.1.3 Benefits of Multiple Precision Arithmetic

The benefit of multiple precision representations over single or fixed precision
representations is that no precision is lost while representing the result of an
operation which requires excess precision. For example, the product of two n-
bit integers requires at least 2n bits of precision to be represented faithfully.
A multiple precision algorithm would augment the precision of the destination
to accomodate the result while a single precision system would truncate excess
bits to maintain a fixed level of precision.

It is possible to implement algorithms which require large integers with fixed
precision algorithms. For example, elliptic curve cryptography (ECC) is often
implemented on smartcards by fixing the precision of the integers to the maxi-
mum size the system will ever need. Such an approach can lead to vastly simpler
algorithms which can accomodate the integers required even if the host platform
cannot natively accomodate thent]. However, as efficient as such an approach
may be, the resulting source code is not normally very flexible. It cannot, at
runtime, accomodate inputs of higher magnitude than the designer anticipated.

Multiple precision algorithms have the most overhead of any style of arith-
metic. For the the most part the overhead can be kept to a minimum with
careful planning, but overall, it is not well suited for most memory starved plat-
forms. However, multiple precision algorithms do offer the most flexibility in
terms of the magnitude of the inputs. That is, the same algorithms based on
multiple precision integers can accomodate any reasonable size input without
the designer’s explicit forethought. This leads to lower cost of ownership for the
code as it only has to be written and tested once.

4See lhttp://poly.libtomcrypt.orgl for more details.
5For example, the average smartcard processor has an 8 bit accumulator.
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1.2 Purpose of This Text

The purpose of this text is to instruct the reader regarding how to implement
efficient multiple precision algorithms. That is to not only explain a limited
subset of the core theory behind the algorithms but also the various “house
keeping” elements that are neglected by authors of other texts on the subject.
Several well reknowned texts [Il 2] give considerably detailed explanations of
the theoretical aspects of algorithms and often very little information regarding
the practical implementation aspects.

In most cases how an algorithm is explained and how it is actually imple-
mented are two very different concepts. For example, the Handbook of Applied
Cryptography (HAC), algorithm 14.7 on page 594, gives a relatively simple
algorithm for performing multiple precision integer addition. However, the de-
scription lacks any discussion concerning the fact that the two integer inputs
may be of differing magnitudes. As a result the implementation is not as simple
as the text would lead people to believe. Similarly the division routine (al-
gorithm 14.20, pp. 598) does not discuss how to handle sign or handle the
dividend’s decreasing magnitude in the main loop (step #3).

Both texts also do not discuss several key optimal algorithms required such
as “Comba” and Karatsuba multipliers and fast modular inversion, which we
consider practical oversights. These optimal algorithms are vital to achieve any
form of useful performance in non-trivial applications.

To solve this problem the focus of this text is on the practical aspects of im-
plementing a multiple precision integer package. As a case study the “LibTom-
Math™d package is used to demonstrate algorithms with real implementationsﬂ
that have been field tested and work very well. The LibTomMath library is
freely available on the Internet for all uses and this text discusses a very large
portion of the inner workings of the library.

The algorithms that are presented will always include at least one “pseudo-
code” description followed by the actual C source code that implements the
algorithm. The pseudo-code can be used to implement the same algorithm in
other programming languages as the reader sees fit.

This text shall also serve as a walkthrough of the creation of multiple preci-
sion algorithms from scratch. Showing the reader how the algorithms fit together
as well as where to start on various taskings.

6 Available at http://math.libtomcrypt.com
“In the ISO C programming language.
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1.3 Discussion and Notation

1.3.1 Notation

A multiple precision integer of n-digits shall be denoted as = (2,1, ..., %1, Z0)3
and represent the integer x = Z;:Ol 2;3%. The elements of the array « are said
to be the radix 8 digits of the integer. For example, z = (1,2,3);9 would
represent the integer 1-102 4+ 2-10' +3-10° = 123.

The term “mp_int” shall refer to a composite structure which contains the
digits of the integer it represents, as well as auxilary data required to manipulate
the data. These additional members are discussed further in section 22211 For
the purposes of this text a “multiple precision integer” and an “mp_int” are
assumed to be synonymous. When an algorithm is specified to accept an mp_int
variable it is assumed the various auxliary data members are present as well.
An expression of the type variablename.item implies that it should evaluate to
the member named “item” of the variable. For example, a string of characters
may have a member “length” which would evaluate to the number of characters
in the string. If the string a equals “hello” then it follows that a.length = 5.

For certain discussions more generic algorithms are presented to help the
reader understand the final algorithm used to solve a given problem. When an
algorithm is described as accepting an integer input it is assumed the input is a
plain integer with no additional multiple-precision members. That is, algorithms
that use integers as opposed to mp_ints as inputs do not concern themselves
with the housekeeping operations required such as memory management. These
algorithms will be used to establish the relevant theory which will subsequently
be used to describe a multiple precision algorithm to solve the same problem.

1.3.2 Precision Notation

The variable § represents the radix of a single digit of a multiple precision
integer and must be of the form ¢? for ¢,p € Z™. A single precision variable
must be able to represent integers in the range 0 < x < ¢f while a double
precision variable must be able to represent integers in the range 0 < x < ¢f2.
The extra radix-q factor allows additions and subtractions to proceed without
truncation of the carry. Since all modern computers are binary, it is assumed
that ¢ is two.

Within the source code that will be presented for each algorithm, the data
type mp_digit will represent a single precision integer type, while, the data type
mp_word will represent a double precision integer type. In several algorithms
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(notably the Comba routines) temporary results will be stored in arrays of
double precision mp_words. For the purposes of this text x; will refer to the
j’th digit of a single precision array and &; will refer to the j’'th digit of a
double precision array. Whenever an expression is to be assigned to a double
precision variable it is assumed that all single precision variables are promoted
to double precision during the evaluation. Expressions that are assigned to a
single precision variable are truncated to fit within the precision of a single
precision data type.

For example, if 8 = 10? a single precision data type may represent a value in
the range 0 < z < 103, while a double precision data type may represent a value
in the range 0 < z < 10°. Let a = 23 and b = 49 represent two single precision
variables. The single precision product shall be written as ¢ <— a - b while the
double precision product shall be written as ¢ <— a - b. In this particular case,
¢ = 1127 and ¢ = 127. The most significant digit of the product would not fit
in a single precision data type and as a result ¢ # ¢.

1.3.3 Algorithm Inputs and Outputs

Within the algorithm descriptions all variables are assumed to be scalars of
either single or double precision as indicated. The only exception to this rule
is when variables have been indicated to be of type mp_int. This distinction is
important as scalars are often used as array indicies and various other counters.

1.3.4 Mathematical Expressions

The | | brackets imply an expression truncated to an integer not greater than
the expression itself. For example, [5.7] = 5. Similarly the [ ] brackets imply
an expression rounded to an integer not less than the expression itself. For
example, [5.17 = 6. Typically when the / division symbol is used the intention
is to perform an integer division with truncation. For example, 5/2 = 2 which
will often be written as |5/2] = 2 for clarity. When an expression is written as
a fraction a real value division is implied, for example g = 2.5.

The norm of a multiple precision integer, for example ||z||, will be used to
represent the number of digits in the representation of the integer. For example,
[|123|] = 3 and ||79452|| = 5.
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1.3.5 Work Effort

To measure the efficiency of the specified algorithms, a modified big-Oh notation
is used. In this system all single precision operations are considered to have the
same cosfl. That is a single precision addition, multiplication and division are
assumed to take the same time to complete. While this is generally not true in
practice, it will simplify the discussions considerably.

Some algorithms have slight advantages over others which is why some con-
stants will not be removed in the notation. For example, a normal baseline
multiplication (section B21]) requires O(n?) work while a baseline squaring
(section [B3)) requires O(”22+ ) work. In standard big-Oh notation these would
both be said to be equivalent to O(n?). However, in the context of the this text
this is not the case as the magnitude of the inputs will typically be rather small.
As a result small constant factors in the work effort will make an observable
difference in algorithm efficiency.

All of the algorithms presented in this text have a polynomial time work level.
That is, of the form O(n*) for n, k € Z*. This will help make useful comparisons
in terms of the speed of the algorithms and how various optimizations will help
pay off in the long run.

1.4 Exercises

Within the more advanced chapters a section will be set aside to give the reader
some challenging exercises related to the discussion at hand. These exercises are
not designed to be prize winning problems, but instead to be thought provoking.
Wherever possible the problems are forward minded, stating problems that will
be answered in subsequent chapters. The reader is encouraged to finish the
exercises as they appear to get a better understanding of the subject material.

That being said, the problems are designed to affirm knowledge of a partic-
ular subject matter. Students in particular are encouraged to verify they can
answer the problems correctly before moving on.

Similar to the exercises of [I, pp. ix| these exercises are given a scoring
system based on the difficulty of the problem. However, unlike [I] the problems
do not get nearly as hard. The scoring of these exercises ranges from one (the
easiest) to five (the hardest). The following table sumarizes the scoring system
used.

8Except where explicitly noted.
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[1] | An easy problem that should only take the reader a manner of
minutes to solve. Usually does not involve much computer time
to solve.

[2] | An easy problem that involves a marginal amount of computer
time usage. Usually requires a program to be written to

solve the problem.

[3] | A moderately hard problem that requires a non-trivial amount
of work. Usually involves trivial research and development of
new theory from the perspective of a student.

[4] | A moderately hard problem that involves a non-trivial amount
of work and research, the solution to which will demonstrate

a higher mastery of the subject matter.

[5] | A hard problem that involves concepts that are difficult for a
novice to solve. Solutions to these problems will demonstrate a
complete mastery of the given subject.

Figure 1.2: Exercise Scoring System

Problems at the first level are meant to be simple questions that the reader
can answer quickly without programming a solution or devising new theory.
These problems are quick tests to see if the material is understood. Problems
at the second level are also designed to be easy but will require a program
or algorithm to be implemented to arrive at the answer. These two levels are
essentially entry level questions.

Problems at the third level are meant to be a bit more difficult than the
first two levels. The answer is often fairly obvious but arriving at an exacting
solution requires some thought and skill. These problems will almost always
involve devising a new algorithm or implementing a variation of another algo-
rithm previously presented. Readers who can answer these questions will feel
comfortable with the concepts behind the topic at hand.

Problems at the fourth level are meant to be similar to those of the level
three questions except they will require additional research to be completed.
The reader will most likely not know the answer right away, nor will the text
provide the exact details of the answer until a subsequent chapter.

Problems at the fifth level are meant to be the hardest problems relative to
all the other problems in the chapter. People who can correctly answer fifth
level problems have a mastery of the subject matter at hand.

Often problems will be tied together. The purpose of this is to start a chain
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of thought that will be discussed in future chapters. The reader is encouraged
to answer the follow-up problems and try to draw the relevance of problems.

1.5 Introduction to LibTomMath
1.5.1 What is LibTomMath?

LibTomMath is a free and open source multiple precision integer library written
entirely in portable ISO C. By portable it is meant that the library does not
contain any code that is computer platform dependent or otherwise problematic
to use on any given platform.

The library has been successfully tested under numerous operating systems
including Unixﬁ, MacOS, Windows, Linux, PalmOS and on standalone hardware
such as the Gameboy Advance. The library is designed to contain enough
functionality to be able to develop applications such as public key cryptosystems
and still maintain a relatively small footprint.

1.5.2 Goals of LibTomMath

Libraries which obtain the most efficiency are rarely written in a high level
programming language such as C. However, even though this library is written
entirely in ISO C, considerable care has been taken to optimize the algorithm
implementations within the library. Specifically the code has been written to
work well with the GNU C Compiler (GCC') on both x86 and ARM processors.
Wherever possible, highly efficient algorithms, such as Karatsuba multiplication,
sliding window exponentiation and Montgomery reduction have been provided
to make the library more efficient.

Even with the nearly optimal and specialized algorithms that have been in-
cluded the Application Programing Interface (API) has been kept as simple
as possible. Often generic place holder routines will make use of specialized
algorithms automatically without the developer’s specific attention. One such
example is the generic multiplication algorithm mp_mul() which will automat-
ically use Toom—Cook, Karatsuba, Comba or baseline multiplication based on
the magnitude of the inputs and the configuration of the library.

Making LibTomMath as efficient as possible is not the only goal of the
LibTomMath project. Ideally the library should be source compatible with
another popular library which makes it more attractive for developers to use.

9All of these trademarks belong to their respective rightful owners.
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In this case the MPI library was used as a API template for all the basic func-
tions. MPI was chosen because it is another library that fits in the same niche
as LibTomMath. Even though LibTomMath uses MPI as the template for the
function names and argument passing conventions, it has been written from
scratch by Tom St Denis.

The project is also meant to act as a learning tool for students, the logic
being that no easy-to-follow “bignum” library exists which can be used to teach
computer science students how to perform fast and reliable multiple precision
integer arithmetic. To this end the source code has been given quite a few
comments and algorithm discussion points.

1.6 Choice of LibTomMath

LibTomMath was chosen as the case study of this text not only because the
author of both projects is one and the same but for more worthy reasons. Other
libraries such as GMP [14], MPI [I5], LIP [I7] and OpenSSL [16] have multiple
precision integer arithmetic routines but would not be ideal for this text for
reasons that will be explained in the following sub-sections.

1.6.1 Code Base

The LibTomMath code base is all portable ISO C source code. This means that
there are no platform dependent conditional segments of code littered through-
out the source. This clean and uncluttered approach to the library means that
a developer can more readily discern the true intent of a given section of source
code without trying to keep track of what conditional code will be used.

The code base of LibTomMath is well organized. Each function is in its own
separate source code file which allows the reader to find a given function very
quickly. On average there are 76 lines of code per source file which makes the
source very easily to follow. By comparison MPI and LIP are single file projects
making code tracing very hard. GMP has many conditional code segments
which also hinder tracing.

When compiled with GCC for the x86 processor and optimized for speed
the entire library is approximately 100Ki which is fairly small compared to
GMP (over 250KiB). LibTomMath is slightly larger than MPI (which compiles
to about 50KiB) but LibTomMath is also much faster and more complete than
MPI.

10The notation “KiB” means 20 octets, similarly “MiB” means 220 octets.
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1.6.2 API Simplicity

LibTomMath is designed after the MPI library and shares the API design. Quite
often programs that use MPI will build with LibTomMath without change. The
function names correlate directly to the action they perform. Almost all of the
functions share the same parameter passing convention. The learning curve is
fairly shallow with the API provided which is an extremely valuable benefit for
the student and developer alike.

The LIP library is an example of a library with an API that is awkward to
work with. LIP uses function names that are often “compressed” to illegible
short hand. LibTomMath does not share this characteristic.

The GMP library also does not return error codes. Instead it uses a POSIX.1
[?] signal system where errors are signaled to the host application. This happens
to be the fastest approach but definitely not the most versatile. In effect a math
error (i.e. invalid input, heap error, etc) can cause a program to stop functioning
which is definitely undersireable in many situations.

1.6.3 Optimizations

While LibTomMath is certainly not the fastest library (GMP often beats LibTom-
Math by a factor of two) it does feature a set of optimal algorithms for tasks

such as modular reduction, exponentiation, multiplication and squaring. GMP

and LIP also feature such optimizations while MPT only uses baseline algorithms

with no optimizations. GMP lacks a few of the additional modular reduction

optimizations that LibTomMath featured.

LibTomMath is almost always an order of magnitude faster than the MPI
library at computationally expensive tasks such as modular exponentiation. In
the grand scheme of “bignum” libraries LibTomMath is faster than the average
library and usually slower than the best libraries such as GMP and OpenSSL
by only a small factor.

1.6.4 Portability and Stability

LibTomMath will build “out of the box” on any platform equipped with a mod-
ern version of the GNU C Compiler (GCC'). This means that without changes
the library will build without configuration or setting up any variables. LIP and
MPI will build “out of the box” as well but have numerous known bugs. Most

1At the time of this writing GMP only had Barrett and Montgomery modular reduction
algorithms.
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notably the author of MPI has recently stopped working on his library and LIP
has long since been discontinued.

GMP requires a configuration script to run and will not build out of the
box. GMP and LibTomMath are still in active development and are very stable
across a variety of platforms.

1.6.5 Choice

LibTomMath is a relatively compact, well documented, highly optimized and
portable library which seems only natural for the case study of this text. Various
source files from the LibTomMath project will be included within the text.
However, the reader is encouraged to download their own copy of the library to
actually be able to work with the library.



Chapter 2

Getting Started

2.1 Library Basics

The trick to writing any useful library of source code is to build a solid founda-
tion and work outwards from it. First, a problem along with allowable solution
parameters should be identified and analyzed. In this particular case the in-
ability to accomodate multiple precision integers is the problem. Futhermore,
the solution must be written as portable source code that is reasonably efficient
across several different computer platforms.

After a foundation is formed the remainder of the library can be designed
and implemented in a hierarchical fashion. That is, to implement the lowest
level dependencies first and work towards the most abstract functions last. For
example, before implementing a modular exponentiation algorithm one would
implement a modular reduction algorithm. By building outwards from a base
foundation instead of using a parallel design methodology the resulting project
is highly modular. Being highly modular is a desirable property of any project
as it often means the resulting product has a small footprint and updates are
easy to perform.

Usually when I start a project I will begin with the header files. I define
the data types I think I will need and prototype the initial functions that are
not dependent on other functions (within the library). After I implement these
base functions I prototype more dependent functions and implement them. The
process repeats until I implement all of the functions I require. For example, in
the case of LibTomMath I implemented functions such as mp_init() well before

13
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I implemented mp_mul() and even further before I implemented mp_exptmody().
As an example as to why this design works note that the Karatsuba and Toom-
Cook multipliers were written after the dependent function mp_exptmod() was
written. Adding the new multiplication algorithms did not require changes to
the mp_exptmod() function itself and lowered the total cost of ownership (so to
speak) and of development for new algorithms. This methodology allows new
algorithms to be tested in a complete framework with relative ease.

mp int

|
I | I |

mp init | | mp clear | | mp grow | |\ mp clamp

[ I I \—\

mp init size mp_copy mp set int

I
mp init copy

Figure 2.1: Design Flow of the First Few Original LibTomMath Functions.

Only after the majority of the functions were in place did I pursue a less
hierarchical approach to auditing and optimizing the source code. For example,
one day I may audit the multipliers and the next day the polynomial basis
functions.

It only makes sense to begin the text with the preliminary data types and
support algorithms required as well. This chapter discusses the core algorithms
of the library which are the dependents for every other algorithm.

2.2 What is a Multiple Precision Integer?

Recall that most programming languages, in particular ISO C [I8], only have
fixed precision data types that on their own cannot be used to represent values
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larger than their precision will allow. The purpose of multiple precision algo-
rithms is to use fixed precision data types to create and manipulate multiple
precision integers which may represent values that are very large.

As a well known analogy, school children are taught how to form numbers
larger than nine by prepending more radix ten digits. In the decimal system the
largest single digit value is 9. However, by concatenating digits together larger
numbers may be represented. Newly prepended digits (to the left) are said to
be in a different power of ten column. That is, the number 123 can be described
as having a 1 in the hundreds column, 2 in the tens column and 3 in the ones
column. Or more formally 123 = 1-10% + 210! + 3 - 10°. Computer based
multiple precision arithmetic is essentially the same concept. Larger integers
are represented by adjoining fixed precision computer words with the exception
that a different radix is used.

What most people probably do not think about explicitly are the various
other attributes that describe a multiple precision integer. For example, the
integer 15417 has two immediately obvious properties. First, the integer is
positive, that is the sign of this particular integer is positive as opposed to
negative. Second, the integer has three digits in its representation. There is
an additional property that the integer posesses that does not concern pencil-
and-paper arithmetic. The third property is how many digits placeholders are
available to hold the integer.

The human analogy of this third property is ensuring there is enough space
on the paper to write the integer. For example, if one starts writing a large
number too far to the right on a piece of paper they will have to erase it and
move left. Similarly, computer algorithms must maintain strict control over
memory usage to ensure that the digits of an integer will not exceed the al-
lowed boundaries. These three properties make up what is known as a multiple
precision integer or mp_int for short.

2.2.1 The mp_int Structure

The mp_int structure is the ISO C based manifestation of what represents a mul-
tiple precision integer. The ISO C standard does not provide for any such data
type but it does provide for making composite data types known as structures.
The following is the structure definition used within LibTomMath.

The mp-int structure (fig. 22) can be broken down as follows.

1. The used parameter denotes how many digits of the array dp contain the
digits used to represent a given integer. The used count must be positive
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typedef struct {
int used, alloc, sign;
mp_digit *dp;

} mp_int;

Figure 2.2: The mp_int Structure

(or zero) and may not exceed the alloc count.

. The alloc parameter denotes how many digits are available in the array

to use by functions before it has to increase in size. When the used
count of a result would exceed the alloc count all of the algorithms will
automatically increase the size of the array to accommodate the precision
of the result.

The pointer dp points to a dynamically allocated array of digits that
represent the given multiple precision integer. It is padded with (alloc —
used) zero digits. The array is maintained in a least significant digit order.
As a pencil and paper analogy the array is organized such that the right
most digits are stored first starting at the location indexed by zerd! in the
array. For example, if dp contains {a,b,c,...} where dpg = a, dp; = b,
dps =c, ... then it would represent the integer a + b8 + ¢ + . ..

The sign parameter denotes the sign as either zero/positive (MP_ZPOS)
or negative (MP_NEG).

Valid mp_int Structures

Several rules are placed on the state of an mp_int structure and are assumed to
be followed for reasons of efficiency. The only exceptions are when the structure
is passed to initialization functions such as mp_init() and mp_init_copy().

1.

The value of alloc may not be less than one. That is dp always points to
a previously allocated array of digits.

. The value of used may not exceed alloc and must be greater than or

equal to zero.

n C all arrays begin at zero.
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3. The value of used implies the digit at index (used — 1) of the dp array
is non-zero. That is, leading zero digits in the most significant positions
must be trimmed.

(a) Digits in the dp array at and above the used location must be zero.

4. The value of sign must be MP_ZPOS if used is zero; this represents the
mp_int value of zero.

2.3 Argument Passing

A convention of argument passing must be adopted early on in the development
of any library. Making the function prototypes consistent will help eliminate
many headaches in the future as the library grows to significant complexity. In
LibTomMath the multiple precision integer functions accept parameters from
left to right as pointers to mp_int structures. That means that the source
(input) operands are placed on the left and the destination (output) on the
right. Consider the following examples.

mp_mul (%¥a, &b, &c); /* c =a * b */
mp_add (&a, &b, &a); /¥ a=a+Db x/
mp_sqr (&a, &b); /* b =ax*ax/

The left to right order is a fairly natural way to implement the functions
since it lets the developer read aloud the functions and make sense of them. For
example, the first function would read “multiply a and b and store in ¢”.

Certain libraries (LIP by Lenstra for instance) accept parameters the other
way around, to mimic the order of assignment expressions. That is, the desti-
nation (output) is on the left and arguments (inputs) are on the right. In truth,
it is entirely a matter of preference. In the case of LibTomMath the convention
from the MPI library has been adopted.

Another very useful design consideration, provided for in LibTomMath, is
whether to allow argument sources to also be a destination. For example, the
second example (mp_add) adds a to b and stores in a. This is an important
feature to implement since it allows the calling functions to cut down on the
number of variables it must maintain. However, to implement this feature spe-
cific care has to be given to ensure the destination is not modified before the
source is fully read.
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2.4 Return Values

A well implemented application, no matter what its purpose, should trap as
many runtime errors as possible and return them to the caller. By catching
runtime errors a library can be guaranteed to prevent undefined behaviour.
However, the end developer can still manage to cause a library to crash. For
example, by passing an invalid pointer an application may fault by dereferencing
memory not owned by the application.

In the case of LibTomMath the only errors that are checked for are related
to inappropriate inputs (division by zero for instance) and memory allocation
errors. It will not check that the mp_int passed to any function is valid nor will
it check pointers for validity. Any function that can cause a runtime error will
return an error code as an int data type with one of the following values (fig

23).

Value Meaning

MP_OKAY | The function was successful
MP_VAL One of the input value(s) was invalid
MP_MEM | The function ran out of heap memory

Figure 2.3: LibTomMath Error Codes

When an error is detected within a function it should free any memory it
allocated, often during the initialization of temporary mp_ints, and return as
soon as possible. The goal is to leave the system in the same state it was when
the function was called. Error checking with this style of API is fairly simple.

int err;

if ((err = mp_add(&a, &b, &c)) '= MP_OKAY) {
printf ("Error: %s\n", mp_error_to_string(err));
exit (EXIT_FAILURE) ;

The GMP [14] library uses C style signals to flag errors which is of ques-
tionable use. Not all errors are fatal and it was not deemed ideal by the author
of LibTomMath to force developers to have signal handlers for such cases.
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2.5 Initialization and Clearing

The logical starting point when actually writing multiple precision integer func-
tions is the initialization and clearing of the mp_int structures. These two
algorithms will be used by the majority of the higher level algorithms.

Given the basic mp_int structure an initialization routine must first allocate
memory to hold the digits of the integer. Often it is optimal to allocate a
sufficiently large pre-set number of digits even though the initial integer will
represent zero. If only a single digit were allocated quite a few subsequent re-
allocations would occur when operations are performed on the integers. There
is a tradeoff between how many default digits to allocate and how many re-
allocations are tolerable. Obviously allocating an excessive amount of digits
initially will waste memory and become unmanageable.

If the memory for the digits has been successfully allocated then the rest of
the members of the structure must be initialized. Since the initial state of an
mp_int is to represent the zero integer, the allocated digits must be set to zero.
The used count set to zero and sign set to MP_ZPOS.

2.5.1 Initializing an mp_int

An mp_int is said to be initialized if it is set to a valid, preferably default, state
such that all of the members of the structure are set to valid values. The mp_init
algorithm will perform such an action.

Algorithm mp_init.
Input. An mp_int a
Output. Allocate memory and initialize a to a known valid mp_int state.

1. Allocate memory for MP_PREC digits.

2. If the allocation failed return(MP_-MEM)

3. for n from 0 to MP_PREC — 1 do
31a, <+ 0

4. a.sign < MP_ZPOS

5. a.used + 0

6. a.alloc — MP_PREC

7. Return(MP_-OKAY)

Figure 2.4: Algorithm mp_init



20 CHAPTER 2. GETTING STARTED

Algorithm mp_init. The purpose of this function is to initialize an mp_int
structure so that the rest of the library can properly manipulte it. It is assumed
that the input may not have had any of its members previously initialized which
is certainly a valid assumption if the input resides on the stack.

Before any of the members such as sign, used or alloc are initialized the
memory for the digits is allocated. If this fails the function returns before setting
any of the other members. The MP_PREC name represents a constant used
to dictate the minimum precision of newly initialized mp_int integers. Ideally,
it is at least equal to the smallest precision number you’ll be working with.

Allocating a block of digits at first instead of a single digit has the benefit
of lowering the number of usually slow heap operations later functions will have
to perform in the future. If MP_PREC is set correctly the slack memory and
the number of heap operations will be trivial.

Once the allocation has been made the digits have to be set to zero as well
as the used, sign and alloc members initialized. This ensures that the mp_int
will always represent the default state of zero regardless of the original condition
of the input.

Remark. This function introduces the idiosyncrasy that all iterative loops,
commonly initiated with the “for” keyword, iterate incrementally when the “to”
keyword is placed between two expressions. For example, “for a from b to ¢ do”
means that a subsequent expression (or body of expressions) are to be evaluated
upto ¢ — b times so long as b < ¢. In each iteration the variable a is substituted
for a new integer that lies inclusively between b and c. If b > ¢ occured the loop
would not iterate. By contrast if the “downto” keyword were used in place of
“to” the loop would iterate decrementally.

File: bn_mp_init.c

One immediate observation of this initializtion function is that it does not
return a pointer to a mp_int structure. It is assumed that the caller has already
allocated memory for the mp_int structure, typically on the application stack.
The call to mp-init() is used only to initialize the members of the structure to
a known default state.

Here we see (line 24) the memory allocation is performed first. This allows us
to exit cleanly and quickly if there is an error. If the allocation fails the routine
will return MP_MEM to the caller to indicate there was a memory error.
The function XMALLOC is what actually allocates the memory. Technically

2Defined in the “tommath.h” header file within LibTomMath.
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XMALLOC is not a function but a macro defined in “tommath.h*“. By default,
XMALLOC will evaluate to malloc() which is the C library’s built-in memory
allocation routine.

In order to assure the mp_int is in a known state the digits must be set to
zero. On most platforms this could have been accomplished by using calloc()
instead of malloc(). However, to correctly initialize a integer type to a given
value in a portable fashion you have to actually assign the value. The for loop
(line 30) performs this required operation.

After the memory has been successfully initialized the remainder of the mem-
bers are initialized (lines 34 through 35) to their respective default states. At
this point the algorithm has succeeded and a success code is returned to the
calling function. If this function returns MP_OKAY it is safe to assume the
mp_int structure has been properly initialized and is safe to use with other
functions within the library.

2.5.2 Clearing an mp_int

When an mp_int is no longer required by the application, the memory that has
been allocated for its digits must be returned to the application’s memory pool
with the mp_clear algorithm.

Algorithm mp_clear.
Input. An mp_int a
Output. The memory for a shall be deallocated.

1. If a has been previously freed then return(MP_-OKAY).
2. for n from 0 to a.used — 1 do

21 a, <+ 0

Free the memory allocated for the digits of a.

a.used < 0

a.alloc 0

a.sign < MP_ZPOS

Return(MP_OKAY).

N o

Figure 2.5: Algorithm mp_clear

Algorithm mp_clear. This algorithm accomplishes two goals. First, it
clears the digits and the other mp_int members. This ensures that if a developer
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accidentally re-uses a cleared structure it is less likely to cause problems. The
second goal is to free the allocated memory.

The logic behind the algorithm is extended by marking cleared mp_int struc-
tures so that subsequent calls to this algorithm will not try to free the memory
multiple times. Cleared mp_ints are detectable by having a pre-defined invalid
digit pointer dp setting.

Once an mp_int has been cleared the mp_int structure is no longer in a
valid state for any other algorithm with the exception of algorithms mp_init,
mp_init_copy, mp_init_size and mp_clear.

File: bn_mp_clear.c

The algorithm only operates on the mp_int if it hasn’t been previously
cleared. The if statement (line 25) checks to see if the dp member is not
NULL. If the mp_int is a valid mp_int then dp cannot be NULL in which case
the if statement will evaluate to true.

The digits of the mp_int are cleared by the for loop (line 27) which assigns a
zero to every digit. Similar to mp_init() the digits are assigned zero instead of
using block memory operations (such as memset()) since this is more portable.

The digits are deallocated off the heap via the XFREE macro. Similar
to XMALLOC the XFREE macro actually evaluates to a standard C library
function. In this case the free() function. Since free() only deallocates the
memory the pointer still has to be reset to NULL manually (line 35).

Now that the digits have been cleared and deallocated the other members
are set to their final values (lines 36 and 37).

2.6 Maintenance Algorithms

The previous sections describes how to initialize and clear an mp_int structure.
To further support operations that are to be performed on mp_int structures
(such as addition and multiplication) the dependent algorithms must be able to
augment the precision of an mp_int and initialize mp_ints with differing initial
conditions.

These algorithms complete the set of low level algorithms required to work
with mp_int structures in the higher level algorithms such as addition, multipli-
cation and modular exponentiation.
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2.6.1 Augmenting an mp _int’s Precision

When storing a value in an mp_int structure, a sufficient number of digits must
be available to accomodate the entire result of an operation without loss of
precision. Quite often the size of the array given by the alloc member is large
enough to simply increase the used digit count. However, when the size of the
array is too small it must be re-sized appropriately to accomodate the result.
The mp_grow algorithm will provide this functionality.
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Algorithm mp_grow.
Input. An mp_int ¢ and an integer b.
Output. a is expanded to accomodate b digits.

if a.alloc > b then return(MP_OKAY)

u 4 b (mod MP_PREC)
v+b+2-MP_PREC —u

Re-allocate the array of digits a to size v

If the allocation failed then return(MP_-MEM).
for n from a.alloc to v — 1 do

6.1 a, <0

7. a.alloc < v

8. Return(MP_OKAY)

A e

Figure 2.6: Algorithm mp_grow

Algorithm mp_grow. It is ideal to prevent re-allocations from being per-
formed if they are not required (step one). This is useful to prevent mp_ints
from growing excessively in code that erroneously calls mp_grow.

The requested digit count is padded up to next multiple of MP_PREC
plus an additional MP_PREC (steps two and three). This helps prevent many
trivial reallocations that would grow an mp_int by trivially small values.

Tt is assumed that the reallocation (step four) leaves the lower a.alloc digits
of the mp_int intact. This is much akin to how the realloc function from the
standard C library works. Since the newly allocated digits are assumed to
contain undefined values they are initially set to zero.

File: bn_mp_grow.c

A quick optimization is to first determine if a memory re-allocation is re-
quired at all. The if statement (line 24) checks if the alloc member of the mp_int
is smaller than the requested digit count. If the count is not larger than alloc
the function skips the re-allocation part thus saving time.

When a re-allocation is performed it is turned into an optimal request to
save time in the future. The requested digit count is padded upwards to 2nd
multiple of MP_PREC larger than alloc (line 25). The XREALLOC function
is used to re-allocate the memory. As per the other functions XREALLOC is
actually a macro which evaluates to realloc by default. The realloc function
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leaves the base of the allocation intact which means the first alloc digits of the
mp_int are the same as before the re-allocation. All that is left is to clear the
newly allocated digits and return.

Note that the re-allocation result is actually stored in a temporary pointer
tmp. This is to allow this function to return an error with a valid pointer.
Earlier releases of the library stored the result of XREALLOC into the mp_int
a. That would result in a memory leak if XREALLOC ever failed.

2.6.2 Initializing Variable Precision mp_ints

Occasionally the number of digits required will be known in advance of an ini-
tialization, based on, for example, the size of input mp_ints to a given algorithm.
The purpose of algorithm mp_init_size is similar to mp_init except that it will
allocate at least a specified number of digits.

Algorithm mp_init_size.
Input. An mp_int a and the requested number of digits b.
Output. a is initialized to hold at least b digits.

1. w 4= b (mod MP_PREC)

2. v+ b+2-MP_PREC —u

3. Allocate v digits.

4. for n from 0 to v — 1 do
4.1 an, <0

5. a.sign < MP_ZPOS

6. a.used < 0

7. a.alloc + v

8. Return(MP_OKAY')

Figure 2.7: Algorithm mp_init_size

Algorithm mp_init_size. This algorithm will initialize an mp_int structure
a like algorithm mp_init with the exception that the number of digits allocated
can be controlled by the second input argument b. The input size is padded
upwards so it is a multiple of MP_PREC plus an additional MP_PREC digits.
This padding is used to prevent trivial allocations from becoming a bottleneck
in the rest of the algorithms.

Like algorithm mp_init, the mp_int structure is initialized to a default state
representing the integer zero. This particular algorithm is useful if it is known
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ahead of time the approximate size of the input. If the approximation is correct
no further memory re-allocations are required to work with the mp_int.

File: bn_mp_init_size.c

The number of digits b requested is padded (line 24) by first augmenting it
to the next multiple of MP_PREC and then adding MP_PREC to the result.
If the memory can be successfully allocated the mp_int is placed in a default
state representing the integer zero. Otherwise, the error code MP_MEM will
be returned (line 29).

The digits are allocated and set to zero at the same time with the calloc()
function (line @25 XCALLOC@). The used count is set to zero, the alloc
count set to the padded digit count and the sign flag set to MP_ZPOS to
achieve a default valid mp_int state (lines 33, 34 and 35). If the function returns
succesfully then it is correct to assume that the mp_int structure is in a valid
state for the remainder of the functions to work with.

2.6.3 Multiple Integer Initializations and Clearings

Occasionally a function will require a series of mp_int data types to be made
available simultaneously. The purpose of algorithm mp_init_multi is to initialize
a variable length array of mp_int structures in a single statement. It is essentially
a shortcut to multiple initializations.
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Algorithm mp_init_multi.
Input. Variable length array Vi, of mp_int variables of length k.
Output. The array is initialized such that each mp_int of Vj is ready to use.

1. for n from 0 to £ — 1 do
1.1. Initialize the mp_int V,, (mp-init)
1.2. If initialization failed then do
1.2.1. for j from 0 to n do
1.2.1.1. Free the mp_int V; (mp_clear)
1.2.2. Return(MP_MEM)
2. Return(MP_OKAY)

Figure 2.8: Algorithm mp_init_multi

Algorithm mp_init_multi. The algorithm will initialize the array of mp_int
variables one at a time. If a runtime error has been detected (step 1.2) all of
the previously initialized variables are cleared. The goal is an “all or nothing”
initialization which allows for quick recovery from runtime errors.

File: bn_mp_init_multi.c

This function intializes a variable length list of mp_int structure pointers.
However, instead of having the mp_int structures in an actual C array they are
simply passed as arguments to the function. This function makes use of the
“...7 argument syntax of the C programming language. The list is terminated
with a final NULL argument appended on the right.

The function uses the “stdarg.h” wva functions to step portably through the
arguments to the function. A count n of succesfully initialized mp_int structures
is maintained (line 48) such that if a failure does occur, the algorithm can
backtrack and free the previously initialized structures (lines 28 to 47).

2.6.4 Clamping Excess Digits

When a function anticipates a result will be n digits it is simpler to assume this is
true within the body of the function instead of checking during the computation.
For example, a multiplication of a ¢ digit number by a j digit produces a result
of at most 7 + j digits. It is entirely possible that the result is ¢ + j — 1 though,
with no final carry into the last position. However, suppose the destination had



28 CHAPTER 2. GETTING STARTED

to be first expanded (via mp_grow) to accomodate ¢ + 7 — 1 digits than further
expanded to accomodate the final carry. That would be a considerable waste of
time since heap operations are relatively slow.

The ideal solution is to always assume the result is i+ 7 and fix up the used
count after the function terminates. This way a single heap operation (at most)
is required. However, if the result was not checked there would be an excess
high order zero digit.

For example, suppose the product of two integers was =, = (02,,—1Zn—_2...0) 3.
The leading zero digit will not contribute to the precision of the result. In fact,
through subsequent operations more leading zero digits would accumulate to
the point the size of the integer would be prohibitive. As a result even though
the precision is very low the representation is excessively large.

The mp_clamp algorithm is designed to solve this very problem. It will
trim high-order zeros by decrementing the used count until a non-zero most
significant digit is found. Also in this system, zero is considered to be a positive

number which means that if the used count is decremented to zero, the sign
must be set to MP_ZPOS.

Algorithm mp_clamp.
Input. An mp_int a
Output. Any excess leading zero digits of a are removed

1. while a.used > 0 and a4 yseq—1 = 0 do
1.1 a.used < a.used — 1

2. if a.used = 0 then do
2.1 a.sign «+ MP_ZPOS

Figure 2.9: Algorithm mp_clamp

Algorithm mp_clamp. As can be expected this algorithm is very simple.
The loop on step one is expected to iterate only once or twice at the most. For
example, this will happen in cases where there is not a carry to fill the last
position. Step two fixes the sign for when all of the digits are zero to ensure
that the mp_int is valid at all times.

File: bn_mp_clamp.c
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Note on line 28 how to test for the used count is made on the left of the &&
operator. In the C programming language the terms to && are evaluated left
to right with a boolean short-circuit if any condition fails. This is important
since if the used is zero the test on the right would fetch below the array. That
is obviously undesirable. The parenthesis on line 31 is used to make sure the
used count is decremented and not the pointer “a”.

Exercises

[1] Discuss the relevance of the used member of the mp_int structure.
[1] Discuss the consequences of not using padding when performing allocations.

[2] Estimate an ideal value for MP_PREC when performing 1024-bit RSA
encryption when 8 = 228,

[1] Discuss the relevance of the algorithm mp_clamp. What does it prevent?

[1] Give an example of when the algorithm mp_init_copy might be useful.
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Chapter 3

Basic Operations

3.1 Introduction

In the previous chapter a series of low level algorithms were established that
dealt with initializing and maintaining mp_int structures. This chapter will
discuss another set of seemingly non-algebraic algorithms which will form the
low level basis of the entire library. While these algorithm are relatively trivial
it is important to understand how they work before proceeding since these
algorithms will be used almost intrinsically in the following chapters.

The algorithms in this chapter deal primarily with more “programmer” re-
lated tasks such as creating copies of mp_int structures, assigning small values
to mp_int structures and comparisons of the values mp_int structures represent.

3.2 Assigning Values to mp_int Structures

3.2.1 Copying an mp_int

Assigning the value that a given mp_int structure represents to another mp_int
structure shall be known as making a copy for the purposes of this text. The
copy of the mp_int will be a separate entity that represents the same value as the
mp_int it was copied from. The mp_copy algorithm provides this functionality.

31
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Algorithm mp_copy.
Input. An mp_int a and b.
Output. Store a copy of a in b.

1. If b.alloc < a.used then grow b to a.used digits. (mp-grow)
2. for n from 0 to a.used — 1 do
2.1b, < a,
3. for n from a.used to b.used — 1 do
3.1b,+0
4. b.used < a.used
5. b.sign < a.sign
6. return(MP_OKAY')

Figure 3.1: Algorithm mp_copy

Algorithm mp_copy. This algorithm copies the mp_int a such that upon
succesful termination of the algorithm the mp_int b will represent the same
integer as the mp_int a. The mp_int b shall be a complete and distinct copy of
the mp_int a meaing that the mp_int a can be modified and it shall not affect
the value of the mp_int b.

If b does not have enough room for the digits of a it must first have its
precision augmented via the mp_grow algorithm. The digits of a are copied over
the digits of b and any excess digits of b are set to zero (step two and three).
The used and sign members of a are finally copied over the respective members
of b.

Remark. This algorithm also introduces a new idiosyncrasy that will be
used throughout the rest of the text. The error return codes of other algorithms
are not explicitly checked in the pseudo-code presented. For example, in step
one of the mp_copy algorithm the return of mp_grow is not explicitly checked to
ensure it succeeded. Text space is limited so it is assumed that if a algorithm
fails it will clear all temporarily allocated mp_ints and return the error code
itself. However, the C code presented will demonstrate all of the error handling
logic required to implement the pseudo-code.

File: bn_mp_copy.c

Occasionally a dependent algorithm may copy an mp_int effectively into itself
such as when the input and output mp_int structures passed to a function are
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one and the same. For this case it is optimal to return immediately without
copying digits (line 25).

The mp_int b must have enough digits to accomodate the used digits of the
mp_int a. If b.alloc is less than a.used the algorithm mp_grow is used to augment
the precision of b (lines 30 to 33). In order to simplify the inner loop that copies
the digits from a to b, two aliases tmpa and tmpb point directly at the digits
of the mp_ints a and b respectively. These aliases (lines 43 and 46) allow the
compiler to access the digits without first dereferencing the mp_int pointers and
then subsequently the pointer to the digits.

After the aliases are established the digits from a are copied into b (lines
49 to 51) and then the excess digits of b are set to zero (lines 54 to 56). Both
“for” loops make use of the pointer aliases and in fact the alias for b is carried
through into the second “for” loop to clear the excess digits. This optimization
allows the alias to stay in a machine register fairly easy between the two loops.

Remarks. The use of pointer aliases is an implementation methodology
first introduced in this function that will be used considerably in other functions.
Technically, a pointer alias is simply a short hand alias used to lower the number
of pointer dereferencing operations required to access data. For example, a for
loop may resemble

for (x = 0; x < 100; x++) {
a->num[4]->dp[x] = 0;
}

This could be re-written using aliases as

mp_digit *tmpa;

a = a->num[4]->dp;

for (x = 0; x < 100; x++) {
*a++ = 0;

}

In this case an alias is used to access the array of digits within an mp_int
structure directly. It may seem that a pointer alias is strictly not required as
a compiler may optimize out the redundant pointer operations. However, there
are two dominant reasons to use aliases.

The first reason is that most compilers will not effectively optimize pointer
arithmetic. For example, some optimizations may work for the Microsoft Visual
C++ compiler (MSVC) and not for the GNU C Compiler (GCC). Also some
optimizations may work for GCC and not MSVC. As such it is ideal to find a
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common ground for as many compilers as possible. Pointer aliases optimize the
code considerably before the compiler even reads the source code which means
the end compiled code stands a better chance of being faster.

The second reason is that pointer aliases often can make an algorithm simpler
to read. Consider the first “for” loop of the function mp_copy() re-written to
not use pointer aliases.

/* copy all the digits */
for (n = 0; n < a->used; n++) {
b->dp[n] = a->dp[n];

}

Whether this code is harder to read depends strongly on the individual.
However, it is quantifiably slightly more complicated as there are four variables
within the statement instead of just two.

Nested Statements

Another commonly used technique in the source routines is that certain sections
of code are nested. This is used in particular with the pointer aliases to highlight
code phases. For example, a Comba multiplier (discussed in chapter six) will
typically have three different phases. First the temporaries are initialized, then
the columns calculated and finally the carries are propagated. In this example
the middle column production phase will typically be nested as it uses temporary
variables and aliases the most.

The nesting also simplies the source code as variables that are nested are
only valid for their scope. As a result the various temporary variables required
do not propagate into other sections of code.

3.2.2 Creating a Clone

Another common operation is to make a local temporary copy of an mp_int
argument. To initialize an mp_int and then copy another existing mp_int into
the newly intialized mp_int will be known as creating a clone. This is useful
within functions that need to modify an argument but do not wish to actually
modify the original copy. The mp_init_copy algorithm has been designed to help
perform this task.

Algorithm mp_init_copy. This algorithm will initialize an mp_int variable
and copy another previously initialized mp_int variable into it. As such this
algorithm will perform two operations in one step.
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Algorithm mp_init_copy.
Input. An mp_int a and b
Output. « is initialized to be a copy of b.

1. Init a. (mp-init)
2. Copy b to a. (mp-copy)
3. Return the status of the copy operation.

Figure 3.2: Algorithm mp_init_copy

File: bn_mp_init_copy.c

This will initialize a and make it a verbatim copy of the contents of b. Note
that a will have its own memory allocated which means that b may be cleared
after the call and a will be left intact.

3.3 Zeroing an Integer

Reseting an mp_int to the default state is a common step in many algorithms.
The mp_zero algorithm will be the algorithm used to perform this task.

Algorithm mp_zero.
Input. An mp_int a
Output. Zero the contents of a

1. a.used + 0

2. a.sign < MP_ZPOS

3. for n from 0 to a.alloc — 1 do
31a,<«0

Figure 3.3: Algorithm mp_zero

Algorithm mp_zero. This algorithm simply resets a mp_int to the default
state.

File: bn_mp_zero.c
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After the function is completed, all of the digits are zeroed, the used count
is zeroed and the sign variable is set to MP_ZPOS.

3.4 Sign Manipulation

3.4.1 Absolute Value

With the mp_int representation of an integer, calculating the absolute value is
trivial. The mp_abs algorithm will compute the absolute value of an mp_int.

Algorithm mp_abs.
Input. An mp_int a
Output. Computes b = |a]

1. Copy a to b. (mp-copy)

2. If the copy failed return(MP_-MEM).
3. b.sign < MP_ZPOS

4. Return(MP_-OKAY')

Figure 3.4: Algorithm mp_abs

Algorithm mp_abs. This algorithm computes the absolute of an mp_int
input. First it copies a over b. This is an example of an algorithm where the
check in mp_copy that determines if the source and destination are equal proves
useful. This allows, for instance, the developer to pass the same mp_int as the
source and destination to this function without addition logic to handle it.

File: bn_mp_abs.c

This fairly trivial algorithm first eliminates non-required duplications (line
28) and then sets the sign flag to MP_ZPOS.

3.4.2 Integer Negation

With the mp_int representation of an integer, calculating the negation is also

trivial. The mp_neg algorithm will compute the negative of an mp_int input.
Algorithm mp_neg. This algorithm computes the negation of an input.

First it copies a over b. If a has no used digits then the algorithm returns
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Algorithm mp_neg.
Input. An mp_int a
Output. Computes b = —a

1. Copy a to b. (mp-copy)
2. If the copy failed return(MP_-MEM).
3. If a.used = 0 then return(MP_-OKAY).
4. If a.sign = MP_ZPOS then do

4.1 b.sign = MP_NEQG.
5. else do

5.1 b.sign = M P_ZPOS.
6. Return(MP-OKAY')

Figure 3.5: Algorithm mp_neg

immediately. Otherwise it flips the sign flag and stores the result in b. Note
that if @ had no digits then it must be positive by definition. Had step three
been omitted then the algorithm would return zero as negative.

File: bn_mp_neg.c

Like mp_abs() this function avoids non-required duplications (line 22) and
then sets the sign. We have to make sure that only non-zero values get a sign
of MP_NEG. If the mp_int is zero than the sign is hard—coded to MP_ZPOS.

3.5 Small Constants

3.5.1 Setting Small Constants

Often a mp_int must be set to a relatively small value such as 1 or 2. For these
cases the mp_set algorithm is useful.
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Algorithm mp_set.
Input. An mp_int ¢ and a digit b
Output. Make a equivalent to b

1. Zero a (mp-zero).
2. ag < b (mod p)

1 ifag>0
3. a.used(—{ 0 ifag—=0

Figure 3.6: Algorithm mp_set

Algorithm mp_set. This algorithm sets a mp_int to a small single digit
value. Step number 1 ensures that the integer is reset to the default state. The
single digit is set (modulo ) and the used count is adjusted accordingly.

File: bn_mp_set.c

First we zero (line 21) the mp-int to make sure that the other members
are initialized for a small positive constant. mp_zero() ensures that the sign is
positive and the used count is zero. Next we set the digit and reduce it modulo
B (line 22). After this step we have to check if the resulting digit is zero or not.
If it is not then we set the used count to one, otherwise to zero.

We can quickly reduce modulo 3 since it is of the form 2* and a quick binary
AND operation with 2* — 1 will perform the same operation.

One important limitation of this function is that it will only set one digit.
The size of a digit is not fixed, meaning source that uses this function should
take that into account. Only trivially small constants can be set using this
function.

3.5.2 Setting Large Constants

To overcome the limitations of the mp_set algorithm the mp_set_int algorithm is
ideal. It accepts a “long” data type as input and will always treat it as a 32-bit
integer.

Algorithm mp_set_int. The algorithm performs eight iterations of a sim-
ple loop where in each iteration four bits from the source are added to the
mp-int. Step 2.1 will multiply the current result by sixteen making room for
four more bits in the less significant positions. In step 2.2 the next four bits from
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Algorithm mp_set_int.
Input. An mp_int a¢ and a “long” integer b
Output. Make a equivalent to b

1. Zero a (mp_zero)
2. for n from 0 to 7 do
2.1 a4+ a-16 (mp-mul2d)
2.2 u <+ [b/247=™) | (mod 16)
2.3 ag < ag+u
2.4 a.used < a.used + 1
3. Clamp excess used digits (mp_clamp)

Figure 3.7: Algorithm mp_set_int

the source are extracted and are added to the mp_int. The used digit count
is incremented to reflect the addition. The used digit counter is incremented
since if any of the leading digits were zero the mp_int would have zero digits
used and the newly added four bits would be ignored.

Excess zero digits are trimmed in steps 2.1 and 3 by using higher level
algorithms mp_mul2d and mp_clamp.

File: bn_mp_set_int.c

This function sets four bits of the number at a time to handle all practical
DIGIT _BIT sizes. The weird addition on line 39 ensures that the newly added
in bits are added to the number of digits. While it may not seem obvious as
to why the digit counter does not grow exceedingly large it is because of the
shift on line 28 as well as the call to mp_clamp() on line 41. Both functions will
clamp excess leading digits which keeps the number of used digits low.

3.6 Comparisons

3.6.1 Unsigned Comparisions

Comparing a multiple precision integer is performed with the exact same al-
gorithm used to compare two decimal numbers. For example, to compare
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1,234 to 1,264 the digits are extracted by their positions. That is we com-
pare 1-103 +2-102+3-10"+4-10° to 1-10% +2-10%2 +6- 10" +4 - 10° by
comparing single digits at a time starting with the highest magnitude positions.
If any leading digit of one integer is greater than a digit in the same position of
another integer then obviously it must be greater.

The first comparision routine that will be developed is the unsigned magni-
tude compare which will perform a comparison based on the digits of two mp_int
variables alone. It will ignore the sign of the two inputs. Such a function is use-
ful when an absolute comparison is required or if the signs are known to agree
in advance.

To facilitate working with the results of the comparison functions three con-
stants are required.

Constant | Meaning
MP_GT | Greater Than
MP_EQ | Equal To
MP_LT | Less Than

Figure 3.8: Comparison Return Codes

Algorithm mp_cmp_mag.
Input. Two mp_ints a and b.
Output. Unsigned comparison results (a to the left of b).

1. If a.used > b.used then return(MP_GT)
2. If a.used < b.used then return(MP_LT)
3. for n from a.used — 1 to 0 do

3.1 if ay, > by, then return(MP_-GT)

3.2 if a,, < by, then return(MP_LT)
4. Return(MP_EQ)

Figure 3.9: Algorithm mp_cmp_mag

Algorithm mp_cmp_mag. By saying “a to the left of ” it is meant that
the comparison is with respect to a, that is if a is greater than b it will return
MP_GT and similar with respect to when a = b and a < b. The first two
steps compare the number of digits used in both a and b. Obviously if the
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digit counts differ there would be an imaginary zero digit in the smaller number
where the leading digit of the larger number is. If both have the same number
of digits than the actual digits themselves must be compared starting at the
leading digit.

By step three both inputs must have the same number of digits so its safe to
start from either a.used — 1 or b.used — 1 and count down to the zero’th digit. If
after all of the digits have been compared, no difference is found, the algorithm
returns MP_EQ.

File: bn_mp_cmp_mag.c

The two if statements (lines 25 and 29) compare the number of digits in
the two inputs. These two are performed before all of the digits are compared
since it is a very cheap test to perform and can potentially save considerable
time. The implementation given is also not valid without those two statements.
b.alloc may be smaller than a.used, meaning that undefined values will be read
from b past the end of the array of digits.

3.6.2 Signed Comparisons

Comparing with sign considerations is also fairly critical in several routines
(division for example). Based on an unsigned magnitude comparison a trivial
signed comparison algorithm can be written.

Algorithm mp_cmp.
Input. Two mp_ints ¢ and b
Output. Signed Comparison Results (a to the left of b)

1. if a.sign = MP_NEG and b.sign = M P_ZPOS then return(MP_LT)
2. if a.sign = M P_ZPOS and b.sign = M P_NEG then return(MP_-GT)
3. if a.sign = M P_NEG then

3.1 Return the unsigned comparison of b and a (mp_cmp_mag)
4 Otherwise

4.1 Return the unsigned comparison of a and b

Figure 3.10: Algorithm mp_cmp

Algorithm mp_cmp. The first two steps compare the signs of the two
inputs. If the signs do not agree then it can return right away with the ap-
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propriate comparison code. When the signs are equal the digits of the inputs
must be compared to determine the correct result. In step three the unsigned
comparision flips the order of the arguments since they are both negative. For
instance, if —a > —b then |a| < |b|]. Step number four will compare the two
when they are both positive.

File: bn_mp_cmp.c

The two if statements (lines 23 and 24) perform the initial sign comparison.
If the signs are not the equal then which ever has the positive sign is larger.
The inputs are compared (line 32) based on magnitudes. If the signs were both
negative then the unsigned comparison is performed in the opposite direction
(line 34). Otherwise, the signs are assumed to be both positive and a forward
direction unsigned comparison is performed.

Exercises
[2] Modify algorithm mp_set_int to accept as input a variable length array of bits.
[3] Give the probability that algorithm mp_cmp_mag will have to compare k digits
of two random digits (of equal magnitude) before a difference is found.
[1] Suggest a simple method to speed up the implementation of mp_cmp_mag based

on the observations made in the previous problem.



Chapter 4

Basic Arithmetic

4.1 Introduction

At this point algorithms for initialization, clearing, zeroing, copying, compar-
ing and setting small constants have been established. The next logical set of
algorithms to develop are addition, subtraction and digit shifting algorithms.
These algorithms make use of the lower level algorithms and are the cruicial
building block for the multiplication algorithms. It is very important that these
algorithms are highly optimized. On their own they are simple O(n) algorithms
but they can be called from higher level algorithms which easily places them at
O(n?) or even O(n3) work levels.

All of the algorithms within this chapter make use of the logical bit shift
operations denoted by << and >> for left and right logical shifts respectively. A
logical shift is analogous to sliding the decimal point of radix-10 representations.
For example, the real number 0.9345 is equivalent to 93.45% which is found
by sliding the the decimal two places to the right (multiplying by 82 = 10%).
Algebraically a binary logical shift is equivalent to a division or multiplication
by a power of two. For example, a << k = a - 2¥ while a >> k = |a/2*|.

One significant difference between a logical shift and the way decimals are
shifted is that digits below the zero’th position are removed from the number.
For example, consider 11015 >> 1 using decimal notation this would produce
110.15. However, with a logical shift the result is 110s.

43
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4.2 Addition and Subtraction

In common twos complement fixed precision arithmetic negative numbers are
easily represented by subtraction from the modulus. For example, with 32-bit
integers a — b (mod 23?) is the same as a + (222 — b) (mod 23?) since 232 =
0 (mod 232). As a result subtraction can be performed with a trivial series of
logical operations and an addition.

However, in multiple precision arithmetic negative numbers are not repre-
sented in the same way. Instead a sign flag is used to keep track of the sign of the
integer. As a result signed addition and subtraction are actually implemented
as conditional usage of lower level addition or subtraction algorithms with the
sign fixed up appropriately.

The lower level algorithms will add or subtract integers without regard to
the sign flag. That is they will add or subtract the magnitude of the integers
respectively.

4.2.1 Low Level Addition

An unsigned addition of multiple precision integers is performed with the same
long-hand algorithm used to add decimal numbers. That is to add the trailing
digits first and propagate the resulting carry upwards. Since this is a lower level
algorithm the name will have a “s_” prefix. Historically that convention stems
from the MPI library where “s_” stood for static functions that were hidden
from the developer entirely.
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Algorithm s_mp_add.
Input. Two mp_ints a and b
Output. The unsigned addition ¢ = |a| + |b|.

1. if a.used > b.used then
1.1 min < b.used
1.2 max < a.used
13z <+ a
2. else
2.1 min < a.used
2.2 max < b.used
23x+ b
. If c.alloc < max + 1 then grow c to hold at least mazx + 1 digits (mp-_grow)
. oldused < c.used
c.used < max + 1
u<+ 0
. for n from 0 to min — 1 do
71 ¢cn < an + by +u
T2 u < cn >>1g9(P)
7.3 ¢p < ¢, (mod B)
8. if min # max then do
8.1 for n from min to max — 1 do
811 cn +—xpn+u
8.1.2 u < ¢ >> 1g(B)
8.1.3 ¢n < ¢pn (mod B)
9. Crmaz < U
10. if olduse > max then
10.1 for n from max + 1 to oldused — 1 do
10.1.1 ¢, < 0
11. Clamp excess digits in c¢. (mp_clamp)
12. Return(MP-OKAY')

N o Ut w

Figure 4.1: Algorithm s_mp_add

Algorithm s_mp_add. This algorithm is loosely based on algorithm 14.7
of HAC [2], pp. 594] but has been extended to allow the inputs to have different
magnitudes. Coincidentally the description of algorithm A in Knuth [Tl pp. 266]
shares the same deficiency as the algorithm from [2]. Even the MIX pseudo
machine code presented by Knuth [IL pp. 266-267] is incapable of handling
inputs which are of different magnitudes.

The first thing that has to be accomplished is to sort out which of the two
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inputs is the largest. The addition logic will simply add all of the smallest input
to the largest input and store that first part of the result in the destination.
Then it will apply a simpler addition loop to excess digits of the larger input.

The first two steps will handle sorting the inputs such that min and max
hold the digit counts of the two inputs. The variable x will be an mp_int alias
for the largest input or the second input b if they have the same number of
digits. After the inputs are sorted the destination c¢ is grown as required to
accomodate the sum of the two inputs. The original used count of ¢ is copied
and set to the new used count.

At this point the first addition loop will go through as many digit positions
that both inputs have. The carry variable p is set to zero outside the loop.
Inside the loop an “addition” step requires three statements to produce one
digit of the summand. First two digits from a and b are added together along
with the carry u. The carry of this step is extracted and stored in p and finally
the digit of the result ¢, is truncated within the range 0 < ¢,, < (.

Now all of the digit positions that both inputs have in common have been
exhausted. If min # max then x is an alias for one of the inputs that has more
digits. A simplified addition loop is then used to essentially copy the remaining
digits and the carry to the destination.

The final carry is stored in ¢4, and digits above max upto oldused are
zeroed which completes the addition.

File: bn_s_.mp_add.c

We first sort (lines 28 to 36) the inputs based on magnitude and determine
the min and max variables. Note that x is a pointer to an mp_int assigned to
the largest input, in effect it is a local alias. Next we grow the destination (38
to 42) ensure that it can accomodate the result of the addition.

Similar to the implementation of mp_copy this function uses the braced code
and local aliases coding style. The three aliases that are on lines 56, 59 and 62
represent the two inputs and destination variables respectively. These aliases are
used to ensure the compiler does not have to dereference a, b or ¢ (respectively)
to access the digits of the respective mp_int.

The initial carry u will be cleared (line 65), note that w is of type mp_digit
which ensures type compatibility within the implementation. The initial addi-
tion (line 66 to 75) adds digits from both inputs until the smallest input runs
out of digits. Similarly the conditional addition loop (line 81 to 90) adds the
remaining digits from the larger of the two inputs. The addition is finished with
the final carry being stored in tmpc (line 94). Note the “++” operator within
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the same expression. After line 94, tmpc will point to the c.used’th digit of the
mp-int ¢. This is useful for the next loop (line 97 to 99) which set any old upper
digits to zero.

4.2.2 Low Level Subtraction

The low level unsigned subtraction algorithm is very similar to the low level
unsigned addition algorithm. The principle difference is that the unsigned sub-
traction algorithm requires the result to be positive. That is when computing
a — b the condition |a| > |b] must be met for this algorithm to function prop-
erly. Keep in mind this low level algorithm is not meant to be used in higher
level algorithms directly. This algorithm as will be shown can be used to create
functional signed addition and subtraction algorithms.

For this algorithm a new variable is required to make the description simpler.
Recall from section 1.3.1 that a mp_digit must be able to represent the range
0 <z < 28 for the algorithms to work correctly. However, it is allowable that a
mp_digit represent a larger range of values. For this algorithm we will assume
that the variable v represents the number of bits available in a mp_digit (this
implies 27 > ().

For example, the default for LibTomMath is to use a “unsigned long” for the
mp_digit “type” while 3 = 228, In ISO C an “unsigned long” data type must
be able to represent 0 < x < 232 meaning that in this case v > 32.
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Algorithm s_mp_sub.
Input. Two mp-ints a and b (|a] > |b|)
Output. The unsigned subtraction ¢ = |a| — |b].

. min < b.used
mazx < a.used
. If c.alloc < max then grow c to hold at least max digits. (mp-grow)
. oldused <+ c.used
c.used < max
u<+ 0
. for n from 0 to min — 1 do
71 ¢n <—an — by, —u
T2u<cp>>(y—1)
7.3 ¢n + ¢, (mod B)
8. if min < max then do
8.1 for n from min to max — 1 do
811 cn +—an —u
8l2u<+ ¢y >>(y—1)
8.1.3 ¢n < ¢pn (mod B)
9. if oldused > max then do
9.1 for n from max to oldused — 1 do
9.1.1¢, <0
10. Clamp excess digits of c¢. (mp_clamp).
11. Return(MP_OKAY).

N O U W e

Figure 4.2: Algorithm s_mp_sub

Algorithm s_mp_sub. This algorithm performs the unsigned subtraction
of two mp_int variables under the restriction that the result must be positive.
That is when passing variables a and b the condition that |a| > |b] must be
met for the algorithm to function correctly. This algorithm is loosely based on
algorithm 14.9 [2 pp. 595] and is similar to algorithm S in [T, pp. 267] as well.
As was the case of the algorithm s_mp_add both other references lack discussion
concerning various practical details such as when the inputs differ in magnitude.

The initial sorting of the inputs is trivial in this algorithm since a is guar-
anteed to have at least the same magnitude of b. Steps 1 and 2 set the min
and max variables. Unlike the addition routine there is guaranteed to be no
carry which means that the final result can be at most max digits in length as
opposed to max + 1. Similar to the addition algorithm the used count of ¢ is
copied locally and set to the maximal count for the operation.
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The subtraction loop that begins on step seven is essentially the same as
the addition loop of algorithm s_mp_add except single precision subtraction is
used instead. Note the use of the 7 variable to extract the carry (also known
as the borrow) within the subtraction loops. Under the assumption that two’s
complement single precision arithmetic is used this will successfully extract the
desired carry.

For example, consider subtracting 01015 from 01002 where v =4 and § = 2.
The least significant bit will force a carry upwards to the third bit which will
be set to zero after the borrow. After the very first bit has been subtracted
4 —1 = 00115 will remain, When the third bit of 01015 is subtracted from the
result it will cause another carry. In this case though the carry will be forced
to propagate all the way to the most significant bit.

Recall that § < 27. This means that if a carry does occur just before the
lg(B)’th bit it will propagate all the way to the most significant bit. Thus, the
high order bits of the mp_digit that are not part of the actual digit will either
be all zero, or all one. All that is needed is a single zero or one bit for the carry.
Therefore a single logical shift right by v — 1 positions is sufficient to extract
the carry. This method of carry extraction may seem awkward but the reason
for it becomes apparent when the implementation is discussed.

If b has a smaller magnitude than a then step 9 will force the carry and copy
operation to propagate through the larger input a into ¢. Step 10 will ensure
that any leading digits of ¢ above the max’th position are zeroed.

File: bn_s_mp_sub.c

Like low level addition we “sort” the inputs. Except in this case the sorting
is hardcoded (lines 25 and 26). In reality the min and max variables are only
aliases and are only used to make the source code easier to read. Again the
pointer alias optimization is used within this algorithm. The aliases tmpa,
tmpb and tmpc are initialized (lines 42, 43 and 44) for a, b and ¢ respectively.

The first subtraction loop (lines 47 through 61) subtract digits from both
inputs until the smaller of the two inputs has been exhausted. As remarked
earlier there is an implementation reason for using the “awkward” method of
extracting the carry (line 57). The traditional method for extracting the carry
would be to shift by lg(f) positions and logically AND the least significant bit.
The AND operation is required because all of the bits above the 1g(3)’th bit
will be set to one after a carry occurs from subtraction. This carry extraction
requires two relatively cheap operations to extract the carry. The other method
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is to simply shift the most significant bit to the least significant bit thus ex-
tracting the carry with a single cheap operation. This optimization only works
on twos compliment machines which is a safe assumption to make.

If a has a larger magnitude than b an additional loop (lines 64 through 73)
is required to propagate the carry through a and copy the result to c.

4.2.3 High Level Addition

Now that both lower level addition and subtraction algorithms have been estab-
lished an effective high level signed addition algorithm can be established. This
high level addition algorithm will be what other algorithms and developers will
use to perform addition of mp_int data types.

Recall from section 5.2 that an mp_int represents an integer with an unsigned
mantissa (the array of digits) and a sign flag. A high level addition is actually
performed as a series of eight separate cases which can be optimized down to
three unique cases.

Algorithm mp_add.
Input. Two mp_ints @ and b
Output. The signed addition ¢ = a + b.

1. if a.sign = b.sign then do
1.1 c.sign < a.sign
1.2 ¢ < |a| + |b| (s-mp_add)
2. else do
2.1 if |a| < |b| then do (mp_cmp_mag)
2.1.1 c.sign < b.sign
2.1.2 ¢ + |b] — |a| (s-mp-sub)
2.2 else do
2.2.1 c.sign < a.sign
2.2.2 ¢ < |a|] —|b]
3. Return(MP_OKAY).

Figure 4.3: Algorithm mp_add

Algorithm mp_add. This algorithm performs the signed addition of two
mp_int variables. There is no reference algorithm to draw upon from either
[1] or [2] since they both only provide unsigned operations. The algorithm is
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fairly straightforward but restricted since subtraction can only produce positive
results.

Sign of a | Sign of b | |a| > |b| | Unsigned Operation | Result Sign Flag
+ + Yes c=a+b a.sign
+ + No c=a+b a.sign
- - Yes c=a+b a.sign
- - No c=a+b a.sign
+ - No c=b—a b.sign
- + No c=b—a b.sign
+ - Yes c=a—>b a.sign
— + Yes c=a—>b a.sign

Figure 4.4: Addition Guide Chart

Figure 4] lists all of the eight possible input combinations and is sorted to
show that only three specific cases need to be handled. The return code of the
unsigned operations at step 1.2, 2.1.2 and 2.2.2 are forwarded to step three to
check for errors. This simplifies the description of the algorithm considerably
and best follows how the implementation actually was achieved.

Also note how the sign is set before the unsigned addition or subtrac-
tion is performed. Recall from the descriptions of algorithms s_mp_add and
s_mp_sub that the mp_clamp function is used at the end to trim excess digits.
The mp_clamp algorithm will set the sign to MP_ZPOS when the used digit
count reaches zero.

For example, consider performing —a + a with algorithm mp_add. By the
description of the algorithm the sign is set to MP_INEG which would produce
a result of —0. However, since the sign is set first then the unsigned addition
is performed the subsequent usage of algorithm mp_clamp within algorithm
s_mp_add will force —0 to become 0.

File: bn_mp_add.c

The source code follows the algorithm fairly closely. The most notable new
source code addition is the usage of the res integer variable which is used to
pass result of the unsigned operations forward. Unlike in the algorithm, the
variable res is merely returned as is without explicitly checking it and returning
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the constant MP_OKAY. The observation is this algorithm will succeed or fail
only if the lower level functions do so. Returning their return code is sufficient.

4.2.4 High Level Subtraction

The high level signed subtraction algorithm is essentially the same as the high
level signed addition algorithm.
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Algorithm mp_sub.
Input. Two mp_ints a and b
Output. The signed subtraction ¢ = a — b.

1. if a.sign # b.sign then do
1.1 c.sign < a.sign
1.2 ¢+ |a| + |b| (s-mp_add)
2. else do
2.1 if |a| > |b] then do (mp_cmp_mag)
2.1.1 c.sign < a.sign
2.1.2 ¢ < |a| — |b| (s-mp-_subd)
2.2 else do
9.9.1 c.sign « MP_ZPOS ifa.sign=MP_NEG
e MP_NEG  otherwise
2.2.2 ¢+ |b| — |a|
3. Return(MP_OKAY).

Figure 4.5: Algorithm mp_sub

Algorithm mp_sub. This algorithm performs the signed subtraction of
two inputs. Similar to algorithm mp_add there is no reference in either [I] or
[2]. Also this algorithm is restricted by algorithm s_mp_sub. Chart lists the
eight possible inputs and the operations required.

Sign of a | Sign of b | |a| > |b| | Unsigned Operation | Result Sign Flag
+ — Yes c=a+b a.sign
+ — No c=a+b a.sign
— + Yes c=a+b a.sign
— + No c=a+b a.sign
+ + Yes c=a-—b a.sign
- - Yes c=a-—>b a.sign
+ + No c=b—a opposite of a.sign
- - No c=b—a opposite of a.sign

Figure 4.6: Subtraction Guide Chart
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Similar to the case of algorithm mp_add the sign is set first before the un-
signed addition or subtraction. That is to prevent the algorithm from producing
—a — —a = —0 as a result.

File: bn_mp_sub.c

Much like the implementation of algorithm mp_add the variable res is used
to catch the return code of the unsigned addition or subtraction operations and
forward it to the end of the function. On line 39 the “not equal to” MP_LT
expression is used to emulate a “greater than or equal to” comparison.

4.3 Bit and Digit Shifting

It is quite common to think of a multiple precision integer as a polynomial in
x, that is y = f(B) where f(z) = Z?;ol a;x'. This notation arises within dis-
cussion of Montgomery and Diminished Radix Reduction as well as Karatsuba
multiplication and squaring.

In order to facilitate operations on polynomials in x as above a series of
simple “digit” algorithms have to be established. That is to shift the digits left
or right as well to shift individual bits of the digits left and right. It is important
to note that not all “shift” operations are on radix-f digits.

4.3.1 Multiplication by Two

In a binary system where the radix is a power of two multiplication by two not
only arises often in other algorithms it is a fairly efficient operation to perform.
A single precision logical shift left is sufficient to multiply a single digit by two.
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Algorithm mp_mul_2.
Input. One mp_int a
Output. b = 2a.

If b.alloc < a.used + 1 then grow b to hold a.used + 1 digits. (mp_grow)

oldused < b.used

b.used < a.used

r<+0

for n from 0 to a.used — 1 do

5171 <= an >> (lg(8) — 1)

5.2 by, + (an << 1)+ 7 (mod B)

5.3 r < rr

6. If r # 0 then do
6.1 bn+1 —r
6.2 b.used < b.used + 1

7. If b.used < oldused — 1 then do

7.1 for n from b.used to oldused — 1 do

71.1b, <0
. b.sign < a.sign
. Return(MP_OKAY).

CUs W=

© o

Figure 4.7: Algorithm mp_mul_2

Algorithm mp_mul_2. This algorithm will quickly multiply a mp_int by
two provided S is a power of two. Neither [I] nor [2] describe such an algorithm
despite the fact it arises often in other algorithms. The algorithm is setup much
like the lower level algorithm s_mp_add since it is for all intents and purposes
equivalent to the operation b = |a| + |a].

Step 1 and 2 grow the input as required to accomodate the maximum number
of used digits in the result. The initial used count is set to a.used at step 4.
Only if there is a final carry will the used count require adjustment.

Step 6 is an optimization implementation of the addition loop for this specific
case. That is since the two values being added together are the same there is
no need to perform two reads from the digits of a. Step 6.1 performs a single
precision shift on the current digit a,, to obtain what will be the carry for the
next iteration. Step 6.2 calculates the n’th digit of the result as single precision
shift of a,, plus the previous carry. Recall from section 4.1 that a, << 1 is
equivalent to a,, -2. An iteration of the addition loop is finished with forwarding
the carry to the next iteration.

Step 7 takes care of any final carry by setting the a.used’th digit of the
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result to the carry and augmenting the used count of b. Step 8 clears any
leading digits of b in case it originally had a larger magnitude than a.

File: bn_mp_mul_2.c

This implementation is essentially an optimized implementation of s_mp_add
for the case of doubling an input. The only noteworthy difference is the use of
the logical shift operator on line 52 to perform a single precision doubling.

4.3.2 Division by Two

A division by two can just as easily be accomplished with a logical shift right
as multiplication by two can be with a logical shift left.
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Algorithm mp_div_2.
Input. One mp_int a
Output. b =a/2.

If b.alloc < a.used then grow b to hold a.used digits. (mp_grow)
If the reallocation failed return(MP_MEM).
oldused < b.used
b.used < a.used
r<«0
for n from b.used — 1 to 0 do
6.1 rr < a, (mod 2)
6.2 by < (an >> 1)+ (r << (Ig(B) — 1)) (mod B)
6.3 71 1rr
7. If b.used < oldused — 1 then do

7.1 for n from b.used to oldused — 1 do

7.1.1b, <+ 0

8. b.sign <+ a.sign
9. Clamp excess digits of b. (mp_clamp)
10. Return(MP_-OKAY).

A e

Figure 4.8: Algorithm mp_div_2

Algorithm mp_div_2. This algorithm will divide an mp_int by two using
logical shifts to the right. Like mp_mul_2 it uses a modified low level addition
core as the basis of the algorithm. Unlike mp_mul 2 the shift operations work
from the leading digit to the trailing digit. The algorithm could be written to
work from the trailing digit to the leading digit however, it would have to stop
one short of a.used — 1 digits to prevent reading past the end of the array of
digits.

Essentially the loop at step 6 is similar to that of mp_mul_2 except the logical
shifts go in the opposite direction and the carry is at the least significant bit
not the most significant bit.

File: bn_mp_div_2.c

4.4 Polynomial Basis Operations

Recall from section 4.3 that any integer can be represented as a polynomial in
x as y = f(B). Such a representation is also known as the polynomial basis
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B, pp. 48]. Given such a notation a multiplication or division by = amounts
to shifting whole digits a single place. The need for such operations arises in
several other higher level algorithms such as Barrett and Montgomery reduction,
integer division and Karatsuba multiplication.

Converting from an array of digits to polynomial basis is very simple. Con-
sider the integer y = (a2,a1,a0)s and recall that y = Z?:o a;3*.  Simply
replace S with x and the expression is in polynomial basis. For example,
f(xz) = 8z + 9 is the polynomial basis representation for 89 using radix ten.
That is, f(10) = 8(10) +9 = 89.

4.4.1 Multiplication by =

Given a polynomial in z such as f(x) = a,z" + a,_ 12"~ + ... + ap multiplying
by z amounts to shifting the coefficients up one degree. In this case f(x) -z =
™t 4+ ap_12™ + ... + apz. From a scalar basis point of view multiplying by
x is equivalent to multiplying by the integer .
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Algorithm mp _Ishd.
Input. One mp_int a and an integer b
Output. a + a - 3° (equivalent to multiplication by z°).

. If b < 0 then return(MP_-OKAY).
. If a.alloc < a.used + b then grow a to at least a.used + b digits. (mp_grow).
. If the reallocation failed return(MP_MEM).
a.used < a.used + b
1+ a.used — 1
j< aused—1—0
. for n from a.used — 1 to b do
7.1 a; + a;
721+ 1—1
7351
8. for n from 0 to b — 1 do
81 an <+ 0
9. Return(MP_OKAY).

S IE-NN S ISR R

Figure 4.9: Algorithm mp_Ishd

Algorithm mp_Ishd. This algorithm multiplies an mp_int by the b’th
power of z. This is equivalent to multiplying by B°. The algorithm differs
from the other algorithms presented so far as it performs the operation in place
instead storing the result in a separate location. The motivation behind this
change is due to the way this function is typically used. Algorithms such as
mp_add store the result in an optionally different third mp_int because the orig-
inal inputs are often still required. Algorithm mp_lshd (and similarly algorithm
mp_rshd) is typically used on values where the original value is no longer re-
quired. The algorithm will return success immediately if b < 0 since the rest of
algorithm is only valid when b > 0.

First the destination a is grown as required to accomodate the result. The
counters i and j are used to form a sliding window over the digits of a of length
b. The head of the sliding window is at i (the leading digit) and the tail at j
(the trailing digit). The loop on step 7 copies the digit from the tail to the head.
In each iteration the window is moved down one digit. The last loop on step 8
sets the lower b digits to zero.
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b digits

trailing digit leading digit

Figure 4.10: Sliding Window Movement

File: bn_mp_lshd.c

The if statement (line 24) ensures that the b variable is greater than zero
since we do not interpret negative shift counts properly. The used count is
incremented by b before the copy loop begins. This elminates the need for an
additional variable in the for loop. The variable top (line 42) is an alias for the
leading digit while bottom (line 45) is an alias for the trailing edge. The aliases
form a window of exactly b digits over the input.

4.4.2 Division by x

Division by powers of x is easily achieved by shifting the digits right and remov-
ing any that will end up to the right of the zero’th digit.
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Algorithm mp _rshd.
Input. One mp_int a and an integer b
Output. a + a/B° (Divide by z°).

1. If b < 0 then return.

2. If a.used < b then do
2.1 Zero a. (mp_zero).
2.2 Return.

3.1+ 0

4. 7+ b

5. for n from 0 to a.used — b — 1 do
5.1 a; + a;
521+ 1+1
537« j+1

6. for n from a.used — b to a.used — 1 do
6.1 a, + 0

7. a.used < a.used — b

8. Return.

Figure 4.11: Algorithm mp_rshd

Algorithm mp_rshd. This algorithm divides the input in place by the b’th
power of . It is analogous to dividing by a A% but much quicker since it does
not require single precision division. This algorithm does not actually return an
error code as it cannot fail.

If the input b is less than one the algorithm quickly returns without per-
forming any work. If the used count is less than or equal to the shift count b
then it will simply zero the input and return.

After the trivial cases of inputs have been handled the sliding window is
setup. Much like the case of algorithm mp_lshd a sliding window that is b digits
wide is used to copy the digits. Unlike mp_Ishd the window slides in the opposite
direction from the trailing to the leading digit. Also the digits are copied from
the leading to the trailing edge.

Once the window copy is complete the upper digits must be zeroed and the
used count decremented.

File: bn_mp_rshd.c

The only noteworthy element of this routine is the lack of a return type since
it cannot fail. Like mp_shd() we form a sliding window except we copy in the
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other direction. After the window (line 60) we then zero the upper digits of the
input to make sure the result is correct.

4.5 Powers of Two

Now that algorithms for moving single bits as well as whole digits exist algo-
rithms for moving the “in between” distances are required. For example, to
quickly multiply by 2% for any k without using a full multiplier algorithm would
prove useful. Instead of performing single shifts k& times to achieve a multi-
plication by 2%* a mixture of whole digit shifting and partial digit shifting is
employed.

4.5.1 Multiplication by Power of Two
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Algorithm mp_mul_2d.
Input. One mp_int a and an integer b
Output. ¢ + a-2°.

. ¢4 a. (mp_copy)
. If calloe < cused + |b/lg(B)] + 2 then grow ¢ accordingly.
. If the reallocation failed return(MP_MEM).
. If b > 1g(B) then
4.1 ¢+ c- L19IBI (mp_ishd).
4.2 If step 4.1 failed return(MP_MEM).
5. d <+ b (mod lg(B))
6. If d # 0 then do
6.1 mask < 2¢
6.27r<+0
6.3 for n from 0 to c.used — 1 do
6.3.1 7 < ¢ >> (Ig(B) — d) (mod mask)
6.3.2 ¢p + (cn << d)+ 7 (mod 3)
6.3.3 1 1rr
6.4 If r > 0 then do
6.4.1 Ceysed < T
6.4.2 c.used < c.used + 1
7. Return(MP_OKAY).

O R

Figure 4.12: Algorithm mp_mul_2d

Algorithm mp_mul_2d. This algorithm multiplies a by 2° and stores the
result in ¢. The algorithm uses algorithm mp_lshd and a derivative of algorithm
mp_mul_2 to quickly compute the product.

First the algorithm will multiply a by z!*/!9(®)]) which will ensure that the
remainder multiplicand is less than 3. For example, if b = 37 and 8 = 22® then
this step will multiply by z leaving a multiplication by 237728 = 29 left.

After the digits have been shifted appropriately at most {g(/3) — 1 shifts are
left to perform. Step 5 calculates the number of remaining shifts required. If
it is non-zero a modified shift loop is used to calculate the remaining product.
Essentially the loop is a generic version of algorithm mp_mul 2 designed to
handle any shift count in the range 1 < x < lg(8). The mask variable is used
to extract the upper d bits to form the carry for the next iteration.

This algorithm is loosely measured as a O(2n) algorithm which means that
if the input is n-digits that it takes 2n “time” to complete. It is possible to
optimize this algorithm down to a O(n) algorithm at a cost of making the
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algorithm slightly harder to follow.

File: bn_mp_mul_2d.c

The shifting is performed in—place which means the first step (line 25) is to
copy the input to the destination. We avoid calling mp_copy() by making sure
the mp_ints are different. The destination then has to be grown (line 32) to
accomodate the result.

If the shift count b is larger than lg(/3) then a call to mp_lshd() is used to
handle all of the multiples of Ig(3). Leaving only a remaining shift of lg(8) — 1
or fewer bits left. Inside the actual shift loop (lines 46 to 76) we make use
of pre-computed values shift and mask. These are used to extract the carry
bit(s) to pass into the next iteration of the loop. The r and rr variables form a
chain between consecutive iterations to propagate the carry.

4.5.2 Division by Power of Two
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Algorithm mp_div_2d.
Input. One mp_int a and an integer b
Output. ¢ + |a/2%],d < a (mod 2°).

1. If b < 0 then do
1.1 ¢ + a (mp_copy)
1.2 d <= 0 (mp-zero)
1.3 Return(MP-OKAY).
2. c+a
3. d + a (mod 2°) (mp_mod_2d)
4. If b > lg(p) then do
4.1 ¢ + |/ 9B | (mp_rshd).
5. k < b (mod lg(B))
6. If k£ # 0 then do
6.1 mask « 2F
6.27r<+0
6.3 for n from c.used — 1 to 0 do
6.3.1 77 < ¢, (mod mask)
6.3.2 cn + (cn >> k) + (r << (lg(B) — k))
6.3.3 1 < 7rr
7. Clamp excess digits of ¢. (mp_clamp)
8. Return(MP_OKAY').

Figure 4.13: Algorithm mp_div_2d

Algorithm mp_div_2d. This algorithm will divide an input @ by 2° and
produce the quotient and remainder. The algorithm is designed much like al-
gorithm mp_mul_2d by first using whole digit shifts then single precision shifts.
This algorithm will also produce the remainder of the division by using algo-
rithm mp_mod_2d.

File: bn_mp_div_2d.c

The implementation of algorithm mp_div_2d is slightly different than the
algorithm specifies. The remainder d may be optionally ignored by passing
NULL as the pointer to the mp_int variable. The temporary mp_int variable ¢
is used to hold the result of the remainder operation until the end. This allows
d and a to represent the same mp_int without modifying a before the quotient
is obtained.
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The remainder of the source code is essentially the same as the source code
for mp_mul_2d. The only significant difference is the direction of the shifts.

4.5.3 Remainder of Division by Power of Two

The last algorithm in the series of polynomial basis power of two algorithms
is calculating the remainder of division by 2°. This algorithm benefits from
the fact that in twos complement arithmetic a (mod 2°) is the same as a AND
20 — 1.

Algorithm mp_mod_2d.
Input. One mp_int a and an integer b
Output. ¢ + a (mod 2%).

1. If b < 0 then do

1.1 ¢ < 0 (mp_zero)

1.2 Return(MP_OKAY).
2. If b > a.used - lg() then do

2.1 ¢ < a (mp_copy)

2.2 Return the result of step 2.1.
3.ca
. If step 3 failed return(MP_MEM).
. for n from [b/lg(B)] to c.used do
51¢c, «0
. k< b (mod lg(pB))
Clb/19(8)) 4 Clv/1g(s) (mod 2°).
. Clamp excess digits of c. (mp_clamp)
. Return(MP_OKAY).

(G2
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Figure 4.14: Algorithm mp_mod_2d

Algorithm mp_mod_2d. This algorithm will quickly calculate the value
of a (mod 2°). First if b is less than or equal to zero the result is set to zero. If b
is greater than the number of bits in a then it simply copies a to ¢ and returns.
Otherwise, a is copied to b, leading digits are removed and the remaining leading
digit is trimed to the exact bit count.

File: bn_mp_mod_2d.c
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We first avoid cases of b < 0 by simply mp_zero()’ing the destination in such

cases. Next if 2 is larger than the input we just mp_copy() the input and return

right away. After this point we know we must actually perform some work to

produce the remainder.
Recalling that reducing modulo 2¥ and a binary “and” with 2% — 1 are

numerically equivalent we can quickly reduce the number. First we zero any
digits above the last digit in 2° (line 42). Next we reduce the leading digit of

both (line 46) and then mp_clamp().

Exercises

[3]

3]

Devise an algorithm that performs a - 2° for generic values of b
in O(n) time.

Devise an efficient algorithm to multiply by small low hamming
weight values such as 3, 5 and 9. Extend it to handle all values
upto 64 with a hamming weight less than three.

Modify the preceding algorithm to handle values of the form
2k — 1 as well.

Using only algorithms mp_mul 2, mp_div_2 and mp_add create an
algorithm to multiply two integers in roughly O(2n?) time for
any n-bit input. Note that the time of addition is ignored in the
calculation.

Improve the previous algorithm to have a working time of at most
O (2(7“’1)71 + (%)) for an appropriate choice of k. Again ignore
the cost of addition.

Devise a chart to find optimal values of k for the previous problem
for n = 64...1024 in steps of 64.

Using only algorithms mp_abs and mp_sub devise another method for
calculating the result of a signed comparison.
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Chapter 5

Multiplication and Squaring

5.1 The Multipliers

For most number theoretic problems including certain public key cryptographic
algorithms, the “multipliers” form the most important subset of algorithms of
any multiple precision integer package. The set of multiplier algorithms include
integer multiplication, squaring and modular reduction where in each of the
algorithms single precision multiplication is the dominant operation performed.
This chapter will discuss integer multiplication and squaring, leaving modular
reductions for the subsequent chapter.

The importance of the multiplier algorithms is for the most part driven
by the fact that certain popular public key algorithms are based on modular
exponentiation, that is computing d = a® (mod ¢) for some arbitrary choice of
a, b, c and d. During a modular exponentiation the majorityEl of the processor
time is spent performing single precision multiplications.

For centuries general purpose multiplication has required a lengthly O(n?)
process, whereby each digit of one multiplicand has to be multiplied against
every digit of the other multiplicand. Traditional long-hand multiplication is
based on this process; while the techniques can differ the overall algorithm used
is essentially the same. Only “recently” have faster algorithms been studied.
First Karatsuba multiplication was discovered in 1962. This algorithm can

TRoughly speaking a modular exponentiation will spend about 40% of the time performing
modular reductions, 35% of the time performing squaring and 25% of the time performing
multiplications.

69
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multiply two numbers with considerably fewer single precision multiplications
when compared to the long-hand approach. This technique led to the discov-
ery of polynomial basis algorithms (good reference?) and subquently Fourier
Transform based solutions.

5.2 Multiplication

5.2.1 The Baseline Multiplication

Computing the product of two integers in software can be achieved using a
trivial adaptation of the standard O(n?) long-hand multiplication algorithm
that school children are taught. The algorithm is considered an O(n?) algorithm
since for two n-digit inputs n? single precision multiplications are required. More
specifically for a m and n digit input m - n single precision multiplications are
required. To simplify most discussions, it will be assumed that the inputs have
comparable number of digits.

The “baseline multiplication” algorithm is designed to act as the “catch-all”
algorithm, only to be used when the faster algorithms cannot be used. This
algorithm does not use any particularly interesting optimizations and should
ideally be avoided if possible. One important facet of this algorithm, is that
it has been modified to only produce a certain amount of output digits as res-
olution. The importance of this modification will become evident during the
discussion of Barrett modular reduction. Recall that for a n and m digit input
the product will be at most n + m digits. Therefore, this algorithm can be
reduced to a full multiplier by having it produce n + m digits of the product.

Recall from sub-section 4.2.2 the definition of + as the number of bits in
the type mp_digit. We shall now extend the variable set to include o which
shall represent the number of bits in the type mp_word. This implies that
2% > 2. 32, The constant § = 2%~ 29(%) will represent the maximal weight of
any column in a product (see sub-section 5.2.2 for more information).
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Algorithm s_mp_mul_digs.
Input. mp_int a, mp_int b and an integer digs
Output. ¢+ |a|-[b| (mod B%9%).

1. If min(a.used, b.used) < § then do
1.1 Calculate ¢ = |a| - |b| by the Comba method (see algorithm [527).
1.2 Return the result of step 1.1

Allocate and initialize a temporary mp_int.
2. Init ¢ to be of size digs

3. If step 2 failed return(MP_-MEM).

4. tused < digs

Compute the product.
5. for ix from 0 to a.used — 1 do
51 u+0
5.2 pb < min(b.used, digs — ix)
5.3 If pb < 1 then goto step 6.
5.4 for iy from 0 to pb — 1 do
5.4.1 7 < tiytic + Qiz - bly +u
5.4.2 tiyyin < T (mod ﬁ)
54.3 u <« |7/f6]
5.5 if iz + pb < digs then do
5.5.1 tigqpb < U
6. Clamp excess digits of ¢.
7. Swap ¢ with ¢
8. Clear t
9. Return(MP_OKAY').

Figure 5.1: Algorithm s_mp_mul_digs

Algorithm s_mp_mul_digs. This algorithm computes the unsigned prod-
uct of two inputs a and b, limited to an output precision of digs digits. While it
may seem a bit awkward to modify the function from its simple O(n?) descrip-
tion, the usefulness of partial multipliers will arise in a subsequent algorithm.
The algorithm is loosely based on algorithm 14.12 from [2 pp. 595] and is simi-
lar to Algorithm M of Knuth [I, pp. 268]. Algorithm s_mp_-mul_digs differs from
these cited references since it can produce a variable output precision regardless
of the precision of the inputs.

The first thing this algorithm checks for is whether a Comba multiplier can
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be used instead. If the minimum digit count of either input is less than §, then
the Comba method may be used instead. After the Comba method is ruled out,
the baseline algorithm begins. A temporary mp_int variable ¢ is used to hold
the intermediate result of the product. This allows the algorithm to be used to
compute products when either a = ¢ or b = ¢ without overwriting the inputs.

All of step 5 is the infamous O(n?) multiplication loop slightly modified to
only produce upto digs digits of output. The pb variable is given the count of
digits to read from b inside the nested loop. If pb < 1 then no more output
digits can be produced and the algorithm will exit the loop. The best way to
think of the loops are as a series of pb x 1 multiplications. That is, in each pass
of the innermost loop a;, is multiplied against b and the result is added (with
an appropriate shift) to t.

For example, consider multiplying 576 by 241. That is equivalent to com-
puting 10°(1)(576) + 101(4)(576) + 10%(2)(576) which is best visualized in the
following table.

517
x 2 141
5 6 | 10°(1)(576)

213[6|1]6|10(4)(576) 4 10°(1)(576)
1|3[8|8|1]6|1022)(576)+ 10'(4)(576) + 10°(1)(576)

Figure 5.2: Long-Hand Multiplication Diagram

Each row of the product is added to the result after being shifted to the left
(multiplied by a power of the radiz) by the appropriate count. That is in pass
iz of the inner loop the product is added starting at the ¢2’th digit of the reult.

Step 5.4.1 introduces the hat symbol (e.g. 7) which represents a double pre-
cision variable. The multiplication on that step is assumed to be a double wide
output single precision multiplication. That is, two single precision variables
are multiplied to produce a double precision result. The step is somewhat op-
timized from a long-hand multiplication algorithm because the carry from the
addition in step 5.4.1 is propagated through the nested loop. If the carry was
not propagated immediately it would overflow the single precision digit ;514
and the result would be lost.

At step 5.5 the nested loop is finished and any carry that was left over should
be forwarded. The carry does not have to be added to the ix + pb’th digit since
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that digit is assumed to be zero at this point. However, if iz + pb > digs the
carry is not set as it would make the result exceed the precision requested.

File: bn_s_mp_mul_digs.c

First we determine (line 31) if the Comba method can be used first since it’s
faster. The conditions for sing the Comba routine are that min(a.used, b.used) <
6 and the number of digits of output is less than MP_WARRAY. This new
constant is used to control the stack usage in the Comba routines. By default
it is set to 0 but can be reduced when memory is at a premium.

If we cannot use the Comba method we proceed to setup the baseline routine.
We allocate the the destination mp_int ¢ (line 37) to the exact size of the output
to avoid further re-allocations. At this point we now begin the O(n?) loop.

This implementation of multiplication has the caveat that it can be trimmed
to only produce a variable number of digits as output. In each iteration of the
outer loop the pb variable is set (line 49) to the maximum number of inner loop
iterations.

Inside the inner loop we calculate 7 as the mp_word product of the two
mp_digits and the addition of the carry from the previous iteration. A particu-
larly important observation is that most modern optimizing C compilers (GCC
for instance) can recognize that a N x N — 2N multiplication is all that is
required for the product. In x86 terms for example, this means using the MUL
instruction.

Each digit of the product is stored in turn (line 69) and the carry propagated
(line 72) to the next iteration.

5.2.2 Faster Multiplication by the “Comba” Method

One of the huge drawbacks of the “baseline” algorithms is that at the O(n?)
level the c